FORMS OF RAPIDNESS AND POWERS OF IDEALS

TOM BENHAMOU

ABSTRACT. In this paper we study ultrafilters which are Tukey above I, where
I is an ideal. In the first of the paper we use the I-p.i.p (pseudo intersection
property) from [3] and deterministic ideals. Specifically, we prove the following
two results for deterministic ideals:
(1) If U has the I-p.i.p, then U - U =, U X I®, extending results from [24, 3].
(2) Ultrafilters without the I-p.i.p are always above 1®.
Our main result involves a new hierarchy of ultrafilter— the a-almost rapid ul-
trafilters. We establish that the class of almost rapid ultrafilters is consistently
strictly wider than the class of rapid ultrafilters, and give an example of a p-point
ultrafilter which is almost rapid and non rapid. As a corollary, we obtain a p-point
ultrafilter which is a non-rapid but is Tukey above w®, answering [3, Q. 5.4].

0. INTRODUCTION

The Tukey order stands out as one of the most studied orders of ultrafilters [25,
14, 21, 10, 27, 2]. Its origins lie in the examination of Moore-Smith convergence,
and it holds particular significance in unraveling the cofinal structure of the partial
order (U, 2) of an ultrafilter. Formally, given two posets, (P, <p) and (Q, <) we
say that (P, <p) <y (Q, <) if there is map f : Q — P, which is cofinal, namely,
f" B is cofinal in P whenever B C Q is cofinal. Schmidt [28] observed that this
is equivalent to having a map f : P — Q, which is unbounded, namely, /"' A is
unbounded in Q whenever A C P is unbounded in P. We say that P and Q are
Tukey equivalent, and write P =5 Q, if P <; Q and Q <y P; the equivalence
class [ P]y is called the Tukey type or cofinal type of P.

A systematic study of the Tukey order on ultrafilter over w, traces back to Isbell
[18], later to Milovich [25] and Dobrinen and Todorcevic [14]. Lately, Benhamou
and Dobrinen [2] extended this study to ultrafilters on cardinals greater than w.
Over measurable cardinals, the Tukey order is connected to recent developments
revolving the so-called Galvin property, studied by Abraham, Garti, Goldberg, Gi-
tik, Hayut, Magidor, Poveda, Shelah and others [1, 16, 15, 5,9, 4,7, 6, 17, 8]; the
Galvin property in one of its forms is equivalent to being Tukey-top (i.e. Tukey
maximal) as shown essentially by Isbell (in different terminology). Moreover, be-
ing Tukey-top in the restricted class of x-complete ultrafilters takes the usual form
of the Galvin property.
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In this paper, we study the class of ultrafilters U such that (U,2) >, (0%, <),
where < is the everywhere domination order on w®. This type of study has been
considered before [31, 20, 21] in the context of the Tukey order on analytic ideals.
In the context of general ultrafilters on @, Louveau-Velickovic showed that @® is
immediate successor of the Tukey type w [20]. More precisely, they show that if
I is any ideal such that I <; @ then I is countably generated. On the other
hand, for analytic ideals p-ideal, Todorcevic [32] (See also [21, Thm 6.6]) showed
that, they are either I countable generated or above w®. This was later improved
by Solecki and Todorcevic [31, Proposition 4.3] to show that if I is analytic, not
locally compact ideal, then I >; @®. Later, Milovich asked [25, Question 4.7] if
there is an ultrafilter U over w such that (U, 2) =r »®. We will observe that this
was basically answered in [31, Cor. 54] L

Theorem 0.1 (Solecki-Todorcevic). Suppose that D is an ordered separable metric
space such that the predecessors of each element form a compact set, and E is a
basic ? analytic order such that D <r E, then D is analytic.

Corollary 0.2. There is no ultrafilter U over w such that (U, 2) = o®.

Proof. By Sierpinski [30], a non-principal ultrafilter over w is a non-measurable set
as a subset of 2“ and in particular non-analytic. An ultrafilter U with the topology
inherited from 2% is a separable metric space and the set of D-predecessors is com-
pact. Also, »® is a basic analytic order, hence by Theorem 0.1, (U, 2) £, 0®. O

The following theorem contributed a great deal to the understanding of this class
[14, Thm. 35]:

Theorem 0.3 (Dobrinen-Todorcevic). The following are equivalent for p-points:>
1HU-U=,U.
2) U 2y o®.

Dobrinen and Todorcevic observed that rapid # ultrafilters are Tukey above @®
and deduced that rapid p-points satisfy U - U = U. Later, Milovich [24] gave a
precise expression U - U which works for any p-point:

Theorem 0.4 (Milovich). If U is a p-point then U - U = U X 0®.

Recently, Benhamou and Dobrinenn [3] came back to the subject and worked
under the general setup of the I-p.i.p (see Definition 1.3), which generalizes the
notion of a p-point.

Theorem 0.5 (Benhamou-Dobrinen). Let U be an ultrafilter. Then the following
are equivalent:

Milovich’s question appeared only 4 years after Solecki and Todorcevic’s result.

ZFor the definition of basic see [31, §3].

3An ultrafilter U is a p-point if for every (A, | n < w) C U there X € U such that for every
n<w, X C"A,ie X\ A,is finite.

4An ultrafilter U is rapid, if for every f . @ — w there is X € U such that fy > f, where f(n)
is the n-th element of X.
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1H)U-U=pU.
(2) There is anideal I C U™ such that U > 1° and U has the I-p.i.p.

Taking I = fin reproduces a part of Theorem 0.3. There is a slight difference
between the type of equivalence to U - U =4 U for p-points described in Theorem
0.3 and the one in 0.5. Indeed, in the latter, the ideal I can vary. If I is fixed, it is
unclear whether for U which has the I-p.i.p, U - U =, U ift U > I”. The reason
that the ideal (i.e. fin) can be fixed in Theorem 0.3 is that every ultrafilter U which
extends fin must also be Tukey above fin. This is what motivated Definition 3.1
of deteministic ideals (see Definition 3.1). In §1, we shows that this is indeed the
missing ingredient, and both generalize 0.3 and slightly relaxed the assumption that
U is a p-point.

