Homework 11

MATH 215 (due November 25)

November 18, 2022

Problem 1. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be function. Prove the following items:

1. If f, g are injective then $g \circ f$ is injective.
2. If f, g are surjective, then $g \circ f$.

Homework 11

MATH 215
(due November 25)
November 18, 2022

Problem 2. Prove that the following functions are invertible and find their inverse:

1. $h:(0, \infty) \rightarrow(0,1)$ defined by $h(x)=\frac{1}{1+x^{2}}$
2. $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n)=\left\{\begin{array}{ll}n+1 & n \in \mathbb{N}_{\text {even }} \\ n-1 & n \in \mathbb{N}_{\text {odd }}\end{array}\right.$.
3. $g: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ defined by $g(\langle n, m\rangle)=\langle n, n+m\rangle$

Homework 11

MATH 215

Problem 3. Define

$$
\begin{gathered}
f_{1}: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}, \quad f_{1}(n)=\langle n+1, n+2\rangle \\
f_{2}: \mathbb{N} \rightarrow \mathbb{N}, \quad f_{2}(n)=n^{2} \\
f_{3}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}, \quad f_{3}(\langle n, m\rangle)=n-m \\
f_{4}: \mathbb{N} \rightarrow \mathbb{N}, \quad f_{4}(n)=n+1
\end{gathered}
$$

Determine if the following compositions are defined and compute them:

1. $f_{1} \circ f_{2}$ and $f_{2} \circ f_{1}$.
2. $f_{2} \circ f_{2}$. and $f_{3} \circ f_{3}$
3. $f_{4} \circ f_{2}$ and $f_{2} \circ f_{4}$.
4. $f_{3} \circ f_{1} \circ f_{2}$ and $f_{4} \circ f_{3} \circ f_{2}$.

Homework 11

MATH 215 (due November 25) November 18, 2022

Problem 4. Let $A, B \neq \emptyset$ be any set and let $f: A \rightarrow B$ be a function. Define a new function using f, as follows, $F: P(A) \rightarrow P(B)$ defined by $F(X)=\{f(x) \mid x \in X\}$. Prove that f is invertible if and only if F is invertible.

