Homework 11				
MATH 300	(due May 9)	May, 2025		

Problem 1. Prove that for any $n \ge 1$, $\mathbb{R}^n \sim \mathbb{R}$. [Hint: by induction on n, you can use the result from class that $\mathbb{R} \times \mathbb{R} \sim \mathbb{R}$.]

	Homework 11	
MATH 300	(due May 9)	May, 2025

Problem 2. Prove that for every set A, $A \times A$ is an equivalence relation.

	Homework 11	
MATH 300	(due May 9)	May, 2025

Problem 3. For each of the following relations *E* over the set *A*, check whether it is reflexive symmetric or/and transitive. If it is an equivalence relation, determine how many elements are in the A/E:

- 1. $A = P(\mathbb{R}), E = \{ \langle X, Y \rangle \in P(\mathbb{R}) \times P(\mathbb{R}) \mid X \cap Y \neq \emptyset \}$
- 2. $A = \mathbb{R} \setminus \{0\}, E = \{\langle x, y \rangle \in (\mathbb{R} \setminus \{0\})^2 \mid xy > 0\}$
- 3. (*optional) $A = \mathbb{N}\mathbb{N}, E = \{\langle f, g \rangle \in (\mathbb{N}\mathbb{N})^2 \mid \exists N \in \mathbb{N} \forall n \ge N, f(n) = g(n)\}.$

	Homework 11	
MATH 300	(due May 9)	May, 2025

Problem 4. Prove that if *R* is a reflexive relation on *A* if and only if $id_A \subseteq R$.