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Abstract. We continue the study from [11, 35] of localization cardinals
bκ(∈∗) and dκ(∈∗) and their variants at regular uncountable κ. We prove
that if κ is measurable then these cardinals trivialize. We also provide
other fundamental restrictions in the most general setting. We prove the
results are optimal by forcing different values for bId+(∈∗), dId++(∈∗) at
a measurable. As a by-product we prove the consistency of bh(∈∗) <
bh′(∈∗) for functions h, h′ ∈ κκ, thus answering a question of Brendle,
Brooke-Taylor, Friedman and Montoya. Moreover, we study the relation
between these cardinals and other well-known cardinal invariants.

1. Introduction

The relation ∈∗ of eventual capture, also known as localization, was
introduced by Bartoszyński in [3] to provide a combinatorial perspective
on the ideal of Lebesgue measure zero subsets of reals. The key step in
his celebrated theorem from [2] that add(N ) ≤ add(M) is the fact that1

b(∈∗) = bh(∈∗) = add(N ) and dually d(∈∗) = dh(∈∗) = cof(N ) for every
strictly increasing function h : ω → ω tending to infinity. Since then local-
ization has appeared consistently in the literature of set theory of the reals.
See e.g. [4] for more details and history.

In the absence of an obvious null ideal on the generalized Baire space
κκ the authors of [11] studied the natural analogues of bκ(∈∗) and dκ(∈∗)
as stand-ins for add(N ) and cof(N ) in the higher Cichoń diagram for an
inaccessible cardinal κ. They showed that these cardinals satisfy roughly
the same collection of facts as their natural analogue on ω with a few key
differences. This analysis was furthered by van der Vlugt in [35]. The
purpose of this paper is study these cardinals further as well as some natural
variants with a particular emphasis on the case where κ is measurable.

Starting with the work of Cummings and Shelah [15], cardinal invariants
on regular uncountable cardinals were studied, and recently have been of
interest [11, 12, 17, 31] due to several applications e.g. to ultrafilter the-
ory [7, 8] as well as explicating how the higher Baire and Cantor spaces
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1Precise definitions of the cardinals here will be defined below.
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differ from their classical counterparts. Indeed there are fundamental dis-
crepancies between cardinal characteristics of the continuum and above the
continuum. The larger the cardinal is, it appears that more ZFC facts can
be proven. For example, while the pairs b, s and d, r are independent in-
variants on ω, Raghavan and Shelah [31, 32] proved that for every regular
uncountable cardinal κ, sκ ≤ bκ and that dκ ≤ rκ when κ > ℶω. For
ω < κ < ℶω the question is still open. Other theorems of this kind include
recent result of Benhamou and Goldberg [8], that if there is a simple Pλ-
points then bκ = dκ = λ (and thus such λ is unique). This is in contrast to
the result of Bräuninger and Mildenberger [10] that there may be Pℵ1- point
and Pℵ2-point on ω simultaneously. A more detailed look at more provable
inequalities was undertaken in [19].

Moving to larger cardinals, further discrepancies appear. For example,
Suzuki showed in [33] that sκ > κ is equivalent to κ being weakly compact.
Zapletal [38] and Ben-Neria Gitik [6] showed that s(κ) > κ+ is equiconsistent
with o(κ) = κ++. Ben-Neria and Gitik asked whether having s(κ) > κ+

while κ is measurable has the same consistency strength, which turned out to
be false. Recent work of Benhamou and Ben-Neria [5] shows that preserving
measurability with s(κ) > κ+ is equiconsistent with o(κ) = κ++ + 1. The
moral of these results is that preserving measurability sometimes requires
extra large cardinal effort and that the presence of strong ultrafilters effects
cardinal characteristics.

In this paper we study the invariants bh(∈I) and dh(∈I) where h : κ→ κ
and I is an ideal on κ (see Definition 2.3) with a particular emphasis on
the case where κ is measurable. Here the differences become amplified as
both new ZFC results appear whose analogues on ω and smaller regular
uncountable cardinals are independent and new independence results appear
whose analogues on ω are ZFC-results. Our first main result on bκ(∈∗) and
dκ(∈∗) for κ measurable represents a split with what should be expected for
higher cardinal invariants and this split is the central point of interest of
this paper:

Theorem. Suppose that κ is a measurable cardinal, then bκ(∈∗) = κ+ and
dκ(∈∗) = 2κ. Moreover dId+(∈∗) = 2κ, where Id+ is the function mapping
α to α+.

Denote by Id+ξ(α) = α+ξ. We also provide further restriction on the size
of the cardinals bId+ξ(∈∗) and dId+ξ(∈∗).

Theorem. Suppose that κ is a measurable cardinal, then

bId+ξ(∈
∗) ≤ κ+ξ+1.

and

dId+ξ(∈
∗) < 2κ ⇒ 2κ ≤ κ+ξ.
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Our results generalize to many ideals I; any ideal that can be extended
to a normal prime ideal such as the non-stationary ideal. Moreover, we par-
tially bring these result down to smaller large cardinals such as completely
ineffable cardinals (see Corollary 3.11).

To show the optimality of our result, we provide several consistency re-
sults. We prove the consistency of bId+(∈∗) > κ+ and dId++(∈∗) < 2κ at a
measurable cardinal:

Theorem. Relative to a supercompact cardinal, it is consistent for a super-
compact cardinal κ that κ+ < bId+(∈∗). It is also consistent that dId++(∈∗

) < 2κ.

In particular, the above provides an answer to [11, Question 71], also
asked as [35, Question 4.3], since in the above model κ is measurable and
therefore bκ(∈∗) = κ+ < bId+(∈∗).

The above theorems work equally well for the variants bh(∈cl) and dh(∈cl
) where capture is only insisted upon on a club. Nevertheless we show
that, regardless of whether κ satisfies a large cardinal property these “club
variants” are distinct.

Theorem. For any regular uncountable cardinal and any strictly increasing
function h : κ → κ it is (separately) consistent that bh(∈∗) < bh(∈cl) and
dh(∈cl) < dh(∈∗). Moreover, relative to the consistency of a supercompact
cardinal, if h is the power function then the above are consistent with κ being
supercompact.

Note that, by contrast, bκ and dκ are equivalent to their club variants,
see [15]2. Similarly we show that bκ(∈∗) is independent of sκ - thus showing
that the analogue of the Raghavan-Shelah result mentioned above also fails.

Theorem. Relative to the existence of a supercompact cardinal both strict
inequalities between bh(∈∗) and sκ are consistent for any h : κ → κ. If
h is the power function or Id+ then they are moreover consistent with κ
remaining supercompact.

Regarding the consistency strength of the previous results on measurable
cardinals, in §6 we discuss certain covering properties that an ultrapower
must satisfy in order to allow a large b. In particular the ultrapower should
compute certain cofinalities correct and should be correct about at least one
cardinal greater than κ+. Another property the ultrapower should have is
that its cfV (jU (κ)) must be quite large. We investigate the possibilities
of what cfV (jU (κ)) can be and use a previous construction of Gitik to
obtain models where cfV (jU (κ)) depends on the ultrafilter from optimal
assumptions.

The rest of this paper is organized as follows. In the next section we
introduce the localization cardinals in full generality and discuss some other

2For bκ this is true always while for dκ it is only known above ℶω and open below,
see[15, Theorem 8].
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preliminaries. In the following section we example ZFC-provable relations
on the localization cardinals under large cardinal assumptions. In §4 intro-
duces the forcing notions used to manipulate the localization cardinals and
§5.1 develops a toolbox for separating them from related cardinal invariants
above the continuum. In §4.2 we prove that the ZFC results are optimal
at a measurable by manipulating the localization cardinals at a supercom-
pact. The final section finishes by discussing the aforementioned covering
properties. Throughout our notation is standard, conforming e.g. to the
monograph [26]. The reader is referred there for any undefined terms or
notation.

2. Preliminaries

Let κ ≥ ω be a cardinal. We denote by Id, the identity function, where
the domain of Id should be adapted to the context. For a set X and a
cardinal λ we let [X]λ denote the collection of subsets of X of cardinality
λ. Also, J κ

bd denotes the bounded ideal on κ; the ideal generated by the set
of ordinals κ. We will always assume that functions h : κ → κ below never
output finite numbers.

Definition 2.1. Let h : κ→ κ be a function, and let I be an ideal over κ.

