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Abstract. We prove that for any two regular cardinals ω < λ0 < λ1

there is a ccc forcing extension where there is an ultrafilter U on ω with
a base B such that (B,⊇∗) ∼= λ0 ×λ1. We use similar ideas to construct
an ultrafilter with a base B as above which is order isomorphic to any
given two-dimensional, well-founded, countably directed order with no
maximal element. Similarly, relative to a supercompact cardinal, it is
consistent that κ is supercompact, and for any regular cardinals κ <
λ0 < λ1 < ... < λn, there is a <κ-directed closed κ+-cc forcing extension
where there is a normal ultrafilter U on κ with a base B such that
(B,⊇∗) ∼= λ0× ...×λn. We apply our constructions to obtain ultrafilters
with controlled Tukey-type, in particular, an ultrafilter with non-convex
Tukey and depth spectra is presented, answering questions from [4]. Our
construction also provides new models where uκ < 2κ.

1. Introduction

Ultrafilters with strong combinatorial properties have been proven useful
for the construction of mathematical objects with extreme behavior such as
ultraproducts, topological spaces (and special points in topological spaces),
and certain groups, but could also be used to prove some combinatorial
properties [32, 28, 34]. Many of these combinatorial properties are obtained
by constructing a special generating set for the ultrafilter. This paper aims
to study the possible structures of such generating sets. More precisely, we
are interested in the isomorphism class of the structure (B,⊇∗), where ⊇∗ is
the reversed inclusion modulo the bounded ideal (or finite in case of ω) and
B is a ⊆∗-generating set of an ultrafilter U , namely, B ⊆ U and for every
A ∈ U , there is B ∈ B such that B ⊆∗ A.

For example, Kunen [33] used an iteration of Mathias forcing relative to an
ultrafilter from [35] to construct ultrafilters on ω with generating sets which
are ⊆∗-decreasing of any desired ordinal length of uncountable cofinality λ,
these are called simple Pλ-points. Kunen used this to separate the ultrafilter
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number u from the continuum, where u is defined to be the least cardinality
of a generating set for a uniform ultrafilter on ω. Our main construction
generalizes Kunen’s construction to form generating sets of more complex
types. In particular, we prove the following consistency result:

Theorem 1.1. Assume GCH and let λ0, λ1 be cardinals of uncountable co-
finality. Then there is a ccc forcing extension in which there is an ultrafilter
U on ω, with a ⊆∗-generating set B ⊆ U such that (B,⊇∗) ≃ λ0 × λ1.

The proof uses non-linear iterations of Mathias forcing. Such iterations
were considered before by Hechler [29] who proved a similar result to obtain
dominating families in the structure (ωω,≤∗). Several results in the spirit
of Hechler can be found in the literature [23, 17, 1]. Blass and Shelah [13]
considered a non-linear iteration involving Mathias forcing, however, the
Mathias component only really appears in one dimension of this construc-
tion. The major difficulty, however, is to obtain at the end of the process
(i.e. iteration) a uniform ultrafilter.

In an attempt to realize other orders, and generalizing Kunen’s simple
Pλ-point, we define:

Definition 1.2. Given an ordered set D = (D,≤D), we say that a filter
F is a simple PD-point if there is a ⊆∗-generating set B ⊆ F such that
(B,⊇∗) ≃ D.

Hence Theorem 1.1 says that in ccc forcing extension, there is a uni-
form simple Pλ0×λ1-point ultrafilter. Our construction applies to so-called
degree 2 -lattices, from which we obtain a more general construction for two-
dimensional orders. The dimension of a partially ordered set D = (D,≤D)
was defined by Dushnik and Miller [21] as the least n such that D can
be embedded into the Cartesian product of n-many linear orders with the
pointwise ordering (For a more detailed account see [45]).

Theorem 1.3. Suppose that D is a well-founded, two-dimensional, count-
ably directed lattice with no maximal element, then there is a ccc extension
in which there is a simple PD-point ultrafilter on ω.

Generalizing Kunen’s result to measurable cardinals requires considerable
effort and does not run smoothly using the standard indestructibility meth-
ods. In an unpublished work, Carlson showed that from a supercompact
cardinal this is possible. Recently, this type of iteration appeared in several
constructions [27, 18, 16, 22] guided by (for example) a diamond sequence
so that a supercompact embedding lifts in a way that the normal ultrafilter
derived from the lifted embedding has a ⊆∗-decreasing generating set of the
desired length. This can be used to obtain a model with 2κ > κ+, with
a κ-complete ultrafilter over κ generated by fewer than 2κ-many sets. It
remains open whether this can be achieved from weaker assumptions.

Our results also apply to this type of lifting argument. In particular, we
obtain the following:



ISOMORPHISM CLASSES OF GENERATING SETS 3

Theorem 1.4. Relative to the existence of a supercompact cardinal, there
is a model V with a supercompact cardinal κ such that for every regular
cardinals κ < λ0 < λ1, there is a <κ-directed closed κ+-cc forcing extension
in which there is a κ-complete simple Pλ0×λ1-point ultrafilter on κ.

Again, we can use general order theoretic reductions to obtain further
dimension-two orders as simple P -point ultrafilters. However, while the
construction on ω does not work for three-dimensional orders (such as λ0 ×
λ1 × λ2), the diamond mechanism is more flexible in that sense and in fact
we obtain the following generalization:

Theorem 1.5. Relative to the existence of a supercompact cardinal, there is
a model V with a supercompact cardinal κ such that for all regular cardinals
κ < λ0 < λ1 < ... < λn, there is a <κ-directed closed κ+-cc forcing extension
in which there is a κ-complete simple Pλ0×λ1×...×λn-point ultrafilter over κ.

These results can also be used to construct complex generating sets for
the club filter on a measurable cardinal:

Corollary 1.6. Relative to the existence of a supercompact cardinal, there
is a model V with a supercompact cardinal κ such that for every regular
cardinals κ < λ0 < λ1 < ... < λn, there is a <κ-directed closed κ+-cc
forcing extension in which κ is measurable and the club filter is a simple
Pλ0×...×λn-point.

Finally, we apply these constructions to control the Tukey-type of certain
ultrafilters. Recall that the Tukey order on directed sets is defined by (P,≤P

) ≤T (Q,≤Q) if there is a Tukey reduction f : P → Q, that is, for every
unbounded B ⊆ P, f [B] is unbounded in Q. We say that P ≡T Q if P ≤T Q
and Q ≤T P. In this paper, we will only consider ultrafilters U ordered by
reversed inclusion (U,⊇) and almost inclusion (U,⊇∗). The study of the
Tukey order find its origins in the concept of Moore-Smith convergence of
nets and has been studied extensively on general ordered sets [46, 30, 44].
The Tukey-type (U,⊇) also has been subject to a considerable amount of
work, especially when U is an ultrafilter on ω [30, 19, 20, 12, 38, 39, 36, 11, 3]
and lately this has been also looked at in the context of measurable cardinals
[5, 9] due to its close relation to the Galvin property and applicability to
Prikry-type forcing theory [8, 26, 6]. The Tukey-type of (U,⊇∗) as also been
of interest [36, 5] as the properties of a ⊆∗-generating set for an ultrafilter are
related to this Tukey-type. In fact, most of the combinatorial characteristics
of ultrafilters (see for example [15]) are formulated in terms of ⊆∗ rather than
⊆. The connection to the Tukey order is noticeable once the Tukey order is
expressed in-terms of cofinal maps. Given a partially ordered set (D,≤D), a
set B ⊆ D is called cofinal in (D,≤D) if for every d ∈ D there is b ∈ B such
that d ≤D b. Schmidt Duality [40] in the special case of ultrafilters (or in the
situation where there are least upper bounds): For any two ultrafilters U,W ,
U ≤T W if and only if there is a function f : W → U which is monotone
(i.e. A ⊆ B ⇒ f(A) ⊆ f(B)) and has a cofinal image in U .
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It is not hard to check that whenever U is a simple PD-point, then
(U,⊇∗) ≡T D. So, the analysis in this paper is finer than the Tukey-type
analysis of ultrafilters, but can be used to control it. For example, we use
our construction to find an ultrafilter U which is Tukey-equivalent to λ0×λ1.
From this we can analyze the Tukey spectrum and the depth spectrum (see
Definitions 5.1, 5.6) and show the consistency of an ultrafilter with a non-
convex spectrum (both depth and Tukey). This was asked by the first author
in [4].

Theorem 1.7.

(1) It is consistent that there is an ultrafilter U on ω such that SpT (U)
and Spdp(U) are non-convex sets.

(2) Relative to the existence of a supercompact cardinal, it is consistent
that there is a normal ultrafilter U such that SpT (U) and Spdp(U)
are non-convex sets.

