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Abstract. A simple Pλ-point on a regular cardinal κ is a uniform ul-
trafilter on κ with a mod-bounded decreasing generating sequence of
length λ. We prove that if there is a simple Pλ-point ultrafilter over
κ > ω, then λ = dκ = bκ = uκ = rκ = sκ. We show that such ultra-
filters appear in the models of [4, 13]. We improve the lower bound for
the consistency strength of the existence of a Pκ++ -point to a 2-strong
cardinal. Finally, we apply our arguments to obtain non-trivial lower
bounds for (1) the statement that the generalized tower number tκ is
greater than κ+ and κ is measurable, (2) the preservation of measura-
bility after the generalized Mathias forcing, and (3) variations of filter
games of [28, 22, 18] in the case 2κ > κ+.

1. introduction

For a cardinal λ, a point x in a topological space X is called a Pλ-point
if the intersection of fewer than λ-many open neighborhoods of x contains
an open neighborhood of x. Of course, every isolated point is a Pλ-point for
every λ. Interpreting this definition in the space U(Y ) of uniform ultrafilters
on Y gives rise to the notion of a Pλ-point ultrafilter, which translates to
the following combinatorial condition: a uniform ultrafilter U over Y is a
Pλ-point if the poset (U,⊇∗) is λ-directed.1 Namely, for any µ < λ and
any collection ⟨Xi | i < µ⟩ ⊆ U there is X ∈ U such that X ⊆∗ Xi for all
i < µ. This type of ultrafilter on ω has been studied in numerous papers
(e.g. [8, 9, 12, 29]). On regular uncountable cardinals, relatively little is
known. Baker and Kunen [1] have some constructions of such ultrafilters
and lately the first author [5] used such ultrafilters to address a question of
Kanamori regarding cohesive ultrafilters from [23].

The notion of a Pλ-point ultrafilter has appeared naturally in classical
constructions. The most relevant one here is due to Kunen [24, Chaper VIII
Ex. (A10)], which used a finite support iteration of the Mathias forcing
(see 3.11) to construct an ultrafilter on ω which is generated by fewer than
c-many sets. The Mathias forcing associated to an ultrafilter U ∈ β(ω) \ ω
is a ccc forcing that adds a subset of ω that is eventually included in every
U -large set. By iterating Mathias forcings associated to a carefully chosen
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sequence of ultrafilters, Kunen adds a ⊆∗-decreasing sequence of sets, and
by performing an iteration whose length λ has uncountable cofinality, he
produces a sequence that generates an ultrafilter in the generic extension.
This ultrafilter is a Pcf(λ)-point which is moreover simple: a simple Pµ-point
is an ultrafilter U that has a generating sequence ⟨Xi | i < µ⟩ ⊆ U that is
⊆∗-decreasing.

In an unpublished work, Carlson generalized Kunen’s construction to con-
struct a simple Pλ-point on a measurable cardinal, starting from a super-
compact cardinal. This establishes the consistency of a κ-complete ultrafilter
over a measurable cardinal κ which is generated by fewer than 2κ-many sets.
The question of the consistency strength of a uniform ultrafilter on a mea-
surable cardinal κ which is generated by fewer than 2κ-many sets remains
open.

Cardinal characteristics at measurable cardinals. Unlike the situa-
tion on countable sets, the generalized Kunen method is currently the only
known method to separate the generalized ultrafilter number uκ from the
powerset of a measurable cardinal and therefore plays an important role in
the landscape of the recent interest in generalized cardinal characteristics
[4, 3, 13, 19, 25, 33].

There are several known techniques for controlling generalized cardinal
invariants [17, 14, 11], all of which are incompatible with controlling the ul-
trafilter number. Brook-Taylor, Fischer, Friedman, and Montoya [13] used
variations of the generalized Kunen construction to establish that it is con-
sistent for many generalized cardinal characteristics to be equal yet smaller
than 2κ. Their forcing adds a simple Pλ-point. In Section §2, we show that
the existence of a simple Pλ-point alone implies the equality of many of these
characteristics.2 More precisely, we prove the following theorem:

Theorem 1.1. Suppose κ < λ are regular uncountable cardinals and there
is a simple Pλ-point on κ. Then

uκ = ucomκ = bκ = dκ = sκ = rκ = λ.

In particular, if µ ̸= λ is regular, then there are no simple Pµ-points on κ.

The effect of a simple Pλ-point on cardinal characteristics on ω was al-
ready noticed by Nyikos [29] and further investigated by Blass and Shelah
[9], and Brendle–Shelah [12]. Nyikos proved that if there is a simple Pλ-
point on ω, then either λ = bκ or dκ. In sharp contrast to Theorem 1.1,
Bräuninger–Mildenberger [10] recently showed that it is consistent for there
to be a simple Pλ-point and a simple Pµ-point for µ ̸= λ.

Theorem 1.1 shows that new methods are needed to obtain a model with a
small ultrafilter number uκ which is not, for example, equal to the bounding

2Let us mention that in the model of [13], there are other characteristics, such as
iκ, pκ, aκ, tκ, and various invariants of category, that also coincide with the value of λ. We
do not address these cardinals in this paper.
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number bκ or the dominating number dκ. (Of course, one can add many
Cohen functions to κ, which blows up uκ to 2κ while preserving bκ.)

Question 1.2. Is it consistent with a measurable cardinal to have dκ <
uκ < 2κ? how about bκ < uκ < 2κ?

Another method for dealing with cardinal characteristics at the level of
a measurable cardinal is the extender-based Magidor–Radin forcing of Me-
rimovich [26]. In particular, Ben-Neria–Gitik [3] and Ben-Neria–Garti [4]
used this technique to obtain results regarding the splitting number sκ and
reaping number rκ at this level. To generalize the above analysis of cardi-
nal characteristics to this framework, we introduce the notion of a simple
pseudo-Pλ-point (see Definition 2.24) and show:

Theorem 1.3. In the model of [4], there is a simple psuedo-Pκ+-point.

Theorem 1.4. If there is a simple pseudo-Pλ-point, then

λ = πuκ = bκ = dκ = sκ = rκ.

We also reduce the large cardinal upper bound of the claim “κ is measur-
able and rκ < 2κ” below o(κ) = κ+3.

The consistency strength of a Pκ++-point. [5] raises the question: what
is the consistency strength of the existence of a Pλ-point for λ > κ+? As
we mentioned, it is possible to start with an indestructible supercompact
cardinal and force such an ultrafilter, but this is clearly an overkill since
a supercompact cardinal cannot be the first α such that α caries a Pα++-
point. A trivial lower bound comes from the fact that we have to blow up
the powerset of a measurable cardinal for such an ultrafilter to exists, and by
Mitchell–Gitik [27], this implies an inner model with a measurable cardinal
κ of Mitchell order o(κ) = κ++. Gitik proved [5, Thm. 5.2] that o(κ) = κ++

is not enough and at least an inner model with a µ-measurable cardinal is
required.3 Here we improve this lower bound to a 2-strong cardinal, and
more generally:

Theorem 1.5. Suppose that the core model K exists, and that in V there is
a measurable cardinal κ carrying a Pλ-point for some λ > κ+ regular. Then
there is an inner model with a λ-strong cardinal.

The proof uses an analysis of the iterated ultrapower of K arising from
the restriction of jU to K, where U is a Pλ-point.