Theorem. If I C U* is deterministic then the following are equivalent:
(1) U < U -U and U has the I-p.i.p.
2) U 2717

The significant part of the proof is to show that if I is a deterministic ideal, and
fin C I C U*, then every ultrafilter U Z; I must have the I-p.i.p. This is closely
related to [14, Question 42]. We also generalize Milovich’s formula in Theorem
1.2 to the setup of a general deterministic ideal I.

Theorem. Let I be deterministic. If U has the I-p.i.p then U - U =4 U X I?.

Motivated by the above results, in § 2, we study the class of p-point which are
above w®. While it is consistent that there are p-points which are not above @®,
Dobrinen and Todorcevic observed that rapid p-points ultrafilters must be above
@® [14]. The main results of this paper concern a new class of ultrafilters— a-
almost-rapid ultrafilters (Definition 2.3)— a weakening of rapidness.

Theorem. Suppose that U is a-almost-rapid, then U >3 o®.

We then prove that the class of almost rapid ultrafilters is consistently a strict
extension of the class of rapid ultrafilters, even among p-points.

Theorem. Assume CH. Then there is a non-rapid almost-rapid p-point ultrafilter.

In particular, this is the first example of a non-rapid p-points which is Tukey
above w®.

Finally, in § 3, we further study the I-p.i.p and deterministic ideal. In particular
we show the following:

Theorem. Suppose that U is not an accumulation point of A C p.S (in the space
of ultrafilters over S). Then U has that (U 0 () A)*-p.i.p.

The study of deterministic ideals yield the following theorem:

Theorem. Suppose that I is a deterministic ideal and U,U,, Uy, ... all the the I-
p.ip. Let W = Y, U,, then W has the I - I-p.i.p and in particular W - W =p
W x I®.

For I = fin, the above theorem shows that Milovich’s formula in 0.4 holds true
sums of p-points as well.
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Notations. [X]<* denotes the set of all subsets of X of cardinality less than A. Let
fin = [0]<?, and FIN = fin\ {#}. For a collection of sets (P,);c; welet [[,c, P, =
{(f 1> Ue; P | Vi, f(i) € P}. If P, = P for every i, then P! = [],.; P.
Given a set X C , such that | X| = @ < w, we denote by (X(f) | f < a) be
the increasing enumeration of X. Given a function f : A — B, for X C A we
let /"X = {f(x)| x € X},forY C Bwelet f7lY = {x € X | f(x) €Y},
and let rng(f) = f” A. Given sets {A; | i € I} we denote by 4., A; the union
of the A;’s when the sets A; are pairwise disjoint. Two partially ordered set P, Q
are isomorphic, denoted by P ~ Q, if there is a bijection f : P — Q which is
order-preserving.

1. ULTRAFILTERS ABOVE I?

Givenaset F C P(X),wedenoteby F* = {X\ A | A € F}. When F is a filter,
F* is an ideal which we call the dual ideal, and when 1 is an ideal 7% is a filter which
we call the dual filter. Ideals are always considered with the (regular) inclusion
order. For every filter F, (F,C) ~ (F*, 2) and in particular (F, C) = (F*, D).

Recall that given a filter F (anideal 1) over X and filters (F,) <y (ideals (J,),cx)
over Y, the Fubini sum is a filter (ideal) over X X Y, denoted ), F, (denoted
Y., J,), and defined as follows: for every A C X XY

A€ ) F,e={xeX|(A),eF}EF,
F

(Ae ) J iff (xe X |(A), g ]} e
1

where (A), = {y € Y | (x,y) € A}. The Fubini product of T and S (ideals or
filters) is obtained by setting S, = S forallx € X,and T -S = ;.S When T
is either an ideal of a filter on w, define transifinitely for @ < w; the Fubini powers
T9<, by setting T®' = T, at the successor step T®@+D = T®« . T and at limit
steps, set T* = Y., T®%, where (a, | n < ) is some fixed cofinal sequence in a.

Fact 1.1. (3, J)* = Y. J! and in particular (I - J)* = I* - J*.

The following theorem provides the first step to analyze the Tukey type of a
Fubini product of filters [24]:

Theorem 1.2 (Milovich). Let F, G be filters over w, then F - G = F X G* and in
particular F - F = F®.

In follows inductively that for every 2 < a < w; F®* =, F - F. In [3], the
following property was used to further invesigate this Tukey type of F - F:

Definition 1.3. A filter F over a countable set .S such that I C F* is an ideal,
is said to satisfy the I-pseudo intersection property (I-p.i.p) if for every sequence
(X, | n<w) C F,thereis X € F such that forevery n, X \ X, € I.

For example, being a p-point is equivalent to having the fin-p.i.p. More examples
are obtained by considering ideals I such that P(w)/ I is o-closed, then any generic
ultrafilter U will satisfy the I-p.i.p (see [3]). The following proposition generalizes
well-known characterizations of p-points (see e.g. [13]):
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Proposition 1.4. Let U be any ultrafilter over @w. Then the following are equivalent:
(1) U has the I-p.i.p.
(2) For any partition (A, | n < w) such that for any n, A, & U, thereis A € U
such that An A, € I for every n < w.
(3) Every function f . ®w — @ which is unbounded modulo U is I-to-one
modulo U, i.e. thereis A € U such that for everyn < , f‘l[n+1]nA el

Proof. For (1) = (2), let (A, | n < w) be a partition such that A, ¢ U. Let
B, = w\ A, € U and by the I-p.i.p there is A € U suchthat A\ B, € I. It
remains to note that A \ B, = AN A, to conclude (2).

To see (2) = (3) let f : @ — @ be unbounded modulo U. Let A, = f~'[{n}],
then A, & U. Apply (2) to the partition (A, | » < w) to find A € U such that
ANA, €l Foranyn < w,

S+ 11nA=0U,,/imInAel

Hence f is I-to-one modulo U.
Finally, to see (3) = (1), let (B, | n < @) C U, and let us assume without loss
of generality that it is C-decreasing and that (), B, = #. Define

f(n) =min{m | n & B, }.

