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ABSTRACT. In this paper we study ultrafilters which are Tukey above 𝐼𝜔, where
𝐼 is an ideal. In the first of the paper we use the 𝐼-p.i.p (pseudo intersection
property) from [3] and deterministic ideals. Specifically, we prove the following
two results for deterministic ideals:

(1) If 𝑈 has the 𝐼-p.i.p, then 𝑈 ⋅𝑈 ≡𝑇 𝑈 × 𝐼𝜔, extending results from [24, 3].
(2) Ultrafilters without the 𝐼-p.i.p are always above 𝐼𝜔.

Our main result involves a new hierarchy of ultrafilter– the 𝛼-almost rapid ul-
trafilters. We establish that the class of almost rapid ultrafilters is consistently
strictly wider than the class of rapid ultrafilters, and give an example of a 𝑝-point
ultrafilter which is almost rapid and non rapid. As a corollary, we obtain a 𝑝-point
ultrafilter which is a non-rapid but is Tukey above 𝜔𝜔, answering [3, Q. 5.4].

0. INTRODUCTION

The Tukey order stands out as one of the most studied orders of ultrafilters [25,
14, 21, 10, 27, 2]. Its origins lie in the examination of Moore-Smith convergence,
and it holds particular significance in unraveling the cofinal structure of the partial
order (𝑈,⊇) of an ultrafilter. Formally, given two posets, (𝑃 ,≤𝑃 ) and (𝑄,≤𝑄) we
say that (𝑃 ,≤𝑃 ) ≤𝑇 (𝑄,≤𝑄) if there is map 𝑓 ∶ 𝑄 → 𝑃 , which is cofinal, namely,
𝑓 ′′ is cofinal in 𝑃 whenever  ⊆ 𝑄 is cofinal. Schmidt [28] observed that this
is equivalent to having a map 𝑓 ∶ 𝑃 → 𝑄, which is unbounded, namely, 𝑓 ′′ is
unbounded in 𝑄 whenever  ⊆ 𝑃 is unbounded in 𝑃 . We say that 𝑃 and 𝑄 are
Tukey equivalent, and write 𝑃 ≡𝑇 𝑄, if 𝑃 ≤𝑇 𝑄 and 𝑄 ≤𝑇 𝑃 ; the equivalence
class [𝑃 ]𝑇 is called the Tukey type or cofinal type of 𝑃 .

A systematic study of the Tukey order on ultrafilter over 𝜔, traces back to Isbell
[18], later to Milovich [25] and Dobrinen and Todorcevic [14]. Lately, Benhamou
and Dobrinen [2] extended this study to ultrafilters on cardinals greater than 𝜔.
Over measurable cardinals, the Tukey order is connected to recent developments
revolving the so-called Galvin property, studied by Abraham, Garti, Goldberg, Gi-
tik, Hayut, Magidor, Poveda, Shelah and others [1, 16, 15, 5, 9, 4, 7, 6, 17, 8]; the
Galvin property in one of its forms is equivalent to being Tukey-top (i.e. Tukey
maximal) as shown essentially by Isbell (in different terminology). Moreover, be-
ing Tukey-top in the restricted class of 𝜅-complete ultrafilters takes the usual form
of the Galvin property.
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In this paper, we study the class of ultrafilters 𝑈 such that (𝑈,⊇) ≥𝑇 (𝜔𝜔,≤),
where ≤ is the everywhere domination order on 𝜔𝜔. This type of study has been
considered before [31, 20, 21] in the context of the Tukey order on analytic ideals.
In the context of general ultrafilters on 𝜔, Louveau-Velickovic showed that 𝜔𝜔 is
immediate successor of the Tukey type 𝜔 [20]. More precisely, they show that if
𝐼 is any ideal such that 𝐼 <𝑇 𝜔𝜔 then 𝐼 is countably generated. On the other
hand, for analytic ideals 𝑝-ideal, Todorcevic [32] (See also [21, Thm 6.6]) showed
that, they are either 𝐼 countable generated or above 𝜔𝜔. This was later improved
by Solecki and Todorcevic [31, Proposition 4.3] to show that if 𝐼 is analytic, not
locally compact ideal, then 𝐼 ≥𝑇 𝜔𝜔. Later, Milovich asked [25, Question 4.7] if
there is an ultrafilter 𝑈 over 𝜔 such that (𝑈,⊇) ≡𝑇 𝜔𝜔. We will observe that this
was basically answered in [31, Cor. 54] 1:

Theorem 0.1 (Solecki-Todorcevic). Suppose that 𝐷 is an ordered separable metric
space such that the predecessors of each element form a compact set, and 𝐸 is a
basic 2 analytic order such that 𝐷 ≤𝑇 𝐸, then 𝐷 is analytic.

Corollary 0.2. There is no ultrafilter 𝑈 over 𝜔 such that (𝑈,⊇) ≡𝑇 𝜔𝜔.

Proof. By Sierpinski [30], a non-principal ultrafilter over 𝜔 is a non-measurable set
as a subset of 2𝜔 and in particular non-analytic. An ultrafilter 𝑈 with the topology
inherited from 2𝜔 is a separable metric space and the set of ⊇-predecessors is com-
pact. Also, 𝜔𝜔 is a basic analytic order, hence by Theorem 0.1, (𝑈,⊇) ≰𝑇 𝜔𝜔. □

The following theorem contributed a great deal to the understanding of this class
[14, Thm. 35]:

Theorem 0.3 (Dobrinen-Todorcevic). The following are equivalent for 𝑝-points:3

(1) 𝑈 ⋅ 𝑈 ≡𝑇 𝑈 .
(2) 𝑈 ≥𝑇 𝜔𝜔.

Dobrinen and Todorcevic observed that rapid 4 ultrafilters are Tukey above 𝜔𝜔

and deduced that rapid 𝑝-points satisfy 𝑈 ⋅ 𝑈 ≡𝑇 𝑈 . Later, Milovich [24] gave a
precise expression 𝑈 ⋅ 𝑈 which works for any 𝑝-point:

Theorem 0.4 (Milovich). If 𝑈 is a 𝑝-point then 𝑈 ⋅ 𝑈 ≡𝑇 𝑈 × 𝜔𝜔.

Recently, Benhamou and Dobrinenn [3] came back to the subject and worked
under the general setup of the 𝐼-p.i.p (see Definition 1.3), which generalizes the
notion of a 𝑝-point.

Theorem 0.5 (Benhamou-Dobrinen). Let 𝑈 be an ultrafilter. Then the following
are equivalent:

1Milovich’s question appeared only 4 years after Solecki and Todorcevic’s result.
2For the definition of basic see [31, §3].
3An ultrafilter 𝑈 is a 𝑝-point if for every ⟨𝐴𝑛 ∣ 𝑛 < 𝜔⟩ ⊆ 𝑈 there 𝑋 ∈ 𝑈 such that for every

𝑛 < 𝜔, 𝑋 ⊆∗ 𝐴𝑛, i.e. 𝑋 ⧵ 𝐴𝑛 is finite.
4An ultrafilter 𝑈 is rapid, if for every 𝑓 ∶ 𝜔 → 𝜔 there is 𝑋 ∈ 𝑈 such that 𝑓𝑋 ≥ 𝑓 , where 𝑓𝑋(𝑛)

is the 𝑛-th element of 𝑋.
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(1) 𝑈 ⋅ 𝑈 ≡𝑇 𝑈 .
(2) There is an ideal 𝐼 ⊆ 𝑈∗ such that 𝑈 ≥𝑇 𝐼𝜔 and 𝑈 has the 𝐼-p.i.p.

Taking 𝐼 = fin reproduces a part of Theorem 0.3. There is a slight difference
between the type of equivalence to 𝑈 ⋅𝑈 ≡𝑇 𝑈 for 𝑝-points described in Theorem
0.3 and the one in 0.5. Indeed, in the latter, the ideal 𝐼 can vary. If 𝐼 is fixed, it is
unclear whether for 𝑈 which has the 𝐼-p.i.p, 𝑈 ⋅𝑈 ≡𝑇 𝑈 iff 𝑈 ≥𝑇 𝐼𝜔. The reason
that the ideal (i.e. f in) can be fixed in Theorem 0.3 is that every ultrafilter 𝑈 which
extends f in must also be Tukey above f in. This is what motivated Definition 3.1
of deteministic ideals (see Definition 3.1). In §1, we shows that this is indeed the
missing ingredient, and both generalize 0.3 and slightly relaxed the assumption that
𝑈 is a 𝑝-point.
Theorem. If 𝐼 ⊆ 𝑈∗ is deterministic then the following are equivalent:

(1) 𝑈 <𝑇 𝑈 ⋅ 𝑈 and 𝑈 has the 𝐼-p.i.p.
(2) 𝑈 ≱𝑇 𝐼𝜔

The significant part of the proof is to show that if 𝐼 is a deterministic ideal, and
f in ⊆ 𝐼 ⊆ 𝑈∗, then every ultrafilter 𝑈 ≱𝑇 𝐼𝜔 must have the 𝐼-p.i.p. This is closely
related to [14, Question 42]. We also generalize Milovich’s formula in Theorem
1.2 to the setup of a general deterministic ideal 𝐼 .
Theorem. Let 𝐼 be deterministic. If 𝑈 has the 𝐼-p.i.p then 𝑈 ⋅ 𝑈 ≡𝑇 𝑈 × 𝐼𝜔.

Motivated by the above results, in § 2, we study the class of 𝑝-point which are
above 𝜔𝜔. While it is consistent that there are 𝑝-points which are not above 𝜔𝜔,
Dobrinen and Todorcevic observed that rapid 𝑝-points ultrafilters must be above
𝜔𝜔 [14]. The main results of this paper concern a new class of ultrafilters– 𝛼-
almost-rapid ultrafilters (Definition 2.3)– a weakening of rapidness.
Theorem. Suppose that 𝑈 is 𝛼-almost-rapid, then 𝑈 ≥𝑇 𝜔𝜔.

We then prove that the class of almost rapid ultrafilters is consistently a strict
extension of the class of rapid ultrafilters, even among 𝑝-points.
Theorem. Assume CH. Then there is a non-rapid almost-rapid 𝑝-point ultrafilter.

In particular, this is the first example of a non-rapid 𝑝-points which is Tukey
above 𝜔𝜔.

Finally, in § 3, we further study the 𝐼-p.i.p and deterministic ideal. In particular
we show the following:
Theorem. Suppose that 𝑈 is not an accumulation point of  ⊆ 𝛽𝑆 (in the space
of ultrafilters over 𝑆). Then 𝑈 has that (𝑈 ∩

⋂

)∗-p.i.p.
The study of deterministic ideals yield the following theorem:

Theorem. Suppose that 𝐼 is a deterministic ideal and 𝑈,𝑈0, 𝑈1, ... all the the 𝐼-
p.i.p. Let 𝑊 =

∑

𝑈 𝑈𝑛, then 𝑊 has the 𝐼 ⋅ 𝐼-p.i.p and in particular 𝑊 ⋅ 𝑊 ≡𝑇
𝑊 × 𝐼𝜔.