(1) A partial (h, I)-slalom is a partial function φ : κ → P (κ) such that

dom(φ) ∈ I+ and for every α ∈ dom(φ), φ(α) ∈ [κ]|h(α)|.
(2) An (h, I)-slalom is a partial h-slalom with dom(φ) ∈ I∗.
(3) A (partial) h-slalom is a (partial) (h,J κ

bd)-slalom.
(4) A (partial) κ-slalom is an (partial) Id-slalom.

Set (pSLI
h) SLI

h to be the set of (partial) (h, I)-slaloms φ. Again, drop
the superscript I for I = J κ

bd and replace the subscript h with κ when

h = Id. Clearly SLh ⊆ pSLI
h.

Definition 2.2. We define the binary relation ∈I⊆ κκ × pSLI
h by f ∈I φ

if and only if {α ∈ dom(φ) | f(α) /∈ φ(α)} ∈ I.

For I = J κ
bd, we denote ∈I by ∈∗. As with every binary relation, notions

of bounding and dominating numbers are induced:

Definition 2.3. Let h : κ→ κ be a function and I an ideal over κ. Set

bh(∈I) = min{|F| | F ⊆ κκ, ∀φ ∈ SLh∃f ∈ F ,¬(f ∈I ϕ)}
bh(p ∈I) = min{|F| | F ⊆ κκ, ∀φ ∈ pSLh∃f ∈ F ,¬(f ∈I ϕ)}

dh(∈I) = min{|A| | A ⊆ SLh, ∀f ∈ κκ∃φ ∈ A, f ∈I φ}
dh(p ∈I) = min{|A| | A ⊆ pSLh, ∀f ∈ κκ∃φ ∈ A, f ∈I φ}

Again, for h = Id we replace the subscript h by κ. For example, we
denote bId(∈∗) = bκ(∈∗), and dId(p ∈I) = dκ(p ∈I). There are obvious
Tukey-Galois connections here3:

3For more background about Tukey-Galois connections see [9, §4]. Our notations follow
[11, Def. 6&8].
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Proposition 2.4. Let I be an ideal extending J κ
bd and h : κ → κ be any

function. Then,

(κκ, SLh,∈I) ⪯ (κκ, pSLI
n,∈I) ⪯ (κκ, κκ,≤∗).

In particular:

(1) bh(∈I) ≤ bh(p ∈I) ≤ bκ.
(2) dh(∈I) ≥ dh(p ∈I) ≥ dκ

For f, g : κ → κ denote by f ≤I g if {α < κ | f(α) > g(α)} ∈ I. By the
next fact, these are indeed cardinal characteristics:

Fact 2.5. Suppose J κ
bd ⊆ I and h : κ→ κ is such that for h is ≤I-above all

the constant functions. Then κ+ ≤ bh(∈I) ≤ dh(∈I) ≤ 2κ.

We have monotonicity in the parameters h and I:

Proposition 2.6. Suppose that I ⊆ J and h ≤I t, then

(κκ, SLh,∈J ) ⪯ (κκ, SLt,∈I).

In particular, dt(∈I) ≤ dh(∈J ) and bh(∈J ) ≤ bt(∈I).

These cardinals have another, slightly different characterization as well
which is sometimes useful. Given κ, h and I as above and two (I, h)-slaloms
φ and ψ, let us write that φ ⊆I ψ if and only if {α ∈ κ | φ(α) ⊈ ψ(α)} ∈ I.

We then get, as usual, two cardinals bh(⊆I), the least size of a family of
(I, h)-slaloms with no single ⊆I-bound and dh(⊆I), the least size of a family
of (I, h)-slaloms needed to ⊆I-dominate every (I, h)-slalom.

Proposition 2.7. For any κ with κ<κ = κ, any ideal I on κ extending the
bounded ideal and any funcion h : κ→ κ,

(κκ, SLh,∈I) ≡ (SLh, SLh,⊆I).

In particular, bh(⊆I) = bh(∈I) and dh(⊆I) = dh(∈I).

Proof. Given f : κ→ κ we define φf (α) = {fi(α)}, and note that if φf ⊆I φ

then f ∈I φ. This shows (SLh, SLh,⊆I) ⪯ (κκ, SLh,∈I). In the other
direction, since κ<κ = κ we can fix for each infinite α < κ an enumeration
of [κ]h(α) in order type κ, say {xαi | i ∈ κ}. Now given an (I, h)-slalom, ψ
define fψ(α) = ξ if and only if xαξ = ψ(α). Given an (I, h)-slalom φ, let

ψφ be the (I, h)-slalom defined by ψφ(α) =
⋃
i∈φ(α) x

α
i and note that since

|φ(α)| = |h(α)|, |ψφ(α)| = |h(α)|. Verifying that (ψ 7→ fψ, φ → ψφ) is a

Tukey-Galois connection, suppose that fψ ∈I φ, then for each α such that
fψ(α) ∈ φ(α), we will have by definition that xαfψ(α) ⊆ ψφ(α). By definition

of fψ(α), xαfψ(α) = ψ(α) and therefore ψ(α) ⊆ ψφ(α), as wanted. □

The following holds in the case of ω because of its connection with the
null ideal but can be proved combinatorially using the lemma above4.

4The basic case of below - that bκ(∈∗) is regular was first pointed out to us by Jörg
Brendle and we thank him for sharing it with us.
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Proposition 2.8. For any κ with κ<κ = κ, any ideal I on κ extending the
bounded ideal and any h : κ→ κ we have that bh(∈I) is regular and dh(∈I)
has cofinality at least bh(∈I).

Proof. By Lemma 2.7 it suffices to consider the cardinal invariants for ⊆I .
This relation is transitive, and for transitive orders the proof is almost iden-
tical to the usual analogous fact about b and d. □

One specific case we will be interested in is when I = NSκ is the nonsta-
tionary ideal. In this case we denote by f ∈cl ϕ the variation of f ∈NSκ ϕ
i.e. f ∈cl ϕ if and only if {α | f(α) ∈ ϕ(α)} contains a club. It will be
convenient in such cases to treat slaloms as having a domain restricted to a
fixed club. This makes no difference as the next lemma shows.

Lemma 2.9. Let κ be a regular uncountable cardinal, λ ≤ 2κ, and h : κ→ κ
a strictly increasing function. The following are equivalent:

(1) For every family F ⊆ κκ of size ≤λ there is an (cl, h)-slalom φ so
that f ∈cl φ for all f ∈ F .

(2) For every family F ⊆ κκ of size ≤λ there is a partial (cl, h)-slalom ϕ
so that f ∈∗ ϕ for all f ∈ F in the sense that {α ∈ dom(ϕ) | f(α) /∈
ϕ(α)} is a bounded.

Proof. Let F ⊆ κκ be of size λ, say {fα | α ∈ λ} = F . Since the tail of a
club is a club, we can complete any h-slalom as in (2) arbitrarily to obtain
a slalom as in (1). Conversely, assume (1) holds and let ϕ be an h-slalom
so that fα ∈cl ϕ for all α < λ. Let Cα be the club of points on which fα
is caught by ϕ. First observe (1) implies that bκ > λ, indeed, this follows
from the aforementioned fact that bκ equals its club version. Now recall as
discussed in [18] that bκ is also the least size of a family of clubs on κ with
no pseudo-intersection. Therefore we can find a single club C ⊆∗ Cα for all
α < λ and hence ϕ ↾ C is as desired. □

The following fact justifies the reason we shall only be interested in limit
cardinals.

Fact 2.10. Suppose that κ = λ+, then for every h : κ→ κ which is ≤I-above
the constant function λ, we have that bh(∈I) = bh(p ∈I) = bκ(∈I) = bκ
and dh(∈I) = dh(p ∈I) = dκ(∈I) = dκ.

The case of singular cardinals seems to be interesting, but it is left for
further research. Hence in this paper we will be focused on inaccessible
cardinals.

Regarding bκ(p ∈∗) we have the following lower bound.

Proposition 2.11. For any uncountable regular cardinal κ we have pκ ≤
bκ(p ∈∗)

Proof. If κ is a successor cardinal then bκ(p ∈∗) = bκ by Fact 2.10 above.
It is well known, see e.g. [18] that pκ ≤ bκ. Therefore we assume that κ
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is inaccessible. By [11, Lemma 58] there is a <κ-closed, κ-centered forcing
notion with canonical lower bounds (see Definition 5.9 below) which gener-
ically adds a partial slalom eventually capturing all of the ground model
functions from κκ. In particular for any λ one can capture any particular
λ many functions by a generic meeting λ + κ dense sets. By [18, Theorem
1.8] if P is a <κ-closed, κ-centered forcing with canonical lower bounds then
there is always a generic filter meeting any <pκ-many dense sets. Putting
these facts all together we get that for any <pκ-many funtions f ∈ κκ there
is a partial slalom capturing all of them hence pκ ≤ bκ(p ∈∗). □

We will show below that this proposition is false if bκ(p ∈∗) is replaced
by bκ(∈cl) or bκ(∈∗).