Finally, we provide three applications of this type of lower bound. The
first is to show that the statement that tκ > κ+, where tκ is the general-
ized tower number associated to a measurable cardinal κ, has consistency
strength greater than o(κ) = κ++. This is related to the result of Zapletal

3A µ-measurable cardinal is cardinal κ which is the critical point of an elementary
embedding j : V → M such that {X ⊆ κ | κ ∈ j(X)} ∈ M . Such a cardinal is a limit of

cardinals δ with o(δ) = 22
δ

.
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[33] and Ben-Neria–Gitik [3] that the statement “sκ > κ+ for a regular κ”
is equiconsistent with o(κ) = κ++. Since tκ ≤ sκ, then tκ > κ+ for a regular
cardinal κ is also at least at the level of o(κ) = κ++. The following improves
this when adding the measurability of κ:

Theorem 1.6. Suppose that κ is measurable and tκ > κ+ then there is an
inner model with a µ-measurable.

The second application is to show that the generalization of Kunen’s
construction cannot be carried from the assumption of o(κ) = κ++:

Corollary 1.7. Let κ be measurable in V , and U ∈ V be a κ-complete
ultrafilter over κ. Suppose that V ⊆ M is a larger model in which κ is
measurable and M contains and V -generic set for the generalized Mathias
forcing MU . Then in K there is a µ-measurable cardinal.

Hence if one wishes to obtain a small ultrafilter number at a measurable
cardinal from optimal assumptions, then a new method is required.

The third application relates to the filter games of Holy-Schlicht [22],
Nielsen-Welch [28] and Foreman-Magidor-Zeman [18]. These games revolve
around the following idea: two players, Player I and Player II take turns.
First, Player I plays a submodel M of H(κ+) of size κ and Player II responds
with an object that determines a κ-complete (or even normal) ultrafilter on
that model. In one variant of the game, the object played by Player II is an
M -ultrafilter, but in another variant, Player II is required to play a single
set, external to M , that generates an M -ultrafilter modulo bounded subsets
of κ. In the next round, Player I extends M to a model M ′ and Player II
must extend the previous ultrafilter to measure sets in M ′.

Under the assumption of 2κ = κ+, the existence of a winning strategy
for Player II (in either of the games) is equivalent to κ being measurable.
Here, we consider these games of length γ, where γ ∈ [κ+, 2κ). Our main
observation is that the consistency strength of a winning strategy for Player
II in the game where they play filters is still just a measurable cardinal,
and that the consistency strength jumps past o(κ) = κ++ (again, involving
µ-measures) if Player II is required to play sets.

This paper is organized as follows:

• In Section § 2, we present our results regarding cardinal charac-
teristics and simple Pλ-points. In Subsection 2.1 we focus on the π-
character variations and in Subsection 2.2 we consider the Extender-
based Magidor-Radin model.

• In Section § 3, we provide our lower bound on the existence of a
Pλ-point.

• In Section § 3.2 we prove our three applications.

Notations. For a set X and a cardinal α we let [X]α = {Y ⊆ X | |Y | = α}.
For A ∈ [κ]κ we let fA : κ → κ we the increasing enumeration of the set
A. Namely, fA is the inverse of the transitive collapse of A. Given two
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ultrafilters U,W on X,Y resp. we say that U ≤RK W if there is a function
f : Y → X such that A ∈ U iff f−1[A] ∈ W . A measurable cardinal is an
uncountable cardinal κ such that there is a non-trivial κ-complete ultrafilter
on κ. A λ-supercompact cardinal is a cardinal κ such that there is a κ-
complete fine normal ultrafilter on Pκ(λ). A supercompact cardinal is a
λ-supercompact for every λ. A λ-strong cardinal is a cardinal κ such that
there is an elementary embedding j : V → M with crit(j) = κ, M is closed
under κ-sequences and Vκ+λ ⊆ M . A µ-measurable cardinal is a cardinal
κ such that there is µ-measure, that is, an ultrafilter U over κ such that
{X ⊆ κ | κ ∈ jU (X)} ∈ MU .

2. Crushing cardinal characteristics

Let κ be a regular uncountable κ. We denote by κκ the set of all function
f : κ → κ. On κκ we have the almost everywhere domination order denoted
by ≤∗, and defined by

f ≤∗ g iff ∃α < κ ∀α ≤ β < κ, f(β) ≤ g(β).

Definition 2.1. The generalized bounding and dominating numbers are
defined as follows:

(1) bκ = min{|A| | A ⊆ κκ is unbounded in (κκ,≤∗)}.
(2) dκ = min{|A| | A ⊆ κκ is dominating in (κκ,≤∗)}.

These cardinal invariants can be characterized using the club filter

Cubκ = {A ⊆ κ | ∃C closed unbounded in κ, C ⊆ A}.
The almost inclusion order denoted by ⊆∗ is defined by A ⊆∗ B iff ∃α <
κ,A \ α ⊆ B.

Proposition 2.2 (Folklore).

(1) bκ = min{|A| | A ⊆ Cubκ is unbounded in (Cubκ,⊇∗)}.
(2) dκ = min{|A| | A ⊆ Cubκ is cofinal in (Cubκ,⊇∗)}.

Proof. For (2), see [6, Claim 4.8]. For (1), let us first prove that bκ is
bounded above by the size of any unbounded subset of (Cubκ,⊇∗). let
A ⊆ Cubκ we claim that the set {fA | A ∈ A} of increasing enumerations of
sets in A is unbounded in (κκ,≤∗). Otherwise, let f be a ≤∗ bound and let
Cf be the club of closure points of f . We claim that Cf ⊆∗ A for all A ∈ A.
Indeed, let α be such that for every α ≤ β < κ, fA(β) ≤ f(β). If γ ∈ Cf \α,
then for every β ∈ γ \ α, β ≤ fA(β) ≤ f(β) < γ. Since fA(β) ∈ A, it
follows that γ is a limit point of A. Since A is a club, γ ∈ A. This proves
Cf \ α ⊆ A, as desired.

For the opposite inequality, suppose that S is unbounded in (κκ,≤∗). Let
{Cf | f ∈ S} be the collection of clubs of closure points of elements of
S. We claim that {Cf | f ∈ S} is unbounded. Otherwise, suppose that
C ⊆∗ Cf for all f ∈ S. Define g(α) = fC(α+1). We claim that g dominates
S, which would lead to a contradiction. To see this, let α be such that
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fC(α) = α = fCf
(α) and C \α+1 ⊆ Cf \α+1. This implies that for β ≥ α,

fCf
(β) ≤ fC(β). Therefore given β > α, notice that β < fCf

(β + 1) ∈ Cf ,
hence

f(β) < fCf
(β + 1) ≤ fC(β + 1) = g(β) □

Given an ultrafilter U on a cardinal κ ≥ ω, let jU : (V,∈) → (MU ,∈U )
be the usual ultrapower construction. Then (jU (κ),∈U ) = (κκ/U,<U ) is a
linear order and cfV (jU (κ)) is a regular cardinal.

Claim 2.3. For every uniform ultrafilter U over κ, bκ ≤ cfV (jU (κ)) ≤ dκ.