For 𝐼 = fin, the above theorem shows that Milovich’s formula in 0.4 holds true
sums of 𝑝-points as well.
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Notations. [𝑋]<𝜆 denotes the set of all subsets of 𝑋 of cardinality less than 𝜆. Let
f in = [𝜔]<𝜔, and FIN = fin⧵ {∅}. For a collection of sets (𝑃𝑖)𝑖∈𝐼 we let

∏

𝑖∈𝐼 𝑃𝑖 =
{𝑓 ∶ 𝐼 →

⋃

𝑖∈𝐼 𝑃𝑖 ∣ ∀𝑖, 𝑓 (𝑖) ∈ 𝑃𝑖}. If 𝑃𝑖 = 𝑃 for every 𝑖, then 𝑃 𝐼 =
∏

𝑖∈𝐼 𝑃 .
Given a set 𝑋 ⊆ 𝜔, such that |𝑋| = 𝛼 ≤ 𝜔, we denote by ⟨𝑋(𝛽) ∣ 𝛽 < 𝛼⟩ be
the increasing enumeration of 𝑋. Given a function 𝑓 ∶ 𝐴 → 𝐵, for 𝑋 ⊆ 𝐴 we
let 𝑓 ′′𝑋 = {𝑓 (𝑥) ∣ 𝑥 ∈ 𝑋}, for 𝑌 ⊆ 𝐵 we let 𝑓−1𝑌 = {𝑥 ∈ 𝑋 ∣ 𝑓 (𝑥) ∈ 𝑌 },
and let rng(𝑓 ) = 𝑓 ′′𝐴. Given sets {𝐴𝑖 ∣ 𝑖 ∈ 𝐼} we denote by

⨄

𝑖∈𝐼 𝐴𝑖 the union
of the 𝐴𝑖’s when the sets 𝐴𝑖 are pairwise disjoint. Two partially ordered set ℙ,ℚ
are isomorphic, denoted by ℙ ≃ ℚ, if there is a bijection 𝑓 ∶ ℙ → ℚ which is
order-preserving.

1. ULTRAFILTERS ABOVE 𝐼𝜔

Given a set  ⊆ 𝑃 (𝑋), we denote by ∗ = {𝑋 ⧵𝐴 ∣ 𝐴 ∈ }. When  is a filter,
∗ is an ideal which we call the dual ideal, and when  is an ideal ∗ is a filter which
we call the dual filter. Ideals are always considered with the (regular) inclusion
order. For every filter 𝐹 , (𝐹 ,⊆) ≃ (𝐹 ∗, ⊇) and in particular (𝐹 ,⊆) ≡𝑇 (𝐹 ∗, ⊇).

Recall that given a filter𝐹 (an ideal 𝐼) over𝑋 and filters (𝐹𝑥)𝑥∈𝑋 (ideals (𝐽𝑥)𝑥∈𝑋)
over 𝑌 , the Fubini sum is a filter (ideal) over 𝑋 × 𝑌 , denoted

∑

𝐹 𝐹𝑥 (denoted
∑

𝐼 𝐽𝑥), and defined as follows: for every 𝐴 ⊆ 𝑋 × 𝑌

𝐴 ∈
∑

𝐹
𝐹𝑥 ⟺

{

𝑥 ∈ 𝑋 ∣ (𝐴)𝑥 ∈ 𝐹𝑥
}

∈ 𝐹 ,

(𝐴 ∈
∑

𝐼
𝐽𝑥 iff {𝑥 ∈ 𝑋 ∣ (𝐴)𝑥 ∉ 𝐽𝑥} ∈ 𝐼)

where (𝐴)𝑥 = {𝑦 ∈ 𝑌 ∣ (𝑥, 𝑦) ∈ 𝐴}. The Fubini product of 𝑇 and 𝑆 (ideals or
filters) is obtained by setting 𝑆𝑥 = 𝑆 for all 𝑥 ∈ 𝑋, and 𝑇 ⋅ 𝑆 =

∑

𝑇 𝑆 When 𝑇
is either an ideal of a filter on 𝜔, define transifinitely for 𝛼 < 𝜔1 the Fubini powers
𝑇⊕𝛼, by setting 𝑇⊗1 = 𝑇 , at the successor step 𝑇⊗(𝛼+1) = 𝑇⊗𝛼 ⋅ 𝑇 and at limit
steps, set 𝑇 𝛼 =

∑

𝑇 𝑇⊗𝛼𝑛 , where ⟨𝛼𝑛 ∣ 𝑛 < 𝜔⟩ is some fixed cofinal sequence in 𝛼.
Fact 1.1. (

∑

𝐼 𝐽𝑥)∗ =
∑

𝐼∗ 𝐽
∗
𝑥 and in particular (𝐼 ⋅ 𝐽 )∗ = 𝐼∗ ⋅ 𝐽 ∗.

The following theorem provides the first step to analyze the Tukey type of a
Fubini product of filters [24]:
Theorem 1.2 (Milovich). Let 𝐹 ,𝐺 be filters over 𝜔, then 𝐹 ⋅𝐺 ≡𝑇 𝐹 ×𝐺𝜔 and in
particular 𝐹 ⋅ 𝐹 ≡𝑇 𝐹𝜔.

In follows inductively that for every 2 ≤ 𝛼 < 𝜔1 𝐹⊗𝛼 ≡𝑇 𝐹 ⋅ 𝐹 . In [3], the
following property was used to further invesigate this Tukey type of 𝐹 ⋅ 𝐹 :
Definition 1.3. A filter 𝐹 over a countable set 𝑆 such that 𝐼 ⊆ 𝐹 ∗ is an ideal,
is said to satisfy the 𝐼-pseudo intersection property (𝐼-p.i.p) if for every sequence
⟨𝑋𝑛 ∣ 𝑛 < 𝜔⟩ ⊆ 𝐹 , there is 𝑋 ∈ 𝐹 such that for every 𝑛, 𝑋 ⧵𝑋𝑛 ∈ 𝐼 .

For example, being a 𝑝-point is equivalent to having the f in-p.i.p. More examples
are obtained by considering ideals 𝐼 such that 𝑃 (𝜔)∕𝐼 is 𝜎-closed, then any generic
ultrafilter 𝑈 will satisfy the 𝐼-p.i.p (see [3]). The following proposition generalizes
well-known characterizations of 𝑝-points (see e.g. [13]):
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Proposition 1.4. Let𝑈 be any ultrafilter over𝜔. Then the following are equivalent:
(1) 𝑈 has the 𝐼-p.i.p.
(2) For any partition ⟨𝐴𝑛 ∣ 𝑛 < 𝜔⟩ such that for any 𝑛, 𝐴𝑛 ∉ 𝑈 , there is 𝐴 ∈ 𝑈

such that 𝐴 ∩ 𝐴𝑛 ∈ 𝐼 for every 𝑛 < 𝜔.
(3) Every function 𝑓 ∶ 𝜔 → 𝜔 which is unbounded modulo 𝑈 is 𝐼-to-one

modulo𝑈 , i.e. there is𝐴 ∈ 𝑈 such that for every 𝑛 < 𝜔, 𝑓−1[𝑛+1]∩𝐴 ∈ 𝐼 .

Proof. For (1) ⇒ (2), let ⟨𝐴𝑛 ∣ 𝑛 < 𝜔⟩ be a partition such that 𝐴𝑛 ∉ 𝑈 . Let
𝐵𝑛 = 𝜔 ⧵ 𝐴𝑛 ∈ 𝑈 and by the 𝐼-p.i.p there is 𝐴 ∈ 𝑈 such that 𝐴 ⧵ 𝐵𝑛 ∈ 𝐼 . It
remains to note that 𝐴 ⧵ 𝐵𝑛 = 𝐴 ∩ 𝐴𝑛 to conclude (2).

To see (2) ⇒ (3) let 𝑓 ∶ 𝜔 → 𝜔 be unbounded modulo 𝑈 . Let 𝐴𝑛 = 𝑓−1[{𝑛}],
then 𝐴𝑛 ∉ 𝑈 . Apply (2) to the partition ⟨𝐴𝑛 ∣ 𝑛 < 𝜔⟩ to find 𝐴 ∈ 𝑈 such that
𝐴 ∩ 𝐴𝑛 ∈ 𝐼 . For any 𝑛 < 𝜔,

𝑓−1[𝑛 + 1] ∩ 𝐴 = ∪𝑚≤𝑛𝑓
−1[{𝑚}] ∩ 𝐴 ∈ 𝐼.

Hence 𝑓 is 𝐼-to-one modulo 𝑈 .
Finally, to see (3) ⇒ (1), let ⟨𝐵𝑛 ∣ 𝑛 < 𝜔⟩ ⊆ 𝑈 , and let us assume without loss

of generality that it is ⊆-decreasing and that
⋂

𝑛<𝜔 𝐵𝑛 = ∅. Define

𝑓 (𝑛) = min{𝑚 ∣ 𝑛 ∉ 𝐵𝑚}.

Since
⋂

𝑛<𝜔 𝐵𝑛 = ∅, 𝑓 ∶ 𝜔 → 𝜔 is a well defined function. Apply (3), to find
𝐴 ∈ 𝑈 such that for every 𝑛 < 𝜔 𝑓−1[𝑛 + 1] ∩ 𝐴 ∈ 𝐼 . Now for each 𝑥 ∈ 𝐴 ⧵ 𝐵𝑛,
𝑓 (𝑥) ≤ 𝑛 and therefore 𝑥 ∈ 𝑓−1[𝑛+1]∩𝐴 and therefore𝐴⧵𝐵𝑛 ⊆ 𝑓−1[𝑛+1]∩𝐴 ∈ 𝐼 .
It follows that 𝐴 ⧵ 𝐵𝑛 ∈ 𝐼 and that 𝑈 has the 𝐼-p.i.p. □

The 𝐼-p.i.p was used to further analyze the Tukey type of 𝐹 ⋅ 𝐹 :

Proposition 1.5 ([3]). Suppose that 𝐹 is a filter and 𝐼 ⊆ 𝐹 ∗ is any ideal such that
𝐹 has the 𝐼-p.i.p. Then 𝐹𝜔 ≤𝑇 𝐹 × 𝐼𝜔.

This was used to prove Theorem 0.5. Let us use it to prove the following Propo-
sition which generalized 1.2 and 0.5

Proposition 1.6. Let 𝐼 be any ideal. Then for any ultrafilter 𝑈 ≥𝑇 𝐼 which has the
𝐼-p.i.p, 𝑈 ⋅𝑈 ≡𝑇 𝑈 ×𝐼𝜔. Therefore, the following are equivalent for any ultrafilter
𝑈 ≥𝑇 𝐼 which has the 𝐼-p.i.p:

(1) 𝑈 ⋅ 𝑈 ≡𝑇 𝑈 .
(2) 𝑈 ≥𝑇 𝐼𝜔.

Proof. By Theorem 1.2, 𝑈 ⋅ 𝑈 ≡𝑇 𝑈𝜔. Since 𝐼 ≤𝑇 𝑈 , we have that 𝐼𝜔 ≤𝑇 𝑈𝜔.
Together with Proposition 1.5, we conclude that

𝑈 × 𝐼𝜔 ≤𝑇 𝑈𝜔 ≡𝑇 𝑈 ⋅ 𝑈 ≤𝑇 𝑈 × 𝐼𝜔.