Finally, one last preliminary concerns the large cardinal notions we will
need in this paper, which will provide us with a special kind of elemen-
tary embedding. Let us set up some notations here, given a transitive
model M , and a set X ∈ M , we say that U is an M -ultrafilter over X if
(M,U) |= U is an ultrafilter over X. Given such an ultrafilter we can form
the ultrapower of M by U , denoted by MU , by considering all equivalence
classes [f ]U for f : X →M ∈M . The ultrapower embedding jU : M →MU

is given by jU (x) = [cx]U , where cx is the constant function with value
x. Whenever MU is well-founded (or has a well founded part) we identify
it with its transitive collapse. Recall that  Los’ theorem says that for any
formula ψ(x1, ..., xn), and any functions f1, ..., fn : X →M ∈M

{x ∈ X |M |= ψ(f1(x), ...fn(x))} ∈ U ⇔MU |= ψ([f1]U , ..., [fn]U ).

We will also need here the Rudin-Keisler order, given M -ultrafilters U,W
over X,Y respectively and a function f : X → Y ∈ M , we say that f is a
Rudin-Keisler (RK) projection of U to W , if f∗(U) := {B ⊆ Y | f−1[B] ∈
U} = W . If there is am RK-projection of U to W we denote this by
W ≤RK U . It is well-known that f∗(U) = W if and only if kf ([g]W ) :=
[g ◦ f ]U is a well-defined elementary embedding kf : MW → MU such that
jU = kf ◦ jW . For more information regarding ultrapowers and the large
cardinal notions which are used in this paper (weakly compact, measurable,
strong, supercompact) see [26].

3. Localization at large cardinals

The study of the various localization characteristics at a general inacces-
sible cardinal was initially addressed by the authors of [11] who checked that
the straightforward modification of the localization forcing LOC defined in
[4, Section 3.1] (see Definition 4.1) can be used to manipulate these cardi-
nals exactly the same as in the ω case. In this section, we study bκ(∈∗) and
dκ(∈∗) under the assumption that κ is a large cardinal. The first results
show that we reach trivialities again, opposite to Fact 2.10, once we go to a
measurable:
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Theorem 3.1. Suppose that κ is a measurable then

dκ(∈∗) = 2κ and bκ(∈∗) = κ+.

Proof. Let U be a normal ultrafilter on κ and A ⊆ SLκ be a localizing
family i.e. ∀f : κ→ κ∃φ ∈ A, f ∈∗ φ.

For each φ ∈ A, let Xφ = [φ]U . Since φ is a κ-slalom, by  Los theorem
and normality of the ultrafilter we get

Xφ ∈ [jU (κ)]|[Id]U | = [jU (κ)]κ.

Note that since VU is closed under κ-sequences, VU and V agree of which
sets have cardinality κ. In V , let λ = |{Xφ | φ ∈ A}|, to finish, we will
prove that λ = 2κ. Since each ordinal α < jU (κ) is of the form jU (f)(κ) for
some f : κ→ κ,

⋃
φ∈AXφ = jU (κ). Recall that |jU (κ)|V = 2κ and since for

every φ ∈ A, |Xφ| = κ, we must have that |A| = 2κ.
For the second part, for each α < jU (κ) let fα : κ → κ be such that

[fα]U = α. Let5 F = {fα | α < κ+}, we claim that F must be ∈∗-unbounded

and therefore witnessing that bκ(∈∗) = κ+. Indeed, let φ ∈
∏
α<κ[κ]|h(α)|,

then [φ]U ∈ [jU (κ)]κ and therefore it cannot contain κ+. So there if α < κ+

such that [fα]U = α /∈ [φ]U . This means that for a U -measure one set of
ν’s (and in particularly, for unboundedly many ν’s) fα(ν) /∈ φ(α), namely
¬(fα ∈∗ φ). □

Let us provide some precise ZFC-restrictions, where we only assume the
inaccessibility of κ.

Theorem 3.2. Suppose that κ is inaccessible, I is an ideal on κ and let
h : κ→ κ. Then

(1) dh(∈I) · |
∏
α<κ h(α)/I| = |κκ/I|.

(2) bh(∈I) = min{|
∏
α<κ h(α)+/J | | I ⊆ J }

Proof. Clearly,
∏
α<κ h(α)/I ⊆ κκ/I. Also, given a localizing family A

of (I, h)-slaloms, we may assume that the family consists of distinct (I, h)-
slaloms modulo I. Enumerate κ<κ as κ (which is possible by inaccessibility).
Then the family A can be identified with a κκ/I family and therefore dh(∈I

) ≤ |κκ/I|. We conclude that dh(∈I) · |
∏
α<κ h(α)/I| ≤ |κκ/I|.

For the other direction, fix A a localizing family of (I, h)-slaloms. Each
f : κ → κ is localized by some φ ∈ A, so there is g ∈

∏
α<κ h(α) such that

on a measure one set of α’s f(α) is the g(α)-th element in φ(α). Hence
(g, φ) determines f up to an I-null set.

For (2), consider a representative family A for
∏
h(α)+/J . Then A must

be unbounded, otherwise, there is φ, such that |φ(α)| = |h(α)|. But then
also φ(α) ∩ h(α)+ is a localizing slalom and since |φ(α) ∩ h(α)+| < h(α)+

we have sup(φ(α) ∩ h(α)+) + 1 = g(α) < h(α)+. Since g ∈
∏
h(α)+/J , its

supposed to be caught by φ on a measure one set in I and therefore by a

5We remark here that the functions fα can be taken to be the canonical functions.
This fact will be used later in the paper as the canonical functions are highly definable.



EVENTUAL CAPTURE ON A MEASURABLE CARDINAL 9

measure one set in J . But g is also represented by a function in A, and this
leads to a contradiction. Given any A with |A| < min{|

∏
h(α)+/J | | I ⊆

J }. If A cannot be (h, I)-slalomed, then it must be that

X := {α < κ | |{f(α) | α ∈ A}| ≥ h(α)+} ∈ I+.

Let I ⊆ J be an ideal with κ \X ∈ J . For each α, let πα be the transitive
collapse of {f(α) | α ∈ A} to some θα. The each f ∈ A can be uniquely
identified with g ∈

∏
α<κ θα.

We claim that |
∏
θα/J | ≥ |

∏
h(α)+/J |. Given f ∈

∏
h(α)+ map it to

[f∗], where f∗(α) = min(f(α), θ+α ). Then for any α ∈ X, f∗(α) = f(α) so.
It follows that |A| = |

∏
α<κ θα| ≥ |

∏
α<κ h(α)+/J |, contradiction. □

Question 3.3. Is the previous theorem true for weakly inaccessible?

Recall that if I extends the bounded ideal then |κκ/I| = 2κ and item (1)
above translates to:

dh(∈I) · |
∏
α<κ

h(α)/I| = 2κ.

The reason is that we can code every X ⊆ κ as a function α 7→ X ∩α which
in turn can be coded a function from κ to κ (since κ is strongly inaccessible)
and each two distinct such functions are different modulo J κ

bd.

Corollary 3.4.

(1) If there is an ultrafilter U ⊇ I∗ such that6 |(−∞, [h]U )| < 2κ, then
dh(∈I) = 2κ.

(2) bh(∈I) = min{|(−∞, [h+]U )| | I∗ ⊆ U is an ultrafilter}.

Proof. Both (1) and (2), follows from the fact that if

I ⊆ J ⇒ |
∏
α<κ

g(α)/J | ≤ |
∏
α<κ

g(α)/I|,

and the Prime Ideal Lemma: every ideal can be extended to a prime ideal.
□

If MU is well-founded we can just consider the V -cardinality of the ordinal
[h]U . This way, we can start deriving corollaries for large cardinals. First,
at measurable cardinals we can recover and extend Theorem 3.1:

Corollary 3.5. If I∗ can be extended to a normal ultrafilter then dκ(∈I) =
2κ and bκ(∈I) = κ+. Moreover, dId+(∈I) = 2κ.