Proof. Clearly, if A is dominating in (κκ,≤∗), then {[f ]U | f ∈ A} is cofinal
in jU (κ). On the other hand if {[fα]U | α < λ} is cofinal in jU (κ). Then
there it must be unbounded in (κκ,≤∗), since if g : κ → κ was a bound in
≤∗, then [g]U < jU (κ) would bound {[fα]U | α < λ}, which is supposed to
be cofinal. □

Given a filter F on κ we say that B is a base for F if B ⊆ F and for every
A ∈ F , there is B ∈ B such that B ⊆∗ A. Define:

(1) ch(F ) = min{|B| | B is a base for F} is the character of F .
(2) uκ = min{ch(U) | U is a uniform ultrafilter on κ} is the ultrafilter

number
(3) ucomκ = min{ch(F ) | U is a κ-complete ultrafilter on κ} is the com-

plete ultrafilter number

The depth spectrum, introduced in [5], is defined by:

Spdp(F ) = {λ ∈ Reg. | ∃⟨Xi | i < λ⟩ ⊆ F, ⊆∗ -dec, and unbounded in (F,⊇∗)}
Also define the depth of F by:

t(F ) = minSpdp(F )

Remark 2.4. Note that t(F ) is a regular cardinal. In [5, Prop. 4.14] it was
shown that t(F ) = min(SpT (F,⊇∗)) where SpT (F,⊇∗) = {λ ∈ Reg | λ ≤T

(F,⊇∗)}. Here ≤T is the well-known Tukey order (see for example [15]).

In the case F = Cubκ, it is not hard to see that t(Cubκ) = bκ and
ch(Cubκ) = dκ.

Claim 2.5. Let U,W be ultrafilters. If U ≤RK W then

t(W ) ≤ t(U), ch(U) ≤ ch(W ).

Proof. The right inequality is well-known, and the left follows from the fact
that if U ≤RK W implies that (U,⊇∗) ≤T (W,⊇∗) (see for example [16,
Fact 1]) and therefore SpT (U,⊇∗) ⊆ SpT (W,⊇∗) which ultimately implies
t(W ) ≤ t(U). □

Proposition 2.6. Let U be a κ-complete ultrafilter over κ. Then:

(1) dκ ≤ ch(U).
(2) t(U) ≤ bκ
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Proof. For (1), let U∗ be a normal ultrafilter RK-below U , then ch(U∗) ≤
ch(U). Let B be a base for U∗ and C = {b | b ∈ B} ⊆ Cubκ. We claim that C
is a generating set for Cubκ. Given any club C, since U∗ is normal, C ∈ U∗

and therefore there is b ∈ B such that b ⊆∗ C. Since C is closed, b ⊆∗ C, as
wanted.

For (2), again we may assume that U is normal. Note that every sequence
of clubs ⟨Ci | i < κ⟩ for κ < t(U) has a lower bound in U and therefore the
closure of that lower bound would be a club-bound. Hence t(U) ≤ bκ. □

Lemma 2.7. bκ ≤ uκ ≤ ucomκ

Proof. The nontrivial inequality bκ ≤ uκ will follow from a more general
fact regarding the reaping number in Lemma 2.22 and Theorem 2.23. □

Definition 2.8. For a uniform filter F over κ, we say that:

(1) F is a Pλ-point if (F,⊇∗) is λ-directed. Namely, if for every A ⊆ F ,
|A| < λ, there is B ∈ F such that B ⊆∗ A for all A ∈ A.

(2) F is a simple Pλ-point if there is a ⊆∗-decreasing sequence ⟨Xi | i <
λ⟩ ⊆ F that forms a base for F .

(3) p(F ) = min{λ | F is not a Pλ+-point}.

Note that F is a simple Pλ-point if and only if F is a simple Pcf(λ)-point.
Hence we will only consider simple Pλ-point for regular λ’s. Also, note that
if U is a uniform ultrafilter that is a simple Pλ-point over κ, then λ must be
at least κ+, and therefore U must be κ-complete. It was proven in [5] that
t(F ) = p(F ). In [5, Lemma 4.23] is was proven that F is a simple Pλ-point
if and only if t(F ) = ch(F ) = λ.

Corollary 2.9. For a regular cardinal λ, Cubκ is a simple Pλ-point if and
only if λ = dκ = bκ.

Theorem 2.10. If κ < λ are regular uncountable cardinals and U is a
simple Pλ-point ultrafilter on κ, then λ = dκ = bκ = uκ = ucomκ .

Proof. Indeed, by Proposition 2.6(2), and Lemma 2.7, λ = t(U) ≤ bκ ≤ uκ.
Also, by 2.6(1) dκ ≤ ch(U) = λ and clearly uκ ≤ ucomκ ≤ ch(U) = λ. So by
the fact that U is a simple Pλ-point we get the desired equality. □

Corollary 2.11. If µ and λ are regular and there are simple Pλ-point and
Pµ-point ultrafilters over κ > ω, then µ = λ.

This is not the case on ω. Nyikos [29] showed that the set of regular car-
dinals λ for which there is a simple Pλ-point ultrafilter on ω has cardinality
at most two; recently, Bräuninger–Mildenberger [10] proved a spectacular
result that it is consistent with ZFC that there are simple Pℵ1-point and
Pℵ2-point ultrafilters on ω.

Corollary 2.12. For a regular uncountable cardinal κ, if there is a simple
Pλ-point ultrafilter over κ, then cf(jU (κ)) = λ for every uniform ultrafilter
on κ.
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2.1. π-characters, splitting, and reaping numbers. Let us consider a
well-known weakening of the characteristics from the previous section. We
say that B is a π-base for a uniform ultrafilter U on κ if B ⊆ [κ]κ and for
every A ∈ U , there is B ∈ B such that B ⊆∗ A.

πch(U) = min{|B| | B is a π-base for U}
πuκ = min{πch(U) | U is a uniform ultrafilter over κ}

πucomκ = min{πch(U) | U is a κ-complete ultrafilter over κ}
Clearly, the above characteristics are all less than or equal to their respec-
tive π-free versions. The π-depth spectrum is the set Spπdp(U) of regular
cardinals λ for which there exists a ⊆∗-decreasing sequence ⟨Xi | i < λ⟩ ⊆ U
that is unbounded in ([κ]κ,⊇∗). From this we can define the π-analog of t:

πt(U) = minSpπdp(U)

Definition 2.13. U is a πPλ-point if every A ⊆ U of cardinality less than
λ has a pseudo-intersection. Namely there is B ∈ [κ]κ such that B ⊆∗ A for
all A ∈ A.

Once again, we note that we may restrict our attention to πPλ-points
where λ is regular and that such a lambda must be of cofinality at least κ+.

πp(U) = min{λ | U is not a πPλ+-point}
Remark 2.14. (1) Spπdp(U) ⊆ Spdp(U).

(2) t(U) ≤ πp(U) ≤ πt(U) ≤ πch(U) ≤ ch(U). The inequalities πp(U) ≤
πt(U) and πch(U) ≤ ch(U) are immediate from the definitions. To
see πt(U) ≤ πch(U) suppose towards a contradiction that πt(U) =
λ1 > πch(U) = λ0, let ⟨Xi | i < λ1⟩ ⊆ U be ⊆∗-decreasing witnessing
λ1 ∈ Spπdp(U), and let ⟨bα | α < λ0⟩ be a π-base for U . For each Xi,
there is some αi < λ0 such that bαi ⊆∗ Xi. There are unboundedly
many i’s such that αi = α∗ and therefore bα∗ would be a lower bound
for ⟨Xi | i < λ1⟩ in ([κ]κ,⊆∗), contradiction.

For t(U) ≤ πp(U), recall that t(U) = p(U) and if U is not a
πPλ+-point then U is also not a πPλ+-point.

Question 2.15. Is πt(U) = πp(U)?

Remark 2.16. One can define the above π-characteristics for filters. For
the club filter however, we have that πch(Cubκ) = ch(Cubκ), πt(Cubκ) =
t(Cubκ), and πp(Cubκ) = p(Cubκ).