Now to see the equivalence, (2) ⇒ (1) follows from Theorem 0.5, and (1) ⇒ (2)
follows from the first part as 𝑈 ⋅ 𝑈 ≡𝑇 𝑈 × 𝐼𝜔 ≤𝑇 𝑈 ≤𝑇 𝑈 ⋅ 𝑈 . □

Definition 1.7. We say that an ideal 𝐼 is deterministic if there is a cofinal set  ⊆ 𝐼
such that for every  ⊆ ,

⋃

 ∈ 𝐼 or
⋃

 ∈ 𝐼∗.
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As we already pointed out f in is deterministic. Other examples, including f in ×
f in, can be found in Section 3.
Remark 1.8. It follows for example that in Proposition 1.6, if 𝐼 is deterministic,
then we can remove the assumption 𝑈 ≥𝑇 𝐼 . Indeed the assumption that 𝑈 has the
𝐼-p.i.p ensures that 𝐼 ⊆ 𝑈∗ and by Proposition 3.2, 𝐼 ≤𝑇 𝑈 .

Specific ultrafilters where the Proposition 1.6 turn out to be useful are ultrafilters
which are generic for 𝑃 (𝑋)∕𝐼 . In [3] it was proven that a generic ultrafilter for
𝑃 (𝑋)∕𝐼 where 𝐼 is a 𝑃+-ideal5 satisfies the 𝐼-p.i.p. This, together with Proposition
1.6, given the following corollary which generalizes the results from [3] in our
abstract settings.
Corollary 1.9. Let 𝐼 be a deterministic ideal over 𝜔, and 1 ≤ 𝛼 < 𝜔 such that
𝑃 (𝜔𝛼)∕𝐼⊗𝛼 does not add reals. Then:

(1) for every 2 ≤ 𝛼 < 𝜔1, ⊩𝑃 (𝜔)∕𝐼⊗𝛼 “𝐺̇ ⋅ 𝐺̇ ≡𝑇 𝐺̇".
(2) For 𝛼 = 1, ⊩𝑃 (𝜔)∕𝐼 “𝐺̇ ⋅ 𝐺̇ ≡𝑇 𝐺̇ × 𝐼𝜔"

Proof. To prove (1), let 𝐺 be 𝑉 -generic. As we pointed out, 𝐺 has the 𝐼⊗𝛼-p.i.p.
It remains to see that (𝐼⊗𝛼)𝜔 ≤𝑇 𝐺. By Corollary 3.8 𝐼⊗𝛼 is also deterministic. It
is easy to see that being deterministic is absolute, hence 𝐼⊗𝛼 is deterministic in the
extension 𝑉 [𝐺] and moreover 𝐼⊗𝛼 ⊆ 𝐺∗. Since 𝛼 ≥ 2, (𝐼⊗𝛼)𝜔 ≡𝑇 𝐼⊗𝛼 ≤𝑇 𝐺.
Thus by Theorem 0.5 𝐺 ⋅ 𝐺 ≡𝑇 𝐺. (2) follows from Proposition 1.6 as 𝐺 has the
𝐼-p.i.p and 𝐼 ≤𝑇 𝐺. □

Remark 1.10. Note that the previous corollary works also under the assumption
⊩𝑃 (𝜔)∕𝐼⊗𝛼 “𝐼⊗𝛼 ≤𝑇 𝐺̇" instead of 𝐼 being deterministic.

These results motive the study of the class of ultrafilters which are Tukey above
𝐼𝜔, with a specific emphasis on deterministic ideals. The following theorem shows
that for deterministic 𝐼’s this class extends the class of ultrafilters which do not have
the 𝐼-p.i.p.
Theorem 1.11. Suppose that 𝐼 is deterministic ideal, and f in ⊆ 𝐼 ⊆ 𝑈∗. Then if
𝑈 ≱𝑇 𝐼𝜔, then 𝑈 has the 𝐼-p.i.p
Proof. Let us verify the equivalent condition (2) in Proposition 1.4. Let ⟨𝐴𝑛 ∣ 𝑛 <
𝜔⟩ be a partition of 𝜔 such thatcfor every 𝑛, 𝐴𝑛 ∉ 𝑈 . We need to find 𝑋 ∈ 𝑈 such
that 𝑋 ∩ 𝐴𝑛 ∈ 𝐼 for every 𝑛. Without loss of generality, suppose that 𝐴𝑛 ∈ 𝐼+ for
every 𝑛. Since f in ⊆ 𝐼 , 𝐴𝑛 is infinite and we can find a bijection 𝜋 ∶ 𝜔 ↔ 𝜔 × 𝜔
such that 𝜋′′𝐴𝑖 = {𝑖} × 𝜔. Let 𝑊 = 𝜋∗(𝑈 ) be the Rudin-Keisler isomorphic copy
of 𝑈 . For each 𝑛 < 𝜔, consider the ideal 𝐼𝑛 = 𝜋∗(𝐼 ∩ 𝑃 (𝐴𝑛)) on {𝑛} × 𝜔. By
Proposition 3.5(2), 𝐼 ∩ 𝑃 (𝐴𝑛) is a deterministic and since 𝜋 ↾ 𝐴𝑛 is one-to-one
𝐼𝑛 = 𝜋∗(𝐼 ∩ 𝑃 (𝐴𝑛)) is deterministic by Proposition 3.5(1) and 𝐼𝑛 ≡𝑇 𝐼 ∩ 𝑃 (𝐴𝑛) by
Proposition 3.5(3). By Theorem 3.6, it follows that

∑

f in 𝐼𝑛 is deterministic. It is
not hard to check that since 𝐼 is deterministic, 𝐼 ≡𝑇 𝐼 ∩𝑃 (𝐴𝑛) ≡𝑇 𝐼𝑛 and therefore

𝐼𝜔 ≡𝑇
∏

𝑛<𝜔
𝐼𝑛 ≡𝑇

∑

f in
𝐼𝑛

5𝐼 is called a 𝑃 +-deal if 𝑃 (𝑋)∕𝐼 is a 𝜎-closed forcing.



RAPIDNESS 7

Since 𝑈 ≱𝑇 𝐼𝜔, 𝑊 ≱𝑇
∑

f in 𝐼𝑛. Since
∑

f in 𝐼𝑛 is deterministic, it follows that
∑

f in 𝐼𝑛 ⊈ 𝑊 ∗. Thus, there is 𝑋′ ∈
∑

f in 𝐼𝑛 ∩𝑊 . Namely, for all but finitely many
𝑛’s, (𝑋′)𝑛 ∈ 𝐼𝑛. Since each 𝐴𝑖 ∉ 𝑈 , we may assume that, (𝑋′)𝑛 ∈ 𝐼𝑛. Let 𝑋 =
𝜋−1[𝑋′], then for every 𝑛 < 𝜔, 𝑋 ∩ 𝐴𝑛 ∈ 𝐼 as 𝜋′′𝑋 ∩ 𝐴𝑛 = {𝑥} ∩ (𝑋)𝑛 ∈ 𝐼𝑛. □

The proof of the above achieves a bit more, it shows that if 𝑈 does not have the
𝐼-p.i.p for a deterministic ideal 𝐼 , then 𝐼𝜔 is realized as a deterministic sub ideal
of 𝑈 . Taking 𝐼 = fin in the above we obtain the following corollary

Corollary 1.12. Suppose that 𝑈 is a non-principal ultrafilter such that 𝑈 ≱𝑇 𝜔𝜔

then 𝑈 is a 𝑝-point.

As a corollary, we see that Proposition 1.6 and therefore also Theorem 0.3 can
be slightly improved.

Corollary 1.13. If 𝐼 ⊆ 𝑈∗ is deterministic then the following are equivalent:
(1) 𝑈 <𝑇 𝑈 ⋅ 𝑈 and 𝑈 has the 𝐼-p.i.p.
(2) 𝑈 ≱𝑇 𝐼𝜔

2. ALMOST RAPID ULTRAFILTERS

In this section we restrict our attention to 𝜔𝜔. Our goal is to study the class of
ultrafilters which are Tukey above 𝜔𝜔. As observed by Dobrinen and Todorcevic,
rapid ultrafilters form a subclass of those. Clearly, rapid ultrafilters do not charac-
terize the class of 𝜔𝜔, since for example there could be no rapid ultrafilters at all
[23], while there are always ultrafilters which are above 𝜔𝜔 (e.g namely Tukey-top).
Moreover, counter example exists in ZFC. To see this, let us use the following result
of Miller [23, Thm. 4]:

Proposition 2.1 (Miller). For any two ultrafilters 𝑈, 𝑉 on 𝜔, 𝑈 ⋅ 𝑉 is rapid iff 𝑉
is rapid.

Now, Choquet [12] showed there is always non-rapid ultrafilter 𝑈 . For any such
𝑈 , the ultrafilter 𝑈 ⋅ 𝑈 is non-rapid and certainly above 𝜔𝜔.

Note however that this construction does not yield a 𝑝-point, and indeed, by
Corollary 1.12 any non-rapid non 𝑝-point will do the job. Hence, the interesting
examples (and the ones which are motivated by the results in the previous section)
lay inside the class of 𝑝-point (see Figure 1).

Of course, by Shelah [29], it is possible that there are no 𝑝-points (see also
Chodounský and Guzmán [11]). In which case, Corollary 1.12 yield that every
ultrafilter is above 𝜔𝜔.

By yet another result of Shelah, in the Miller model [22], which is obtained
by countable support iteration of the superperfect tree forcing of length 𝜔2 over a
model of CH, every 𝑝-point is generated by ℵ1-many sets. It is known that 𝔡 = 𝔠
holds in that model. Therefore, every 𝑝-point is generated by less than 𝔡-many sets
and in particular cannot be above 𝜔𝜔. Hence the class of 𝑝-points coincide with the
class of ultrafilters which are not Tukey above 𝜔𝜔, and the dashed area in Figure 1
is void. The purpose of this section is to address the question raised in [3] whether
rapid 𝑝-point are exactly those 𝑝-points which are above 𝜔𝜔. In other words, are
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Tukey-top

p-point

rapid

≱𝑇 𝜔𝜔

FIGURE 1. p-points but not ≥𝑇 𝜔𝜔.

there any other ways of producing cofinal maps from an ultrafilter to 𝜔𝜔? Let us
introduce a new class of ultrafilters– the 𝛼-almost rapid ultrafilters– which does that.

Given a function 𝑓 ∶ 𝜔 → 𝜔⧵{0} such that 𝑓 (0) > 0. We denote by 𝑒𝑥𝑝(𝑓 )(0) =
𝑓 (0) and

𝑒𝑥𝑝(𝑓 )
(

𝑛 + 1
)

= 𝑓
(

𝑒𝑥𝑝(𝑓 )(𝑛)
)

= 𝑓 (𝑓 (𝑓 (𝑓...𝑓 (0)..))).

We define the 𝑛th 𝑓 -exponent function,

𝑒𝑥𝑝0(𝑓 ) = 𝑓 and 𝑒𝑥𝑝𝑛(𝑓 ) = 𝑒𝑥𝑝(𝑒𝑥𝑝𝑛−1(𝑓 )).

Continuing transfinitely, for every 𝛼 < 𝜔1:

𝑒𝑥𝑝𝛼+1(𝑓 ) = 𝑒𝑥𝑝(𝑒𝑥𝑝𝛼(𝑓 )).

For limit 𝛿 < 𝜔1, we fix some increasing cofinal sequence ⟨𝛿𝑛 ∣ 𝑛 < 𝜔⟩ in 𝛿, and
let

𝑒𝑥𝑝𝛿(𝑓 )(𝑛) = max{𝑒𝑥𝑝𝛿𝑛(𝑓 )(𝑛), 𝑒𝑥𝑝𝛿(𝑓 )(𝑛 − 1) + 1}.