Proof. In this case, let I∗ ⊆ U be a normal measure [Id]U = κ < 2κ and
[Id+]U = (κ+)MU = κ+. For the moreover part, if dId+(∈I) < 2κ, then
κ+ < 2κ as κ+ ≤ dId+(∈I). But then |[Id+]U |V = κ+ < 2κ, which implies
dId+(∈I) = 2κ, contradiction. □

6For a linear order L = (L,≤L), for any ℓ ∈ L we denote (−∞, ℓ) = {ℓ′ ∈ L | ℓ′ <L ℓ}.
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Note that the previous corollary applies to the bounded and non-stationary
ideals on a measurable. For the bounding number, we obtain further restric-
tions at large cardinals.

Corollary 3.6. Let I ⊆ U be a σ-complete ultrafilter on κ and h : κ → κ
be any function. Then

(1) bh(∈I) ≤ |([h]+U )MU |V ≤ [h]+U .

(2) dh(∈I) < 2κ implies 2κ = |[h]U |V .
Hence if κ is measurable then bId+(∈∗) ≤ κ++, bId++(∈∗) ≤ κ+3 and so

on. But also if dId++(∈∗) < 2κ then 2κ ≤ κ++. In Section 4.2, we will see
that it is consistent on a measurable cardinal that bId+(∈∗) = κ++ and that
dId++(κ) = κ+ < 2κ.

Corollary 3.7. There cannot be two functions h1, h2 and a σ-complete ul-
trafilter U such that:

(1) |[h1]U |V < |[h2]U |V .
(2) dh1(∈∗), dh2(∈∗) < 2κ.

Remark 3.8. In [36], it was asked whether there could be functions h0(α) <

h1(α) < h2(α) = 2h0(α) such that dh2(∈∗) < dh1(∈∗) < dh0(∈∗). The previ-
ous corollary gives some limitations for this situation to occur at a measur-
able cardinal: it must be that for any ultrafilter U , κ+3 ≤ 2κ = |[h1]U |V =
|[h2]VU |, so h1 = Id++ for example is ruled out.

Some of the arguments we gave above at a measurable cardinal work for
smaller large cardinals. Let us recall the definition of completely ineffable
cardinals from [1]. A set ∅ ≠ R ⊆ P (κ) is called a stationary class if every
A ∈ R is stationary and R is upwards closed with respect to inclusion.

Definition 3.9. A cardinal κ is completely ineffable, if there is a stationary
class R such that for every A ∈ R and F : [A]2 → 2, there is B ∈ R such
that F ↾ [B]2 is constant.

Nielsen and Welch [30] proved that being completely ineffable is equivalent
to having a winning strategy in the normal filter game of length ω. This
gives also the following characterization:

Theorem 3.10. κ is completely ineffable if and only if there is a set forc-
ing generic extension V [G] in which there is a weakly amenable normal
V -ultrafilter.

Corollary 3.11. If κ is completely ineffable then bκ(∈∗) = κ+.

Proof. Since κ is weakly amenable there is a set forcing extension V [G]
containing a normal, weakly amenable V -ultrapower, U . In V [G], let j :
V → MU be the ultrapower. By normality and weak amenability, MU is
well-founded up to (2κ)+MU and (κ+)MU = (κ+)V , (since P (κ)V = P (κ)MU ).
Let us prove that the canonical functions are unbounded: suppose not, then
there is φ : κ → P (κ) ∈ V which localizes each canonical function. Then
MU |= κ+ ⊆ [φ]U and also by normalityMU |= |[φ]U | = κ, contradiction. □
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Question 3.12. Suppose κ is completely ineffable. Is dκ(∈∗) = 2κ? Do we
get further restriction on bh(∈∗) for h > Id?

In fact we do not even know the following:

Question 3.13. Is there a large cardinal notion strictly weaker than a
measurable cardinal which implies that dκ(∈∗) = 2κ?

A natural question along these lines concerns what the possible behavior
of the localization cardinals can be at a weakly compact. Using the forcing
from the next section, we will see that it is consistent that bκ(∈∗) > κ+

for a weakly compact cardinal κ. In fact this will even hold at a strongly
unfoldable cardinal.

4. Localization forcing and large cardinals

In this section we look at the main forcing for changing bh(∈∗) and dh(∈∗)
for h : κ → κ and apply some observations about it to show that certain
instances can preserve measurability. The basic case where h = Id was
initially introduced in [11, Definition 50], itself the obvious generalization
of the localization forcing on ω, as presented in e.g. [4, Section 3.1], see
also [34, Section 3.8] for a more in-depth treatment of the properties of this
forcing notion. Our presentation is simply a further generalization to allow
for arbitrary width slaloms. We begin with the main definitions.

4.1. The Forcing Notion LOCh,κ. For simplicity in this subsection fix an
uncountable cardinal κ so that κ<κ = κ. Let us introduce the main forcing
notion:

Definition 4.1. Let h : κ → κ be a function, LOCh,κ consists of pairs
(σ, F ) where σ : γ → P (κ) for some γ < κ such that |σ(α)| ≤ |h(α)|.
F : κ→ P (κ) is a function such that |F (α)| ≤ |h(γ)| for every α < κ. Define
(σ, F ) ≤ (τ,G) if τ ⊆ σ andG(α) ⊆ F (α) and for every α ∈ dom(σ)\dom(τ),
G(α) ⊆ σ(α).

For a condition p = (σ, F ) ∈ LOCh,κ as above we refer to σ as the stem of
p and call any such σ a stem. The intention of this forcing is to add, similar
to Hechler forcing, a slalom that localizes every ground model function.
Suppose that G ⊆ LOCh,κ is V -generic and let φG :=

⋃
(σ,F )∈G σ. An easy

density argument shows the following.

Proposition 4.2. φG is an h-slalom and for every f : κ→ κ ∈ V , f ∈∗ φG.

Remark 4.3. Note that what is perhaps a more natural definition here is to
have conditions (σ, F ) as above but the cardinality restriction on F to be
|F (α)| ≤ |h(α)| rather than |h(|σ|)|. However the two forcing notions are

equivalent via properly coding [κ]h(α) as ordinals below κ, as done in the
proof of proposition 2.7.

Modulo the fact that LOCh,κ is (nearly) <κ-closed and κ+-c.c. (proved
below) we therefore easily get the following.
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Proposition 4.4. Let κ be inaccessible and h : κ → κ increasing. Let
κ < λ < µ be cardinals with λ regular and cf(µ) > κ. The following are
consistent.

(1) bh(∈∗) = 2κ = λ
(2) bh(∈∗) = dh(∈∗) = λ < µ = 2κ

Proof. For (1) simply iterate LOCh,κ with <κ-supports for λ-many steps.
For (2) begin in a model of 2κ = µ and iterate for λ-many steps. See [11,
Proposition 52] for more details. □

We now examine some of the properties of LOCh,κ.

Proposition 4.5 ([11, Lemma 5.1]). Assume that κ is inaccessible and that
h : κ → κ is increasing. There is a dense set of conditions in LOCh,κ for
which the restriction to this set is κ-linked.

Remark 4.6. First, to be clear, here, κ-linked means that there is a partition
of the forcing notion into κ many pieces, each of which has its elements
pairwise compatible. Note however this is different being κ-centered forcing
notion i.e. the pieces of the partition are such that any <κ-many have a
joint lower bound. The difference can be seen by the fact below.

Fact 4.7 ([11, Lemma 59]). If κ is a strongly inaccessible cardinal, h : κ→ κ
is monotone increasing and P is a κ-centered forcing notion, then for every
P-name of an h-slalom, φ̇, there are κ-many h-slaloms, {φα | α ∈ κ} ∈ V so
that if g : κ → κ is not localized by any φα then ⊩P ǧ /∈∗ φ̇. In particular,
no κ-centered P can add an h-slalom localizing (κκ)V .

Consequently LOCh,κ can never have a κ-centered dense subset.
Next, regarding closure properties of LOCh,κ , in [11] it was inaccurately

stated that LOCh,κ is <κ-closed7.

Example 4.8. To see a counterexample, suppose σ is a partial slalom with
domain ω, κ > ω1 and h : κ → κ is such that h(ω) is countable (say the
identity). For each α < ω1 let Fα be a function so that Fα(ω) = α. Then
clearly (σ, Fα) is a condition and if α < β then (σ, Fα) ≥ (σ, Fβ). However,
there is no joint lower bound on these ω1-many conditions because any such
(σ′, F ) would have to have σ′(ω) ⊇ ω1, which is not possible. This could be
avoided by strengthening to a dense set, as we show below.