Our second application relates to generalized cardinal characteristics. Re-
call that

bκ = min{|F| | F ⊆ κκ is ≤∗-unbounded}
dκ = min{|F| | F ⊆ κκ is ≤∗-dominating}

uκ = min{|B| | B ⊆∗-generates a uniform ultrafilter on κ}
ucomκ = min{|B| | B ⊆∗-generates a κ-complete ultrafilter on κ}

As we mentioned before, at a measurable cardinal, the only known method
to produce models where uκ < 2κ is via the linear Mathias iteration. The
computation of the values of these cardinal characteristics was done in [16]
where it was shown that after a linear iteration of Mathias forcing, uκ =
ucomκ = bκ = dκ. Lately, the first and the third author [10] generalized this
and showed that merely the presence of a simple Pλ-point (which is the
kind of ultrafilters produced by the Mathias iteration) causes uκ = ucomκ =
bκ = dκ. So the question of separating the cardinal characteristics in a
model where uκ < 2κ remains open. Using our methods, we can prove the
following:

Theorem 1.8. Relative to the existence of a supercompact cardinal, it is
consistent that κ is measurable and bκ < dκ = uκ < 2κ. In particular, there
is no simple P -point in that model.

2. Some preliminaries

Given a partial order (D,≤D), we define d1 <D d2 if d1 ≤D d2 and
d1 ̸= d2. For each d ∈ D, let D<d = {e ∈ D : e <D d}; D≤d is defined
similarly.

In this paper, we would like to study what are the possible posets D
for which there are uniform simple PD-point ultrafilters, both on ω and on
measurable cardinals. For the following easy proposition, we define that a
poset P = (P,≤P ) embeds cofinally into a poset Q = (Q,≤Q) if there is an
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order preserving injection j : P → Q such that rng(j) is a cofinal subset of
Q.

Proposition 2.1. Let U be an ultrafilter. If U is a simple PD-point and D′

is embedded cofinally in D, then U is a simple PD′-point.

There are some trivial limitations on a poset D for which there can be
a simple PD-point ultrafilter. For example, D has to be directed. Also, D
cannot have maximal elements. The following limitation generalizes [15,
Prop. 1.4].

Theorem 2.2. Let U be a uniform κ-complete ultrafilter over κ ≥ ω. If U is
a simple PD-point, then D is not the increasing union of κ-many κ-directed
non-cofinal subsets of D.

Proof. Suppose otherwise, that D = (D,≤D) and let D =
⋃

i<κDi, where
⟨Di | i < κ⟩ is an ⊆-increasing sequence of κ-directed non-cofinal subsets
of D. By moving to a subsequence of the Di’s if necessary, we may assume
that for every i, there is an element ei of Di+1 which is not bounded by any
element of Di.

Let B = (bd)d∈D be a ⊆∗-generating set for U witnessing that U is a
simple PD-point. Let Fi be the κ-complete filter generated by (bd)d∈Di

.
Note that since Di is κ-directed, (bd)d∈Di

is a ⊆∗-generating set for Fi.
Let F =

⋃
i<κ Fi and let us argue that F = U . Indeed, the filters Fi are

increasing (as the Di’s are increasing) and therefore F is a filter. Clearly,
B, which is a generating set for U , is included in F and by maximality of
ultrafilters, F = U .

Recall that ei ∈ Di+1 is not bounded by any element of Di and consider
Ai =

⋂
j≤i bej . Then:

Claim 2.3.

(1) The sequence ⟨Ai | i < κ⟩ is ⊆-decreasing.
(2) Ai ∈ Fr for every r > i.
(3) Ai /∈ Fi

(4)
⋂

i<κAi /∈ U

Proof of claim. (1) is trivial. For (2), by the choice of ej , ej ∈ Dj+1. Since
the Dr’s are increasing, ej ∈ Dr for every r > j. Hence for every j ≤ i
and every r > i, bej ∈ Fr. By κ-completeness, Ai =

⋂
j≤i bej ∈ Fr. For (3),

suppose otherwise that Ai ∈ Fi. Since (bd)d∈Di
generates Fi, we can find

d ∈ Di such that bd ⊆∗ Ai. But then bd ⊆∗ bei , and since ((bd)d∈D,⊇∗) ≃ D
we conclude that ei ≤D d ∈ Di. This contradicts the choice of ei.

(4) follows easily from (3) and the fact that
⋃

i<κ Fi = U . □claim

Consider the set A∗ = A0 \
⋂

i<κAi. By (4) of the claim, A∗ ∈ U . Let
Cα = (

⋂
β<αAβ) \ Aα. Using (1), it is not hard to check that A∗ can be

partitioned as A∗ =
⊎

1≤α<κCα.
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Next, we split. Define A∗:

Xeven =
⋃
α<κ

C2α, Xodd =
⋃
α<κ

C2α+1

Since Xeven ∪ Xodd = A∗ ∈ U , either Xeven ∈ U or Xodd ∈ U . Suppose
for example that Xeven ∈ U (the argument in the case that Xodd ∈ U is
identical). Then there is i1 < κ such that Xeven ∈ Fi1 . By (2) of the claim,
and κ-completeness of Fi1 ,

⋂
α<i1

Aα ∈ Fi1 . Therefore Xeven ∩
⋂

α<i1
Aα ∈

Fi1 . Since the Fr’s are increasing, we may assume that i1 = 2γ + 1 for
some γ < κ. Finally, we claim that Xeven ∩

⋂
α<2γ+1Aα ⊆ A2γ+1, which

produces the desired contradiction. Indeed if ν ∈ Xeven ∩
⋂

α<2γ+1Aα then
by definition of Xeven there is α∗ < κ such that ν ∈ C2α∗ . Since ν ∈⋂

α<2γ+1Aα, it follows that 2α
∗ > 2γ + 1. This means that ν ∈ A2γ+1. □

Corollary 2.4. There is no uniform simple Pω×ω1-point ultrafilter on ω.

The ultrafilters we will be constructing are all p-points. This poses more
restrictions on the possible D which we will be able to realize. Recall that
an ultrafilter U is a Pλ-point, if (U,⊇∗) is a λ-directed ordered set.

Proposition 2.5. U is a Pλ-point iff for every (any) D such that U is a
simple PD-point, D is λ-directed.

We now turn to the order theoretic part of the preliminaries. The follow-
ing definition will be essential in our construction of a simple PD-point with
a prescribed D.

Definition 2.6. A partially ordered set D = (D,≤D) is called a lattice, if
for any x, y ∈ D there is a least upper bound x ∨ y ∈ D the join and a
greatest lower bound x ∧ y ∈ D called the meet. A semi-lattice admits only
meets. We say that a semi-lattice D has degree 2 if for any d ∈ D and any
x1, x2, x3 <D d, there are 1 ≤ i ̸= j ≤ 3 and e <D d such that xi, xj ≤D e.

Given a lattice D, a sublattice A of D is a suborder of D which is closed
under joins and meets.

Example 2.7. Any product of ordinals λ0 × λ1 is a lattice of degree 2:
Given pairs (α1, β1), (α2, β2), (α3, β3) < (α, β),

αmax = max
1≤i≤3

αi, αmin = min
1≤i≤3

αi, βmax = max
1≤i≤3

βi, βmin = min
1≤i≤3

βi.

Then
(α1, β1) ∨ (α2, β2) ∨ (α3, β3) = (αmax, βmax)

(α1, β1) ∧ (α2, β2) ∧ (α3, β3) = (αmin, βmin).

If the pairs are pairwise incomparable, then for each i = 1, 2, 3, either αi <
αmax or βi < βmax. By the pigeonhole principle, there are i ̸= j such
that either max{αi, αj} < αmax or max{βi, βj} < βmax. Without loss of
generality suppose that max{αi, αj} < αmax. This means that

(max(αi, αj),max(βi, βj)) < (αmax, βmax) ≤ (α, β).



ISOMORPHISM CLASSES OF GENERATING SETS 7

Hence λ0 × λ1 has degree 2.

Proposition 2.8. (1) Suppose that D is a degree 2 lattice and that A ⊆
D is a sub-lattice. Then A is a degree 2 lattice.

(2) If D′ is a directed set which embeds into a degree 2 lattice D, then it
also embeds cofinally into a degree 2 sub-lattice.

Proof. To see (1), suppose that A = (A,≤D) is a sub-lattice of D = (D,≤D)
and let a1, a2, a3 <A a ∈ A. Since D has degree 2, there are 1 ≤ i ̸= j ≤ 3
and b < a such that ai, aj ≤ b. In particular, ai ∨ aj ≤ b < a. Since A is
closed under join, ai ∨ aj ∈ A. Hence A has degree 2.