Since ()<, B, = 9, f : ® — wis a well defined function. Apply (3), to find
A € U such that for every n < o f'[n+1]Nn A € I. Now for each x € A\ B,,
f(x) < nand therefore x € f~![n+1]NA and therefore A\B, C fln+1lnAel.
It follows that A \ B, € I and that U has the I-p.i.p. O

The I-p.i.p was used to further analyze the Tukey type of F - F:

Proposition 1.5 ([3]). Suppose that F is a filter and I C F* is any ideal such that
F has the I-p.i.p. Then F® <y F X I®.

This was used to prove Theorem 0.5. Let us use it to prove the following Propo-
sition which generalized 1.2 and 0.5

Proposition 1.6. Let I be any ideal. Then for any ultrafilter U > I which has the
I-p.i.p, U-U = UXI®. Therefore, the following are equivalent for any ultrafilter
U > I which has the 1-p.i.p:

1HU-U=pU.

2) U >y I
Proof. By Theorem 1.2, U - U =, U®. Since I < U, we have that I¥ <, U®.
Together with Proposition 1.5, we conclude that

UXI? <, U°=pU-U<pUXI?.

Now to see the equivalence, (2) = (1) follows from Theorem 0.5, and (1) = (2)
follows from the first partas U - U = U X I° <, U <, U - U. |

Definition 1.7. We say that an ideal [ is deterministic if there is a cofinal set B C 1
such that forevery A C B,|JA € Tor|JA € I*.
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As we already pointed out fin is deterministic. Other examples, including fin X
fin, can be found in Section 3.

Remark 1.8. It follows for example that in Proposition 1.6, if I is deterministic,
then we can remove the assumption U > I. Indeed the assumption that U has the
I-p.i.p ensures that I C U™ and by Proposition 3.2, I < U.

Specific ultrafilters where the Proposition 1.6 turn out to be useful are ultrafilters
which are generic for P(X)/I. In [3] it was proven that a generic ultrafilter for
P(X)/I where I is a P*-ideal’ satisfies the I-p.i.p. This, together with Proposition
1.6, given the following corollary which generalizes the results from [3] in our
abstract settings.

Corollary 1.9. Let I be a deterministic ideal over w, and 1 < a < w such that
P(w%)/I®* does not add reals. Then:

(1) forevery2 < a <y, I-pg, 00 “G -G =1 G
@) Fora=1,lkpg; “G-G=r GxI1°"

Proof. To prove (1), let G be V-generic. As we pointed out, G has the I®*-p.i.p.
It remains to see that (1®*)? <, G. By Corollary 3.8 I®% is also deterministic. It
is easy to see that being deterministic is absolute, hence 1®* is deterministic in the
extension V[G] and moreover I®* C G*. Since a > 2, (I®*)® =, I®* <, G.
Thus by Theorem 0.5 G - G =1 G. (2) follows from Proposition 1.6 as G has the
I-pipand I <7 G. U

Remark 1.10. Note that the previous corollary works also under the assumption
I-py/ 90 “I®* <7 G" instead of I being deterministic.

These results motive the study of the class of ultrafilters which are Tukey above
I1®, with a specific emphasis on deterministic ideals. The following theorem shows
that for deterministic I’s this class extends the class of ultrafilters which do not have
the I-p.i.p.

Theorem 1.11. Suppose that I is deterministic ideal, and fin C I C U*. Then if
U %4 I°, then U has the I-p.i.p

Proof. Let us verify the equivalent condition (2) in Proposition 1.4. Let (4, | n <
w) be a partition of @ such thatcfor every n, A, ¢ U. We need to find X € U such
that X N A, € I for every n. Without loss of generality, suppose that A, € I'" for
every n. Since fin C I, A,, is infinite and we can find a bijection 7 : ® & o X ®
such that "7 A; = {i} X w. Let W = z,(U) be the Rudin-Keisler isomorphic copy
of U. For each n < w, consider the ideal I, = #,(I N P(A,)) on {n} X w. By
Proposition 3.5(2), I N P(A,) is a deterministic and since # | A, is one-to-one
1, =rn,( n P(A,)) is deterministic by Proposition 3.5(1) and I, =r I n P(A,) by
Proposition 3.5(3). By Theorem 3.6, it follows that ) . I, is deterministic. It is
not hard to check that since I is deterministic, I = I N P(A,) = I, and therefore

1°=; [[1.=r D 1.

n<w fin

31 is called a P*-deal if P(X)/I is a o-closed forcing.
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Since U #1 I?, W %1 YL, Since ). I, is deterministic, it follows that
Yiin I, € W*. Thus, there is X’ € Y, I, N W. Namely, for all but finitely many
n’s, (X'), € I,. Since each A; ¢ U, we may assume that, (X’), € I,. Let X =
a7 [X'], then foreveryn <w, XN A, € lasa"XNA,={x}n(X), €1, O

The proof of the above achieves a bit more, it shows that if U does not have the
I-p.i.p for a deterministic ideal I, then I? is realized as a deterministic sub ideal
of U. Taking I = fin in the above we obtain the following corollary

Corollary 1.12. Suppose that U is a non-principal ultrafilter such that U }p o®
then U is a p-point.

As a corollary, we see that Proposition 1.6 and therefore also Theorem 0.3 can
be slightly improved.

Corollary 1.13. If I C U* is deterministic then the following are equivalent:
(1) U < U -U and U has the I-p.i.p.
2 U 2p 17

2. ALMOST RAPID ULTRAFILTERS

In this section we restrict our attention to w®. Our goal is to study the class of
ultrafilters which are Tukey above w®. As observed by Dobrinen and Todorcevic,
rapid ultrafilters form a subclass of those. Clearly, rapid ultrafilters do not charac-
terize the class of w®, since for example there could be no rapid ultrafilters at all
[23], while there are always ultrafilters which are above w® (e.g namely Tukey-top).
Moreover, counter example exists in ZFC. To see this, let us use the following result
of Miller [23, Thm. 4]:

Proposition 2.1 (Miller). For any two ultrafilters U,V on w, U -V is rapid iff V'
is rapid.