Abstracting from the example above, observe that <κ-length sequences
of conditions have lower bounds if the stems all properly extend one another.
Motivated by this, let us call this the strict order, denoted LOCh,κ. Con-

cretely LOCh,κ is the forcing notion defined to have the same underlining
set as LOCh,κ but with p ≤strict q if and only if p ≤ q with the normal order

and σp ⊋ σq. By what we have seen, LOCh,κ is <κ-closed and (has a dense
subset which is) κ-linked. It is then not hard to check that these forcing
notions are forcing equivalent.

7The proof does not include details for the claim.
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Proposition 4.9. The identity map is a dense embedding8 of LOCh,κ into
LOCh,κ.

This will be useful in that we can treat LOCh,κ therefore as a <κ-closed
forcing notion, thus simplifying some of the arguments below. As such, we
will implicitly work with the strict order moving forward.

Let us note that even with the strict order, Example 4.8 shows that the
forcing is not <κ-directed closed. It is impossible to adjust the definition
of LOCh,κ as we did with the strict order to make this forcing notion <κ-
directed closed, since there are ZFC constraints on measurable cardinals
which ensure that certain iterations of LOCh,κ will not preserve measura-
bility in general. The exact amount of directness is determined by h. The
following proposition plays a crucial in showing the optimality of our results
from the previous section:

Proposition 4.10. Suppose that A = {(σi, Fi) | i < h(λ)} is a directed
system of conditions such that dom(σi) < λ and

⋃
i∈h(λ) σi has domain at

least λ. Then A has a lower bound.

Proof. Let σ =
⋃
i∈h(λ) σi and F (α) =

⋃
i∈h(λ) Fi(α). Note that for each

i < h(λ) we have that for every α ≥ λ |Fi(α)| ≤ h(|σi|) < h(λ) and hence
in particular |F (α)| ≤ |h(α)|, hence (σ, F ) is a legitimate condition. Given
i < h(λ) we clearly have σi ⊆ σ, and Fi(α) ⊆ F (α). For α ∈ λ \ dom(σi) let
β be such that α ∈ dom(σβ). Since σβ, σi are compatible, we will have that
Fi(α) ⊆ σβ(α) = σ(β). □

We will need a similar result for the <κ-support iteration of LOCh,κ.

Concretely, this iteration is the following. For an ordinal δ we define Lhδ to
be the set of all partial functions p with domain a subset of δ of size <κ
so that for all α ∈ dom(p) recursively we can define p(α) to be a Lhα name
for a condition in LOCh,κ. Moving forward, we fix this notation to refer
to such iterations. The following fact is obvious in the ω case but requires
some additional work in the uncountable case.

Lemma 4.11. Let δ be an ordinal. There is a dense set of conditions p in
the <κ-support iteration of LOCh,κ so that for all α ∈ dom(p) we have that

p(α) is of the form p(α) = (σ̌ri , Ḟ ) for some σ ∈ ([κ]<κ)<κ.

Proof. By replacing the standard order by the strict order we obtain that Lhδ
is forcing equivalent to a <κ-closed forcing notion. Similarly for each α ≤ δ
let Ġα denote the canonical name for the Lhα generic and, in the extension
let this object be called Gα. Note that for all α < β ≤ δ we have that
Gα = Gβ ∩ Pα. We make similar notational choices regarding things like

Lhα,β, the tail of the iteration. Note that by the definability of the forcing

8See [27, Def. 7.7].
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notion, for any α < δ we have that Lhα forces the tail to be simply the <κ-
supported iteration of LOCh,κ indexed by [α, δ) as computed in V [Gα]. We
will prove the lemma by induction on δ.
Case 1: δ = ξ + 1 is a successor ordinal. Thus Lhδ = Lhξ ∗ ˙LOCh,κ. By the

inductive assumption moreover we can pass to a dense set of p ∈ Lhα which
has the form described in the statement of the lemma. Moreover by closure
every name for a stem is forced to be a ground model sequence and, by
strengthening further we obtain the result in this case.
Case 2: δ is a limit ordinal. Let p ∈ Lhδ . If cf(δ) ≥ κ then the support of
p is bounded in δ and we can apply our inductive hypothesis. Therefore
we can assume without loss of generality that cf(δ) < κ and supp(p) is
cofinal in δ. Let us fix that the cofinality of δ is some λ < κ and choose a
strictly increasing, cofinal sequence {δi | i ∈ λ} ⊆ δ. Applying our inductive
hypothesis, we can recursively construct a sequence {pi | i ∈ λ} as follows:

(1) p = p0
(2) pi+1 ≤ pi and every stem appearing in pi+1 ↾ δi is a check name.
(3) If ξ is a limit ordinal then pξ is defined as follows. First, supp(pξ) =⋃

i<ξ supp(pi). Next for each α ∈ supp(pξ) define pξ(α) as the pair of

names for the union of the stems of pi(α) for i < ξ and the name for
the function mapping each ζ above the supremum of the the union
of the stems to the union of the sets Ḟαi (ζ) for Ḟαi the name for the
second coordinate of pi(α).

Unwinding the third item note that pξ(α) is simply the name for lower
bound on the pi(α)’s which exists by <κ-closure (of the strict order). Note
moreover that, by applying item (2), for all ı < ξ in this situation we have
that pξ ↾ δi has all of its stems decided as check names since the union of
check names is literally the check name of the union. A straightforward
verification now shows that pλ (in the parlance above) is the desired condi-
tion. □

From now on we will treat iterations like this as restricted to this dense
subset.

Proposition 4.12. Let λ < κ and δ be any ordinal and A = {pi | i < h(λ)}
is a directed system of conditions in the dense set of conditions from Lemma
4.11 of Lhδ such that for every α ∈

⋃
i<h(λ) supp(pi) it is forced that the

supremum of the stems at coordinate α has length at least λ. Then A has a
lower bound.

Proof. Due to the dense set we restricted to, we can argue exactly as in
Lemma 4.11 coordinate-wise. There is no issue with the iteration, as every-
thing is decided from the stems. □

4.2. Consistency Results and Large Cardinal Preservation. Let us
apply use the iteration of LOCκ,h to show that Corollary 3.5 is optimal in
the sense that the bounds may fail when h ̸= Id. The difficulty is of course
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to preserve large cardinal notions after iterating LOCh,κ. First notice that
certain small large cardinals are easily seen to be preserved by iterating
LOCκ. For example, inaccessibles or Mahlo cardinals, and therefore it is
possible to alter the values of bκ(∈∗), dκ(∈∗) and preserve those properties.

Moving a bit higher, it is alreacy unclear if weakly compact cardinals is
preserved by the localization forcing. However, there is an easy fix here by
invoking the work of Hamkins and Johnstone from [25]. Recall the following
definition due to Villaveces [37].

Definition 4.13. An inaccessible cardinal κ is strongly unfoldable if for
every ordinal θ and every transitive set M of size κ with κ ∈M , M |= ZFC−

and M<κ ⊆ M there is a transitive set N and an elementary embedding
j : M → N with critical point κ such that θ ≤ j(κ) and Vθ ⊆ N .

Intuitively, strongly unfoldable cardinals are to strong cardinals what
weakly compact cardinals are to measurable cardinals. Villaveces [37] showed
that strongly unfoldable cardinals are totally indescribable and in particular
Π1

1-indescribable (i.e. weakly compact).

Theorem 4.14 (Hamkins-Johnstone, see [25]). If κ is strongly unfoldable
there is a generic extension in which it is still strongly unfoldable and more-
over remains so in any further <κ-closed, κ+-preserving forcing extension.

Applying an iteration of LOCκ to the model above we get following im-
mediately.

Corollary 4.15. Relative to the consistency of a strongly unfoldable cardinal
the following are consistent.

(1) There is a weakly compact cardinal κ so that bκ(∈∗) > κ.
(2) There is a weakly compact cardinal κ so that dκ(∈∗) < 2κ.

Note that here it is important that we can force with the strict order, as
κ-strategically closed forcing notions alone might kill the weak compactness
of a cardinal.

Question 4.16.

(1) In the gap between strongly unfoldable and completely ineffable car-
dinals, is bκ(∈∗) = κ+ always true? e.g. ineffable cardinals or subtle
cardinals?