We say that f : κ → κ is almost one-to-one modulo an ultrafilter U if
there is X ∈ U such that f ↾ X is bounded-to-one, namely, for every γ < κ,
π−1[{γ}] ∩X is bounded in κ. The following is a generalization of the well
known Rudin-Blass ordering of ultrafilters on ω:

Definition 2.17. Let U,W be ultrafilters over κ. We say that an ultrafilter
U is Rudin-Blass below W , and denote it by U ≤RB W if there is an almost
one-to-one mod W function f : κ → κ such that f∗(W ) = U .
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Theorem 2.18 (Kanamori, Ketonen). Let U be a countably complete uni-
form ultrafilter over a regular cardinal κ. Then U is RB-above an ultrafilter
which extends the club filter.

Proof. First, we claim that if W is an uniform ultrafilter on a regular un-
countable cardinal κ such that no function that is almost one-to-one modulo
W is regressive on a W -large set, then W extends the club filter. To see this,
note that any nonstationary set A ⊆ κ supports a monotone regressive func-
tion g : A → κ. (Namely, let C ⊆ κ \ A be club, and let g(α) = sup(C ∩ α)
for α ∈ A.) Therefore W cannot contain a nonstationary set, and hence W
extends the club filter.

To prove the theorem, let f : κ → κ be the <U -least function that is
almost one-to-one modulo U , and let W = f∗(U). Note that W ≤RB U is
a uniform ultrafilter on κ such that no function that is almost one-to-one
modulo W is regressive on a W -large set, and hence W extends the club
filter. □

Remark 2.19. The assumption of countable completeness in the previous
theorem can be improved to the assumption that there is a least almost
one-to-one function modulo U .

Theorem 2.20. If U ≤RB W then πt(W ) ≤ πt(U) and πch(U) ≤ πch(W ).

Proof. Let g : κ → κ be such that g∗(W ) = U and let X ∈ W be such
that g ↾ X is almost one-to-one. Let ⟨Xi | i < λ⟩ be a π-base for W . By
shrinking the sequence to another π-base, we may assume that for every
i < λ, Xi ⊆∗ X. This means that g[Xi] must be unbounded in κ. It is
clear now that ⟨g[Xi] | i < λ⟩ is a π-base for U . For the other inequality,
let ⟨Yi | i < λ⟩ ⊆ U be ⊆∗-decreasing with no pseudo-intersection. Then
⟨g−1[Yi] | i < λ⟩ must also be ⊆∗-decreasing. If Y would have been a
pseudo-intersection, then g[Y ] would have been a pseudo-intersection of the
Yi’s. Note that if we start with a sequence ⟨Zi | i < λ⟩ ⊆ W with no
pseudo-intersection, then g[Zi] is indeed ⊆∗-decreasing, but this sequence
might have a pseudo-intersection. □

Theorem 2.21. For any countably complete uniform ultrafilter U on κ,
πch(U) ≥ dκ and πt(U) ≤ bκ.

Proof. By Theorem 2.18, we can find U∗ ≤RB U such that U∗ extends the
club filter. By Theorem 2.20 it sufficed to prove the inequalities for U∗. The
argument for U∗ is a straightforward generalization of Proposition 2.6. □

The countably completeness assumption will be removed using Lemma
2.22 and Theorem 2.23.

Let us introduce the splitting and reaping numbers. We say that A splits
B if A ∩ B and B \ A are unbounded in κ. We say that A is a splitting
family if every X ∈ [κ]κ is splittable by some A ∈ A. We say that A ⊆ [κ]κ

is unsplittable, if there is no A ∈ [κ]κ that splits every A ∈ A.

(1) sκ = min{|A| | A is a splitting family}.
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(2) rκ = min{|A| | A is a unsplittable family}.
Evidently, A is unsplittable if for example, A is a π-base of a uniform ultra-
filter. Hence rκ ≤ πch(U). In fact B. Balcar and P. Simon proved that rκ is
always realized by a π-base of a uniform ultrafilter [2].

Lemma 2.22. Let U be a uniform ultrafilter over κ.

(1) πch(U) ≥ rκ.
(2) πp(U) ≤ sκ

Proof. (1) is trivial as we observed above. For (2), let ⟨Sj | j < sκ⟩ be a
splitting family. For every either Sj or κ \ Sj is in U . If sκ < πp(U), these
sets would have had a pseudo-intersection which couldn’t be split by any of
the Sj ’s. This is a contradiction. □

Theorem 2.23 (Raghavan-Shelah [30]). Let κ be an inaccessible cardinal,
then:

(1) dκ ≤ rκ
(2) sκ ≤ bκ.

The following is a generalization of a simple Pλ-point.

Definition 2.24. We say that an ultrafilter U is a simple πPλ-point if
πp(U) = λ = πch(U)

Since t(U) ≤ πp(U) ≤ πch(U) ≤ ch(U), a simple Pλ-point is a simple
πPλ-point.

Corollary 2.25. If there is a uniform simple πPλ-point on κ then λ =
πuκ = dκ = bκ = sκ = rκ.

Proof. This follows from Theorem 2.21, Lemma 2.22, Theorem 2.23. □

Question 2.26. What about aκ, iκ, pκ, tκ? Are they determined in the
presence of a simple Pλ-point?

2.2. Another look at the extender-based model. In [3], Ben-Neria and
Gitik used the Merimovich extender-based Magidor-Radin forcing from [26]
in order to prove that it is consistent that the splitting number at a regular
uncountable cardinal κ is a regular cardinal λ > κ+ from the existence of a
measurable κ with o(κ) = λ.

The following summarizes the relevant properties of a generic extension
M = V [G] via the extender based Magidor-Radin forcing: κ < λ are regular
uncountable cardinals of M and there are intermediate models ⟨Mi | i < λ⟩
of ZFC and sequences ⟨Ui | i < λ⟩ and ⟨ki | i < λ⟩ in M such that:

(1) If i < j then Mi ⊆ Mj .
(2) Ui ∈ Mi and Mi |= Ui is a normal ultrafilter .
(3) ki ∈ [κ]κ diagonalizes Ui (i.e. ki ⊆∗ X for every X ∈ Ui). Also

kj ∈ Mi for all j < i.
(4) P (κ)M =

⋃
i<λ P (κ)Mi .
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In [5], these properties were used to prove that in V [G], the club filter is a
simple Pλ-point. Combining this with 2.9:

Corollary 2.27. If (1) through (4) hold, then M |= bκ = dκ = λ.

Let us show how to deduce that the splitting number is large:

Proposition 2.28. If (1) through (4) hold, then M |= sκ = λ.

Proof. Since sκ ≤ dκ, it suffices to prove that λ ≤ sκ. Suppose that S ∈ M
is a collection of subsets of κ of size less than λ. By items (1) and (4), there
is some i < λ such that S ⊆ P (κ)Mi . By (2), for each X ∈ S, either X ∈ Ui

or κ \ X ∈ Ui. By (3), ki diagonalizes Ui, and therefore, for each X ∈ S,
either ki ⊆∗ X or ki ⊆∗ κ \X. So ki is not split by any member of S. □

The conditions (1) through (4) also determine the value of the reaping
number:

Proposition 2.29. If (1) through (4) hold, then M |= rκ = cf(λ).

Proof. Again, since bκ ≤ rκ, it suffices to prove that rκ ≤ λ. Let {αi | i <
cf(λ)} ∈ M be cofinal in λ. We claim that {kαi | i < λ} is a reaping family.
To see this, let X ∈ M be any subset of κ. By (4) there is i such that
X ∈ Mi. Let i0 < λ such that i ≤ αi0 . By (1), X ∈ Mαi0

and by (2),

either X ∈ Uαi0
or κ \ X ∈ Uαi0

. By (3), kαi0
⊆∗ X or kαi0

⊆∗ κ \ X, as
desired. □

Corollary 2.30. In the models of [3], bκ = dκ = rκ = sκ = κ++ = 2κ.