For (2), let g : D′ → D be an embedding. Let A be the closure of rng(g)
under join and meets. That is, A is the increasing union of sets An, such
that A0 = rng(g), and An+1 = {a∨b | a, b ∈ An}∪{a∧b | a, b ∈ A}. Clearly,
A is closed under meets and joins. We claim that rng(g) is cofinal in A. For
this, it suffices to prove that for every n, An is cofinal in An+1. Indeed, since
D′ is directed, also rng(g) is directed and therefore A0 is cofinal in A1, and
therefore A1 stays directed. Inductively assume that rng(g) is cofinal in An,
then by directness, it is cofinal in An+1.

By (1), A is a degree 2 lattice. Hence D′ can be embedded cofinally into
a degree 2 lattice. □

Example 2.9. Consider D = (
⋃

α<λ0
{α} × ωα,≤D), where ≤D, as in the

previous example is the pointwise order on pairs of ordinals. Note that for
every (α, β), (γ, δ) ∈ D, (max{α, γ},max{β, δ}), (min{α, γ},min{β, δ}) ∈
D. Hence it is evident (and follows Proposition 2.8(2)) that the degree 2
property of λ0 × (supα<λ0

ωα) is inherited to D.

Corollary 2.10. Suppose that D is a two-dimensional, directed, well-founded
poset, then D embeds cofinally into a degree 2 sub-lattice of a product of car-
dinals.

Proof. We claim that there is an embedding g : D → λ0 × λ1 for some
cardinals λ0 × λ1 and the rest follows from Proposition 2.8(2). First, use
the assumption that D = (D,≤D) is two-dimensional, to identify D with
a subset of a product of linear orders (A,≤A) × (B,≤B). Now since D is
well-founded, we can define g by well-founded recursion, for (a, b) ∈ D, set
g(a, b) = (γ, δ), where

γ = sup{α+ 1 | ∃(a′, b′) ∈ D<(a,b), a′ <A a,∃β, g(a′, b′) = (α, β)},

δ = sup{β + 1 | ∃(a′, b′) ∈ D<(a,b), b′ <B b,∃α, g(a′, b′) = (α, β)}.
□

3. Finite support D-based iteration

In this section we will describe a forcing iteration which is indexed by a
non-linear partial order. As we denoted in the introduction, similar iter-
ations appeared in various places in the literature. Notably, in the works
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of Shelah (see, for example, [41, 42]), this type of iteration is modeled as
linear iteration with restricted memory — so in Shelah’s language, asking
the memory to be transitive is parallel to forcing along a partial order. In
[42], Shelah discribed a more general mechanism that allows one to deal
with certain schemes which might be ill–founded or non-transitive.

Let D = (D,≤D) be a partial order, a sequence ⟨P<d, Q̇d : d ∈ D⟩ is a
finite support iteration based on D if the following conditions hold for all
d ∈ D:

• P<d is the set of finitely supported sequences p = ⟨pe | e ∈ D<d⟩
such that for all e ∈ D<d, ⊩P<e p(e) ∈ Q̇e.

• 1P<d
⊩ Q̇d is a partial order.

We denote by PD the set of finitely supported sequences p = ⟨pe | e ∈ D⟩
such that for all e ∈ D, p ↾ D<e ⊩P<e p(e) ∈ Q̇e. We will also write P≤d

instead of P<d ∗ Q̇d. The order is defined by p ≤PD q iff for every d ∈ D,
p ↾ D<d ⊩P<d

p(d) ≤Q̇d
q(d).

Ultimately, we will only consider iterations based on well-founded par-
tially ordered sets, as the names Q̇d will be defined by well-founded recur-
sion.

Lemma 3.1. Let D′ ⊆ D be downwards closed. Then PD projects via re-
striction to PD′ .

Proof. We will check that the restriction map from PD to PD′ is a projection.
Clearly, it is order preserving. Suppose that q ∈ PD′ is stronger than p ↾ D′.
We will find an extension p′ ≤ p in PD such that p′ ↾ D′ = q.

Define p′ = q ∪ p ↾ (D \ D′). Then by definition, p′ belongs to PD Also
p′ ↾ D′ = q. It remains to prove that for every d ∈ D,

p′ ↾ D<d ⊩P<d
p′(d) ≤ p(d).

If d ∈ D′, since D′ is downward closed, p′ ↾ D<d = q ↾ D<d and p′(d) =
q(d). Since q is stronger than p ↾ D′, we are done.

Suppose instead that d ∈ D \ D′. Then p′(d) = p(d), and clearly, p′ ↾
D<d ⊩P<d

p′(d) ≤ p(d). □

Recall that the Mathias forcing relative to a filter is defined as follows:

Definition 3.2. Let F be a κ-complete filter over a regular cardinal κ ≥ ω.
Let M(F ) be the forcing notion consisting of conditions of the form (a,A) ∈
[κ]<κ × F . The order is defined by (a,A) ≤ (b, B) if and only if

(1) b ⊑ a.
(2) A ⊆ B.
(3) a \ b ⊆ B

This forcing is κ-closed, and κ+-cc. It adds a set X which is a ⊆∗-lower
bound for the filter F .

The focus of this section is the iteration of Mathias forcings based on
D = (D,≤D) associated with a sequence ⟨U̇<d, U̇d : d ∈ D⟩. We say that
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(V P2,0 , U2,0) (V P2,1 , U2,1) (V P2,2 , U2,2)

(V P<(2,1) , U<(2,1)) (V P<(2,2) , U<(2,2))

(V P1,0 , U1,0) (V P1,1 , U1,1) (V P1,2 , U1,2)

(V P<(1,1) , U<(1,1)) (V P<(1,2) , U<(1,2))

(V P0,0 , U0,0) (V P0,1 , U0,1) (V P0,2 , U0,2)

(V,U<(0,0))

MU<(2,1)
MU<(2,2)

MU<(2,0)

MU<(1,1)
MU<(1,2)

MU<(1,0)

MU<(0,1)
MU<(0,2)MU<(0,0)

Figure 1. Models and ultrafilters of the λ0 × λ1-based iteration

⟨U̇<d, U̇d : d ∈ D⟩ is suitable if there is an iterated forcing ⟨P<d, Q̇d | d ∈ D⟩
based on D, satisfying the following additional requirements:

I. U̇<d is an P<d-name for an ultrafilter on ω that extends
⋃

e<Dd U̇e.

II. Q̇d is a P<d-name for the Mathias forcing M(U̇<d).

III. U̇d is an P≤d-name for an ultrafilter extending U̇<d ∪ {Ḃd} where

Ḃd = {(p, α̌) | p ↾ D<d ⊩ “α̌ appears in the stem of p(d)”} is the

canonical name for an Q̇d-generic set.

Given D and a suitable sequence ⟨U̇<d, U̇d : d ∈ D⟩, the associated iteration

of Mathias forcings based on D is the iteration ⟨P<d, Q̇d : d ∈ D⟩ which is

uniquely determined by the choice of ⟨U̇<d, U̇d : d ∈ D⟩.
Fix such a suitable sequence ⟨U̇<d, U̇d : d ∈ D⟩ and denote by MD the

resulting partial order PD.

Example 3.3. Let λ0 and λ1 be regular uncountable cardinals. Let (D,≤D) =
(λ0,≤)× (λ1,≤), so D is the directed partial order on λ0 × λ1 given by

(α0, α1) ≤D (β0, β1) ⇐⇒ α0 ≤ β0 ∧ α1 ≤ β1.

We will eventually prove (Corollary 3.8) that for such D, it is possible to

construct a suitable sequence ⟨U̇<d, U̇d | d ∈ D⟩.

Remark 3.4. If e <D d then

U̇<e ⊆ U̇e ⊆ U̇<d ⊆ U̇d

is a tower of ultrafilters of the models

V P<e ⊆ V Pe ⊆ V P<d ⊆ V Pd

Indeed, U̇<e ⊆ U̇e ⊆ U̇<d. Since the generic set Ḃd added by Q̇d diagonalizes
U̇<d, and Ḃd ∈ U̇d, it follows that U̇<d ⊆ U̇d.

Lemma 3.5. Assume that D is well-founded. Then the set of conditions
p ∈ MD such that for all d ∈ Supp(p), pd = (τ̌d, Ȧd) is dense.
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Proof. This is an easy induction which uses the fact that MD has finite
support. □

Lemma 3.6. For every regular uncountable cardinal λ, MD is λ-Knaster.

Proof. This is a straightforward application of the previous lemma combined
with the ∆-system lemma and the fact that Mathias forcing is σ-centered.

□

Let G ⊆ MD be a generic. For every d ∈ D, denote Bd = (Ḃd)G.

Theorem 3.7. ({Bd | d ∈ D},⊇∗) is isomorphic to D.

Proof. Let us begin observing that if e <D d then Bd ⊆∗ Be. To see this,
note that Be ∈ Ue ⊆ U<d by Remark 3.4. Moreover Bd diagonalizes U<d,
and so Bd ⊆∗ Be.