(2) Can a weakly compact cardinal be the first place where bκ(∈∗) > κ+?
(3) What is the consistency strength of the statement “κ is weakly com-

pact and bκ(∈∗) > κ+”?

Next, let us move to higher cardinals, in which we know that bκ(∈∗) and
dκ(∈∗) cannot be altered. The question here is about the cardinals bh(∈∗)

and dh(∈∗) where h ̸= Id. Recall that we denote by Id+ξ the function
mapping α to the ξth-cardinal past α, i.e. α+ξ. Also 2Id denotes α 7→ 2α.

Theorem 4.17. Let κ be a supercompact cardinal and assume GCH. Then
there is a forcing extension V0, in which GCH holds above κ, and in V0,
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the supercompactness of κ is indestructible under LId+ξ

λ , where ξ is below the

first inaccessible above κ and λ is any ordinal below κ+ξ+1.

Proof. Let κ be a supercompact cardinal, 2κ = κ+, and let ℓ be a Laver
function [29]. Consider the Easton support iteration ⟨Pα, Q̇β | α ≤ κ, β < κ⟩,
such that for every α < κ, Q̇α is a name for the trivial forcing unless α is
inaccessible and ℓ(α) is a Pα-name for a α-closed forcing notion, in which

case, we set Q̇α = ℓ(α). Let V0 = V [Gκ], where Gκ is V -generic for Pκ. By
the Easton support, |Pκ| = κ and in V0, GCH holds above κ.

Let us claim that in V0, κ is indestructible under LId+ξ

λ . By Lemma 4.11

we may restrict the form of conditions in LId+ξ

λ to be partial functions p
with dom(p) ⊆ λ of size <κ (the support of p) and for every α ∈ dom(p),

p(α) = (σ̌pα, Ḟ
p
α), such that for every ν < κ, Ḟ pα(ν) is a LId+ξ

α -nice name for
a subset of κ of cardinality at most |σpα|+ξ.

Let gκ be V0-generic for LId+ξ

λ . In V0, let U be a normal fine Pκ(κ+ξ)-

ultrafilter such that jU (ℓ)(κ) = LId+ξ

λ . Since MU is closed under κ+ξ-
sequences, elementarity implies that

jU (Pκ ∗ LId+ξ

λ ) = Pκ ∗ Rλ ∗ P(κ,jU (κ)) ∗ jU (LId+ξ

λ )

We would like to lift the embedding jU to V [Gκ ∗ gκ]. First, we note that

Gκ ∗ gκ is also MU -generic for Pκ ∗ LId+ξ

λ . By the κ+-chain condition of

Pκ∗LId+ξ

λ , MU [Gκ∗gκ] is closed under κ+ξ-sequences from V [Gκ∗gκ] (see for
example [14]). Now, we can construct H ∈ V [Gκ ∗ gκ] which is MU [Gκ ∗ gκ]-
generic for P(κ,jU (κ)). This is possible since from the perspective of V [Gκ ∗
gκ], and by the cardinal arithmetic assumption, there are only κ+ξ+1-many
dense sets to meet9. However, the forcing P(κ,jU (κ)) is κ+ξ+1-closed from the

perspective of V [Gκ ∗ gκ] as κ+ξ is below the next MU -inaccessible which
makes the forcing P(κ,jU (κ)) closed (this is where the assumption that ξ is
below the next inaccessible is used). Also note that by the Easton support,
j′′UGκ = Gκ. Hence, by the usual Silver criterion, in V [Gκ ∗ gκ], jU lifts to
j : V [Gκ] →MU [Gκ ∗ gκ ∗H].

Next, we lift j to V [Gκ ∗ gκ] for which we will need to construct a master

condition. The obstacle here is that jU (LId+ξ

λ ) is not κ-directed closed. So
we need to argue differently that there is a lower bound for j′′gκ.

For this, we note that j′′gκ = {j(q) | q ∈ G} is a collection of |λ|-
many elements of jU (LId+ξ

λ ) in MU [Gκ ∗ gκ ∗ H], and for every q ∈ G, and

α ∈ dom(j(q)), dom(σqα) ⊆ κ. Since |λ| ≤ κ+ξ = Id+ξ(κ), we can apply

Proposition 4.12, and find a lower bound p∗ ∈ jU (LId+ξ

λ ) for j′′Ugκ.

Finally, we can construct anMU [Gκ∗gκ∗H]-generic filter gj(κ) for jU (LId+ξ

λ ),

with p∗ ∈ gj(κ), since again there are only κ+ξ+1-many dense subsets to meet

9If D ∈ MU is dense for jU (Pκ), then D = [f ]U , where f : Pκ(κ
+ξ) → P (Pκ). Since Pκ

has size κ, we have that at most (2κ)κ
+ξ

= κξ+1-many such dense sets.



EVENTUAL CAPTURE ON A MEASURABLE CARDINAL 17

and the forcing is sufficiently closed. It follows that in V [Gκ ∗ gκ], jU lifts,
and therefore κ remains supercompact. □

Remark 4.18. It is also possible to preserve an inaccessible degree of super-
compactness. However, to do so, we would have to force V -generic filters at
for the localization forcing at those levels and transfer the upper part of the
generic along the supercompactness embedding (see [14]).

Corollary 4.19. For every η and every κ < λ = cf(λ) ≤ κ+η+1 it is
consistent relative to an supercompact cardinal that bId+η+1(∈∗) = λ and
κ is measurable. In particular, for any η > 0 it is consistent that κ is
measurable and bId+η+1(∈∗) > bκ(∈∗).

Proof. Applying Theorem 4.17 for ξ = η + 1, we obtain a model such that

LId+η

λ preserves the measurability of κ. For the second part we use Theorem
3.1. □

The previous corollary answers Question 71 from [11], also posed as [35,
Question 4.3]. Recall that by Corollary 3.5, bId+η(∈∗) ≤ κ+η+1, so in light
of Corollary 4.19 the only remaining case is whether we can get bId+η(∈∗) =
κ+η+1. A similar argument will now show the answer is positive. The main
point here is to strengthen Theorem 4.17.

Theorem 4.20. Let κ be a supercompact cardinal and assume GCH. Then
there is a forcing extension V0, in which GCH holds above κ, and in V0,
the supercompactness of κ is resilient to the <κ-support iteration of length
κ+ξ+1, of LOCId+ξ,κ, where ξ is any ordinal.

Proof. We keep the notations from Theorem 4.17. The argument starts the
same and the problem concentrates as expected in the construction a mas-

ter condition for j′′Ugκ in jU (LId+ξ

κ+ξ+1). To do that, we need a refinement of

Proposition 4.12. Fixing α < κ+ξ+1, a stage of the iteration, by the GCH

above κ, there are only κ+ξ nice LId+ξ
α -names for a subset of κ and only

κ+ξ-many functions F : κ → {LId+ξ
α -nice names for subsets of κ}. Con-

sider j′′Ugκ, and let us form a master condition p∗ ∈ jU (LId+ξ

κ+ξ+1). First let

dom(p∗) = j′′Uκ
+ξ+1. For each α < κ+ξ+1, we define p∗(jU (α)) = (σ∗α, F

∗
α),

where σ∗α =
⋃
p∈gκ σ

p
α, and for each ν < jU (κ), F ∗

α(ν) is defined to be a nice

name for
⋃
p∈gκ jU (F pα)(ν). It is important to note here that F ∗

α(ν) is forced

to be a collection of cardinality κ+ξ = Id+ξ(κ) for every α, although |gκ| =
κ+ξ+1. Indeed, there are only κ+ξ-many elements in the sets {F pα | p ∈ gκ},
and therefore only κ+ξ-many elements in {jU (F pα) | p ∈ gκ}. □

Corollary 4.21. For any ordinal ξ it is consistent relative to a supercompact
cardinal, that κ is measurable and bκ,Id+ξ(∈∗) = κ+ξ+1.

Question 4.22. Is it consistent to have bId+(∈∗) < bId++(∈∗) at any regular
uncountable cardinal?
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Regarding the dominating localization numbers we can use again Theo-
rem 4.17:

Corollary 4.23. Relative to a supercompact cardinal, for every ξ and every
cf(λ) = λ ≤ µ ≤ κ+ξ with κ+ ≤ cf(µ), it is consistent that dκ,Id+ξ(∈∗) = λ
and 2κ = µ.