Lemma 2.2. Let 𝑓, 𝑔 ∶ 𝜔 → 𝜔 be increasing functions.
(1) For every 𝛼 < 𝜔1, 𝑒𝑥𝑝𝛼(𝑓 ) is increasing.
(2) If 𝑓 ≤ 𝑔 then for every 𝛼 < 𝜔1, 𝑒𝑥𝑝𝛼(𝑓 ) ≤ 𝑒𝑥𝑝𝛼(𝑔).
(3) For every 𝛼 < 𝛽 < 𝜔1, 𝑒𝑥𝑝𝛼(𝑓 ) <∗ 𝑒𝑥𝑝𝛽(𝑓 ).

Proof. For (1), we proceed by induction. For 𝛼 = 0, 𝑒𝑥𝑝0(𝑓 ) = 𝑓 is increasing.
Suppose 𝑒𝑥𝑝𝛼(𝑓 ) is increasing, then for every 𝑛 < 𝜔, 𝑒𝑥𝑝𝛼(𝑓 )(𝑛) > 𝑛. For 𝛼 + 1,
let 𝑛 < 𝜔. Since 𝑒𝑥𝑝𝛼(𝑓 ) is increasing,

𝑒𝑥𝑝𝛼+1(𝑓 )(𝑛 + 1) = 𝑒𝑥𝑝𝛼(𝑓 )(𝑒𝑥𝑝𝛼+1(𝑓 )(𝑛)) > 𝑒𝑥𝑝𝛼+1(𝑓 )(𝑛).

For limit 𝛿, is clear from the definition that 𝑒𝑥𝑝𝛿(𝑓 ) is increasing. Also (2) is proven
by induction. The base case is 𝑒𝑥𝑝0(𝑓 ) = 𝑓 ≤ 𝑔 = 𝑒𝑥𝑝0(𝑔). Suppose this was true
for 𝛼, and let us prove the induction step by induction on 𝑛 < 𝜔. The base again is

𝑒𝑥𝑝𝛼+1(𝑓 )(0) = 𝑒𝑥𝑝𝛼(𝑓 )(0)
≤ 𝑒𝑥𝑝𝛼(𝑔)(0) ≤ 𝑒𝑥𝑝𝛼+1(𝑔)(0)
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Suppose that 𝑒𝑥𝑝𝛼+1(𝑓 )(𝑛) ≤ 𝑒𝑥𝑝𝛼+1(𝑔)(𝑛), then by (1) and the induction hypothe-
sis

𝑒𝑥𝑝𝛼+1(𝑓 )(𝑛 + 1) = 𝑒𝑥𝑝𝛼(𝑓 )(𝑒𝑥𝑝𝛼+1(𝑓 )(𝑛))
≤ 𝑒𝑥𝑝𝛼(𝑓 )(𝑒𝑥𝑝𝛼+1(𝑔)(𝑛))
≤ 𝑒𝑥𝑝𝛼(𝑔)(𝑒𝑥𝑝𝛼+1(𝑔)(𝑛)) = 𝑒𝑥𝑝𝛼+1(𝑔)(𝑛 + 1)

At limit stages 𝛿, by the induction hypothesis,
𝑒𝑥𝑝𝛿(𝑓 )(𝑛) = max{𝑒𝑥𝑝𝛿𝑛(𝑓 )(𝑛), 𝑒𝑥𝑝𝛿(𝑓 )(𝑛 − 1) + 1}

≤ max{𝑒𝑥𝑝𝛿𝑛(𝑔)(𝑛), 𝑒𝑥𝑝𝛿(𝑔)(𝑛 − 1) + 1} = 𝑒𝑥𝑝𝛿(𝑔)(𝑛).
The proof of (3) is similar. □

Definition 2.3. For 𝛼 < 𝜔1, we say that an ultrafilter 𝑈 is 𝛼-almost-rapid if for
every function 𝑓 ∈ 𝜔𝜔 there is 𝑋 ∈ 𝑈 such that 𝑒𝑥𝑝𝛼(𝑓𝑋) ≥∗ 𝑓 , where 𝑓𝑋 is the
increasing enumeration of 𝑋.

Remark 2.4. By strengthening the above definition, we may require that 𝑒𝑥𝑝𝛼(𝑓𝑋) ≥
𝑓 . However, this strengthening yield an equivalent definition.

Note that 0-almost-rapid is rapid and if 𝛽 ≤ 𝛼 then 𝛽-almost-rapid implies 𝛼-
almost-rapid. We call 𝑈 almost-rapid if it is 1-almost-rapid.

Proposition 2.5. If 𝑈 is 𝛼-almost-rapid implies 𝑈 ≥𝑇 𝜔𝜔

Proof. Consider the map 𝑋 ↦ 𝑒𝑥𝑝𝛼(𝑓𝑋). We claim that it is monotone and cofinal.
First, suppose that 𝑋 ⊆ 𝑌 , then the natural enumerations 𝑓𝑋 , 𝑓𝑌 of 𝑋, 𝑌 (resp.)
satisfy 𝑓𝑋 ≥ 𝑓𝑌 . Then by Lemma 2.2(3) 𝑒𝑥𝑝𝛼(𝑓𝑋) ≥ 𝑒𝑥𝑝𝛼(𝑓𝑌 ). The map above is
cofinal by the 𝛼-almost rapidness of 𝑈 . □

The proposition below provides an analogous characterization to [23, Thm. 3]
for almost-rapid ultrafilters.

Proposition 2.6. The following are equivalent:
(1) 𝑈 is almost-rapid.
(2) For any sequence ⟨𝑃𝑛 ∣ 𝑛 < 𝜔⟩ of sets, such that 𝑃𝑛 is finite, there is

𝑋 ∈ 𝑈 such that for each 𝑛 < 𝜔, 𝑒𝑥𝑝(𝑓𝑋)(𝑛 − 1) ≥ |𝑋 ∩ 𝑃𝑛| (where
𝑒𝑥𝑝(𝑓𝑋)(−1) = 0).

(3) There is a function ℎ ∶ 𝜔 → 𝜔 such that for any ⟨𝑃𝑛 ∣ 𝑛 < 𝜔⟩ where 𝑃𝑛
is finite, there is 𝑋 ∈ 𝑈 such that for each 𝑛 < 𝜔, 𝑒𝑥𝑝(𝑓𝑋)(ℎ(𝑛 − 1)) ≥
|𝑋 ∩ 𝑃𝑛|.

Proof.
(1) ⇒ (2) Suppose that 𝑈 is almost rapid, and let ⟨𝑃𝑛 ∣ 𝑛 < 𝜔⟩ be a sequence of finite

subsets of 𝜔. Let 𝑓 (𝑛) = max(𝑃𝑛) + 1. By (1), there is 𝑋 ∈ 𝑈 such that
𝑒𝑥𝑝(𝑓𝑋) ≥ 𝑓 . It follows that

𝑒𝑥𝑝(𝑓𝑋)(0) = 𝑓𝑋(0) = min(𝑋) > 𝑓 (0) > max(𝑃0).
More generally,

𝑓𝑋(𝑒𝑥𝑝(𝑓𝑋)(𝑛 − 1)) = 𝑒𝑥𝑝(𝑓𝑋)(𝑛) > 𝑓 (𝑛) > max(𝑃𝑛)
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and therefore |𝑋 ∩ 𝑃𝑛| ≤ 𝑒𝑥𝑝(𝑓𝑋)(𝑛 − 1).
(2) ⇒ (1) Let 𝑓 be any function. Let 𝑃𝑛 = 𝑓 (𝑛). Then by (2), there is 𝑋 such that for

each 𝑛, |𝑋 ∩ 𝑓 (𝑛)| ≤ 𝑒𝑥𝑝(𝑓𝑋)(𝑛 − 1) and therefore
𝑓 (𝑛) < 𝑓𝑋(𝑒𝑥𝑝(𝑓𝑋)(𝑛 − 1)) = 𝑒𝑥𝑝(𝑓𝑋)(𝑛).

(2) ⇒ (3) trivial.
(3) ⇒ (1) Fix ℎ as in (3). Let 𝑓 be any function and assume that 𝑓 is increasing.

Find 𝑛0 < 𝑛1 < ... < 𝑛𝑘 < ... such that for every 𝑘, ℎ(𝑘) < 𝑛𝑘. Set
𝑃𝑛 = 𝑓 (𝑛𝑘). Then by (3), there is 𝑋 ∈ 𝑈 such that for each 𝑘, |𝑋 ∩ 𝑃𝑘| ≤
𝑒𝑥𝑝(𝑓𝑋)(ℎ(𝑘 − 1)). Take any 𝑛𝑘 ≤ 𝑚 < 𝑛𝑘+1, then

|𝑋 ∩ 𝑓 (𝑚 + 1)| ≤ |𝑋 ∩ 𝑓 (𝑛𝑘+1)|
≤ 𝑒𝑥𝑝(𝑓𝑋)(ℎ(𝑘))
≤ 𝑒𝑥𝑝(𝑓𝑋)(𝑛𝑘) ≤ 𝑒𝑥𝑝(𝑓𝑋)(𝑚).

Therefore 𝑓 (𝑚 + 1) < 𝑓𝑋(𝑒𝑥𝑝(𝑓𝑋)(𝑚)) = 𝑒𝑥𝑝(𝑓𝑋)(𝑚 + 1).
□

The following theorem is the main result of this paper:

Theorem 2.7. Assume CH. Then there is a 𝑝-point which is almost-rapid but not
rapid

Proof. Let 𝑃𝑛 = {1, ..., 2𝑛}. Let 𝐼 = {𝐴 ⊆ 𝜔 ∣ ∃𝑘∀𝑛 > 0, |𝐴 ∩ 𝑃𝑛| ≤ 𝑘 ⋅ 𝑛}. Then
𝐼 is a proper ideal on 𝜔. Suppose that ⟨𝑃𝑛 ∣ 𝑛 < 𝜔⟩ is not a counterexample for
𝑈 being rapid, then there is a set 𝑋 ∈ 𝑈 such that |𝑋 ∩ 𝑃𝑛| ≤ 𝑛 for every 𝑛 and
therefore 𝑋 ∈ 𝐼 . Hence, as long as we have 𝑈 ⊆ 𝐼+, 𝑈 will not be rapid.

Claim 2.8. The following are equivalent:
(1) 𝐴 ∈ 𝐼+.
(2) for every 𝑘, there is 𝑛𝑘 such that |𝐴 ∩ 𝑃𝑛𝑘| > 𝑘 ⋅ 𝑛𝑘.
(3) for every 𝑘, there are infinitely many 𝑛𝑘 such that |𝐴 ∩ 𝑃𝑛𝑘| > 𝑘 ⋅ 𝑛𝑘.