Now, Choquet [12] showed there is always non-rapid ultrafilter U. For any such
U, the ultrafilter U - U is non-rapid and certainly above @w®.

Note however that this construction does not yield a p-point, and indeed, by
Corollary 1.12 any non-rapid non p-point will do the job. Hence, the interesting
examples (and the ones which are motivated by the results in the previous section)
lay inside the class of p-point (see Figure 1).

Of course, by Shelah [29], it is possible that there are no p-points (see also
Chodounsky and Guzmén [11]). In which case, Corollary 1.12 yield that every
ultrafilter is above @®.

By yet another result of Shelah, in the Miller model [22], which is obtained
by countable support iteration of the superperfect tree forcing of length w, over a
model of CH, every p-point is generated by X,-many sets. It is known that b = ¢
holds in that model. Therefore, every p-point is generated by less than b-many sets
and in particular cannot be above ®®. Hence the class of p-points coincide with the
class of ultrafilters which are not Tukey above @®, and the dashed area in Figure 1
is void. The purpose of this section is to address the question raised in [3] whether
rapid p-point are exactly those p-points which are above w®. In other words, are
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Tukey-top

G

FIGURE 1. p-points but not >, @®.

rapid

there any other ways of producing cofinal maps from an ultrafilter to w®? Let us
introduce a new class of ultrafilters— the a-almost rapid ultrafilters— which does that.

Given afunction f : w - @\ {0} such that f(0) > 0. We denote by exp(f)(0) =
f(0) and

exp(f)(n+1) = f(exp(f)n) = f(f(f(f... (0).)).
We define the n'™ f-exponent function,

expo(f) = f and exp,(f) = exp(exp,_;(f)).

Continuing transfinitely, for every a < w:

expy1(f) = explexpy(f)).

For limit 6 < @, we fix some increasing cofinal sequence (6, | n < w) in , and
let

exps(f)(n) = max{exps (f)(n), exps(f)(n—1)+1}.

Lemma 2.2. Let f,g : @ — w be increasing functions.

(1) Forevery a < wy, exp,(f) is increasing.
(2) If f < g then for every a < wy, exp,(f) < exp,(g).
(3) Foreverya < f < wy, exp,(f) <* expp(f).

Proof. For (1), we proceed by induction. For @ = 0, expy(f) = f is increasing.
Suppose exp,(f) is increasing, then for every n < w, exp,(f)(n) > n. For a + 1,
let n < w. Since exp,(f) is increasing,

exPa 1 (S)(n+ 1) = exp,(f)(expy 1 (f) () > expy (f)(n).

For limit 6, is clear from the definition that exps(f) is increasing. Also (2) is proven
by induction. The base case is expy(f) = f < g = expy(g). Suppose this was true
for a, and let us prove the induction step by induction on # < @. The base again is

expy41(f)0) = exp,(f)(0)
< exp,(g)0) < exp,.(g)(0)
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Suppose that exp,(f)(n) < exp,,1(g)(n), then by (1) and the induction hypothe-
Sis
expay1()(n+1) = exp,(f)(expy, (f)(n))
< exp,(f)(expyy1(g)(n))
< expy(g)(expy1(8)(n) = expy,1(g)(n+1)
At limit stages 8, by the induction hypothesis,

exps(f)(n) = max{exp; (f)(n), exps(f)(n—1) +1}
< max{exps (&)(n), exps(g)(n — 1) + 1} = exp;(g)(n).
The proof of (3) is similar. U
Definition 2.3. For « < w;, we say that an ultrafilter U is a-almost-rapid if for

every function f € w® there is X € U such that exp,(fy) =* f, where f is the
increasing enumeration of X.

Remark 2.4. By strengthening the above definition, we may require thatexp,(fy) >
f. However, this strengthening yield an equivalent definition.

Note that 0-almost-rapid is rapid and if f < a then f-almost-rapid implies a-
almost-rapid. We call U almost-rapid if it is 1-almost-rapid.

Proposition 2.5. If U is a-almost-rapid implies U >3 o®

Proof. Consider the map X — exp,(fy). We claim that it is monotone and cofinal.
First, suppose that X C Y, then the natural enumerations fy, fy of X, Y (resp.)
satisfy fy > fy. Then by Lemma 2.2(3) exp,(fy) > exp,(fy). The map above is
cofinal by the a-almost rapidness of U. ]

The proposition below provides an analogous characterization to [23, Thm. 3]
for almost-rapid ultrafilters.

Proposition 2.6. The following are equivalent:
(1) U is almost-rapid.
(2) For any sequence (P, | n < w) of sets, such that P, is finite, there is
X € U such that for each n < o, exp(fy)n —1) > | X n P,| (where
exp(fx)(=1)=0).
(3) There is a function h : @ — o such that for any (P, | n < @) where P,
is finite, there is X € U such that for each n < o, exp(fx)(h(n — 1)) >
X NP,
Proof.

(1) = (2) Suppose that U is almost rapid, and let (P, | n < w) be a sequence of finite
subsets of @. Let f(n) = max(P,) + 1. By (1), there is X € U such that
exp(fy) = f. It follows that

exp(fx)(0) = fx(0) = min(X) > f(0) > max(F).