Proof. From the model of Theorem 4.17 force with LId+ξ

µ+λ . □

Again, note that this result is optimal by 3.5 since if dκ+ξ(∈∗) < 2κ, then
2κ ≤ κ+ξ. So the above corollary given the consistency of dId++(∈∗) = κ+ <
2κ = κ++.

Remark 4.24. Regarding the consistency strength of the statement bId+(∈∗

) > κ+, our result show that this is consistent from what seems to be
an overkill– a supercompact cardinal. We conjecture that the consistency
strength is much lower, and in fact that it is the optimal one, i.e., a mea-
surable cardinal κ with o(κ) = κ++.

Question 4.25. What is the consistency strength of bId+(∈∗) > κ at a
measurable? What is the consistency of dId++(∈∗) < 2κ?

Recent results of Gitik [23] addressed a similar problem, getting the con-
sistency of bκ > κ+ from optimal assumptions, and we conjecture that
similar methods can be used to treat Question 4.25.

So far we have seen that changing the parameter h, we can play with the
value of bh(∈∗). To round up the picture, let us shopw that we can insist
on having h = Id, altering the value of bκ(∈I) and dκ(∈I). Of course, the
answer depends on the ideal I. For example, if I can be extended to a
normal ideal, then we know by Theorem 3.1 that the answer is no.

Let us show that there are ideals I for which the value can differ: Suppose
that I = J κ

bd[X
∗], where X∗ = {α++ | α < κ} is the set of double successor

cardinals. Namely, I∗ (the dual filter) is generated by sets of the form
X∗ \ ξ for ξ < κ. There is a similar forcing to LOCκ that adds a localizing
(κ, I∗)-slalom:

Definition 4.26. Let LOCI∗
κ consist of conditions p = (σ, F ) such that

dom(σ) = X∗ ∩ γp + 1 and F : X∗ → P (κ) is such that for every every
α ∈ X∗ \ γp + 1, |F (α)| ≤ (γp)++. The order is completely analogous to
LOCκ.

It is important here that I is chosen concretely so we can force a set in
I∗ by initial segments. To that end, the choice of X∗ has some degree of
freedom. Again, the forcing LOCI∗

κ is κ-linked, has an equivalent suborder
which is κ-closed, and adds a (κ, I∗)-slalom φ such that for every f : κ →
κ ∈ V with {α < κ | f(α) ∈ φ(α)} ∈ I+. We can iterate this forcing as
before, and the iteration produces a model where bκ(∈I∗

) > κ+.

Theorem 4.27. Relative to a supercompact cardinal, it is consistent that
bκ(∈I∗

) > κ+.
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Proof. The proof again is similar to Theorem 4.17, we iterate the forcing,
exploiting the fact that I∗ has a canonical definition and we keep the no-
tations from 4.17. All the proof goes through without any changes, except
the part where we have to find a master condition above j′′Ugκ. To do that,
we can simply note that κ, κ+ /∈ jU (X∗), and therefore there is no risk by
taking unions of κ++-many sets at each coordinate in jU (X∗) \ κ, to form
jU (F pα). □

5. Club Localization Forcing

The ZFC results from §3 at measurable apply equally well for the non-
stationary ideal at κ. In this section we consider a variant of LOCh,κ for
adding a slalom capturing every ground model element of κκ on a club and
use this to show that the bounds are optimal for club capturing as well.
Nevertheless, in contrast to [15], we also show that the localization numbers
for club capturing are not equal to the mod bounded counterparts, even at
a measurable cardinal.

Definition 5.1. Let h : κ → κ be strictly increasing, LOCclh,κ consists of

pairs (σ, F ) where σ : c → P (κ) for some closed, bounded c ⊆ κ such that
|σ(α)| ≤ |h(α)| for each α ∈ c. F : κ→ P (κ) is a function such that |F (α)| ≤
|h(max(c))| for every α < κ. Define (σ, F ) ≤ (τ,G) if σ end-extends τ i.e.
σ = τ ↾ dom(τ) and G(α) ⊆ F (α) and for every α ∈ dom(σ) \ dom(τ),
G(α) ⊆ σ(α).

Note that generically, the domain of the slalom we are building will be a
new club subset of κ (indeed, it will be generic for the standard forcing to
add a club via bounded approximations). Again an easy density argument
shows the following.

Proposition 5.2. Suppose that G ⊆ LOCclh,κ is V -generic and let φ =⋃
(σ,F )∈G σ then φ is a (cl, h)-slalom and for every f : κ→ κ ∈ V , f ∈cl φ.

Similarly we have the following.

Proposition 5.3. Let κ be inaccessible and h : κ→ κ monotone increasing.
Let κ < λ < µ be cardinals with λ regular and µ of cofinality >κ. The
following are consistent.

(1) bh(∈cl) = 2κ = λ
(2) dh(∈cl) = λ < µ = 2κ

We now again examine some of the key properties of LOCclh,κ, emphasizing
the differences with LOCh,κ.

Proposition 5.4. Assume that κ is inaccessible and that h : κ → κ is
monotone increasing.

(1) LOCclh,κ is κ-closed.

(2) LOCclh,κ is κ-centered.
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Proof. We remark that this is different than the case of LOCh,κ as we obtain
a genuine <κ-closed poset, with no need to pass to the strict order. Let
⟨pi | i ∈ γ < κ⟩ be a decreasing sequence of conditions of some length
γ < κ. If the stems of the conditions properly extend cofinally often then
we can obtain a lower bound in almost the same way described in the proof
of Proposition 4.5. Concretely, if λ < κ and {(σi, Fi) | i ∈ λ} is a decreasing
sequence of conditions with strictly increasing stems then as before we get
that |

⋃
i∈λ Fi(sup(σi))| ≤ h(supi∈λ|σi|). This allows us to define a lower

bound. The difference is now because the domain has to be closed we need
to extend the union of the stems to one more point. This is now easy because
we can append

⋃
i∈λ Fi(sup(σi)) to the union of the stems.

If the stems stabilize at some initial stage, then we can simply find a
σ ⊇

⋃
i<γ σi, where σi is the stem of pi so that dom(σ)\dom

⋃
i<γ σi consists

of a single point ξ larger than γ and hence in particular large enough that
σ(ξ) ⊇

⋃
i∈γ Fi(ξ) for Fi the second coordinate of pi. We remark for later

purposes that this σ depends not only on the stems but also on the functions
Fi.

For (2), since κ = κ<κ, it suffices to show that if λ < κ and {pi}i∈λ all
have the same stem then they have a lower bound. This is exactly however
as in the first paragraph as we can omit ordinals from the domain to find a
lower bound whose next point is large accommodate the promises. □

A consequence of this fact, using [11, Lemma 59] is that the forcing
LOCclh,κ does not add an h′-slalom capturing the ground model elements

of κκ for any h′ ∈ κκ ∩ V which is monotone increasing. This is also true
for iterations, assuming they are of length at most (2κ)+, a fact whose proof
however we delay until later.

We also note for later that LOCclh,κ is not directed closed, as can be seen
by an example similar to that of Example 4.8.

Example 5.5. Partition ω1 (for example) into ω many pieces, say {An | n <
ω}. Let for each n < ω and each α ∈ An the condition pn,α = (σn,α, Fn,α)
be defined as follows. First, the domain of σn,α is n and for each k < n we
have σn,α(k) = k. Let Fn,α(ω) = {α} and be the empty set otherwise. Then
all the pn,α’s are compatible (and there is only ω1-many of them) but any
joint lower bound (σ, F ) would have to have F (ω) = ω1 and ω ∈ dom(σ),
which is not possible.

However it has the same “almost”-directed closure. The proofs of these
are nearly identical to the corresponding facts for LOCh,κ however the same
difference appears again.

Proposition 5.6. Suppose that A = {(σi, Fi) | i < h(λ)} is a directed
system of conditions in LOCclh,κ such that

⋃
i∈h(λ) dom(σi) ≥ λ or there an

i < h(λ) so that σi ⊇ σj for all j < h(λ). Then A has a lower bound.
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Proof. The proof is nearly verbatim as that of Proposition 4.10 except for
the case that σi ⊇ σj for all j < h(λ). Here, however the exact same
argument for centeredness works.

□

Let us now explore properties of iterations of LOCclh,κ.

Lemma 5.7. The set of conditions p so that if α ∈ dom(p) then p ↾ α forces
that p(α) has its first coordinate a check name is dense. In other words, the
set of conditions where all stems are decided is dense.

