Problem 1. Prove the following equivalences (using a double implication):

An integer is divisible by 4 if and only if its last two digits form a number divisible by 4.

[Hint: Decompose n = 100l + d where k, l is some integers and $0 \le d \le$ 99. Then the number d is the last two digits.]

Solution Let n = 100k + d where $0 \le d \le 99$. Let us prove this equivalence using a double implication

- → Suppose that *n* is divisible by 4. WTP *d* is divisible by 4. indeed, d = n - 100k, and since both *n* and 100*k* are divisible by 4, *n* is divisible by 4, by a theorem we saw in class that the difference of two numbers divisible by *m* is divisible by *m*.
- ← Suppose that *d* is divisible by 4 then n = 100k + d is a sum of two numbers divisible by 4, hence divisible by 4.

Problem 2. Let $x, y \in \mathbb{R}$, prove that either $x \le y$ or there is $n \in \mathbb{N}$ such that xn > yn + 2025.

Solution Assume that x, y are real numbers WTP $x \le y$ or there is $n \in \mathbb{N}$ such that xn > yn + 2025. Let us split into cases:

- (1) If $x \le y$ then the "or" statement holds and we are done.
- (2) If y < x, then x y > 0 and also $\frac{x-y}{2025} > 0$. Define (we are proving an existential statement) $n = \lceil \frac{2025}{x-y} \rceil + 1$. Then $n \in \mathbb{N}$ since $\frac{2025}{x-y}$ is positive. We have that

$$\frac{1}{n} = \frac{1}{\lceil \frac{2025}{x-y} \rceil + 1} < \frac{1}{\frac{2025}{x-y}} = \frac{x-y}{2025}$$

hence

$$2025 < n(x-y) = nx - ny$$

It follows that

$$ny + 2025 < nx.$$

Problem 3. Prove that if *a* and *b* are odd integers, then $a^2 - b^2$ is a multiple of 8.

Solution Suppose that *a*, *b* are odd. WTP that $a^2 - b^2$ is divisible by 8. By assumption, there are *k*, *l* integers such that a = 2k + 1 and b = 2l + 1. It follows that

$$a^{2} - b^{2} = (4k^{2} + 4k + 1) - (4l^{2} + 4l + 1) = 4(k^{2} + k - (l^{2} + l))$$

In class we proved that for every n, $n^2 + n$ is even and therefore $k^2 + k - (l^2 + l)$ is the difference if two even number hence even. Hence there is an integer r such that $k^2 + k - (l^2 + l) = 2r$ and therefore

$$a^{2} - b^{2} = 4(k^{2} + k - (l^{2} + l)) = 8r$$

Therefore $a^2 - b^2$ is divisible by 8.

Problem 4. Let *a*, *b*, *c* be integers. Prove that if $a^2 + b^2 = c^2$, then *abc* is even.

Solution. Let us prove the contrapositive. WTP $a^2 + b^2 = c^2$ Suppose that *abc* is odd. Then *a*, *b*, *c* must all be odd. But then a^2 , b^2 , c^2 . Now $a^2 + b^2$ is even as the sum of two odds. We conclude that $a^2 + b^2 \neq c^2$, since a number cannot be both even and odd.