More generally,

Fx(exp(fx)(n—1)) = exp(fx)(n) > f(n) > max(F,)
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and therefore | X N P,| < exp(fy)(n—1).
(2) = (1) Let f be any function. Let P, = f(n). Then by (2), there is X such that for
each n, | X N f(n)| < exp(fy)(n— 1) and therefore

f(n) < fx(exp(fx)(n— 1) = exp(fx)(n).
(2) = (3) trivial.
(3)=> (1) Fix h as in (3). Let f be any function and assume that f is increasing.
Find ny < ny < ... < ny < ... such that for every k, h(k) < n,. Set
P, = f(n). Then by (3), there is X € U such that for each k, | X N P,| <
exp(fyx)(h(k —1)). Take any n;, <m < n;, then

XN fim+ D] <X N fng)
< exp(fx)(h(k))
< exp(fx)(ny) < exp(fx)(m).
Therefore f(m+ 1) < fy(exp(fy)(m)) = exp(fy)(m+1).

The following theorem is the main result of this paper:

Theorem 2.7. Assume CH. Then there is a p-point which is almost-rapid but not
rapid

Proof. Let P, ={1,..,2"}. Let = {ACw | 3kVn >0, |ANP,| < k-n}. Then
I is a proper ideal on w. Suppose that (P, | n < w) is not a counterexample for

U being rapid, then there is a set X € U such that |[X n P,| < n for every n and
therefore X € I. Hence, as long as we have U C I, U will not be rapid.

Claim 2.8. The following are equivalent:
(1) AeTI".
(2) for every k, there is ny such that |AN P, | > k - ny.
(3) for every k, there are infinitely many n, such that |A N Pnk| > k- ny.

Proof. (3) = (2) = (1) are trivial. Suppose that (3) fails, namely there is k and n
such that forevery n > ny, |ANP,| < ky-n. Set k; = max{kg, |ANP|,...[ANP,|},
then for every n > 0, |A N P,| < k; - n which implies that A € I. Hence (1) =
3). ([
The following is the key lemma for our construction:

Lemma 2.9. Suppose that (A, | n < w) C It is C-decreasing, and f : © — w.
Then there is B C w such that

(1) B C* A, for every n.

2) BelI".

(3) exp(fp) > f.
Proof. Suppose without loss of generality that f is increasing. In particular, f (k) >
k. Consider f(1), find 2 < n; so that

AN P, | > (F()+2) -y
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such an n; exists as A; € It and taking k = f(1) + 2 in 2.8(3). Find q, ..., Q41
such that:

(M) fO),n +1<ay<a; <..<a,,.

@) 01 > FOD.
(3) ao,al,...,anl+1 S Al n P”l'

It is possible to find such elements as
Ay N P, \{0,...,n; + 1} > (f(1) +2)n; — (n; +2)
Z3n1—n1—2=2n1—22n1+1.
So there are n; +1 elements in A} N P, greater thann; +1. Since [A; NP, | > f(D),

we can also make sure that the n; + 1 element we choose is above f(1). This way,
we have arranged that:

1) £Q0) < ay.

(2) a,, was not defined yet (!), but as long as the sequence is increasing, then

g > ay 41 > f(1).
(3) If Bincludes ay, ..., a, ., thenfor k = 1, there is n; such that |[BNF, | > n;.

Now consider f(2) and by 2.8(3) find n, > 2,4, ., so that
A N P, | > (f(2) + 2)(a, 41 + Dny.
Hence we can choose Ay 125 oo Ay 1142, +1 such that
(1) (nl + 1) + (2”2 + 1) < anl+2 <..< anl+1+2n2+1.
2 f@< Ap +142n,+1
() @y 425 @y 1152011 € A2 N Py
This is possible to do since
|4, N P, \ A0, ...,ny +2ny + 2} > (f(2) + 2)(a, 4 + 2y — (ny + 21y + 3)
> 8n2 - (3”2 + 3)
=5n,—3>2n,+ 1.
Sowecanfinda, i, ...,a, 11420,41 abOVE 1 +1+2n,+1 (and therefore also above

a, +1)- We can also make sure that the last element we pick is above f(2). This
way we ensured the following:

(1) As we observed, a,, was not defined in the first round (and might not be

defined in the second round as well) and therefore a| :=a, > n; +1+
2]’12 + 1.
(2) a, was not defined but as long as the 4;’s are increasing, a’2 =a, >

a0
Ay, y142m+1 > S (2).
(3) For k = 2, there is n, such that |[BN P, | > 2n,.

In general suppose we have defined n; < n, < ... < n, and Qs weos Ak s

such that @;
A N Pnk+1 | > 3(k+ D(f(k+ 1)+ 1n;, ;. We now define

> Y% in; + 1. Then we find n, > k + Lagk .y such that

i=

Ak i+ AT ina a2 Ay
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(thatis (k + 1)n;,; + 1 many elements) so that:

k+1 .
() Zi:l in;+1< a(zll_czl in+1)+1 <..< azll:-ll in 410

2) (lzf_:-ll in +1 > f(k+1).
S Ayk inny1e o Apkaliy 4 € A N By,
To see that such a’s exists, note that

k+1
| A1 0P, N0, D in; + 1}
i=1
k+1
>3k + D(f(k+ D)+ Drgyy = ing+ 1) — 1
i=1
k
=3(k+ D(f(k+ 1)+ Drgyy = (ke + Dy + D= im+ 1) = 1
i=1
> (k+D@Bf(k+1)+3)n,y —2((k+ Dy + 1)
= (k+ D@f(k+ 1)+ Dy > (k+ Dnyyy + 1

Hence we can find (k+1)n; . +1-many elements in A, ;NP above Zf:ll in;+1.
Also, since |[AN P,| > f(k+ 1) we can make sure that Askst gy 41 > f(k+1). This
i=1 "

way we ensure that:

(1) Since a, _ wasnot defined in previous rounds, and a;c =ag > Zf:ll in;+
1.
2) ag has not been defined yet. Hence any future value for a;( 41 -= Gg must

satisfy that a;€+1 > agity, g > flk+Df(k+1).

