MATH 300

Problem 1. For any sets *X*, *Y* define $X \setminus Y = \{x \in X \mid X \setminus Y\}$.

- (a) Compute $\{1, 2, 3\} \setminus \{1, 4, 7\}$, $\mathbb{N}_+ \setminus \mathbb{N}_{even}$, $(1, 3) \setminus [1, 2)$. No proof required. [Recall: (α, β) denote the interval of real numbers $x \in \mathbb{R}$ such that $\alpha < x < \beta$. $[\alpha, \beta)$ denote the interval of real numbers $x \in \mathbb{R}$ such that $\alpha \le x < \beta$.]
- (b) Prove the De-Morgan laws: For any sets *A*, *B*, *C*
 - (i) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.
 - (ii) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

You can choose whether to prove by a chain of equivalences or by double inclusion.

Homework 5		
MATH 300	(due March 15)	March 7, 2025

Problem 2. Compute the following sets. Prove two of the equalities by double inclusion.

- 1. $\left\{a+b: a \in \{0,5\}, b \in \{2,4\}\right\} \setminus \{7,10\}.$
- 2. $(1,3) \cup [2,4)$
- 3. $\mathbb{Z} \cap [0, \infty)$
- 4. $\mathbb{N}_{even}\Delta\mathbb{N}_+$

(due March 15)

Problem 3. Prove that if $A \cap B \subseteq C$ and $x \in A \setminus C$, then $x \notin B$.

[Hint: Proof by contradiction.]