Now we will show that if e ≰D d, then Bd ̸⊆∗ Be. Let D′ = D≤d ∪D<e.
Since D′ is downwards closed, G projects onto a MD′-generic G′ by Lemma
3.1. Towards a contradiction, suppose there is a condition p ∈ PD′∪{e}
forcing “Ḃd \ m̌ ⊆ Ḃe”. (Notice that Ḃd is a PD′-name). Extend p ↾ D′ to a

condition p′ ∈ PD′ which forces for some k < ω that “ǩ ∈ Ḃd\max(š∪{m̌})”,
where p(e) = (š, Ȧ). Let p∗ ∈ PD′∪{e} be the condition defined by p∗ ↾ D′ =

p′ and p∗(e) = ⟨š, Ȧ \ (ǩ + 1)⟩ and notice that p∗ ≤D′∪{e} p. However, p∗

forces the negation of “B̌d \ m̌ ⊆ Ḃe”, which is impossible.
□

Corollary 3.8. Assume that D = (D,≤D) is countably directed and has no
maximal elements. Let G ⊆ MD be generic. Then U =

⋃
d∈D Ud ∈ V [G]

forms a p-point ultrafilter. Moreover, the ultrafilter U is generated by {Bd |
d ∈ D}.

Proof. Since each Bd diagonalizes U<d, the “moreover” part follows from
the equality

⋃
d∈D Ud =

⋃
d∈D U<d, which follows from Remark 3.4 and the

fact that D has no maximal elements.
To see the first part, note that U has the finite intersection property

since it is the directed union of a family of sets with the finite intersection
property, namely the Ud’s.

To show that U is an ultrafilter, it suffices to show that for every X ∈
P (ω)V [G], either X ∈ U or ω \X ∈ U . Since each condition in MD has finite
support, and since MD has the ccc, whenever X ⊆ ω, there is a nice name
Ẋ based on maximal antichains An for n < ω. Let σ =

⋃
{Supp(p) | p ∈

An, n < ω} ⊆ D. By our assumption, D is countably directed, let d ∈ D
be an upper bound for σ. Thus X ∈ V P≤d and since Ud is an ultrafilter
of V P≤d , either X ∈ Ud or ω \ X ∈ Ud. Since Ud ⊆ U , either X ∈ U or
ω \X ∈ U . □

Finally, we would like to construct, for a restricted choice of D, a suitable
sequence of names ⟨U̇<d, U̇d : d ∈ D⟩.
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Theorem 3.9. Suppose that D = (D,≤D) is a well-founded degree 2 directed

semi-lattice. Then there is a suitable ⟨U̇<d, U̇d : d ∈ D⟩.

Proof. We use the well foundedness to define U̇<d and U̇d recursively. First,
we let U̇d be a canonical name for any uniform ground model ultrafilter on
ω whenever d is D-minimal.

By II, once U̇<d was defined, Ḃd is forced to diagonalize U̇<d. Hence, the
set U̇<d∪{Ḃd} is forced to have the finite intersection property and therefore

can be extended (arbitrarily) to an ultrafilter. Let U̇d be a name for such an
ultrafilter. The non-trivial part of the construction is to guarantee condition
I, suppose that ⟨U̇<e, U̇e : e <D d⟩ has been defined.

Lemma 3.10. ⊩P<d
“
⋃

e<Dd U̇e has the finite intersection property”.

Proof. We prove the lemma by induction on the number of sets intersected.
Specifically, for each k ≥ 1 we show that if e0, . . . , ek <D d, and Yi ∈ Uei ,

then
⋂k

i=0 Yi is infinite. For k = 1, let Y0 ∈ Ue0 and Y1 ∈ Ue1 . Towards
contradiction, suppose that Y0 ∩ Y1 is finite and let p ∈ P<d force that
Ẏ0 ∩ Ẏ1 \ l = ∅ for some l < ω. Let em = e0 ∧ e1 be the meet of e0, e1. Let
G≤em be a V -generic filter for P≤em . Working in V [G≤em ], define:

Ã =
{
n < ω | ∃q ∈ P≤e0/G≤em , q ≤ p ↾ D≤e0 , q ⊩P≤e0

ň ∈ Ẏ0

}
B̃ =

{
n < ω | ∃q ∈ P≤e1/G≤em , q ≤ p ↾ D≤e1 , q ⊩P≤e1

ň ∈ Ẏ1

}
We claim that Ã∩B̃\l = ∅. Otherwise, let n ∈ Ã∩B̃\l and let q0, q1 witness
this. Since the conditions q0, q1 are in quotients over the same forcing, there
is r ∈ P≤em such that

r ≤ q0 ↾ D≤em , q1 ↾ D≤em ≤ p ↾ D≤em .

Define p∗ ∈ P<d as follows, for x <D d, set

p∗(x) =


r(x) x ≤D em

q0(x) x ∈ D≤e0 \D≤em

q1(x) x ∈ D≤e1 \D≤em

p(x) otherwise

.

Note that there is no conflict in the definition since if x ≤D e0 and x ≤D e1
then x ≤D e0∧e1 = em. We conclude that p∗ ≤ p and p∗ ⊩P<d

n ∈ Ẏ0∩Ẏ1\l,
contradiction.

However, by Remark 3.4, Ã ∈ Ue0 ∩ V [G≤em ] = Uem and B̃ ∈ Ue1 ∩
V [G≤em ] = Uem . Thus, Ã, B̃ ∈ Uem , producing a contradiction to the choice
of Uem being a uniform ultrafilter.

Now for the general case, suppose that k ≥ 2. If there are i ̸= j such that
ei and ej are <D-comparable, then we may reduce the k+1 sets Y0, .., Yk to
k sets and apply the induction hypothesis for k − 1. Suppose that e0, ..., ek
are pairwise incomparable. Since D has degree 2, there are i ̸= j and
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eM <D d such that ei, ej ≤D eM . Also, since ei and ej are incomparable,
ei, ej <D eM . Therefore, Uei , Uej ⊆ U<eM . It follows that BeM ∈ UeM is
⊆∗-below both Yi and Yj . Replacing Yi, Yj by BeM , we may now apply the
induction hypothesis for k−1 elements. This concludes the inductive proof.

□

□

Corollary 3.11. Suppose that D is a well-founded, degree 2, countably di-
rected semi-lattice, with no maximal elements, then there is a ccc forcing
extension in which there is a uniform simple PD-point ultrafilter U .

Corollary 3.12. Let λ1, λ2 be any cardinals of uncountable cofinality. There
is a ccc forcing extension in which there is a uniform Pλ1×λ2-point ultrafilter.

Corollary 3.13. Let D be a well-founded countably-directed two-dimensional
order with no maximal elements. Then there is a ccc forcing extension in
which there is a uniform PD-point ultrafilter.

Proof. By Corollary 2.10, D can be cofinally embedded into a degree-two
subset A of a product of cardinals. Also since D is countably directed and
has no maximal elements, so does A. Now we can apply Corollary 3.11 to
force an ultrafilter U which is a simple PA-point. Since D cofinally embeds
into A, by Proposition 2.1 U is a simple PD-point. □

4. At a measurable cardinal

In this section, we produce examples of measures, i.e. normal ultrafilters,
on a measurable cardinal κ which have complicated yet controlled cofinal
structures. As in Section 3 the idea is to produce a measure U such that
some poset with a complicated Tukey structure is embedded cofinally into
(U,⊇∗), and we produce U by a nonlinear iteration of a version of ultrafilter
Mathias forcing. However, we will use a different method to choose the
forcing posets used at each stage, which permits us to embed a more general
class of posets into (U,⊇∗). For definiteness we will show how to embed the
product of a finite increasing sequence of regular cardinals greater than κ.

To illustrate the main idea in a simple setting, suppose that κ is a Laver
indestructible supercompact cardinal and consider a linear iteration of ul-
trafilter Mathias forcing at κ with < κ-supports, where at stage α we use
a measure Uα ∈ V [Gα] to define the next step in the iteration: there is no
problem in choosing some Uα because the forcing so far is κ-directed closed.
In the final model V [G] there is of course a measure U , but a priori we have
no reason to believe that the set Bα added at stage α is in U , or even that
Uα ⊆ U .

This problem was first solved by Džamonja and Shelah [22], where the
rough idea is that we force at α with the disjoint sum of all measures which
exist in V [Gα]. This leads to some technical complications in the iteration,
which we can avoid using an idea suggested originally by Magidor: the idea is
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to choose Uα using some diamond principle, and organize the construction
so that whenever Uα ⊆ U (which happens frequently) we have Bα ∈ U .
Running the iteration for a large enough number of steps, we may produce
measures which are generated by arbitrarily long ⊆∗-decreasing sequences.
The diamond idea appears in a paper by Cummings, Džamonja, Magidor,
Morgan and Shelah [18] albeit in a more complex setting.