Corollary 2.31. In the models of [4], bκ = dκ = rκ = sκ = κ+ < 2κ.

This reduces the upper bound on the consistency results obtained by
Brooke-Taylor–Fischer–Friedman–Montoya [13] from a supercompact cardi-
nal to the low levels of strong cardinals.

To obtain the configuration of the reaping number above, Ben-Neria and
Garti [4] prove that some of the ultrafilters Ui cohere, that is:

(5) There is an unbounded S ⊆ λ such that for every i < j in S, Ui ⊆ Uj .

They used (5), for example, to deduce that κ is measurable in M . In fact,
the ultrafilter they produce is a κ-complete simple πPλ-point:

Theorem 2.32. Assume that ⟨Ui, | i < λ⟩, ⟨ki | i < λ⟩ ∈ M and (1) through
(5) hold. Then in M there is a normal ultrafilter U which is a simple πPλ-
point. In particular, πucomκ = λ.

Proof. Consider the ultrafilter U =
⋃

i∈S Ui. It is easy to see that πch(U) ≤
λ. We claim that λ ≤ πp(U), which finishes the proof. Suppose that ⟨Xi |
i < ρ⟩ ⊆ U , for some ρ < λ. Then, similar arguments show that there is
j < λ such that kj is a pseudo-intersection for the sequence ⟨Xi | i < ρ⟩. □

It is an open problem whether one can obtain uκ = κ+ < 2κ at an inacces-
sible cardinal κ from much less than a supercompact cardinal. The previous
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theorem shows that current techniques suffice to obtain the analogous result
for πuκ from hypotheses at the level of strong cardinals.

In fact, to obtain a model M satisfying (1) through (5), the authors of [4]
used a measurable cardinal κ such that o(κ) is a weakly compact cardinal
above κ. However, if we only wish to keep κ measurable and play with the
values of rκ and sκ, we only need to secure (1) through (4), and therefore we
can get away with much less; for example, o(κ) = κ+4 suffices. (This uses
[26, Claim 5.9] to ensure the preservation of measurability.)

Question 2.33. Can one determine the values of other generalized cardinal
characteristics at κ in the extender-based Magidor-Radin model?

3. Lower bounds

3.1. The strength of a Pλ-point. Gitik showed that if there is Pκ++-
point then there is an inner model with a µ-measurable. The argument
can be found in [5]. In terms of consistency strength, this is already above
o(κ) = κ++. Here we improve his result a bit.

Lemma 3.1. Suppose j : V → M is an elementary embedding with critical
point κ and α < ((2κ)+)M . Let D be the ultrafilter on κ derived from j using
α and k : MD → M be the canonical factor embedding. Then crit(k) > α.

Proof. Let f ∈ ran(k) be a surjection from P (κ) onto α + 1, which exists
since k[MD] is an elementary substructure of M and {κ, α} ∈ k[MD]. Since
P (κ) ⊆ MD, we have P (κ) ⊆ ran(k). Hence α+ 1 = f [P (κ)] ⊆ ran(k). □

Theorem 3.2. If there is a Pκ++-point U , then there is an inner model with
a 2-strong cardinal.

Proof. Assume towards a contradiction that there is no inner model with a
2-strong cardinal. Let E0 be the first extender used in the unique normal
iteration i : K → jU (K). Note that this iteration exists and i = jU ↾ K
by Schindler’s theorem [31]. (In fact, for core models at the level of strong
cardinals, the theorem is due to Steel [32, Theorem 8.13].) Then jU ↾ K =
k ◦ iE0 , where k is the embedding given by the tail of the iteration and the
critical point of k is some ME0-measurable cardinal greater than κ (and so
above (κ++)ME0 ). Let γ be the supremum of the generators4 of E0. Note
that γ ≤ (κ++)ME0 since otherwise, by coherence and the initial segment
condition on the extender sequence of the core model, E0 ↾ (κ++)ME0 ∈ ME0

and witnesses that κ is 2-strong inME0 , contradicting the anti-large cardinal
assumption of the theorem. Also (κ++)ME0 < (κ++)K , since otherwise E0

witnesses that κ is a 2-strong cardinal in K.
For each α < γ, the measure E0(α) is a subset of Uα, where Uα is the

V -ultrafilter derived from jU and k(α). In particular, Uα ≤RK U via some
function fα : κ → κ. Since 2κ = κ+ in K and since U is a Pκ++-point, there

4A generator of E0 is an ordinal δ such that for every α < δ and every f : κ → κ,
jU (f)(α) ̸= δ.
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is a set Bα ∈ U such that fα[Bα] ⊆∗ X for all X ∈ E0(α): let Bα ∈ U be a
⊆∗-lower bound of {f−1

α [X] : X ∈ E0(α)}. Since γ < κ++ and again since
U is a Pκ++-point, we can find a single B ∈ U such that B ⊆∗ Bα for all
α < γ. Note also that E0(α) = {X ∈ PK(κ) | fα[Bα] ⊆∗ X}. Since jU ↾ K
is an iteration of K with critical point κ, PK(κ) = P (K)MU (κ). Using the
fact that fα[Bα] ∈ MU we have that E0(α) ∈ MU .

Let U ′ be the filter on κ that is ⊆∗-generated by B. Then U ′ ∈ MU . Let
us claim that E0 can be reconstructed in MU from U ′, which will lead to a
contradiction (since it will imply that E0 ∈ ME0).

Claim 3.3. For each α < γ, E0 ↾ α ∈ MU

Proof. As we already noticed, E0(α) ∈ MU . By Lemma 3.1, applied to
j = jE0 , we conclude that E0 ↾ α is the extender of length α derived from
jE0(α) ↾ P

K(κ), which belongs to MU . □

Claim 3.4. E0 ∈ MU .

Proof. We will prove that there is a formula φ(x0, x1, x2, x3) in the language
of set theory such that for any α < γ, E0 ↾ α the unique F ∈ MU such that
MU ⊨ φ(F, fκ, U

′, α). Then {E0 ↾ α : α < γ} ∈ MU , which proves the claim.
To be precise, φ(F, fκ, U

′, α) states that F is a K-extender of length α,
(2κ)+KF ≥ α, and there is a family of functions ⟨ga : a ∈ [α]<ω⟩ such that:

(1) Each Fa ⊆ (ga)∗(U
′).

(2) For each a ⊆ b, πa,b ◦ gb = ga mod U ′, where πa,b is the usual map

from κ|b| onto κ|a|.
(3) gκ = fκ.

By condition (1), (ga)∗(U
′) ∩ K = Fa. Since U ′ ⊆ U , this ensures that

the maps ka : KFa → KMU defined by ka([h]Fa) = [h ◦ ga]U are well-
defined and jU ↾ K = ka ◦ jFa . Condition (2) ensures that whenever a ⊆ b,
ka = kb ◦ ka,b, where ka,b : KFa → KFb

is the usual factor map defined by
ka,b([h]Fa) = [h ◦ πb,a]Fb

. Indeed,

ka([h]Fa) = [h ◦ ga]U = [h ◦ πa,b ◦ gb]U = kb([h ◦ πa,b]Fb
) = kb(ka,b([h]Fa).

By the universal property of direct limits, the extender embedding jF : K →
KF factors into jU ↾ K; i.e., jU ↾ K = k ◦ jF , where k is the direct limit
embedding of the ka’s.