Proof. (3) ⇒ (2) ⇒ (1) are trivial. Suppose that (3) fails, namely there is 𝑘0 and 𝑛0
such that for every 𝑛 ≥ 𝑛0, |𝐴∩𝑃𝑛| ≤ 𝑘0 ⋅𝑛. Set 𝑘1 = max{𝑘0, |𝐴∩𝑃1|, ...|𝐴∩𝑃𝑛|},
then for every 𝑛 > 0, |𝐴 ∩ 𝑃𝑛| ≤ 𝑘1 ⋅ 𝑛 which implies that 𝐴 ∈ 𝐼 . Hence (1) ⇒
(3). □

The following is the key lemma for our construction:

Lemma 2.9. Suppose that ⟨𝐴𝑛 ∣ 𝑛 < 𝜔⟩ ⊆ 𝐼+ is ⊆-decreasing, and 𝑓 ∶ 𝜔 → 𝜔.
Then there is 𝐵 ⊆ 𝜔 such that

(1) 𝐵 ⊆∗ 𝐴𝑛 for every 𝑛.
(2) 𝐵 ∈ 𝐼+.
(3) 𝑒𝑥𝑝(𝑓𝐵) > 𝑓 .

Proof. Suppose without loss of generality that 𝑓 is increasing. In particular, 𝑓 (𝑘) ≥
𝑘. Consider 𝑓 (1), find 2 < 𝑛1 so that

|𝐴1 ∩ 𝑃𝑛1| > (𝑓 (1) + 2) ⋅ 𝑛1
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such an 𝑛1 exists as 𝐴1 ∈ 𝐼+ and taking 𝑘 = 𝑓 (1) + 2 in 2.8(3). Find 𝑎0, ..., 𝑎𝑛1+1
such that:

(1) 𝑓 (0), 𝑛1 + 1 < 𝑎0 < 𝑎1 < .... < 𝑎𝑛1+1.
(2) 𝑎𝑛1+1 > 𝑓 (1).
(3) 𝑎0, 𝑎1, ..., 𝑎𝑛1+1 ∈ 𝐴1 ∩ 𝑃𝑛1 .

It is possible to find such elements as

|𝐴1 ∩ 𝑃𝑛1 ⧵ {0, ..., 𝑛1 + 1}| > (𝑓 (1) + 2)𝑛1 − (𝑛1 + 2)
≥ 3𝑛1 − 𝑛1 − 2 = 2𝑛1 − 2 ≥ 𝑛1 + 1.

So there are 𝑛1+1 elements in 𝐴1∩𝑃𝑛1 greater than 𝑛1+1. Since |𝐴1∩𝑃𝑛1| > 𝑓 (1),
we can also make sure that the 𝑛1 + 1 element we choose is above 𝑓 (1). This way,
we have arranged that:

(1) 𝑓 (0) < 𝑎0.
(2) 𝑎𝑎0 was not defined yet (!), but as long as the sequence is increasing, then

𝑎𝑎0 > 𝑎𝑛1+1 > 𝑓 (1).
(3) If𝐵 includes 𝑎0, ..., 𝑎𝑛1+1, then for 𝑘 = 1, there is 𝑛1 such that |𝐵∩𝑃𝑛1| > 𝑛1.

Now consider 𝑓 (2) and by 2.8(3) find 𝑛2 > 2, 𝑎𝑛1+1 so that

|𝐴2 ∩ 𝑃𝑛2| > (𝑓 (2) + 2)(𝑎𝑛1+1 + 1)𝑛2.

Hence we can choose 𝑎𝑛1+2, ..., 𝑎𝑛1+1+2𝑛2+1 such that
(1) (𝑛1 + 1) + (2𝑛2 + 1) < 𝑎𝑛1+2 < ... < 𝑎𝑛1+1+2𝑛2+1.
(2) 𝑓 (2) < 𝑎𝑛1+1+2𝑛2+1.
(3) 𝑎𝑛1+2, ..., 𝑎𝑛1+1+2𝑛2+1 ∈ 𝐴2 ∩ 𝑃2.

This is possible to do since

|𝐴2 ∩ 𝑃𝑛2 ⧵ {0, ..., 𝑛1 + 2𝑛2 + 2}| > (𝑓 (2) + 2)(𝑎𝑛1+1 + 2)𝑛2 − (𝑛1 + 2𝑛2 + 3)
> 8𝑛2 − (3𝑛2 + 3)
= 5𝑛2 − 3 > 2𝑛2 + 1.

So we can find 𝑎𝑛1+2, ..., 𝑎𝑛1+1+2𝑛2+1 above 𝑛1+1+2𝑛2+1 (and therefore also above
𝑎𝑛1+1). We can also make sure that the last element we pick is above 𝑓 (2). This
way we ensured the following:

(1) As we observed, 𝑎𝑎0 was not defined in the first round (and might not be
defined in the second round as well) and therefore 𝑎′1 ∶= 𝑎𝑎0 > 𝑛1 + 1 +
2𝑛2 + 1.

(2) 𝑎𝑎𝑎0 was not defined but as long as the 𝑎𝑖’s are increasing, 𝑎′2 ∶= 𝑎𝑎𝑎0 >
𝑎𝑛1+1+2𝑛2+1 > 𝑓 (2).

(3) For 𝑘 = 2, there is 𝑛2 such that |𝐵 ∩ 𝑃𝑛2| > 2𝑛2.
In general suppose we have defined 𝑛1 < 𝑛2 < .... < 𝑛𝑘 and 𝑎0, ..., 𝑎∑𝑘

𝑖=1 𝑖𝑛𝑖+1
,

such that 𝑎′𝑘−1 >
∑𝑘

𝑖=1 𝑖𝑛𝑖 + 1. Then we find 𝑛𝑘+1 > 𝑘 + 1, 𝑎∑𝑘
𝑖=1 𝑖𝑛𝑖+1

such that
|𝐴𝑘+1 ∩ 𝑃𝑛𝑘+1| > 3(𝑘 + 1)(𝑓 (𝑘 + 1) + 1)𝑛𝑘+1. We now define

𝑎(∑𝑘
𝑖=1 𝑖𝑛𝑖+1)+1

, 𝑎(∑𝑘
𝑖=1 𝑖𝑛𝑖+1)+2

..., 𝑎∑𝑘+1
𝑖=1 𝑖𝑛𝑖+1
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(that is (𝑘 + 1)𝑛𝑘+1 + 1 many elements) so that:

(1)
∑𝑘+1

𝑖=1 𝑖𝑛𝑖 + 1 < 𝑎(∑𝑘
𝑖=1 𝑖𝑛𝑖+1)+1

< ... < 𝑎∑𝑘+1
𝑖=1 𝑖𝑛𝑖+1

,
(2) 𝑎∑𝑘+1

𝑖=1 𝑖𝑛𝑖+1
> 𝑓 (𝑘 + 1).

(3) 𝑎(∑𝑘
𝑖=1 𝑖𝑛𝑖+1)+1

, ..., 𝑎∑𝑘+1
𝑖=1 𝑖𝑛𝑖+1

∈ 𝐴𝑘+1 ∩ 𝑃𝑛𝑘+1 .

To see that such 𝑎’s exists, note that

|𝐴𝑘+1 ∩ 𝑃𝑛𝑘+1 ⧵ {0, ...,
𝑘+1
∑

𝑖=1
𝑖𝑛𝑖 + 1}|

> 3(𝑘 + 1)(𝑓 (𝑘 + 1) + 1)𝑛𝑘+1 − (
𝑘+1
∑

𝑖=1
𝑖𝑛𝑖 + 1) − 1

= 3(𝑘 + 1)(𝑓 (𝑘 + 1) + 1)𝑛𝑘+1 − ((𝑘 + 1)𝑛𝑘+1 + 1) − (
𝑘
∑

𝑖=1
𝑖𝑛𝑖 + 1) − 1

> (𝑘 + 1)(3𝑓 (𝑘 + 1) + 3)𝑛𝑘+1 − 2((𝑘 + 1)𝑛𝑘+1 + 1)
= (𝑘 + 1)(3𝑓 (𝑘 + 1) + 1)𝑛𝑘+1 > (𝑘 + 1)𝑛𝑘+1 + 1

Hence we can find (𝑘+1)𝑛𝑘+1+1-many elements in 𝐴𝑘+1∩𝑃𝑘+1 above
∑𝑘+1

𝑖=1 𝑖𝑛𝑖+1.
Also, since |𝐴∩𝑃𝑛| > 𝑓 (𝑘+1) we can make sure that 𝑎∑𝑘+1

𝑖=1 𝑖𝑛𝑖+1
> 𝑓 (𝑘+1). This

way we ensure that:
(1) Since 𝑎𝑎′𝑘−1 was not defined in previous rounds, and 𝑎′𝑘 ∶= 𝑎𝑎′𝑘−1 >

∑𝑘+1
𝑖=1 𝑖𝑛𝑖+

1.
(2) 𝑎𝑎′𝑘 has not been defined yet. Hence any future value for 𝑎′𝑘+1 ∶= 𝑎𝑎′𝑘 must

satisfy that 𝑎′𝑘+1 > 𝑎∑𝑘+1
𝑖=1 𝑖𝑛𝑖+1

> 𝑓 (𝑘 + 1)𝑓 (𝑘 + 1).
(3) |𝐵 ∩ 𝑃𝑛𝑘+1| > (𝑘 + 1)𝑛𝑘+1 + 1.

Set 𝐵 = {𝑎𝑛 ∣ 𝑛 < 𝜔}. So by the construction, for every 𝑘 there is 𝑛𝑘 such that
|𝐵 ∩ 𝑃𝑛𝑘| > 𝑘𝑛𝑘. Hence 𝐵 ∈ 𝐼+. Also, note that 𝑓𝐵(𝑛) = 𝑎𝑛 since the 𝑎𝑛’s are
increasing. By the construction and definition of 𝑒𝑥𝑝(𝑓𝐵), 𝑒𝑥𝑝(𝑓𝐵)(𝑛) = 𝑎′𝑛 > 𝑓 (𝑛).
Finally, note that for each 𝑛, there is 𝑘 such that for every 𝑘′ ≥ 𝑘, 𝑎𝑘′ ∈ 𝐴𝑚 for some
𝑚 ≥ 𝑛. Since the sequence of 𝐴𝑛’s is ⊆-decreasing, 𝑎𝑘′ ∈ 𝐴𝑛. We conclude that
𝐵 ⧵ 𝐴𝑛 ⊆ {𝑎0, ..., 𝑎𝑘}. □

Back to the proof of Theorem 2.7, let us the construction a almost rapid 𝑝-point
which is non-rapid. Enumerate 𝑃 (𝜔) = ⟨𝑋𝛼 ∣ 𝛼 < 𝜔1⟩, and 𝑃 (𝜔)𝜔 = ⟨𝐴𝛼 ∣
𝛼 < 𝜔1⟩ such that each sequence in 𝑃 (𝜔)𝜔 appears cofinaly many times in the
enumeration. Also enumerate 𝜔𝜔 = ⟨𝜏𝛼 ∣ 𝛼 < 𝜔1⟩. We define a sequence of filters
𝑉𝛼 such that:

(1) 𝛽 < 𝛼 ⇒ 𝑉𝛽 ⊆ 𝑉𝛼.
(2) 𝑉𝛼 ⊆ 𝐼+.
(3) If 𝛼 = 𝛽 + 1 then

(a) either 𝑋𝛽 or 𝜔 ⧵𝑋𝛽 ∈ 𝑉𝛼.
(b) there is 𝑋 ∈ 𝑉𝛼 such that 𝜏𝛽 < 𝑒𝑥𝑝(𝑓𝑋).
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(c) If 𝐴𝛽 ⊆ 𝑉𝛼 then there is a pseudo-intersection 𝐴 ∈ 𝑉𝛼.
Let 𝑉0 = 𝐼∗. At limit steps 𝛿 we define 𝑉𝛿 =