For technical reasons we will be using “filter Mathias forcing” (see Defini-
tion 3.2). If F is a κ-complete filter, the filter Mathias poset is still κ-directed
closed and κ+-cc.

Let Q be a forcing poset and let λ be a cardinal. It will be convenient to
specify exactly what we mean by a canonical Q-name for a subset of λ or
a family of subsets of λ. A canonical Q-name for a subset of λ is a name
τ̇ such that τ̇ ⊆ Q × {α̌ : α < λ}, and {q : (q, α̌) ∈ τ̇} is an antichain for
all α. A canonical name for a family of subsets of λ is a name σ̇ such that
σ̇ ⊆ Q × {τ̇ : τ̇ is a canonical name for a subset of λ}, and {q : (q, τ̇) ∈ σ̇}
is an antichain for all τ̇ . It is easy to see that any name for a subset of λ or
a family of subsets of λ is equivalent to a canonical name.

Let V0 |= “GCH and κ is supercompact”, and let V = V0[L] where L is
the standard Laver preparation to make κ indestructible under κ-directed
forcing. Note that GCH holds in V for all cardinals δ with δ ≥ κ.

We work in V until further notice. Let n < ω, let (λi)0≤i≤n be a strictly
increasing sequence of regular cardinals with κ < λ0, and let I =

∏
i≤n λi.

We will define a non-linear iteration P of ultrafilter Mathias forcing indexed
by I, arranging that P is κ-directed closed and κ+-cc.

We will also assume that the diamond principle ♢λn(λn ∩ cof(κ+)) holds
in V . This is easy to arrange: prepare V0 so that this form of diamond holds
there, and then use standard arguments about the preservation of diamond
principles by forcing to show that it still holds in V .1 We will use a form
of diamond which is adapted to guessing subsets of Hλn , which is possible
because |Hλn | = λn. To be precise we will assume that there are sequences
(Aα)α∈λn∩cof(κ+) and (Mα)α<λn such that

(1) Mα ≺ Hλn with |Mα| < λn.
(2) (Mα)α<λn is continuous and

⋃
α<λn

Mα = Hλn .
(3) Aα ⊆ Mα, and for every A ⊆ Hλn there are stationarily many α ∈

λn ∩ cof(κ+) such that A ∩Mα = Aα.

The choice of the sequence (Mα) is not important, since such sequences
always exist and any two such sequences agree on a club subset of λn.

As before, we will order I with the product coordinatewise ordering, that
is to say (ηi)i≤n ≤ (ζi)i≤n if and only if ηi ≤ ζi for all i ≤ n. For a =

1Our GCH hypothesis actually implies right away this diamond principle at many,
but not all, instances. For example, by Shelah [43] it holds for every successor cardinal
λn = χ+ as long as cfχ ̸= κ+. By an unpublished result of the third author, it holds for
every λn inaccessible, as λn is above a supercompact cardinal.
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(α1, . . . , αn) ∈ I, recall that we denoted

I<a = {b ∈ I : b < a} = (α0 + 1)× ...× (αn + 1) \ {a}.
As usual Pa is defined by recursion on a. Part of the definition will involve

choosing a Pa-name Ḟa for a κ-complete uniform filter on κ in V [Pa], but

we postpone the exact definition of Ḟa for the moment.
A condition p ∈ Pb is a partial function p such that:

• dom(p) ⊆ I<b.
• |dom(p)| < κ.
• For every a ∈ dom(p), p(a) is a Pa-name for a condition in Qa, where

Qa is the filter Mathias forcing defined in V Pa from the filter Ḟa.

For conditions p, q ∈ Pb, q ≤ p if and only if:

• dom(p) ⊆ dom(q).
• For all a ∈ dom(p), q ↾ I<a ⊩Pa q(a) ≤Qa p(a).

The definition makes sense because (by an easy induction) for all a < b
we have that Pa is a complete subposet of Pb, and q 7→ q ↾ I<a is a projection
from Pb to Pa. It is easy to verify that Pa is κ-directed closed. For κ+-cc we
first verify that the set of p such that p ↾ I<a determines the stem of p(a)
for all a ∈ dom(p) is dense, and then use the ∆-system lemma, keeping in
mind that κ<κ = κ.

Let P =
⋃

b∈I Pb, be the direct limit of ⟨Pb | b ∈ I⟩. For any downwards
closed subset J of I, let PJ = {p ∈ P : dom(p) ⊆ J}. Then PJ is a complete
subposet of P, and q 7→ q ↾ J is a projection from P to PJ (the proof is
identical to Lemma 3.1). In these notations, Pa = PI<a .

We still owe the definition of a Pa-name Ḟa for a κ-complete uniform
filter on κ. For β < λn, we say that β is an active stage if β ∈ λn ∩ cof(κ+)
and Aβ is a canonical Pλ0×...×λn−1×β-name for a measure on κ. Let a =
(α0, . . . , αn−1, β) and assume for the moment that β is an active stage.

Working in V , let F 0
a be the set of canonical P(α0+1)×...×(αn−1+1)×β-names

Ȧ for subsets of κ such that ⊩V
Pλ0×...×λn−1×β

Ȧ ∈ Aβ. This is reasonable

because (α0 + 1) × . . . × (αn−1 + 1) × β is a downwards closed subset of

λ0 × . . . × λn−1 × β, so that Ȧ makes sense as a Pλ0×...×λn−1×β-name for a
subset on κ.

Claim 4.1. Let Ga be Pa-generic and let F 1
a = {Ȧ[Ga] : Ȧ ∈ F 0

a }. Then
V [Ga] |= “F 1

a generates a κ-complete uniform filter”.

Proof. Force to prolong Ga to G such that G ↾ I<a is P↓a-generic, and let
W = Aβ[G ↾ λ0 × . . . × λn−1 × β]. Then F 1

a ⊆ W and V [G ↾ λ0 × . . . ×
λn−1 × β] |= “W is a measure on κ”, and the conclusion follows easily. □

If a = (α0, . . . , αn−1, β) and β is an active stage, we let Xa = {Bb | b =
(β1, ..., βn−1, β) < a}, where Bb is the Mathias generic set added by the
component Qb for the filter Fb. Note that the right-most coordinate is fixed
in the definition of Xa. If F 1

a ∪ Xa generates a κ-complete filter, let Fa be
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the κ-complete uniform filter generated in V [Ga] by F 1
a ∪Xa. If β is not an

active stage or if F 1
a ∪ Xa does not generate a κ-complete filter, then let Fa

be the tail filter on κ.
We record a few easy observations, where we make repeated use of the

κ+-cc and the regularity assumption on the λi’s to analyze how subsets of
κ will appear in the generic extension.

(1) Every canonical P-name for a subset of κ is a canonical Pa-name for
some a ∈ I. It follows that if G is P-generic then P (κ) ∩ V [G] =⋃

a∈I P (κ) ∩ V [Ga], where Ga is the projection of G to Pa.
(2) Similarly if β < λn and cf(β) > κ, then P (κ) ∩ V [G∏

i<n λi×β] =⋃
α<β P (κ) ∩ V [G∏

i<n λi×α].

We will prove:

Theorem 4.2. If G is P-generic then there exist in V [G] a measure U on
κ and a family of sets (Ba)a∈I such that

(1) Ba ∈ U for all a ∈ I.
(2) For all a, b ∈ I, Bb ⊆∗ Ba if and only if a ≤ b.
(3) For every Y ∈ U there is a ∈ I such that Ba ⊆∗ Y .

In particular, U is a simple PI-point.

Proof of Theorem 4.2. Working in V0 we fix j : V0 → M0 such that j wit-
nesses that κ is λn-supercompact, and j(L) ≃ L ∗P ∗R where the first point
in the support of the tail iteration R is greater than λn. This ensures that:

(1) ⊩M0
L∗P “R ∗ j(P) is λ+

n -closed”.

(2) V [G] |= λnM0[L][G] ⊆ M0[L][G]
(3) V [G] |= “R ∗ j(P) is λ+

n -closed”.

It is straightforward to lift j : V0 → M0 to obtain j : V = V0[L] →
M0[L ∗ G ∗ H] for any H which is R-generic over V [G]. To further lift j
onto V [G] we would need a j(P)-generic object S such that j[G] ⊆ S. It is
worth noting that, since conditions in P have supports of size less than κ,
the support of a condition in j[G] will be contained in j[I].

Let ≺ be the lexicographic ordering on I, so that:

• ≺ is a well-ordering of I with order type λn.
• ≺ extends <.

Let (ai)i<λn enumerate I in ≺-increasing order.
Working in V [G], we will construct a decreasing sequence (ri, si)i<λn of

conditions in R ∗ j(P). We will arrange that:

• The support of si is contained in j({aη : η < i}), so that in particular
j(aζ) is not in the support of si for ζ ≥ i.

• si ≤ j[Gai ], so that (ri, si) forces that j can be lifted onto V [Gai ].