Clearly, E0 ↾ α satisfies the above. For uniqueness, if F satisfies the above
then by requirement (3) that fκ = gκ, we have F (κ) = E0(κ) and k(κ) = κ.
We claim that the critical point of k is at least (2κ)+KF . To see this we
simply note that

P (κ) ∩KF = P (κ) ∩K = P (κ) ∩ jU (K)

and since crit(k) > κ, for every X ⊆ κ, k(X) = X. It follows that for every
Y ⊆ P (κ), Y ∈ KF , k(Y ) = Y . It follows that every ordinal β < (2κ)+KF ,
k(β) = β.
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Finally note that (2κ)+KF = crit(k) ≥ α. Hence for every a ∈ [α]<ω,
F (a) is the ultrafilter derived from jU and a, so F (a) = E0(a), and hence
F = E0 ↾ α. □

Working in MU , we appeal to the maximality of K [32, Thm. 8.6]. Since
E0 ∈ MU and E0 coheres the extender sequence of KMU , E0 ∈ KMU . But
E0 is the first extender applied in the normal iteration leading to KMU , so
this is a contradiction. □

3.2. The generalized tower number. Our first application is to give a
non-trivial lower bound on the statement “κ is measurable and tκ > κ+”.

Definition 3.5. A family A ⊆ [κ]κ has the κ-SIP (strong intersection prop-
erty) if for every B ∈ [A]<κ,

⋂
B has size κ. A pseudo-intersection for A

is a set X ∈ [κ]κ such that for every A ∈ A, X ⊆∗ A. A tower in κ is a
sequence A = ⟨Ai | i < λ⟩ ⊆ [κ]κ such that if i < j then Ai ⊇∗ Aj and A
has no pseudo-intersection. The generalized pseudo-intersection and tower
numbers are defined as follows:

(1) pκ is the minimum cardinality of a set A ⊆ [κ]κ that has the κ-SIP
but has no pseudo-intersection.

(2) tκ is the minimum length of a tower in κ.

It is known that κ+ ≤ pκ ≤ tκ ≤ bκ (see [13, Lemma 31]). Note that
starting with an indestructible supercompact cardinal κ and an appropriate
bookkeeping argument, one can iterate Mathias forcing of length κ++ with
<κ-support to add a diagonalizing set to any κ-complete uniform filter on κ
which is generated by κ+-many sets. This forcing preserves the supercom-
pactness of κ and makes pκ = tκ = κ++. In the other direction, if one wishes
to obtain tκ ≥ κ++ at a measurable cardinal κ, one must violate GCH at a
measurable, which already implies an inner model where o(κ) = κ++. Let
us improve this lower bound:

Theorem 3.6. Suppose κ is measurable and that tκ > κ+. Then there is
an inner model with a µ-meaurable cardinal.

Proof. We first sketch a proof that the existence of a πPκ++-point implies
an inner model with a µ-measurable. In Gitik’s argument to obtain a µ-
measurable from a Pκ++-point U (which appears in [5]), we needed to re-
construct U ∩K in the ultrapower MU , and this was done by finding a set
A ∈ U such that A ⊆∗ X for all X ∈ U ∩K. The purpose of the set A is to
define a filter F ∈ MU which includes U ∩K. It follows that the assumption
of A being a member of U can be replaced with A being unbounded in κ.
Therefore the argument works assuming that U is a πPκ++-point (Definition
2.13). From this point on, the argument is identical to Gitik’s.

To conclude the theorem, we claim that if tκ > κ+ and U is normal, then
U is a πPκ++-point. Otherwise, let ⟨Xi | i < κ+⟩ ⊆ U be a counterexample.
Since U is normal, we can find a ⊆∗-decreasing sequence ⟨Yi | i < κ+⟩ ⊆ U
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such that for each i < κ+, Yi ⊆∗ Xi. The sequence of Yi’s has no pseudo-
intersection, since any such pseudo-intersection would have also been one
for the sequence ⟨Xi | i < κ+⟩. Hence we see that ⟨Yi | i < κ+⟩ is a tower,
contradicting tκ > κ+. □

This is related to a question of Gitik and Ben-Neria [3, Question 3.2]
which asked a similar question regarding the splitting number.

3.3. Preserving measurability with Mathias forcing.

Theorem 3.7. Suppose κ is measurable, the core model K exists, and U ∈
K is a normal measure on κ. Assume that there is a pseudo-intersection A
of U such that A∩Lim(A) is unbounded. Then in K, κ carries a µ-measure.

Proof. Let W ∈ V be a κ-complete ultrafilter over κ.

Claim 3.8. Let α ∈ jW (A) \ κ and let Wα be the V -ultrafilter derived from
jW and α, then Wα ∩K = U .

Proof. It suffices to prove that U ⊆ Wα. For any X ∈ U , by assumption
there is ξ < κ such that A \ ξ ⊆ X. Hence jW (A) \ ξ ⊆ jW (X). Since
α ∈ jW (A) \ κ, it follows that α ∈ jW (X) and thus X ∈ Wα. □

By Mitchell and Schindler [31], jW ↾ K is an iteration of K by its mea-
sures/extenders. Denote by i0,θ : K → Kθ the normal iteration of K such
that i0,θ = jW ↾ K.

Claim 3.9. Let α ∈ jW (A) \ κ.
(1) α is an image of κ under the iteration. Namely, α = i0,γ(κ) for

some γ < θ.
(2) Suppose that γ′ ≥ γ is the first stage of the iteration where we ap-

ply an extender Eγ′ with critical point at least α. Then Eγ′(α) =
i0,γ′(U).

Proof. For (1), first note that α is a sky point; namely, that for every club
C ∈ K on κ, α ∈ jW (C). This is true since U is a normal measure. Now
it is not hard to see that for any ρ < θ, and every i0,ρ(κ) < ν < i0,ρ+1(κ),
there is a function f : κ → κ in K such that ν ≤ iρ+1(f)(i0,ρ(κ)). Hence α
must be of the form i0,γ(κ) for some γ < θ.

For (2), we first note that i0,γ′ [U ]∪Fα ⊆ Eγ′(α), where Fα is the tail filter
on α. To see this, letX ∈ U , then α ∈ jW (X) hence α ∈ iγ′+1,θ(iγ′,γ′+1(i0,γ′(X))).
By the normality of the iteration, α ∈ iγ′,γ′+1(i0,γ′(X)) which implies that
i0,γ′(X) ∈ Eγ′(α). To see that i0,γ′(U) = Eγ′(α) it suffices to prove that
i0,γ′ [U ] ∪ Fα generates i0,γ′(U). This follows from the normality of U and

since every set in i0,γ′(U), is of the form i0,γ′(f)(ξ⃗) for some f : [κ]ξ⃗ → U ,

f ∈ K and ξ⃗ ∈ [α]<ω. (See [7, Lemma 3.11].) □

Now we are ready to prove the existence of a µ-measure in K. Suppose
we only use normal measures in the iteration, and pick any continuity point
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α∗ of jW (A) above κ. Then by the claim, there will be {νi | i ≤ η} stages
of the iteration such that for each i ≤ η, at stage νi of the iteration we
applied i0,νi(U), and νθ = supi<η νi. Now the measure i0,νη(U) is definable
in MW as the set of all X ⊆ α∗ that contain a tail of jW (A)∩α∗. Applying
the maximality of the core model (for example, [32, Theorem 8.14 (2)]) in
MW , i0,νη(U) ∈ KMW . Since the iteration is normal, we conclude that
i0,νη(U) ∈ i0,νη+1(K), which is itself the ultrapower of i0,νη(K) by i0,νη(U).
Contradiction. □

Remark 3.10. Note that the assumption that A contains unboundedly many
closure points is essential. Indeed, after Radin forcing with a repeat point,
κ stays measurable and there is a ground model normal measure which is
diagonalized by the successor points of the Radin club.

