Problem 1. Prove the following equivalences (using a double implication): An integer is divisible by 4 if and only if its last two digits form a number divisible by 4.

[Hint: Decompose n = 100l + d where k, l is some integers and $0 \le d \le$ 99. Then the number d is the last two digits.]

Solution

MATH 300

Homework 3				
MATH 300	(due Feb 21)	Feb 14, 2025		

Problem 2. Let $x, y \in \mathbb{R}$, prove that either $x \leq y$ or there is $n \in \mathbb{N}$ such that xn > yn + 2025.

Solution

Homework 3				
MATH 300	(due Feb 21)	Feb 14, 2025		

Problem 3. Prove that if *a* and *b* are odd integers, then $a^2 - b^2$ is a multiple of 8.

Solution

Homework 3				
MATH 300	(due Feb 21)	Feb 14, 2025		

Problem 4. Let *a*, *b*, *c* be integers. Prove that if $a^2 + b^2 = c^2$, then *abc* is even.

Solution