⋃

𝛽<𝛿 𝑉𝛽 . It is clear that (1) − (2) still
holds at limit steps and (3) only concerns successor steps. At successors, given 𝑉𝛼,
since we have only performed countably many steps so far, there are sets 𝐵𝑛 ∈ 𝑉𝛼
such that 𝑉𝛼 = 𝐼∗[⟨𝐵𝑛 ∣ 𝑛 < 𝜔⟩] where 𝐵𝑛 is ⊇-decreasing. If either 𝑋𝛼 or 𝜔⧵𝑋𝛼 is
already in 𝑉𝛼, set 𝑋∗

𝛼 = 𝜔. Otherwise, set 𝑋𝛼∗ = 𝑋𝛼 and recall that 𝐼∗ = 𝑉0 ⊆ 𝑉𝛼.
It follows that 𝑋𝛼 ∈ 𝐼+ and 𝑉𝛼[𝑋𝛼] ⊆ 𝐼+. Similarly, if 𝐴𝛼 ⊈ 𝑉𝛼[𝑋𝛼] we set 𝐴∗

𝛼 to
have a trivial value such as ⟨𝜔,𝜔, 𝜔, ...⟩. Otherwise let 𝐴∗

𝛼 = 𝐴𝛼. Next, enumerate
the set

{𝐵𝑛 ∩𝑋∗
𝛼 ∣ 𝑛 < 𝜔} ∪ {𝐴∗

𝛼(𝑛) ∣ 𝑛 < 𝜔} ⊆ 𝑉𝛼[𝑋𝛼]
by ⟨𝐵′

𝑛 ∣ 𝑛 < 𝜔⟩ and let 𝐶𝑛 = ∩𝑚≤𝑛𝐵′
𝑚. By applying the previous lemma to the

sequence ⟨𝐶𝑛 ∣ 𝑛 < 𝜔⟩, and 𝜏𝛼, we can find 𝐴∗ ⊆ 𝜔 such that:
(1) 𝐴∗ ∈ 𝐼+.
(2) 𝑒𝑥𝑝(𝑓𝐴∗) > 𝜏𝛼.
(3) 𝐴∗ ⊆∗ 𝐶𝑛 for every 𝑛.

Since for every 𝑛 < 𝜔, there is 𝑛′ such that 𝐶𝑛′ ⊆ 𝐴𝛼(𝑛) ∩ 𝐵𝑛, 𝐴∗ ⊆∗ 𝐴𝛼(𝑛),
namely 𝐴∗ is a pseudo intersection of both ⟨𝐵𝑛 ∣ 𝑛 < 𝜔⟩ and 𝐴𝛼. Also, 𝐴∗ is a
positive set with respect to the ideal 𝑉𝛼[𝑋𝛼]. Otherwise, there is some 𝐴 ∈ 𝐼∗ and
𝐵𝑛 such that 𝐴∗ ∩ (𝐴 ∩ 𝐵𝑛 ∩ 𝑋𝛼) = ∅. But then (𝐴∗ ∩ 𝐵𝑛 ∩ 𝑋𝛼) ∩ 𝐴 = ∅ which
implies that 𝐴∗ ∩ 𝐵𝑛 ∩ 𝑋𝛼 ∈ 𝐼 . However, 𝐴∗ ⊆∗ 𝐵𝑛 ∩ 𝑋𝛼, which implies that
𝐴∗ ∈ 𝐼 , contradicting property (1) above in the choice of 𝐴∗. Hence we can define
𝑉𝛼+1 = 𝑉𝛼[𝑋𝛼, 𝐴∗] and (1) − (5) hold.

This concludes the recursive definition. The ultrafilter witnessing the theorem is
defined by 𝑉 ∗ =

⋃

𝛼<𝜔1
𝑉𝛼.

Proposition 2.10. 𝑉 ∗ is a non-rapid almost-rapid 𝑝-point ultrafilter.

Proof. 𝑉 ∗ is an ultrafilter since for every 𝑋 ⊆ 𝜔, there is 𝛼 such that 𝑋 = 𝑋𝛼 and
so either 𝑋𝛼 or 𝜔 ⧵ 𝑋𝛼 are in 𝑉𝛼+1 ⊆ 𝑉 ∗. Also 𝑉 ∗ is a 𝑝-point since if ⟨𝐴𝑛 ∣ 𝑛 <
𝜔⟩ ⊆ 𝑉 ∗ then there is 𝛼 < 𝜔1 such that ⟨𝐴𝑛 ∣ 𝑛 < 𝜔⟩ ⊆ 𝑉𝛼 and by the properties
of the enumeration there is 𝛽 > 𝛼 such that 𝐴𝛽 = ⟨𝐴𝑛 ∣ 𝑛 < 𝜔⟩. This means that
in 𝑉𝛽+1 there is a pseudo intersection for the 𝐴𝑛’s. It is non-rapid as 𝑉 ∗ ⊆ 𝐼+ and,
in fact, the sequence 𝑃𝑛 = {1, ..., 2𝑛} witnesses that it is non-rapid. Finally, it is
almost rapid since for any function 𝜏 ∶ 𝜔 → 𝜔, there is 𝛼 such that 𝜏 = 𝜏𝛼 and
therefore in 𝑉𝛼+1 there is a set 𝑋 such that 𝑒𝑥𝑝(𝑓𝑋) > 𝜏. □

□

Corollary 2.11. It is consistent that there is a 𝑝-point which is not rapid but still
above 𝜔𝜔.

Remark 2.12. CH is not necessary in order to obtain such an ultrafilter, since we
can, for example, repeat a similar argument in the iteration of Mathias forcing after
we forced the failure of 𝐶𝐻 and obtain such an ultrafilter. In fact, we conjecture
that the construction of Ketonen [19] of a 𝑝-point from 𝔡 = 𝔠 can be modified to
get a non-rapid almost-rapid 𝑝-point.
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3. MORE ON THE 𝐼-P.I.P AND DETERMINISTIC IDEALS

In this section, we study the 𝐼-p.i.p and deterministic ideals. As we have seen in
previous sections, together, they provide an abstract framework in which one can
analyze the connection between the Tukey type of Fubini products and subideals
related to it. Many of our results in this section generalize to 𝜅-filters (i.e. 𝜅-
complete filters over 𝜅 ≥ 𝜔).

3.1. Simple and deterministic ideals.
Definition 3.1. Let 𝐼 be an ideal. We say that 𝐼 is:

(1) simple if for every ideal 𝐽 , 𝐼 ⊆ 𝐽 , 𝐼 ≤𝑇 𝐽 .
(2) deterministic if there is a cofinal set  ⊆ 𝐼 such that for every  ⊆ ,

⋃

 ∈ 𝐼 or
⋃

 ∈ 𝐼∗.
The basic connection between the two notion is:

Proposition 3.2. If 𝐼 is deterministic then 𝐼 is simple.

Proof. Let 𝐼 ⊆ 𝐽 and let  ⊆ 𝐼 be the cofinal set witnessing that 𝐼 is deterministic.
Let us prove that the identity function 𝑖𝑑 ∶  → 𝐽 is unbounded. Suppose that
 ⊆  is unbounded, then

⋃

 ∉ 𝐼 , since otherwise, as  is cofinal in 𝐼 , there
would have been 𝑏 ∈  bounding. By definition of deterministic ideals, it follows
that

⋃

 ∈ 𝐼∗, and since 𝐼 ⊆ 𝐽 , 𝐼∗ ⊆ 𝐽 ∗ hence
⋃

 ∈ 𝐽 ∗. We conclude that
⋃

 ∉ 𝐽 , namely,  is unbounded in 𝐽 . Hence the identity function witnesses
that 𝐼 ≡𝑇  ≤𝑇 𝐽 . □

Clearly any dual of an ultrafilter is deterministic. Also f in deterministic as wit-
nessed by 𝜔 viewed as a cofinal subset of f in. It is easy to construct non-simple
(hence non-deterministic) ideals:
Example 3.3. Suppose that 𝑈 ≱𝑇 𝑊 are two ultrafilters. For example 𝑈 could
be a 𝑝-point and 𝑊 a Tukey-top ultrafilter. Consider (𝑈 ∩𝑊 )∗ = 𝐼 , then 𝐼 is not
simple, since 𝑈 ∩𝑊 ⊆ 𝑈 but 𝑈 ∩𝑊 ≡𝑇 𝑈 ×𝑊 ≰𝑇 𝑈 .
Example 3.4. On a regular uncountable cardinal 𝜅, the dual to the non-stationary
ideal– generated by the complements of closed and unbounded sets in the order
topology of 𝜅– is deterministic. Indeed, the intersection of closed sets is always
closed. Hence if the intersection of clubs is not a club, it had to be bounded in 𝜅,
which is therefore non-stationary.
Proposition 3.5. Suppose that 𝐼 ⊆ 𝑋 is a deterministic ideal over 𝑋.

(1) If 𝜋 ∶ 𝑋 → 𝑌 is injective on a set in 𝐼∗. Then 𝜋∗(𝐼) ∶= {𝑎 ∣ 𝜋−1[𝑎] ∈ 𝐼}
is deterministic.

(2) If 𝐴 ⊆ 𝑋, then 𝐼 ∩ 𝑃 (𝐴) is deterministic.
(3) For any 𝐴 ∈ 𝐼+, we have 𝐼 ≡𝑇 𝐼 ∩ 𝑃 (𝐴).

Proof. Along this proof let us fix once  ⊆ 𝐼 a witnessing cofinal set for 𝐼 being
deterministic.

To see (1), let
 = {(𝑌 ⧵ (𝜋[𝑋 ⧵ 𝑏])) ∣ 𝑏 ∈ }.
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Then  is a cofinal set in 𝜋∗(𝐼). We claim that  witnesses that 𝜋∗(𝐼) is de-
terministic. Let  ⊆  be such that

⋃

𝑎∈ 𝑌 ⧵ (𝜋[𝑋 ⧵ 𝑎]) ∉ 𝜋∗(𝐼). Then
𝜋−1[

⋃

𝑎∈ 𝑌 ⧵ (𝜋[𝑋 ⧵ 𝑎])] ∉ 𝐼 . Using the fact that 𝜋 is 1 − 1 it follows that
𝜋−1[

⋃

𝑎∈ 𝑌 ⧵ (𝜋[𝑋 ⧵ 𝑎])] =
⋃

. Hence
⋃

 ∉ 𝐼 , and since  ⊆ , we
conclude that

𝑋 ⧵ 𝜋−1[
⋃

𝑎∈
𝑌 ⧵ (𝜋[𝑋 ⧵ 𝑎])] = 𝑋 ⧵

⋃

 ∈ 𝐼.