Let us use Theorem 3.7 to provide a lower bound on the preservation of
measurability after the generalized Mathias forcing. This is related to the
attempt to obtain a small ultrafilter number at a measurable cardinal using
this method.

Definition 3.11. Given a κ-complete ultrafilter U over κ ≥ ω, let MU be
the forcing notion whose conditions are pairs (a,A) ∈ [κ]<κ ×U . The order
is defined by (a,A) ≤ (b, B) if b ⊆ a, A ⊆ B, and a \ b ⊆ B.

This forcing is κ-closed and κ-centered. This is an unorthodox definition,
but it is forcing equivalent to the standard one where in the definition of
(a,A) ≤ (b, B) we replace b ⊆ a with b ⊑ a. Indeed, consider the set of
conditions M∗

U = {(a,A) | min(A) > sup(a)}. Clearly M∗
U is dense in MU

and if (a,A) ≤ (b, B) ∈ M∗
U , then min(a \ b) > sup(b), hence b ⊑ a. The

reason for presenting the forcing this way is the following simple lemma:

Lemma 3.12. If U ≤RK W then MW projects onto MU .

Proof. Let f : κ → κ witness that U ≤RK W , we may assume that f is
onto. Define ϕ : MW → MU by ϕ((a,A)) = (f ′′a, f ′′A) and we claim that ϕ
is a projection. If (a,A) ≤ (b, B), then f ′′b ⊆ f ′′a and f ′′A ⊆ f ′′B. Also if
ν ∈ f ′′a \ f ′′b, the ν = f(x) for some x ∈ a \ b ⊆ B, hence ν = f(x) ∈ f ′′B.
So (f ′′a, f ′′A) ≤ (f ′′b, f ′′B). Suppose that (x,X) ≤ (f ′′a, f ′′A). This means
that x\f ′′a ⊆ f ′′A. Hence there are is a′ ⊆ A such that f ′′[a∪a′] = x. Also
since X ∈ U , f−1[X] ∈ W . Consider the condition p = (a∪ a′, A∩ f−1[X]).
Then p ≤ (a,A) and ϕ(p) ≤ (x,X). Hence ϕ is a projection. □

Proposition 3.13. Sippose G ⊆ MU is V -generic and

AG =
⋃

{a | ∃A, (a,A) ∈ G}.

(1) For every A ∈ U , AG ⊆∗ A.
(2) If Cubκ ⊆ U , then AG ∩ Lim(AG) is unbounded in κ.

Proof. The first item is clear, since every condition (x,X) can be extended

to a condition (x,X∩A) which forces that ȦG \ x̌ ⊆ Ǎ. For the second item,
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Let (x,X) be an condition, and δ < κ, we will find a stronger condition
which forces some continuity into AG. Consider Lim(X) ∈ Cubκ. Then
X ∩ Lim(X) \ sup(x) ∈ U . Let α > δ be any point in X ∩ Lim(X), then

(x ∪X ∩ α + 1, X \ α + 1) forces that α is a continuity point of ȦG above
δ. □

Corollary 3.14. Suppose that V [G] is a generic extension where κ is mea-
surable, and there is A ∈ V [G], a V -generic set for MU , where U is a κ-
complete ultrafilter in V . Then there is an inner model with a µ-measurable
cardinal.

Proof. By Lemma 3.12, we may assume that A is V -generic for MU for a
normal ultrafilter U in V . By Proposition 3.13, A diagonalized theK normal
measure U∩K and has unboundedly many continuity points. Hence we may
apply Theorem 3.7. □

3.4. Filter games without GCH. The filter games of Holy-Schlicht, Nielsen-
Welch and Foreman-Magidor-Zeman revolve around several filter games de-
fined as follows:

Fix θ a regular large enough cardinal. A transitive set M is called a
κ-suitable model if M ⊆ H(κ+) satisfies ZFC− and is closed under <κ-
sequences.

The notion of a constraint function defined below is essentially a nota-
tional tool to allow us to define several families of filter games all at once.

Definition 3.15. A constraint function is a function C that assigns to each
κ-suitable model M a set C(M) of κ-complete uniform filters on κ such that
for each F ∈ C(M), F ∩M is an M -ultrafilter.

We will consider the following constraint functions:

(1) Set(M) is the collection of all filters F such that F ∩ M is a κ-
complete M -ultrafilter and F is ⊆∗-generated by a single set.

(2) NSet(M) is the collection of all filters F such that F ∩ M is an
M -normal ultrafilter and F is ⊆∗-generated by a single set.

(3) Filter(M) is the collection of all filters F such that F ∩ M is a κ-
complete M -ultrafilter.

Definition 3.16 (The filter game). Let κ be a regular cardinal and let C
be a constraint function. The filter game GC(κ, γ) is the two-player game of
length γ defined as follows:

At stage i of the game, Player I plays first a κ-suitable model Mi of size
at most κ · |i|, such that

⋃
j<iMj ⊆ Mi. Then Player II responds with a

filter Fi ∈ C(Mi) which extends
⋃

j<i Fj .
The game is played for every stage i < γ. Player I wins if and only if at

some stage i < γ, Player II has no legal move.

Proposition 3.17. Suppose that 2κ = κ+. The following are equivalent:

(1) Player II has a winning strategy in the game GNSet(κ, κ
+).
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(2) Player II has a winning strategy in the game GSet(κ, κ
+).

(3) Player II has a winning strategy in the game GFilter(κ, κ
+).

(4) κ is measurable.

This proposition shows that assuming GCH, the filter games of length κ+

associated to any of the various constraint functions above are equivalent. If
2κ > κ+, this is no longer obvious, and moreover, it makes sense to consider
GC(κ, γ) for γ > κ+.

We first show that the games of length κ+ are still equivalent in this
context:

Proposition 3.18. The following are equivalent:

(1) Player II has a winning strategy in the game GNSet(κ, κ
+).

(2) Player II has a winning strategy in the game GSet(κ, κ
+).

(3) Player II has a winning strategy in the game GFilter(κ, κ
+).

(4) κ is measurable in V [G] where G ⊆ Add(κ+, 1) is V -generic.

Proof. (1) implies (2) by [18], and (2) implies (3) is trivial. So let begin by
showing that (3) implies (4). We note that in V [G], we have that 2κ = κ+

regardless of the cardinal arithmetic of the ground model. By the κ+-closure
of the forcing, every winning strategy for Player II in the game GFilter(κ, κ

+)
in V remains a winning strategy in V [G]. Therefore by Proposition 3.17, κ
is measurable in V [G].

Finally, we show that (4) implies (1). Suppose that in V [G], κ is mea-

surable and let U be an ultrafilter on κ. Let U̇ be a name such that
U̇G = U . Consider the strategy for Player II in GNSet(κ, κ

+) defined as
follows. At stage i < κ+, we will have defined a decreasing sequence
(pj)j<i ⊆ Add(κ+, 1). We choose a lower bound pi of these conditions

forcing U̇ ∩Mi = Ď, and then Player II plays the filter Ui ⊆∗-generated by
the diagonal intersection of D. □

Definition 3.19. A κ-suitable model M ⊆ H(κ+) is internally approach-
able by a sequence ⟨Nα : α < κ+⟩ of κ-suitable models if M =

⋃
α<κ+ Nα

and for all β < κ+, ⟨Nα : α < β⟩ ∈ Nβ.