3 BnP, |>k+Dny+1
Set B = {a, | n < w}. So by the construction, for every k there is n; such that
|BN P, | > kny. Hence B € I*. Also, note that fz(n) = a, since the a,’s are
increasing. By the construction and definition of exp(fg), exp(fp)(n) = a:l > f(n).
Finally, note that for each n, there is k such that for every k’ > k, a;, € A,, for some
m > n. Since the sequence of A,’s is C-decreasing, a;; € A,. We conclude that
B\ A, C{ay,....a;}. g

Back to the proof of Theorem 2.7, let us the construction a almost rapid p-point
which is non-rapid. Enumerate P(w) = (X, | @ < w;), and P(w)” = (f_fa |
a < w;) such that each sequence in P(w)” appears cofinaly many times in the
enumeration. Also enumerate ©” = (7, | « < w;). We define a sequence of filters
V, such that:

(D) p<a=>VzCV,.
2) v,cIt.
3) If a = p + 1 then
(a) either Xzorw \ X, € V,.
(b) there is X € V, such that 75 < exp(fy).
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(c) If A s € V, then there is a pseudo-intersection A € V,.

Let V, = I'*. At limit steps 6 we define V = Uﬁ<5 Vs. It is clear that (1) — (2) still
holds at limit steps and (3) only concerns successor steps. At successors, given V,,,
since we have only performed countably many steps so far, there are sets B, € V,
such that V,, = I'*[(B, | n < w)] where B, is 2-decreasing. If either X, or w\ X, is
already in V,, set X = w. Otherwise, set X,. = X, and recall that I* = V[, C V.

It follows that X, € I'* and V,[X,] C I'*. Similarly, if A, & V,[X,] we set A* to

have a trivial value such as (w, ®, w, ...). Otherwise let Zl’; = Xa. Next, enumerate
the set .
{B,NX |n<w}U{A (n)|n<w}CV,[X,]

by (B! | n < w) and let C, = n,,., B/ . By applying the previous lemma to the
sequence (C, | n < w), and 7, we can find A* C w such that:

(1) A* eIt

(2) exp(f+) > 7,.

(3) A" C* C,, for every n.
Since for every n < w, there is n’ such that C,, C Za(n) n B, A* C* /Ta(n),
namely A* is a pseudo intersection of both (B, | n < w) and Xa. Also, A* is a
positive set with respect to the ideal V,[X,]. Otherwise, there is some A € I'** and
B, such that A* N (AN B, N X,) = @. But then (A* N B, N X,) N A = @ which
implies that A* N B, n X, € I. However, A* C* B, N X,, which implies that
A* € I, contradicting property (1) above in the choice of A*. Hence we can define
Vi1 = Vo [X,, A*Tand (1) — (5) hold.

This concludes the recursive definition. The ultrafilter witnessing the theorem is

defined by V* = J,,, V.

-
Proposition 2.10. V* is a non-rapid almost-rapid p-point ultrafilter.

Proof. V* is an ultrafilter since for every X C w, there is a such that X = X, and
so either X, orw \ X, arein V,; C V*. Also V* is a p-point since if (4, | n <
w) C V* then there is @ < w; such that (A, | n < w) C V, and by the properties
of the enumeration there is § > a such that f_fﬂ = (A, | n < w). This means that
in V., there is a pseudo intersection for the A,’s. It is non-rapid as V* C I'* and,
in fact, the sequence P, = {1,...,2"} witnesses that it is non-rapid. Finally, it is
almost rapid since for any function 7 : @ — o, there is @ such that 7 = 7, and
therefore in V| there is a set X such that exp(fy) > 7. (]

0

Corollary 2.11. It is consistent that there is a p-point which is not rapid but still
above ®.

Remark 2.12. CH is not necessary in order to obtain such an ultrafilter, since we
can, for example, repeat a similar argument in the iteration of Mathias forcing after
we forced the failure of C H and obtain such an ultrafilter. In fact, we conjecture
that the construction of Ketonen [19] of a p-point from b = ¢ can be modified to
get a non-rapid almost-rapid p-point.
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3. MORE ON THE [-P.I.P AND DETERMINISTIC IDEALS

In this section, we study the I-p.i.p and deterministic ideals. As we have seen in
previous sections, together, they provide an abstract framework in which one can
analyze the connection between the Tukey type of Fubini products and subideals
related to it. Many of our results in this section generalize to k-filters (i.e. k-
complete filters over k > ).

3.1. Simple and deterministic ideals.

Definition 3.1. Let I be an ideal. We say that [ is:
(1) simple if foreveryideal J, I C J, I <y J.
(2) deterministic if there is a cofinal set 3 C I such that for every A C B,
JAaeTorYAeTI

The basic connection between the two notion is:
Proposition 3.2. If I is deterministic then I is simple.

Proof. LetI C J andlet B C I be the cofinal set witnessing that I is deterministic.
Let us prove that the identity function id : B — J is unbounded. Suppose that
A C Bis unbounded, then [ J A ¢ I, since otherwise, as B is cofinal in I, there
would have been b € B bounding .4. By definition of deterministic ideals, it follows
that (J.A € I*, and since I C J, I* C J* hence A € J*. We conclude that
JA ¢ J, namely, A is unbounded in J. Hence the identity function witnesses
that I = B < J. |

Clearly any dual of an ultrafilter is deterministic. Also fin deterministic as wit-
nessed by @ viewed as a cofinal subset of fin. It is easy to construct non-simple
(hence non-deterministic) ideals:

Example 3.3. Suppose that U %, W are two ultrafilters. For example U could
be a p-point and W a Tukey-top ultrafilter. Consider (U N W)* = I, then [ is not
simple, since UNW CUbutUNW = UXW £ U.

Example 3.4. On a regular uncountable cardinal «, the dual to the non-stationary
ideal- generated by the complements of closed and unbounded sets in the order
topology of x— is deterministic. Indeed, the intersection of closed sets is always
closed. Hence if the intersection of clubs is not a club, it had to be bounded in «,
which is therefore non-stationary.

Proposition 3.5. Suppose that I C X is a deterministic ideal over X.
(1) If r : X — Y isinjective on a set in I*. Then n,(I) := {a | zHal € I}
is deterministic.
(2) If A C X, then I n P(A) is deterministic.
(3) Forany A € I, we have I = I N P(A).