Namely,
⋃

𝑎∈ 𝑌 ⧵ (𝜋[𝑋 ⧵ 𝑎]) ∈ 𝜋∗(𝐼)∗.
For (2), consider  = {𝑏 ∩ 𝐴 ∣ 𝑏 ∈ }. Then  is easely seen to witness that

𝐼 ∩ 𝑃 (𝐴) is deteministic.
For (3), let 𝑓 ∶  → 𝐼 ∩ 𝑃 (𝐴) be the map 𝑓 (𝑏) = 𝑏 ∩ 𝐴. This is clearly a

monotone and cofinal map. We claim it is also unbounded, suppose that
⋃

 ∉
𝐼 , then

⋃

 ∈ 𝐼∗, then 𝐴 ⧵
⋃

𝑓 () = 𝐴 ⧵
⋃

 ∈ 𝐼 ∩ 𝑃 (𝐴). Hence 𝑓 is
unbounded. □

Note that (2) above can be vacuous if 𝐴 ∈ 𝐼 , since in that case 𝐼 ∩ 𝑃 (𝐴) is not
proper. So we should at least assume that 𝐴 ∈ 𝐼+. Generally speaking, it is unclear
whether an ideal relative to a positive set has the same Tukey-type. However, as (3)
shows, if the ideal is deterministic, the type does not change.

Theorem 3.6. Suppose that f in ⊆ 𝐼 be a deterministic ideal over 𝜔, and ⟨𝐽𝑛 ∣
𝑛 < 𝜔⟩ is a sequence of deterministic ideals over 𝜔 such that for every 𝑛 < 𝜔,
𝐽𝑛+1 ≥𝑇 𝐽𝑛. Then

∑

𝐼 𝐽𝑛 is deterministic.

Remark 3.7. There is a näive "proof" to try ans show that
∑

𝐼 𝐽𝑛 is deterministic
whenever 𝐼, 𝐽𝑛 are deterministic. Take  ⊆ 𝐼 and 𝑛 ⊆ 𝐽𝑛 be witnessing cofinal
sets, then let  consist of sets of the form (

⋃

𝑛∈𝐵{𝑛}×𝜔) ∪ (
⋃

𝑛∉𝐵{𝑛}×𝐵𝑛), where
𝐵 ∈  and 𝐵𝑛 ∈ 𝑛. While  is cofinal in

∑

𝐼 𝐽𝑛, it does not have the desired
property. For example if 𝐼 = 𝐽𝑛 = fin and  = 𝑛 = 𝜔. Fix any infinite co infinite
set 𝐴 and consider 𝑋𝑛 =

⋃

𝑛∈𝐴{𝑛}×𝑛. Note that 𝑋𝑛 is of the form described above.
Clearly

⋃

𝑛<𝜔𝑋𝑛 = 𝐴×𝜔 ∉ fin ⋅ f in, but also not in (f in ⋅ f in)∗. The proof how to
correct this construction.

Proof. Let 𝑛 ⊆ 𝐽𝑛 witness that 𝐽𝑛 is deterministic, and  witness that 𝐼 is deter-
ministic. Let ⟨𝑓𝑚,𝑛 ∶ 𝐽𝑛 → 𝐽𝑚 ∣ 𝑛 ≤ 𝑚 < 𝜔⟩ be a sequence of unbounded maps.
Denote by  the set of all sequences 𝑏⃗ = ⟨𝑏𝑛 ∣ 𝑛 < 𝜔⟩ ∈

∏

𝑛<𝜔𝑛 such that for
every 𝑛 < 𝑚 < 𝜔, 𝑏𝑚 ⊇ 𝑓𝑚,𝑛(𝑏𝑛). For 𝑏⃗ ∈  and 𝐴 ∈  defined

𝐶𝐴,𝑏⃗ =
⋃

𝑛∈𝐴
{𝑛} × 𝜔 ∪

⋃

𝑛∉𝐴
{𝑛} × 𝑏𝑛.

Let us show that  = {𝐶𝐴,𝑏⃗ ∣ 𝐴 ∈ , 𝑏⃗ ∈ } is cofinal in
∑

𝐼 𝐽𝑛. Let 𝑍 ∈
∑

𝐼 𝐽𝑛,
and 𝐴 = {𝑛 ∣ (𝑍)𝑛 ∉ 𝐽𝑛}. By definition of

∑

𝐼 𝐽𝑛, 𝐴 ∈ 𝐼 , so there is 𝐷 ∈ 
such that 𝐴 ⊆ 𝐷. Construct (recursively) an increasing sequence ⟨𝑏𝑛 ∣ 𝑛 < 𝜔⟩ ∈
∏

𝑛<𝜔𝑛 such that for every 𝑛 ∉ 𝐴, (𝑍)𝑛 ⊆ 𝑏𝑛 and for every 𝑛 < 𝑚 < 𝜔, 𝑓𝑚,𝑛(𝑏𝑛) ⊆
𝑏𝑚. It follows that for every 𝑛, (𝑍)𝑛 ⊆ (𝐶𝐷,𝑏⃗)𝑛 and therefore 𝑍 ⊆ 𝐶𝐷,𝑏⃗. Let us prove
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that  witnesses that
∑

𝐼 𝐽𝑛 is deterministic. Suppose that
⋃

𝑖∈𝑇 𝐶𝑋𝑖,𝑏⃗𝑖
∉

∑

𝐼 𝐽𝑛.
Then

𝐴 ∶= {𝑛 < 𝜔 ∣ (
⋃

𝑖∈𝑇
𝐶𝑋𝑖,𝑏⃗𝑖

)𝑛 ∉ 𝐽𝑛} ∉ 𝐼.

Note that (
⋃

𝑖∈𝑇 𝐶𝑋𝑖,𝑏⃗𝑖
)𝑛 =

⋃

𝑖∈𝑇 (𝐶𝑋𝑖,𝑏⃗𝑖
)𝑛. Let us split into cases: If 𝐴 ⊆

⋃

𝑖∈𝑇 𝑋𝑖,
then

⋃

𝑖∈𝑇 𝑋𝑖 ∉ 𝐼 and since {𝑋𝑖 ∣ 𝑖 ∈ 𝑇 } ⊆ ,
⋃

𝑖∈𝑇 𝑋𝑖 ∈ 𝐼∗. Now for every
𝑛 ∈

⋃

𝑖∈𝑇 𝑋𝑖, 𝜔 =
⋃

𝑖∈𝑇 (𝐶𝑋𝑖,𝑏⃗𝑖
)𝑛 ∈ 𝐽 ∗

𝑛 . We conclude that

{𝑛 < 𝜔 ∣ (
⋃

𝑖∈𝑇
𝐶𝑋𝑖,𝑏⃗𝑖

)𝑛 ∈ 𝐽 ∗
𝑛 } ⊇

⋃

𝑖∈𝑇
𝑋𝑖 ∈ 𝐼∗.

Hence
⋃

𝑖∈𝑇 𝐶𝑖 ∈ (
∑

𝐼 𝐽𝑛)∗.
Otherwise, consider 𝑛0 ∈ 𝐴 such that for every 𝑖 ∈ 𝑇 , 𝑛0 ∉ 𝑋𝑖. Then (𝐶𝑋𝑖,𝑏⃗𝑖

)𝑛0 ∈
𝑛0 for every 𝑖 ∈ 𝑇 and

⋃

𝑖∈𝑇 (𝐶𝑋𝑖,𝑏⃗𝑖
)𝑛0 ∉ 𝐽𝑛0 . Since 𝑛0 witnesses that 𝐽𝑛0 is

deterministic,
⋃

𝑖∈𝑇 (𝐶𝑋𝑖,𝑏⃗𝑖
)𝑛0 ∈ 𝐽 ∗

𝑛0
. For every 𝑛 ≥ 𝑛0, either there is 𝑖 ∈ 𝑇 such

that 𝑛 ∈ 𝑋𝑖, and as we have seen, ∪𝑖∈𝑇 (𝐶𝑋𝑖,𝑏⃗𝑖
)𝑛 = 𝜔 ∈ 𝐽 ∗

𝑛 . Otherwise, for every 𝑖 ∈
𝑇 , (𝐶𝑋𝑖,𝑏⃗𝑖

)𝑛 = 𝑏𝑖𝑛 ∈ 𝑛, and by the assumption, 𝑓𝑛,𝑛0(𝑏
𝑖
𝑛0
) ⊆ 𝑏𝑖𝑛. Since

⋃

𝑖∈𝑇 𝑏𝑖𝑛0 ∉
𝐽𝑛0 , and 𝑓𝑛,𝑛0 is unbounded,

⋃

𝑖∈𝑇 𝑓𝑛,𝑛0((𝐶𝑋𝑖,𝑏⃗𝑖
)𝑛) ∉ 𝐽𝑛. Since 𝑛 witnesses that

𝐽𝑛 is deterministic, it follows that
⋃

𝑖∈𝑇 𝑓𝑛,𝑛0((𝐶𝑋𝑖,𝑏⃗𝑖
)𝑛) ∈ 𝐽 ∗

𝑛 . We conclude that
for every 𝑛 ≥ 𝑛0,

⋃

𝑖∈𝑇 (𝐶𝑋𝑖,𝑏⃗𝑖
)𝑛 ∈ 𝐽 ∗

𝑛 . Since {𝑛0, 𝑛0 + 1, ...} ∈ 𝐼∗, we have that
⋃

𝑖∈𝑇 𝐶𝑋𝑖,𝑏⃗𝑖
∈ (

∑

𝐼 𝐽𝑛)∗ as wanted.
□

Corollary 3.8. Suppose that 𝐼, 𝐽 are deterministic ideals over 𝜔. Then 𝐼 ⋅ 𝐽 is
deterministic. Hence also for every 𝛼 < 𝜔1, 𝐼⊗𝛼 is deterministic.

3.2. The 𝐼-pseudo intersection property. Recall that given a filter 𝐹 and an ideal
𝐼 ⊆ 𝐹 ∗, 𝐹 satisfy the 𝐼-p.i.p if for every ⟨𝑋𝑛 ∣ 𝑛 < 𝜔⟩ ⊆ 𝐹 there is 𝐴 ∈ 𝐹 such
that for every 𝑛, 𝐴 ⧵𝑋𝑛 ∈ 𝐼 . This is a generalization of begin a 𝑝-point in the case
𝑇 = fin. Other examples for ultrafilters 𝑈 and ideals 𝐼 such that 𝑈 has the 𝐼-p.i.p
can be found in [3] and will be provided in this subsection.

Given a set𝑆, consider the space of filters over𝑆,𝔅(𝑆) = {𝐹 ∣ 𝐹 is a filter over 𝑆}
equipped with the topology generated by the sets 𝐴 = {𝐹 ∈ 𝔅 ∣ 𝐴 ∈ 𝐹 }, for
𝐴 ⊆ 𝑆.

Given a filter 𝐹 on 𝑆, we would like to study the following set:

PIP(𝐹 ) = {𝑇 ∈ 𝔅(𝑆) ∣ 𝐹 has the 𝑇 ∗-p.i.p}

The following facts are also easy to verify:

Fact 3.9.
(1) 𝐹 ∈ PIP(𝐹 ).
(2) PIP(𝐹 ) is upward closed with respect to ⊆.
(3) PIP(𝐹 ) is closed under finite intersections.
(4) {𝑆} ∈ PIP(𝐹 ) if and only if 𝐹 is 𝜎-complete.
(5) Let 𝑓 ∶ 𝑆 → 𝑆′ be a function. If 𝑇 ∈ PIP(𝐹 ) then 𝑓 (𝑇 ) ∈ PIP(𝑓∗(𝐹 )).
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Given a set  with the finite intersection property, we let 𝐹 = {𝑋 ⊆ 𝑆 ∣ ∃𝐼 ∈
[]<𝜔,

⋂

𝐼 ⊆ 𝑋} be the filter generated by . PIP(𝐹 ) is the following ultrafilter-
like property:

Proposition 3.10. Suppose that 𝑇 ∈ PIP(𝐹 ), and  is a base for 𝑇 (i.e. cofinal in
(𝑇 , ⊇)). Suppose that  = 1 ∪ 2. Then either 𝐹1

∈ PIP(𝐹 ) or 𝐹2
∈ PIP(𝐹 ).