Definition 3.20. If M is a transitive set and X ∈ M is a set, an M -
ultrafilter U on X is κ-amenable if for any A ⊆ PM (X) with A ∈ M and
|A|M ≤ κ, U ∩ A ∈ M .

Theorem 3.21. Player I does not have a winning strategy in the game
GFilter(κ, κ

+) if and only if there are stationarily many internally approach-
able, κ-suitable models M ⊆ H(κ+) such that there is a κ-amenable, κ-
complete M -ultrafilter on κ.

Proof. Suppose Player I has a winning strategy τ for GFilter(κ, κ
+). Then

there are club many M ⪯ (H(κ+), τ). We claim that for any such M , if
M is internally approachable by a sequence ⟨Nα | α < κ+⟩, then there is
no κ-complete, κ-amenable M -ultrafilter. Otherwise, let U be such an M -
ultrafilter, and we will use U to produce a run r which is played according
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to τ but is a win for Player II. (This just means that the run r has length
κ+ and Player II follows the rules of the game.)

At move α < κ+, let Player I play N = τ(r ↾ α), and let Player II respond
with U ∩N . In order for this to be a valid move for II, U ∩N has to measure
all sets in N , and for this, it is essential that N ⊆ M (since U is just an
M -ultrafilter). In fact, we will show that the model N is an element of
M . We do this by proving by induction that each proper initial segment of
the run r is an element of M . Since M ⪯ (H(κ+), τ), it will follow that
N = τ(r ↾ α) ∈ M .

Suppose that α < κ+ and suppose that r ↾ β ∈ M for all β < α. Let
γ < κ+ be large enough so that r ↾ β ∈ Nγ for all β < α. Now r ↾ α
is definable in (H(κ+), τ) from the parameter U ∩ Nγ . Since U ∩ Nγ is a
member of M by κ-amenability and since M is elementary in (H(κ+), τ),
r ↾ α ∈ M .

In the other direction, suppose that Player I does not have a winning
strategy, and let F : [H(κ+)]<ω → H(κ+) be any function. We will find an
internally approachable model M ⊆ H(κ+) that is closed under F and a
κ-amenable, κ-complete M -ultrafilter. To do this, we will define a strategy
for Player I, and then obtain a losing run played according to this strategy
that will produce the desired M .

Let r be a run in the game of length α < κ+, and we will define σ(r).
Assume by recursion have already defined σ(r ↾ β) for every β < α. Let
σ(r) be an elementary submodel of (H(κ+), F ) of size κ such that

{r, ⟨σ(r ↾ β) | β < α⟩} ∪ α ⊆ σ(r)

By our assumption, there is a winning run r for Player II in which Player
I plays according to σ. Let Nα = σ(r ↾ α) and M =

⋃
α<κ+ Nα. It is

clear that the union of the ultrafilters played by Player II is a κ-amenable,
κ-complete M -ultrafilter. □

Question 3.22. [22, Observation 3.5] shows that if κ is inaccessible and
2κ = κ+, then GFilter(κ, κ

+) is determined. If 2κ > κ+, can the game fail
to be determined?

Equivalently, suppose that there are stationarily many internally ap-
proachable, κ-suitable models M ⊆ H(κ+) such that there is a κ-amenable,

κ-complete M -ultrafilter on κ. Must κ be measurable in V Add(κ+,1)?

Moving past κ+, we first note that:

Remark 3.23. The following are equiconsistent:

(1) o(κ) = κ++

(2) 2κ > κ+ and Player II has a winning strategy in the gameGFilter(κ, 2
κ).

This follows from Gitik andWoodin’s computation of the consistency strength
of the failure of GCH at a measurable cardinal [20], since (2) is equivalent
to κ being measurable with 2κ > κ+.
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Given this remark and Theorem 3.2, the following proposition shows that
a winning strategy in the set game of length 2κ > κ+ has higher consis-
tency strength than a winning strategy in the corresponding filter game, a
distinction which does not arise when 2κ = κ+:

Proposition 3.24. The following are equivalent:

(1) Player II has a winning strategy in the game GSet(κ, 2
κ).

(2) Player II has a winning strategy in the game GNSet(κ, 2
κ).

(3) κ carries a P2κ-point.

Note that conditions (1)-(3) automatically imply 2κ is regular.
In fact, a weaker hypothesis than a winning strategy inGSet(κ, 2

κ) already
has consistency strength beyond o(κ) = κ++:

Theorem 3.25. If Player II has a winning strategy in GNSet(κ, κ
+ + 1),

then there is an inner model with a µ-measurable cardinal.

Proof. We may assume there is no inner model with a strong cardinal, and
let K be the core model. We will repeatedly use the fact that if U is a
K-ultrafilter and the ultrapower of K by U is well-founded, then U ∈ K.
This follows from [32, Theorem 8.13].

Let σ be a strategy for Player II in GNSet(κ, κ
+ + 1). Let ⟨Sα : α < κ+⟩

enumerate H(κ+) ∩ K. We construct a run r of GNSet(κ, κ
+) in which

Player I plays κ-suitable models Mα with Sα ∈ Mα and Player II plays by
σ. Let A = σ(r⌢⟨H(κ+) ∩ K⟩) and let U be the K-normal K-ultrafilter
⊆∗-generated by A. Note that U ∈ K since U is a V -countably complete
K-ultrafilter.

Let T ⊆ κ+ be such that H(κ+) ∩K ∈ L[T ]. Let N = L[A, T ]. Finally,
let M = H(κ+) ∩ N . Note that |H(κ+) ∩ N | = κ+ since (2κ)N ≤ κ+ by a
standard condensation argument.

We have that H(κ+) ∩K = H(κ+) ∩KN since above ℵ2, K is obtained
by stacking mice [21, Lemma 3.5].

LetB = σ(r⌢⟨M⟩), and letW be theM -normalM -ultrafilter⊆∗-generated
by B. Let j : N → NW be the ultrapower of N by W , which is well-founded
since W is (truly) countably complete. Since W ∩K = U ∈ K, P (κ)∩K =
P (κ) ∩ KNW . Since A ∈ NW and P (κ) ∩ K ∈ NW , U ∈ NW . Using the
closure of KNW under NW -countably complete ultrafilters, U ∈ KNW .

Let D be the K-ultrafilter on Vκ∩K derived from j and U . Then D ∈ K
since (again) K is closed under countably complete ultrafilters. Let

k : (H(κ+) ∩K)D → j(H(κ+) ∩K)

be the factor map. Note that k([id]D) = U and k ↾ (κ + 1) is the identity,
so [id]D = U ∩ (H(κ+) ∩ K)D = U . Therefore D witnesses that κ is µ-
measurable in K. □

Remark 3.26. A somewhat similar argument can be used to show that if
Player II has a winning strategy in GSet(κ, κ

+ + 2), then there is an inner
model with a µ-measurable cardinal. We leave open the question of whether
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a winning strategy for Player II in the game GSet(κ, κ
++1) already implies

an inner model with a µ-measurable cardinal.

4. Questions

Question 4.1. What is the consistency strength of having tκ > κ+ for a
regular cardinal κ > ω?

Note that by Zapletal [33], this is at least o(κ) = κ++. In this paper,
we show that for a measurable cardinal κ, the consistency strength jumps
above o(κ) = κ++.

Question 4.2. What is the exact consistency strength of the existence of a
Pκ++-point on an uncountable cardinal κ?

Question 4.3. What is the consistency strength of Player II having a win-
ning strategy in the game GFilter(κ, κ

+ + 1)?

Note that there is an upper bound of o(κ) = κ++.
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