Problem 1. Describe the set $P(\{\emptyset, \{\emptyset\}\})$ using the list principle. No proof required.

Solution $P(\{\emptyset, \{\emptyset\}\}) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$

Problem 2. Prove that for every two sets *A*, *B* the following are equivalent:

- 1. $A \subseteq B$.
- 2. $P(A \cup B) = P(B)$.
- 3. $P(A) \subseteq P(B)$.

Solution Let us prove $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$.

- (1) \Rightarrow (2) Suppose that $A \subseteq B$. WTP $P(A \cup B) = P(B)$. By a proposition in class, $A \subseteq B$ implies $A \cup B = B$ and therefore $P(A \cup B) = P(B)$.
- (2) \Rightarrow (3) Suppose that $P(A \cup B) = P(B)$. WTP $P(A) \subseteq P(B)$. Let $X \in P(A)$, then by definition of powerset $X \subseteq A$. Since $X \subseteq A$ and $A \subseteq A \cup B$, it follows that $X \subseteq A \cup B$. By definition of powerset $X \in P(A \cup B)$ and since $P(A \cup B) = P(B)$, $X \in P(B)$.
- (3) \Rightarrow (1) Suppose that $P(A) \subseteq P(B)$. WTP $A \subseteq B$. (you can prove it directly, but here is a simpler proof) Since $A \subseteq A$, $A \in P(A)$ and since $P(A) \subseteq P(B)$, $A \in P(B)$. By definition of powerset, this means that $A \subseteq B$, as wanted.

Problem 3. Prove that for every natural number n, the number $4^n - 1$ is multiple of 3.

Solution

Base $n = 0, 4^0 - 1 = 0$ and $0 = 3 \cdot 0$.

I.H Suppose that $4^n - 1$ is a multiple of 3.

Induction step WTP $4^{n+1} - 1$ is a multiple of 3.

$$4^{n+1} \cdot 1 = 4 \cdot 4^n - 1 = 4(4^n - 1) + 3$$

Since both 3, $4^n - 1$ are multiples of 3 by the I.H, also $4(4^n - 1) + 3$ is a multiple of 3 and therefore $4^{n+1} - 1$ is a multiple of 3.

Problem 4. Prove that for every natural number n, the number $17n^3 + 103n$ is multiple of 6.

Solution Note that $17n^3 + 103n = 120n + 17n(n^2 - 1)$. Since 120n is divisible by 6 is remains to prove that $17n(n^2 - 1)$ is divisible by 6. This can either be proven by induction of just note that $17n(n^2 - 1) = 17(n-1)n(n+1)$ and at least on of (n - 1)n(n + 1) is even (i.e. divisible by 2 and at least one is divisible by 3, so the product is divisible by 6.

Problem 5. Prove that for every natural number *n*,

$$1 + 4 + 4^2 + \dots + 4^n = \frac{4^{n+1} - 1}{3}.$$

Solution

Base For n = 0 we have $1 = \frac{4^{0+1}-1}{3} = \frac{3}{3}$

I.H Suppose that

$$1 + 4 + 4^{2} + \dots + 4^{n} = \frac{4^{n+1} - 1}{3}.$$

Induction step WTP

$$1 + 4 + 4^{2} + \dots + 4^{n} + 4^{n+1} = \frac{4^{n+2} - 1}{3}.$$

indeed by the induction hypothesis

$$1+4+4^{2}+\dots+4^{n}+4^{n+1} = \frac{4^{n+1}-1}{3}+4^{n+1} = \frac{4^{n+1}-1+3\cdot 4^{n+1}}{3} = \frac{4\cdot 4^{n+1}-1}{3} = \frac{4^{n+2}-1}{3}.$$

Problem 6. Prove that for all odd natural numbers n, the number $2^n + 1$ is multiple of 3.

[Hint: First find an equivalent statement about all positive integers. Then use induction.]

Solution Since any odd number as the form 2k + 1, it suffices and $2^{2k+1} + 1 = 2 \cdot 4^k + 1$, it suffices to prove that for every natural number k, $2 \cdot 4^k + 1$ is a multiple of 3. By induction on k

Base For k = 0 we have $2 \cdot 4^0 + 1 = 3$.

I.H Suppose that $2 \cdot 4^k + 1$ is a multiple of 3.

Induction step Let us prove that $2 \cdot 4^{k+1} + 1$ is a multiple of 3. Indeed $2 \cdot 4^{k+1} + 1 = 8 \cdot 4^k + 1 = 6 \cdot 4^k + 2 \cdot 4^k + 1$. Clearly $6 \cdot 4^k$ is a multiple of 3 and $2 \cdot 4^k + 1$ is a multiple of 3 by I.H. Therefore $2 \cdot 4^{k+1} + 1$ is a multiple of 3.

Next problem is optional and will not be graded for points.

Problem 7. Criticize the following obviously wrong argument:

«All horses are the same color. Specifically, every finite set of horses is monochromatic.»

Proof. We argue by induction. The statement is clearly true for sets of size 1. Assume by induction that all sets of n horses are monochromatic, and consider a set of size n + 1. The first n horses are all the same color. The last n horses are all the same color. Because of the overlap, this means that all n + 1 horses are the same color. So by induction, all finite sets of horses are all the same color. \Box

Next problem is optional.

Problem 8. Suppose $x \ge -1$. Prove that for all natural number *n*,

$$(1+x)^n \ge 1 + nx.$$

Next problem is optional.

Problem 9. Suppose $x \ge -1$. Prove that for all natural number *n*,

$$(1+x)^n \ge 1+nx.$$