Proof. Along this proof let us fix once B C I a witnessing cofinal set for I being
deterministic.
To see (1), let
C={(Y\ X\ b)) |be B}
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Then C is a cofinal set in z,(I). We claim that C witnesses that z (I) is de-
terministic. Let A C B be such that J,c,Y \ (#[X \ a]) ¢ z,(I). Then
7 MUues Y \ (@[X \ a])] & I. Using the fact that  is 1 — 1 it follows that
ﬂ‘l[UaeAY \ z[X \ aD)] = JA. Hence |JA ¢ I, and since A C B, we
conclude that

X\z ' Jr\@x\ap=x\|JAer
acA
Namely, | J,c 4 Y \ (#[X \ a]) € z,(1)*.

For (2), consider C = {bN A | b € B}. Then C is easely seen to witness that
I N P(A) is deteministic.

For 3), let f : B — I n P(A) be the map f(b) = bn A. This is clearly a
monotone and cofinal map. We claim it is also unbounded, suppose that | J A &
I,then |JA € I*, then A\ |Jf(A) = A\ |JA € I n P(A). Hence f is
unbounded. ([l

Note that (2) above can be vacuous if A € I, since in that case I N P(A) is not
proper. So we should at least assume that A € I't. Generally speaking, it is unclear
whether an ideal relative to a positive set has the same Tukey-type. However, as (3)
shows, if the ideal is deterministic, the type does not change.

Theorem 3.6. Suppose that fin C I be a deterministic ideal over w, and (J, |

n < w) is a sequence of deterministic ideals over w such that for every n < w,
Joi1 27 I, Then Y, J, is deterministic.

n

Remark 3.7. There is a niive "proof" to try ans show that ), J, is deterministic
whenever I, J, are deterministic. Take B C I and B, C J, be witnessing cofinal
sets, then let C consist of sets of the form ({J,cp{n} X @)U (U, ¢p{n} X B,), where
B € Band B, € B,. While C is cofinal in ), J,, it does not have the desired
property. For example if I = J, = fin and B = B, = w. Fix any infinite co infinite
set A and consider X, = | J,.,{n} Xn. Note that X, is of the form described above.
Clearly Un<w X, = AXw ¢ fin - fin, but also not in (fin - fin)*. The proof how to
correct this construction.

Proof. Let B, C J, witness that J, is deterministic, and D witness that I is deter-
ministic. Let (f,,, : J, = J, | n £ m < w) be a sequence of unbounded maps.
Denote by 7 the set of all sequences b= (b, | n < w) € [],<,, B, such that for
everyn<m<w,b, 2 f, ,(b,). Forb € Band A € D defined

Ci=JmxouJn) xb,.
neA ng¢A
Let us show that C = {C, ;| A € D,be B)iscofinalin ¥, J,. Let Z € ¥, J,,,
and A = {n | (£), & J,}. By definition of }}, J,, A € I, so thereis D € D
such that A C D. Construct (recursively) an increasing sequence (b, | n < w) €
I1,<., B, such that forevery n ¢ A, (Z), C b, and forevery n < m < w, f,, ,(b,) C
b,,. It follows that for every n, (Z), C (C D,Z)n and therefore Z C C DI Let us prove
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that C witnesses that 3, J, is deterministic. Suppose that | J;c; Cy 3 & X7 /-
Then '

Ar=n<ol(JCy gl 1.

i€T
Note that (U,er Cy 300 = Uier(Cy 3, Let us splitinto cases: If A C J;er X
then (J;cr X; € I and since {X; | i € T} C D, |J,er X; € I*. Now for every

neUer Xino= UieT(CXi,Ei)n € J*. We conclude that

n<ol|JCyzmed2Jx er
= ieT
Hence | J,cr C; € (3, J)%

Otherwise, consider ny € A suchthatforeveryi € T, ny € X;. Then (CXi,Bi)"O €
B, forevery i € T and UieT(CX‘_j’,.)no & J,,- Since B, witnesses that J, is
deterministic, UIET(CX[’B,.)"O € J:O. For every n > ny, either there is i € T such
thatn € X, and as we have seen, U,ET(CX’_,E,-),, = w € J;. Otherwise, forevery i €

T, (CX[,Ef)n = b € B,, and by the assumption, fmno(bilo) C bt. Since ;e b;o 3
Jy,» and f,,, is unbounded, Uier nny(Cy 3)n) & J,. Since B, witnesses that
J, is deterministic, it follows that U;cr £, (Cy 3),) € J. We conclude that
for every n > ng, J;er(Cy 3), € Ji. Since {ny,ny+1,...} € I'*, we have that

Uier CXij,'i e (X, J,)* as wanted.
U

Corollary 3.8. Suppose that I1,J are deterministic ideals over w. Then I - J is
deterministic. Hence also for every a < w,, 1% is deterministic.

3.2. The I-pseudo intersection property. Recall that given a filter F' and an ideal
I C F*, F satisfy the I-p.i.p if for every (X, | n < w) C F there is A € F such
that for every n, A\ X,, € I. This is a generalization of begin a p-point in the case
T = fin. Other examples for ultrafilters U and ideals I such that U has the I-p.i.p
can be found in [3] and will be provided in this subsection.

Given aset S, consider the space of filters over .S, B(S) = { F | F is a filter over .S}
equipped with the topology generated by the sets O, = {F € B | A € F}, for
ACS.

Given a filter F on .S, we would like to study the following set:

PIP(F) = {T € B(S) | F has the T*-p.i.p}
The following facts are also easy to verify:

Fact 3.9.
(1) F € PIP(F).
(2) PIP(F) is upward closed with respect to C.
(3) PIP(F) is closed under finite intersections.
(4) {S} € PIP(F) if and only if F is o-complete.
(5) Let f : S — S’ be a function. If T € PIP(F) then f(T) € PIP(f,(F)).
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Given a set B with the finite intersection property, we let Fz = {X C .S | 3] €
[BI<®, (11 C X} be the filter generated by B. PIP(F) is the following ultrafilter-
like property:

Proposition 3.10. Suppose that T € PIP(F), and B is a base for T (i.e. cofinal in
(T, 2)). Suppose that B = I3, U B,. Then either FBl € PIP(F) or Fr52 € PIP(F).