We note that si may not actually be a condition in j(Pai), the point is that
the projection of si to j(Pai) forces that the j(Pai)-generic object contains
j[Gai ].



16 BENHAMOU, CUMMINGS, GOLDBERG, HAYUT, AND POVEDA

For i = 0, where we note that a0 = (0, 0, . . . , 0), let (r0, s0) be the trivial
condition. For i limit let (ri, si) be a lower bound for (rj , sj)j<i, taking care
that the support of si is the union of the supports of sj for j < i.

To construct (ri+1, si+1), we force below (ri, si) and construct j : V [Gai ] →
M0[L][G][H][S′] whereH∗S′ is R∗j(Pai)-generic. Recall that we defined Qai

from a κ-complete uniform filter Fai ∈ V [Gai ], and that the ai-component
of G gives a subset Bai of κ which is Qai-generic.

Let s′i be the projection (i.e. restriction) of si to j(Pai). There are now
two cases:

(1) (ri, s
′
i) ⊩

M0[L][G]
R∗j(Pai )

κ ∈ j(E) for every E ∈ Fai . In this case we define

ri+1 and si+1 as follows:
(a) ri+1 = ri.
(b) dom(si+1) = dom(si) ∪ {j(ai)}.
(c) si+1 ↾ dom(si) = si.
(d) si+1(j(ai)) = (Bai ∪ {κ},

⋂
j[Fai ]).

(2) There is E ∈ Fai such that (ri, s
′
i) ̸⊩

M0[L][G]
R∗j(Pai )

κ ∈ j(E). In this case

we choose such an Ei = E and find (r∗i , s
∗
i ) ∈ R ∗ j(Pai) such that

(r∗i , s
∗
i ) ≤ (ri, s

′
i) and (r∗i , s

∗
i ) ⊩ κ /∈ j(Ei). We then define:

(a) ri+1 = r∗i .
(b) dom(si+1) = dom(s∗i ) ∪ (dom(si) \ dom(s∗i )) ∪ {j(ai)}.
(c) si+1 ↾ dom(s∗i ) = s∗i .
(d) si+1 ↾ (dom(si) \ dom(s∗i )) = si ↾ (dom(si) \ dom(s∗i )).
(e) si+1(j(ai)) = (Bai ,

⋂
j[Fai ]).

Let us check that we have maintained the hypotheses. The main points
are:

(1) j(Fai) is j(κ)-complete and j[Fai ] ∈ M0[L][G][H][S′] so that
⋂
j[Fai ] ∈

j(Fai) and we constructed legitimate conditions in j(Qai).
(2) In either case of the construction, dom(si+1) ⊆ dom(si) ∪ j(I<ai) ∪

{j(ai)}. Since I<ai ⊆ {aη : η < i}, it follows that dom(si+1) ⊆
j({aζ : ζ ≤ i}).

(3) The filter added by G at ai is the set of pairs (s, E) where E ∈ Fa, s is
an initial segment of Bai and Bai\s ⊆ E. Since j((s, E)) = (s, j(E)),
it is easy to see that it is forced that (Bai ,

⋂
j[Fai ]) ≤ (s, j(E)). In

the first case (ri, si) forces that (Bai ∪ {κ},
⋂
j[Fai ]) ≤ (s, j(E)).

When the construction of (ri, si)i<λn is done, we choose (r′, s′) to be a
lower bound and note that (r′, s′) forces that j can be lifted onto V [G]. Re-
call that every subset of κ in V [G] lies in V [Ga] for some a ∈ I, and observe

that ifX = {Ȧ : For some a ∈ I, Ȧ is a canonical Pa-name for a subset of κ}
then |X| = λn. Using the closure of R ∗ j(P) again, we find (r, s) ≤
(r′, s′) such that (r, s) decides κ ∈ j(Ȧ) for every Ȧ ∈ X. It is now

easy to see that if U = {Ȧ[G] : Ȧ ∈ X and (r, s) ⊩ κ ∈ j(Ȧ)} then V [G] |=
“U is a measure on κ”.
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Let U̇ be a canonical name for the measure U produced by this construc-
tion, and for β < λn let

U̇β = {(q, τ̇) ∈ U̇ :q ∈ P∏
i<n λi×β and

τ̇ is a canonical P∏
i<n λi×β-name for a subset of κ}

Then:

• U̇ ⊆ Hλn .

• U̇ =
⋃

β<λn
U̇β, and ⟨U̇β | β < λ⟩ is continuous at points of cofinality

κ+.
• For almost every β ∈ λn ∩ cof(κ+), U̇β is a name for a measure on
κ, and is forced to equal U ∩ V [G∏

i<n λi×β].

• If S = {β ∈ λn ∩ cof(κ+) : Aβ = U̇β} then S is stationary in λn, and
every β ∈ S is an “active stage” in the definition of P.

Let I∗ = λ0 × . . . λn−1 × S, and note that (I∗, <) is isomorphic to (I,<).

Claim 4.3. For every a ∈ I∗, Ba ∈ U .

Proof. Let a = ai = (α0, . . . αn−1, β), and consider the construction of
(ri+1, si+1). The proof is by induction on a. The key point is that we
must be in case 1 of the construction, so assume for a contradiction that we
are in case 2. Since (r, s) ≤ (ri+1, si+1), this means that there is E ∈ Fai

such that E /∈ U . Since U is κ-complete and since Fai is the κ-complete
filter generated by F 1

a ∪ Xa, either there is Y ∈ Aβ[Gλ0×...λn−1×β] \ U or
Ba′ /∈ U for some a′ = (α′

1, ..., α
′
n−1, β) < a. Note that a′ ∈ I∗ as well,

hence, by the induction hypothesis, Ba′ ∈ U . In the other case, since β is
an active stage, Aβ = U̇β, and thus Y ∈ U ∩ V [G∏

i<n λi×β]. In either case,

we reach a contradiction.
Since we are in case 1, (ri+1, si+1) ⊩ κ ∈ j(Ba). So (r, s) ⊩ κ ∈ j(Ba),

and therefore Ba ∈ U . □

As a corollary, we conclude that whenever β is an active stage of the
iteration, for every a = (α1, ..., αn−1, β), F

1
a∪Xa ⊆ U and therefore generates

a κ-complete ultrafilter. By the definition of Fa, this means that F1 ∪Xa ⊆
Fa.

Claim 4.4. Let a, a′ ∈ I∗ where a < a′. Then Ba ∈ Fa′.

Proof. Let a = (α0, . . . αn−1, β) and and a′ = (α′
0, . . . α

′
n−1, β

′). If β =
β′, then Ba ∈ Xa′ and we have already seen that Xa′ ⊆ Fa′ . Assume
that β′ < β, then clearly Ba ∈ V [G(α1+1)×...×(αn−1+1)×β′ ]. Let Ḃa be a

canonical Pa′-name for Ba. We need to show that ⊩V
Pλ0×...×λn−1×β′

Ḃa ∈ Aβ′ .

Let Gλ0×...×λn−1×β′ be an arbitrary generic for Pλ0×...×λn−1×β′ , and force to
prolong it to a P-generic G. Then by Claim 4.3

Ba ∈ U ∩ V [Gλ0×...×λn−1×β′ ] = Uβ′ [Gλ0×...×λn−1×β′ ] = Aβ′ [Gλ0×...×λn−1×β′ ]

Hence, by definition, Ḃa ∈ F 0
a′ and Ba ∈ F 1

a′ ⊆ Fa′ . □
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Claim 4.5. Let a, a′ ∈ I∗ Then Ba′ ⊆∗ Ba if and only if a ≤ a′.

Proof. If a = a′ then the implication is clear. If a < a′ then Ba ∈ Fa′ by
Claim 4.4. Since Ba′ is generic for the filter Mathias forcing defined from
Fa′ , Ba′ ⊆∗ Ba.

Now let a ̸≤ a′. We work in the dense subset of P where p ↾ I<b decides the
stem spb of the condition p(b) for all b ∈ dom(p), and write p(b) = (spb , Ȧ

p
b).

Assume for a contradiction that p ∈ G and p ⊩ Ba′ \ ζ ⊆ Ba for some
ζ < κ. We may assume that a, a′ ∈ dom(p). Now let I≤a′ = I<a′ ∪ {a′},
and note that a /∈ I≤a′ . Extend p ↾ I≤a′ to some q ∈ PI≤a′ so that γ ∈ sqa′
for some γ > ζ,max(spa). Let p1 = p ∪ q and note that p1(a) = p(a) =

(spa, Ȧ
p
a). Extend p1 to p2 such that p2(a) = (spa, Ȧ

p
a \ (γ + 1)). Then p2 ⊩

“γ ∈ Ḃa′ \ ζ and γ /∈ Ba” for an immediate contradiction. □

Claim 4.6. In V [G], {Ba : a ∈ I∗} forms a basis for U .

