Homework 4-Sols

MATH 300

(due Feb 23)

Problem 1. (1) Prove that $\lim_{n\to\infty} \frac{n^2+2}{2n^2+1} = \frac{1}{2}$. **Solution** WTP $\forall \epsilon > 0 \exists N \in \mathbb{N} \forall n \ge N$, $|\frac{n^2+2}{2n^2+1} - \frac{1}{2}| < \epsilon$. Let $\epsilon > 0$, (side computation: $\frac{n^2+2}{2n^2+1} - \frac{1}{2} = \frac{2n^2+4-2n^2-1}{4n^2+2} = \frac{3}{4n^2+2} < \epsilon$ $\frac{3}{\epsilon} < 4n^2 + 2 \Rightarrow \sqrt{\frac{3}{\epsilon}-2} < n$, note that $\frac{\frac{3}{\epsilon}-2}{4}$ might be negative so the square root might be problematic. To take care of this we just let $\sqrt{\max\{\frac{3}{\epsilon}-2, 0\}} + 1 = N$ Define $\sqrt{\max\{\frac{3}{\epsilon}-2, 0\}} + 1 = N$ Let $n \ge N$ WTP $|\frac{n^2+2}{2n^2+1} - \frac{1}{2}| < \epsilon$. Indeed,

$$\left|\frac{n^2+2}{2n^2+1} - \frac{1}{2}\right| = \left|\frac{3}{4n^2+2}\right| = \frac{3}{4n^2+2} \le \frac{3}{4N^2+2} < \frac{3}{4 \cdot \frac{3}{\epsilon} - 2} + 2 = \epsilon$$

(2) Write a formula that expresses $\lim_{n\to\infty} a_n \neq L$.

Solution $\exists \epsilon > 0 \forall N \in \mathbb{N} \exists n \ge N | a_n - L | \ge \epsilon$.

(3) Prove that for every $L \in \mathbb{R}$, $\lim_{n \to \infty} (-1)^n \neq L$.

Solution Let $L \in \mathbb{R}$. and let us split into cases:

- (a) If L = 1, WTP $\exists \epsilon > 0 \forall N \in \mathbb{N} \exists n \ge N | (-1)^n L | \ge \epsilon$. Define $\epsilon = 1$ and let $N \in \mathbb{N}$. Consider any odd number $n \ge N$ (for example n = 2N + 1). Then $(-1)^n = -1$ hence |-1 - 1| = 2 > 1.
- (b) If $L \neq 1$, let $\epsilon = \frac{|L-1|}{2} < |L-1|$. Then

Problem 2. (1) Prove that for every rational number $q \in \mathbb{Q}$ $q \neq 0$, $\sqrt{2} \cdot q$ is irrational.

Soltuion. Suppose towards contradiction that $\sqrt{2}q = p \in \mathbb{Q}$. Then $\sqrt{2} = \frac{p}{q}$. The ration of two rationals is rationals and therefore $\sqrt{2} \in \mathbb{Q}$, contradicting the theorem we saw in class.

(2) Prove or disprove: the sum or irrational numbers is irrational.

solution. Counterexample, $\sqrt{2} + (1 - \sqrt{2}) = 1$.

(3) Prove that $\sqrt{5}$ is irrational.

MATH 300

Soltuion. Like in WS4.

(4) (optional) Formulate a conjecture for the rationality and irrationality of real numbers of the form \sqrt{n} .

Solution For any natural number *n*, either \sqrt{n} is an integer or irrational.

Problem 3. Determine which of the following statements are true. Prove your answer:

1. $\{1, -1\} \in \{1, -1, \{1\}, \{-1\}\}.$

MATH 300

Solution. Not true. The element $\{1, -1\}$ is not any of the element $1, -1, \{1\}, \{-1\}$.

2. $7 \in \{n \in \mathbb{N} \mid |n^2 - n - 3| \le 5\}.$

Solution. Not true. $|7^2 - 7 - 3| = 39 > 5$ and by the separation principle, $7 \notin \{n \in \mathbb{N} \mid |n^2 - n - 3| \le 5\}$.

3. $1 \in \{\mathbb{N}, \mathbb{Z}, \mathbb{N}_{even}\}.$

Solution. Not true, proof like 1.

4. 16 \in { $x \in \mathbb{N} \mid \forall y \in \mathbb{N}. y < 4 \Rightarrow y^2 + 2y < x$ }.

Solution. True. By the separation principle, we want to prove that $16 \in \mathbb{N}$ and $\forall y \in \mathbb{N}. y < 4 \Rightarrow y^2 + 2y < 16$. Let $y \in \mathbb{N}$ and suppose that y < 4, then either y = 0, 1, 2, 3. Let us prove the universal statement one-by-one.

- (1) $y = 0, 0^2 + 2 \cdot 0 = 0 < 16.$
- (2) $y = 1, 1^2 + 2 = 3 < 16.$
- (3) $y = 2, 2^2 + 4 = 8 < 16.$
- (4) $y = 3, 3^2 + 6 = 15 < 16.$

Therefore $16 \in \{x \in \mathbb{N} \mid \forall y \in \mathbb{N}. y < 4 \Rightarrow y^2 + 2y < x\}.$

Problem 4. Compute the following sets using the list principle and global symbols \mathbb{N} , \mathbb{N}_{even} , \mathbb{N}_{odd} and \mathbb{Z} . No proof in needed.

1. $\{x \in \mathbb{N} \mid \exists k \in \mathbb{N}. k + x \in \mathbb{N}_{even}\}.$

Solution. $\{x \in \mathbb{N} \mid \exists k \in \mathbb{N}. k + x \in \mathbb{N}_{even}\} = \mathbb{N}.$

2. $\{x \in \mathbb{N} \mid x^2 + 2x - 3 = 0\}.$

Solution. $\{x \in \mathbb{N} \mid x^2 + 2x - 3 = 0\} = \{1\}.$

3. $\{x \in \mathbb{Z} \mid \forall y \in \mathbb{N}. y < x \Longrightarrow y^2 < x^2\}$

Solution. $\{x \in \mathbb{Z} \mid \forall y \in \mathbb{N}. y < x \Rightarrow y^2 < x^2\} = \mathbb{Z}.$

Problem 5. Find a formal expression for the following sets:

- 1. The set of all integers below 100 which are are divisible by 3. **Solution.** $\{x \in \mathbb{Z} \mid \exists k \in \mathbb{Z} (x = 3k)\}.$
- 2. The set of all integers which are the successor of a power of 2. Solution. $\{2^n + 1 \mid n \in \mathbb{N}\}.$
- 3. The set of all (exactly) two element sets of real numbers.
 Solution. {{a, b} | a, b ∈ ℝ, a ≠ b}.