Proof. Suppose neither 𝐹1
-p.i.p nor 𝐹2

-p.i.p hold for 𝐹 . Then there are se-
quences ⟨𝐴𝑛 ∣ 𝑛 < 𝜔⟩ and ⟨𝐵𝑛 ∣ 𝑛 < 𝜔⟩ such that for every 𝐴,𝐵 there are
𝑛𝐴, 𝑚𝐵 such that 𝐴 ⧵ 𝐴𝑛𝐴 ∉ 𝐹1

and 𝐵 ⧵ 𝐵𝑚𝐵
∉ 𝐹2

. Consider the sequence
⟨

⋂

𝑘≤𝑛𝐴𝑘 ∩
⋂

𝑘≤𝑛 𝐵𝑘 ∣ 𝑛 < 𝜔⟩. Then there is 𝐴 ∈ 𝐹 such that for every 𝑙
𝐴⧵

⋂

𝑘≤𝑙 𝐴𝑘∩
⋂

𝑘≤𝑙 𝐵𝑘 ∈ 𝑇 . For 𝐴, there are suitable 𝑛𝐴, 𝑚𝐴 as above and fix 𝑁 =
max(𝑛𝐴, 𝑚𝐴). Since Without loss of generality, 𝐴⧵

⋂

𝑘≤𝑁 𝐴𝑘∩
⋂

𝑘≤𝑁 𝐵𝑘 ∈ 𝑇 ∗, and
 is a generating set for 𝑇 , there is 𝐵 ∈  such that 𝐴⧵

⋂

𝑘≤𝑁 𝐴𝑘∩
⋂

𝑘≤𝑁 𝐵𝑘 ⊆ 𝐵𝑐 .
Without loss of generality, we may assume that 𝐵 ∈ 1, in which case, we have
𝐴 ⧵ 𝐴𝑛 ⊆ 𝐴 ⧵

⋂

𝑘≤𝑁 𝐴𝑘 ∩
⋂

𝑘≤𝑀 𝐵𝑘 ∈ 𝐹 ∗
1

, contradicting the choice of 𝑛𝐴. □

This proposition already given many non-trivial examples of 𝑇 ∈ PIP(𝐹 ). By
definition, 𝐹 is an accumulation point of  ⊆ 𝔅(𝑆) if and only if 𝐹 ⊆

⋃

(⧵{𝐹 }).

Theorem 3.11. Suppose that 𝐹 is not an accumulation point of  ⊆ 𝛽𝑆 (i.e. 
consist of ultrafilters). Then 𝐹 ∩

⋂

 ∈ PIP(𝐹 ).

Proof. For the contrapositive, suppose that 𝐹 does not have the (
⋂

)∗-p.i.p, and
let ⟨𝑋𝑛 ∣ 𝑛 < 𝜔⟩ ⊆ 𝐹 be a sequence witnessing this. Namely, for every 𝑋 ∈ 𝐹 ,
there is 𝑛 such that 𝑋 ⧵𝑋𝑛 ∉ 𝑇 ∗ for some 𝑇 ∈ . Since 𝑋 ⧵𝑋𝑛 ∈ 𝐹 ∗, it follows
𝐹 ≠ 𝑇 . Also, since 𝑇 is an ultrafilter 𝑋 ⧵ 𝑋𝑛 ∈ 𝑇 , hence 𝑋 ∈ 𝑇 . It follows that
𝐹 ⊆

⋃

 ⧵ {𝐹 }, contradiction. □

The above apply to the following specific case. Recall that a set of ultrafilters
 ⊆ 𝛽𝑆 is discrete if there are sets 𝐴𝑈 ∈ 𝑈 for all 𝑈 ∈  which are pairwise dis-
joint. This is just equivalent to being a discrete set in the space 𝔅(𝑆). In particular,
no point 𝑈 ∈  is in the closure of . Also note that every finite set of ultrafilters
is discrete.

Corollary 3.12. Suppose that  is discrete then each 𝑈 ∈  has the
⋂

 ∈
PIP(𝑈 ).

One way to obtain non-trivial sets 𝑇 for which an ultrafilter 𝑈 has the 𝑇 -p.i.p is
by intersecting 𝑈 with other ultrafilters:

Corollary 3.13. Suppose that 𝑈1, 𝑈2, ...𝑈𝑛 are any ultrafilters, then for each 1 ≤
𝑖 ≤ 𝑛, 𝑈𝑖 have the (𝑈1 ∩ 𝑈2 ∩ ... ∩ 𝑈𝑛)∗-p.i.p.

We can conclude for example that 𝑈 ⋅ 𝑈 ≤𝑇 𝑈 × (𝑈 ∩ 𝑊 )𝜔 for any ultrafilter
𝑊 . However, it is easy to see that 𝑈 ∩𝑊 ≡𝑇 𝑈 ×𝑊 . Hence applying the 𝐼-p.i.p
here will not yield interesting bounds in the Tukey order.

Our next result investigates how the 𝐼-p.i.p is preserved under sums of ideals and
ultrafilters.
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Proposition 3.14. Let 𝐹 , 𝐹𝑛 be filters over countable sets. Suppose that 𝐼 ⊆ 𝐹 ∗

and 𝐽𝑛 ⊆ 𝐹 ∗
𝑛 are ideals for every 𝑛 < 𝜔. If 𝐹 has 𝐼-p.i.p and for every 𝑛 < 𝜔, 𝐹𝑛

has 𝐽𝑛-p.i.p, then
∑

𝐹 𝐹𝑛 has
∑

𝐼 𝐽𝑛-p.i.p.

Proof. Let ⟨𝐴𝑛 ∣ 𝑛 < 𝜔⟩ be a sequence in
∑

𝐹 𝐹𝑛. For each 𝑛, let
𝑋𝑛 = {𝑚 < 𝜔 ∣ (𝐴𝑛)𝑚 ∈ 𝐹𝑚} ∈ 𝐹 .

We find 𝑋 ∈ 𝐹 such that for every 𝑛 < 𝜔, 𝑋 ⧵ 𝑋𝑛 ∈ 𝐼 . For each 𝑚 ∈ 𝑋, we
consider 𝐸𝑚 = {𝑛 < 𝜔 ∣ 𝑚 ∈ 𝑋𝑛}. If 𝐸𝑚 is finite, we let 𝑌𝑚 =

⋂

𝑛∈𝐸𝑚
(𝐴𝑛)𝑚 ∈ 𝐹𝑚

(if 𝐸𝑚 is empty, we let 𝑌𝑚 = 𝜔). Otherwise, we find 𝑌𝑚 ∈ 𝐹𝑚 such that for all
𝑛 ∈ 𝐸𝑚, 𝑌𝑚 ⧵ (𝐴𝑛)𝑚 ∈ 𝐽𝑚. Let

𝐴 =
⋃

𝑚∈𝑋
{𝑚} × 𝑌𝑚.

Clearly, 𝐴 ∈
∑

𝐹 𝐹𝑛. Let 𝑛 < 𝜔, we would like to show that 𝐴 ⧵ 𝐴𝑛 ∈
∑

𝐼 𝐽𝑛. Let
𝑚 < 𝜔 be such that (𝐴 ⧵ 𝐴𝑛)𝑚 ∉ 𝐽𝑚. Since (𝐴 ⧵ 𝐴𝑛)𝑚 = (𝐴)𝑚 ⧵ (𝐴𝑛)𝑚, it follows
that 𝑛 ∈ 𝑋 (otherwise (𝐴)𝑚 = ∅) and 𝑚 ∉ 𝑋𝑛. Indeed, if 𝑚 ∈ 𝑋𝑛 ∩𝑋 then 𝑛 ∈ 𝐸𝑚
and by the choice of 𝑌𝑚, (𝐴)𝑚 ⧵ (𝐴𝑛)𝑚 = 𝑌𝑚 ⧵ (𝐴𝑛)𝑚 ∈ 𝐽𝑚. We conclude that

{𝑚 < 𝜔 ∣ (𝐴 ⧵ 𝐴𝑛)𝑚 ∉ 𝐽𝑚} = 𝑋 ⧵𝑋𝑛 ∈ 𝐼.

Hence 𝐴 ⧵ 𝐴𝑛 ∈
∑

𝐼 𝐽𝑛. □

The following corollary generalizes Milovich’s theorem 0.4 taking 𝐼 = fin:

Corollary 3.15. Suppose that 𝐼 is a deterministic ideal and 𝑈,𝑈0, 𝑈1, ... all the the
𝐼-p.i.p. Let 𝑊 =

∑

𝑈 𝑈𝑛, then 𝑊 has the 𝐼 ⋅ 𝐼-p.i.p and in particular 𝑊 ⋅𝑊 ≡𝑇
𝑊 × 𝐼𝜔.

Proof. All the ultrafilters 𝑈,𝑈0, 𝑈1’s satisfy the 𝐼-p.i.p and therefore by Proposi-
tion 3.14,

∑

𝑈 𝑈𝑛 satisfies the
∑

𝐼 𝐼-p.i.p which is f in ⋅ f in-p.i.p. By theorem 1.2,
𝐼 ⋅𝐼 ≡𝑇 𝐼𝜔. Note that 𝐼 ⋅𝐼 ⊆ (

∑

𝑈 𝑈𝑛)∗, and by Theorem 3.6 𝐼 ⋅𝐼 also deterministic.
Hence

𝐼𝜔 ≡𝑇 𝐼 ⋅ 𝐼 ≤𝑇
∑

𝑈
𝑈𝑛.

Finally, by Proposition 1.6 it follows that (
∑

𝑈 𝑈𝑛) ⋅ (
∑

𝑈 𝑈𝑛) ≡𝑇 (
∑

𝑈 𝑈𝑛)×𝐼𝜔 □

4. QUESTIONS

We collect here some problems which relate to the work of this paper.

Question 4.1. What is the characterization of the 𝐼-p.i.p property in terms of Skies
and Constellations of ultrapowers from [26]?

Question 4.2. Is the equivalence of Proposition 1.6 true for every ideal 𝐼?

Question 4.3. Is almost rapidness an invariant of the Rudin-Blass order? namely
𝑓 ∶ 𝜔 → 𝜔 is finite to one and 𝑈 is almost rapid, must 𝑓∗(𝑈 ) be also almost rapid?

Question 4.4. Is it true that for every 𝛼 < 𝛽 < 𝜔1, the class of 𝛼-almost-rapid
ultrafilters is consistently strictly included in the class of 𝛽-almost-rapid ultrafilters?
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We conjecture a positive answer to this question and that similar methods to the
one presented in Theorem 2.7 under CH should work.

Question 4.5. Does 𝔡 = 𝔠 imply that there is a 𝑝-point which is almost-rapid but
not rapid?

Question 4.6. Is it consistent that there are no almost-rapid ultrafilters?

Following Miller, a natural model would be adding ℵ2-many Laver reals.

Question 4.7. I there a non-Canjar 𝑝-point ultrafilter which does not have almost
rapid RK-predecessors?
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