Proof. Let Y ∈ V [G] with Y ∈ U . Then Y ∈ V [Ga] for some a ∈ I∗.
Arguing as in the proof of Claim 4.4, there is b ∈ I∗ such that Y ∈ Fb, so
that Bb ⊆∗ Y . □

This concludes the proof of Theorem 4.2.
□

Corollary 4.7. Relative to a supercompact cardinal, it is consistent that
there is a supercompact cardinal κ such that for any regular cardinals κ <
λ0 < ... < λn, there is a κ-directed closed, κ+-cc forcing extension where
there is a normal ultrafilter over κ which is a simple Pλ0×...×λn-point.

Remark 4.8. The method presented in this section can be modified to obtain
a model where there a PD×λ-point ultrafilter on κ for D = (D,≤D) and λ
such that:

(1) |D| < λ = cf(λ).
(2) D is κ+-directed and well-founded.

The only modifications in the proof above are cosmetic:

• work with the order (d, β) ≤ (d′, β′) if and only if d ≤D d′ ∧ β ≤ β′.
• replace

∏
0≤i≤n−1 λi by D.

• An ordinal β < λ is active if Aβ guesses a PD×β-name for a measure.
Note that D× β consistes of pairs (d, γ) such that γ < β. Consider
a pair a = (d, β), F 0

a consists of Pa-names (i.e. less or equal in both

coordinates) Ȧ which are forced to be in Aβ. Then F 1
a , Xa and Fa

are defined the same way,
• extend the order on D× λ to a well-ordering of ordertype λ.
• use the κ+-directedness of D×λ to analyze as before how sets appear
in the intermediate models, and the fact that |D| < λ to run the
diamond arguments.

Corollary 4.9. Relative to the existence of a supercompact cardinal κ, it
is consistent that κ is supercompact and for all regular cardinals κ < λ0 <
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λ2 < ... < λn there is a κ+-cc and κ-closed poset forcing that there is a base
C for the club filter Cubκ such that (C,⊇∗) ≃ λ0 × λ2 × ...× λn.

Proof. Let B be the base from the previous theorem and let C be the set
of closures of the sets of B. Then since B generated a normal ultrafilter,
C generates Cubκ. Clearly, if X ⊆∗ Y then cl(X) ⊆∗ cl(Y ). A closer look
at the proof of Claim 4.5 will reveal that if X,Y ∈ B and X ̸⊆∗ Y , then
X ̸⊆∗ cl(Y ). Indeed, the choice of γ is such that γ is forced to be outside of

the closure of Ċα,β. Therefore, cl(X) ̸⊆∗ cl(Y ). □

5. Applications to cofinal types and cardinal characteristics

The following set is also known as the point-spectrum which was studied
for example in [30, 25, 4, 24].

Definition 5.1. For a directed set D we define the Tukey spectrum of D,
SpT (D) to consist of all regular cardinals λ such that λ ≤T D.

Clearly, the Tukey spectrum is an invariant of the Tukey order. An equiv-
alent condition for λ ∈ SpT (D) is to require the existence of a sequence
⟨dα | α < λ⟩ such that for every I ∈ [λ]λ, {dα | α ∈ I} is unbounded in D.
For the following fact, see for example [25]:

Fact 5.2.

(1) For any directed sets P,Q, SpT (P×Q) = SpT (P) ∪ SpT (Q).
(2) If P is linear, then SpT (P) = {cf(P)}.

The main results of the previous sections have the following immediate
corollaries:

Corollary 5.3. Suppose that D is a well-founded, degree 2, countably di-
rected semi-lattice, with no maximal elements, then there is a ccc forcing
extension in which there is an ultrafilter U on ω such that

SpT (U) = SpT (D).

Corollary 5.4. Relative to the existence of a supercompact cardinal, there
is a model V with a supercompact cardinal κ such that for every regular
cardinals κ < λ0 < λ1 < ... < λn, there is a <κ-directed closed κ+-cc forcing
extension in which there is a normal ultrafilter U such that:

SpT (U) = SpT (λ0 × ...× λn) = {λ0, ..., λn}.

In the previous corollary, SpT (D) is computed in the generic extension,
which might be sensitive to forcing. The next proposition shows that no
discrepancy arises in the interpretation of the spectrum when the generic
extension is a ccc forcing extension. More specifically:

Proposition 5.5. Let P be a λ-cc forcing and D = (D,≤D) a countably-
directed set. Let G ⊆ P be a V -generic filter, then

λ ∈ SpT (D)V if and only if λ ∈ SpT (D)V [G].
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Proof. If λ ∈ SpT (D)V , then there is a sequence ⟨dα | α < λ⟩ ⊆ D such that
for any I ∈ [λ]λ, {dα | α ∈ I} is unbounded in D. To see that this sequence

witnesses that λ ∈ SpT (D)V [G], suppose not, then there is I ∈ [λ]λ, I ∈ V [G]
such that {dα | α ∈ I} is bounded by some d ∈ D. Back in V , consider
I∗ = {α < λ | dα ≤D d}. Then I ⊆ I∗ and therefore |I∗| = λ. This is a
contradiction since {dα | α ∈ I∗} should be unbounded.

For the converse, suppose that λ ∈ SpT (D)V [G]. Let ⟨dα | α < λ⟩ ⊆ D
be a sequence in V [G] such that for each index set I ∈ [λ]λ the sequence
⟨dα | α ∈ I⟩ is unbounded. Let p ∈ G be a condition forcing the above.

For each α < λ let ḋα be a P-name such that (ḋα)G = dα. For each α < λ

let pα ≤ p such that pα ⊩P ḋα = ěα for some eα ∈ D. We claim that
⟨eα | α < λ⟩ witnesses λ ∈ Sp(D)V . Suppose otherwise, and let I ∈ [λ]λ be
such that ⟨eα | α ∈ I⟩ is bounded. To contradict this assumption it suffices

to check that p ⊩P “|{α < λ | pα ∈ Ġ}| = λ”. So, let us do it: Suppose
towards a contradiction that this was false. Since P is λ-cc there is β < λ
such that p ⊩ {α < λ | pα ∈ Ġ} ⊆ β. Note that this is impossible because

pβ itself forces “pβ ∈ Ġ”. □

A related notion is the depth spectrum introduced in [4]:

Definition 5.6. Let D = (D,≤D) be a directed set. A D-tower of length λ
is a sequence ⟨dα | α < λ⟩ which is ≤D-increasing and unbounded in D. The
depth spectrum of D, denoted by Spdp(D) consists of all regular cardinals λ
such that there is a D-tower of length λ.

The following proposition is straightforward:

Proposition 5.7. Let Di = (Di,≤Di), i = 1, 2 be directed sets. If there is
a monotone Tukey reduction f : D1 → D2 then Spdp(D1) ⊆ Spdp(D2).

Remark 5.8. If B is cofinal in D = (D,≤D), then
2, D ≡T B. Moreover, the

identity map from B into D is a monotone Tukey reduction.

Our interest is in orders of the form (U,⊇∗) where U is an ultrafilter.
Recall that the decomposability spectrum of an ultrafilter U over κ, denoted
by Spdc(U), is defined as all regular λ such that U is λ-decomposable, that
is, there is f : κ → λ such that f is unbounded in λ mod U . We have that

Spdc(U) \ {κ} ⊆ Spdp(U) \ {κ} ⊆ SpT (U) \ {κ}
The following was asked in [4]:

Question 5.9. Is SpT (U) a convex set of regulars? How about Spdp(U)?

Using the consistency results from the previous sections and the next
proposition we are able to provide a negative answer to this question.

Proposition 5.10. Suppose that F is a simple Pλ0×...×λn-point filter, then
Spdp(U) = SpT (U) = {λ0, ..., λn}.

2Formally, D ≡T (B,≤D↾ B).
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Proof. Let B be a base for U such that (B,⊇∗) ≃ λ0 × λ1 × ...× λn. Then

U ≡T λ0 × λ1 × ...× λn,

and by Fact 5.2, SpT (U) = {λ0, ...λn}. By Remark 5.8 and Proposition 5.7,
Spdp(λ0 × ... × λn) ⊆ Spdp(U,⊇∗). Finally note that for every 0 ≤ i ≤ n,
λi ∈ Spdp(λ0 × ...× λn) as witnessed by the sequence

⟨(0, 0, ..., α︸︷︷︸
ithplace

, ...0, 0) | α < λi⟩.

Putting all of the above together, we have

{λ0, λ1, ..., λn} ⊆ Spdp(λ0 × ...× λn)

⊆ Spdp(U,⊇∗)

⊆ SpT (U,⊇∗) = {λ0, λ1, ..., λn}

□

Corollary 5.11.

(1) Let ω < λ0 < λ1 be regular cardinals. It is consistent that there is
an ultrafilter on ω, such that Spdp(U) = SpT (U) = {λ0, λ1}.

