Problem 1. For any sets *X*, *Y* define $X \setminus Y = \{x \in X \mid X \setminus Y\}$.

- (a) Compute {1,2,3}\{1,4,7}, N₊\N_{even}, (1,3)\[1,2). No proof required.
 [Recall: (α, β) denote the interval of real numbers x ∈ ℝ such that α < x < β. [α, β) denote the interval of real numbers x ∈ ℝ such that α ≤ x < β.]
- (b) Prove the De-Morgan laws: For any sets *A*, *B*, *C*
 - (i) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.
 - (ii) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

You can choose whether to prove by a chain of equivalences or by double inclusion.

Solution (a) $\{1, 2, 3\} \setminus \{1, 4, 7\} = \{2, 3\},\$

- $\mathbb{N}_+ \setminus \mathbb{N}_{even} = \mathbb{N}_{odd},$
- $(1,3) \setminus [1,2) = [2,3)$
- (b) (i) Let us prove this by a double inclusion:
- \subseteq Let $x \in Y \setminus (Y \setminus X)$. WTP $x \in X \cap Y$. By assumption, $x \in Y$ and $x \notin Y \setminus X$ and since $x \in Y$, it must follow that $x \in X$ and therefore $x \in X \cap Y$.
- ⊇ Let $x \in X \cap Y$. WTP $x \in Y \setminus (Y \setminus X)$. Indeed, $x \in X$ and $x \in Y$ and therefore $x \notin Y \setminus X$. By definition of difference $x \in Y \setminus (Y \setminus X)$.

Since we proved a double inclusion we conclude that $Y \setminus (Y \setminus X) = X \cap Y$. (ii) Let us prove a double implication.

- ⇒ Suppose that $X \subseteq Y$. WTP $X \cup Y = Y$, We will prove this set equality by a double inclusion. Inclusion from right to left is clear. For the other direction, let $x \in X \cup Y$, if $x \in Y$, then we are done. If $x \in X$, then since $X \subseteq Y$ then $x \in Y$ and again we are done.
- ⇐ suppose that $X \cup Y = Y$ and let us prove that $X \subseteq Y$. Let $x \in X$, WTP $x \in Y$. It follows that $x \in X \cup Y$, and since $X \cup Y = Y$, then $x \in Y$

Problem 2. Compute the following sets. No proof required.

- 1. $\left\{a+b: a \in \{0,5\}, b \in \{2,4\}\right\} \setminus \{7,10\} = \{2,4,9\}.$
- 2. $(1,3) \cup [2,4) = (1,4)$
- 3. $\mathbb{Z} \cap [0, \infty) = \mathbb{N}$
- 4. $\mathbb{N}_{even}\Delta\mathbb{N}_+ = \{0\} \cup \mathbb{N}_{odd}$

Homework 5

(due March 15)

Problem 3. Prove that if $A \cap B \subseteq C$ and $x \in A \setminus C$, then $x \notin B$.

[Hint: Prove it by contradiction.]

Solution Suppose that $A \cap B \subseteq C$ and $x \in A \setminus C$. WTP $x \notin B$. Suppose towards a contradiction that $x \in B$. By our assumption $x \in A$ and $x \notin C$, therefore $x \in A \cap B$. Since $A \cap B \subseteq C$, then $x \in C$, this is a contradiction.