Proof. Suppose neither F -p.i.p nor Fp -p.i.p hold for F. Then there are se-
quences (A, | n < w) and (B, | n < w) such that for every A, B there are
ny,mg such that A\ A, ¢ Fg and B\ B, & Fp . Consider the sequence
(Mi<n Ak N Nk<n B | n < o). Then there is A € F such that for every [
A\ ﬁk<[ AN ﬂ,;, B, € T. For A, there are suitable n,, m, as above and fix N =
max(n,, m,). Since Without loss of generality, A\ (,<n AxN[Ne<n Bx € T*,and
Bis a generating set for T', there is B € B such that A\_ﬂng Ay n_ﬂksN B, C B¢
Without loss of generality, we may assume that B € B, in which case, we have
AN\ A, C A\ Ny Ak N[ Ni<y Br € Fg,l, contradicting the choice of n,. O

This proposition already given many non-trivial examples of T € PIP(F). By
definition, F is an accumulation point of A C B(S) if and only if F C | J(A\{F}).

Theorem 3.11. Suppose that F is not an accumulation point of A C pS (i.e. A
consist of ultrafilters). Then F 0[] .A € PIP(F).

Proof. For the contrapositive, suppose that F does not have the ([ .A)*-p.i.p, and
let (X, | n < @) C F be a sequence witnessing this. Namely, for every X € F,
there is n such that X \ X, & T* for some T' € A. Since X \ X, € F*, it follows
F # T. Also, since T is an ultrafilter X \ X, € T, hence X € T. It follows that
F C |J A\ {F}, contradiction. O

The above apply to the following specific case. Recall that a set of ultrafilters
A C fS is discrete if there are sets A;; € U for all U € A which are pairwise dis-
joint. This is just equivalent to being a discrete set in the space B(.S). In particular,
no point U € A is in the closure of .A. Also note that every finite set of ultrafilters
is discrete.

Corollary 3.12. Suppose that A is discrete then each U € A has the (| A €
PIP(U).

One way to obtain non-trivial sets T for which an ultrafilter U has the T-p.i.p is
by intersecting U with other ultrafilters:

Corollary 3.13. Suppose that U,,U,, ..U, are any ultrafilters, then for each 1 <
i <n U; havethe U NnU,N...NU,)*p.i.p.

We can conclude for example that U - U < U X (U n W)® for any ultrafilter
W . However, it is easy to see that U N W = U x W. Hence applying the I-p.i.p
here will not yield interesting bounds in the Tukey order.

Our next result investigates how the I-p.i.p is preserved under sums of ideals and
ultrafilters.
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Proposition 3.14. Let F, F, be filters over countable sets. Suppose that I C F*
and J, C F* are ideals for every n < . If F has I-p.i.p and for every n < w, F,

has J,,-p.i.p, then Y . F, has Y, J,-p.i.p.
Proof. Let (A, | n < ) be a sequence in Y, . F,. For each n, let
X,={m<w|(4,),€F,} €F.

We find X € F such that for every n < w, X \ X,, € I. Foreachm € X, we
consider E,, = {n < w | m € X,}. If E,, is finite, we let Y,, = (), (A,),, € F,,
(if E,, is empty, we let Y,, = w). Otherwise, we find Y,, € F,, such that for all
nek,Y, \(A4,),¢€J,. Let

A= im)xY,.

meX

Clearly, A € ) F,. Let n < w, we would like to show that A \ 4, € ), J,.. Let
m < w be such that (A \ 4,),, € J,,- Since (A \ 4,),, = (4),, \ (4,),,, it follows
that n € X (otherwise (A),, = @) and m ¢ X,,. Indeed, if m € X, N X thenn € E,,
and by the choice of Y,,, (4),, \ (4,),, = Y,, \ (4,),, € J,,- We conclude that

{m<w|(A\A),E€J,} =X\X, el
Hence A\ A, € ), J, O
The following corollary generalizes Milovich’s theorem 0.4 taking I = fin:

Corollary 3.15. Suppose that I is a deterministic ideal and U, U, Uy, ... all the the
I-p.ip. Let W =Y, U, then W has the I - I-p.i.p and in particular W - W =p
W xI®.

Proof. All the ultrafilters U, U, U,’s satisfy the I-p.i.p and therefore by Proposi-
tion 3.14, 3, U,, satisfies the ), I-p.i.p which is fin - fin-p.i.p. By theorem 1.2,
I-I=;I° NotethatI-I C (3, U,)* andby Theorem 3.6 I-I also deterministic.
Hence

1=, 1-1<; )\ U,
U
Finally, by Proposition 1.6 it follows that (3, U,)- (X, U,) = (X, U,)xI1? O

4. QUESTIONS
We collect here some problems which relate to the work of this paper.

Question 4.1. What is the characterization of the I-p.i.p property in terms of Skies
and Constellations of ultrapowers from [26]?

Question 4.2. Is the equivalence of Proposition 1.6 true for every ideal I?

Question 4.3. Is almost rapidness an invariant of the Rudin-Blass order? namely
f : @ — wis finite to one and U is almost rapid, must f,(U) be also almost rapid?

Question 4.4. Is it true that for every @ < f < w,, the class of a-almost-rapid
ultrafilters is consistently strictly included in the class of f-almost-rapid ultrafilters?
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We conjecture a positive answer to this question and that similar methods to the
one presented in Theorem 2.7 under CH should work.

Question 4.5. Does b = ¢ imply that there is a p-point which is almost-rapid but
not rapid?

Question 4.6. Is it consistent that there are no almost-rapid ultrafilters?

Following Miller, a natural model would be adding ¥,-many Laver reals.

Question 4.7. I there a non-Canjar p-point ultrafilter which does not have almost
rapid RK-predecessors?
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