(2) Relative to a supercompact cardinal, it is consistent that there is su-
percompact cardinal κ such that for any regular cardinals λ0, λ1, ..., λn >
κ, there is a κ-directed closed κ+-cc forcing extension where:
(a) There is a normal ultrafilter U such that Spdp(U) = SpT (U) =

{λ0, λ1, ...λn}.
(b) Spdp(Cubκ) = SpT (Cubκ) = {λ0, λ1..., λn}.

Proof. (1), (2a), (2b) follows from Proposition 5.10 and Corollaries 3.12,4.7,
and 4.9 respectively. □

Gitik notified us that he was able to obtain (2b) independently for the
depth spectrum of the club filter at a measurable cardinal from optimal
assumptions. Next, let us consider the Tukey-related notion of cohesiveness
due to Kanamori [31]. This notion is also known as Galvin’s property [6, 9,
7, 2]:

Definition 5.12. An ultrafilter U is (µ, λ)-cohesive if for any {Xα | α <
λ} ∈ [U ]λ there is I ∈ [λ]µ such that

⋂
i∈I Xi ∈ U .

Thus, λ ∈ SpT (U) if and only if U is not (λ, λ)-cohesive (see [4]). The
ultrafilters constructed in this paper can also be used to separate the notion
of (λ0, λ1)-cohesive from being (λ0, λ0) and (λ1, λ1)-cohesive. It is easy to
see that any non (λ0, λ1)-cohesive ultrafilter is not (λ0, λ0) and not (λ1, λ1)-
cohesive. The converse is not true in general, as witnessed by our ultrafilters:

Theorem 5.13. If U is a simple Pλ0×λ1-point over κ for regular cardinals
κ < λ0 < λ1, then U is not (λ0, λ0) and (λ1, λ1)-cohesive but it is (λ0, λ1)-
cohesive.
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Proof. As mentioned in the paragraph following Definition 5.12, not being
(λ, λ)-cohesive is equivalent to λ ∈ SpT (U). Hence the first part follows
from Proposition 5.10. For the second part, let us prove that U is (λ0, λ1)-
cohesive. Fix ⟨Xi | i < λ1⟩ ⊆ U . We need to find λ0-many sets whose
intersection is in U . Let B = (bi,j)(i,j)∈λ0×λ1

be a base for U witnessing that
U is a simple Pλ0×λ1-point. For each i < λ1 there is βi < λ1 and αi < λ0

such that bαi,βi
⊆∗ Xi. There is I ∈ [λ1]

λ1 and α∗ < λ0 such that for every
i ∈ I, αi = α∗. Consider the first λ0-many indices {βiγ | γ < λ0} ⊆ I. Let
β∗ = supγ<λ0

βiγ + 1 < λ1. Then bα∗,β∗ ⊆∗ bα∗,iγ ⊆∗ Xiγ for every γ < λ0.
Since λ0 > κ is regular, we can find J ⊆ {iγ | γ < λ0} still of size λ0 and
some ξ < κ such that bα∗,β∗ \ ξ ⊆

⋂
j∈J Xj , as wanted. □

As in the case of the linear iteration of the Mathias forcing, our model
can exhibit a small ultrafilter number.

Proposition 5.14. Relative to a supercompact cardinal, there is a super-
compact cardinal κ such that for any regular cardinals

κ < λ0 < λ1 < ... < λn < λn+1,

there is a κ-directed closed, κ+-cc generic extension with a simple Pλ0×...×λn-
point ultrafilter and 2κ = λn+1.

Proof. Let S, {Xa | a ∈ λ0 × ... × λn−1 × S}, and U be as in the proof of
Theorem 4.2, where S ⊆ λ+

n+1 is a stationary set, and note that we skipped
λn. By the items before Claim 4.3, and by shrinking S if necessary, we may
assume that the limit s∗ of the first λn+1 + λn-many points of S satisfies
that:

U∗ = U ∩ V [G∏
i<n λi×s∗ ] ∈ V [G∏

i<n λi×s∗ ] = V ∗

We claim that U∗ and V ∗ are as wanted. Clearly, in V ∗, 2κ = λn+1. Also U∗

is an V ∗-ultrafilter on κ, which is generated by {Xa | a ∈ λ0×...×λn−1×(S∩
s∗)} hence U∗ is a simple Pλ0×...×λn−1×(S∩s∗)-point. Since λ0×...×λn−1×λn

cofinally embeds into λ0 × ... × λn−1 × S ∩ s∗, by Proposition 2.1, U∗ is a
simple Pλ0×...×λn−1×λn-point. □

In the following theorem we use the well-known characterization of the
generalized bounding and dominating numbers using the club filter (see for
example [10]):

Proposition 5.15. Let κ be a regular cardinal. Then

dκ = min{|B| | B ⊆∗-generates Cubκ}

bκ = min{|B| | B is unbounded in (Cubκ,⊇∗)}

Note that being unbounded in (Cubκ,⊇∗) is equivalent to not having a
pseudo-intersection (which is just unbounded in κ).

Theorem 5.16. Relative to a supercompact cardinal, it is consistent that κ
is a supercompact cardinal and bκ < dκ = uκ < 2κ
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Proof. Let V ∗ be the model of Proposition 5.14 where 2κ = λ2 > λ1 > λ0

and there is a simple Pλ0×λ1-point over κ. By Corollary 4.9 the club filter is
a simple Pλ0×λ1-point and in particular generated by λ1-many sets. By the
previous proposition, in V ∗, dκ = λ1. Also, any simple Pλ0×λ1-point has an
unbounded family of size λ0 and therefore by the previous proposition bκ =
λ0. In ZFC, for uncountable cardinals we have the following inequalities (see
for example [10]):

dκ ≤ uκ ≤ ucomκ .

Since U∗ is also generated by λ1-many sets, we have ucomκ ≤ λ1 and we get
that dκ = uκ = ucomκ = λ1. □

Let us conclude this paper with two remarks:

Remark 5.17. The above model is essentially different from the linear Math-
ias iteration in the sense that a Pλ-point cannot exist in those models: in-
deed, if there is a simple Pλ-point then bκ = dκ (see [10]), which is not going
to hold here.

Remark 5.18. The existence of a simple PD-point ultrafilter U poses re-
strictions on cardinal characteristics. For example, by [10] on a measurable
cardinal κ, min(SpT (D)) = min(SpT (U)) ≤ bκ and ch(D) = ch(U) ≥ dκ.
However, it is unclear if this equality must hold or if there are any other
limitations (See Questions 6.7-6.9).

6. Problems

Question 6.1. It is consistent to have a simple Pλ0×λ1×λ2-point ultrafilter
on ω for some regular cardinals ω < λ0 < λ1 < λ2?

More generally we ask:

Question 6.2. What is the class of countably directed well-founded partial
orders D that can be realized as a simple PD-point ultrafilter over ω? over
a measurable cardinal?

Question 6.3. What kind of ill-founded directed sets D can be realized as
simple PD-point ultrafilters?

Question 6.4. Is there a method to realize a poset D as a simple PD-point
ultrafilter for D’s which are not countably-directed?

Some limitations must be placed as by Corollary 2.4 no simple Pω×ω1-
point exists. But what are the exact limitations?

In this paper, we focused on ⊆∗. Still, one might also be interested in the
order ⊇ on an ultrafilter U , especially since it is connected to the Tukey-type
of (U,⊇).

Question 6.5. What are the possible isomorphism types of (B,⊇), where
B is a ⊆-generating set of an ultrafilter?
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Question 6.6. Is it consistent that dκ < uκ < 2κ for a measurable cardinal
κ?

Finally, we would like to ask about the possible limitations that the exis-
tence of a simple PD-point poses.

Question 6.7. Let κ be a measurable cardinal. Can there be κ-complete
simple PD0-point and a simple PD1-point ultrafilters on κ for two posets
D0,D1 such that D0 ̸≡T D1?

For linear orders D0,D1 this was proven to be impossible in [10].

Question 6.8. Let κ be a measurable cardinal and suppose that there is a κ-
complete simple PD-point ultrafilter on κ. Is any of the following statements
provable:

(1) bκ = min(SpT (D)).
(2) dκ = d(D). Here d(D) denotes the minimal size of a cofinal subset of

D.
(3) SpT (D) = SpT (Cubκ).

Answering the question for a specific non-linear D (e.g. D = λ0 × λ1)
would also be of interest.

On ω, [14] showed that it is consistent to have a simple Pℵ1-point and
a simple Pℵ2-point. Nykos [37] proved that if there is a simple Pλ-point
on ω then either λ = bκ or λ = dκ. The following questions relate to
generalizations of these facts:

Question 6.9. Can there be D0,D1,D2 non-Tukey equivalent such that
there are simple PDi-point ultrafilters on ω for i = 0, 1, 2?
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