Proof. 10 Let Lcl,hβ be the β-length iteration of LOCclh,κ with <κ-support and

Lcl,hα,β the Lcl,hα -name for Lcl,hγ as computed in V Lcl,hα , where γ is the unique

ordinal such that α + γ = β. Fix an ordinal δ and assume inductively that

for all α < β < δ we have that Lcl,hα forces that Lcl,hα,β has a dense subset

consisting of conditions whose stems are check names. We want to show
that the same holds for α < δ. The case where δ is a successor ordinal
follows directly from the induction hypothesis. Hence let us assume δ is a

limit ordinal. Let p ∈ Lcl,hδ . If supp(p) is bounded below δ then again the
induction hypothesis suffices so we assume that the support of p is cofinal
in δ. Note this implies moreover that cf(δ) := λ < κ. Let {δi | i ∈ λ} ⊆ δ
be cofinal and strictly increasing.

By mimicking the proof of Lemma 4.11 we obtain a q, which almost a
condition in the sense that q is a function with domain a subset of δ whose
cardinality is less than κ and for each α ∈ dom(q) we have that q(α) is a

Lcl,hα -name for a pair (σ̌q,α, Ḟ q,α) so that the following hold.

(1) σ̌q,α is a check name for an h-slalom whose domain is closed in its
supremum. Denote by σ the sequence whose check name is σ̌q,α and
let γ be the supremum of the domain of σ.

(2) Ḟ q,α is a function from [γ, κ) so that for each ξ ∈ [γ, κ) we have that

Ḟ q,α(ξ) is forced to have size h(γ).

(3) For every i < λ there is a p′i ∈ Lcl,hδi
so that p′i ≤ p ↾ δi, q ≤ p′i (modulo

the fact that q is not a condition as its stems are not closed) and p′i
forces that for all α ∈ [δi, δi+1) ∩ supp(q) that q(α) with the stem
restricted to some ξ < γ is a condition strengthening p(α).

In short, q is essentially what we want, except that the stems might not
be closed in their supremum. However they already extend some condition
which forced that some restriction of the stem was strengthening p coor-
dinate wise. Now, applying the <κ-closure we can find a single q′ which
strengthens q and decides the top node of each stem to be some check name.
This q′ itself may not have its stems be check names, but it determines val-
ues for the top of the stems from q and putting these on top is the desired
condition.

10Usually these kind of proofs use canonical lower bounds (see Definition 5.9 below),
which are not available here by Lemma 5.10. Thus, the proof is done by hand.
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□

Using this we have the analogue of Proposition 4.12

Proposition 5.8. Suppose that δ is an ordinal and A = {pi | i < h(λ)} is
a directed system of conditions in the dense set of conditions described in
Lemma 5.7 of the length δ, < κ-support iteration of LOCclh,κ such that for

every α ∈
⋃
i<h(λ) supp(pi) either one of the alternatives of Proposition 5.6

then A has a lower bound.

The proof is nearly identical to that of Proposition 4.12 so we omit it.

Definition 5.9. Let κ be a regular cardinal and P be a forcing notion
which is <κ-closed and κ-centered as witnessed by P =

⋃
i∈κ Pi. We say

that P has canonical lower bounds (as witnessed by f) if there is a function
f : κ<κ → κ so that for every λ < κ and every decreasing sequence of
conditions {pi | i ∈ λ} (if i < j then pi ≥ pj) with pi ∈ Pξi for all i < λ we
have that there is a lowerbound p∗ on the sequence in Pf(⟨ξi|i∈λ⟩).

If P is <κ-closed and κ-centered with canonical lower bounds we will sim-
ply write that P has clb. Note that if P has clb then it is <κ-closed and
κ+-c.c. so in particular it will not collapse cardinals, a fact used implicitly
and repeatedly in what follows. Most standard examples of κ-centered gen-
eralizations of forcing notions that are well known in set theory of the reals
to the higher Baire spaces have clb. Interestingly, the next lemma shows
that LOCclh,κ does not have clb.

Lemma 5.10. Suppose that P has clb and h : κ → κ is a function. If ϕ̇
is a P-name for an h-slalom there is a function g : κ → κ ∈ V such that
⊩P ǧ ̸∈cl ϕ̇.

Proof. Let f : κ<κ → κ witness that P has canonical lower bounds. Let
P =

⋃
γ<κ Pγ be the centered pieces. For each γ < κ let ϕγ be the slalom

defined by ϕγ(β) = {δ | ∃p ∈ Pγ p ⊩ δ̌ ∈ ϕ̇(β̌)}. Since P is κ-centered this is
an h-slalom. For each α < κ denote by s(α) the set of all functions of size
at most α with domain and range subsets of α. Let g : κ→ κ be such that
for each α < κ we have g(α) /∈

⋃
s∈s(α) ϕf(s)(α). Note that such a g exists

since |s(α)| × h(α) < κ since κ is strongly inaccessible.

Now towards a contradiction suppose p ∈ P forces that Ċ names a club,
and for all β ∈ Ċ we have ǧ(β) ∈ ϕ̇(β). Let θ >> κ be sufficiently large and

let M ≺ Hθ be a model so that p,P, Ċ, g, ϕ̇, κ ∈ M and |M | < κ. Moreover
assume that if γ := sup(M ∩ κ) then M is closed under <γ-sequences and
that |M | = γ. In particular M ∩ γ = γ. This is possible by inaccessiblity.
By recursion using the <κ-closure define a sequence p⃗M := {pi | i < δ < κ}
so that p⃗M generates an M -generic filter. Note this is where we need the
closure - as we need to assume that the initial segments of the sequence are
in M . For each i let pi ∈ Pγi and note that γi ∈ M and hence γi < γ with
p0 = p. Let s = ⟨γi | i ∈ δ⟩ and note that s ∈ s(γ). Thus by construction
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we have g(γ) /∈ ϕf(s)(γ). Now let q ∈ Pf(s) be the lower bound on the pi’s
given by the canonical lower bounds. We have by density plus the fact that
γ ∩M is cofinal in γ that q ⊩ γ ∈ Ċ and hence q ⊩ ǧ(γ̌) ∈ ϕ̇(γ̌), but this
contradicts the sentence a few lines ago. □

Intuitively, the reason why clb fails for LOCclh,κ is because the domain is
required to be a closed set and hence if we take a sequence of conditions with
strictly increasing stems we cannot simply put their union as the stem of the
lower bound. Rather we need to extend to the closure of that union. Then,
we are required to state explicitly which ordinals the slalom captures at the
closure point. This cannot be decided from the stems alone - an observation
we remarked upon in the proof of the κ-closure of the forcing. In the next
section, we will put these facts together to obtain several inequalities.

5.1. Consistency Results and Cardinal Characteristic Inequalities.
We continue our discussion from the previous section on LOCclh,κ and obtain
several consistent cardinal characteristic inequalities. These results hold for
an inaccessible cardinal κ but the proofs are flexible enough that we will be
able to apply them to preserve larger cardinals when interwoven with the
lifting arguments from § 4.2. First, we separate the standard localization
numbers from their club variants. The following lemma gives the requisite
preservation result.

Lemma 5.11. Let κ be strongly inaccessible, let h, h′ ∈ κκ be monotone
increasing functions and suppose β ≤ (2κ)+. The <κ-support iteration of
LOCclh,κ does not add an h′-slalom capturing all of the ground model elements
of κκ.

Proof. Since for β = (2κ)+, no new elements of κκ are added at the final
stage, it suffices to consider the case where β < (2κ)+ and hence we by [11,
Lemma 59] we simply have to show that β-length iterations are κ-centered
in this case. By Lemma 5.7 we can treat every element of the iteration as
having all stems be check names so we restrict to this set.

The key point is that the iterands are <κ-centered by Proposition 5.4 and
the centered pieces are simply the ones with the same stem. The rest of this
argument is almost exactly as in [11, Lemma 55], however there, canonical
lower bounds were used, which are not available here so we go through the
details. As β ≤ 2κ there is an injection from β to 2κ given by α 7→ fα.
Denote by Fδ the set of all functions f with domain 2δ and range the set
of stems of conditions in LOCclh,κ for each δ < κ. Note that this set remains

the same in all iterations by the <κ closure. Let F :=
⋃
i∈κFi and note

that this set has size κ since 2δ has size <κ by inaccessibility and κ<κ = κ.
We remark that if f ∈ F and x ∈ 2δ then f(x) is a stem and hence it makes

sense to say things like p ↾ α ⊩δ p(α) = (f̌(x), Ḟα). For each f ∈ F let

Pf = {p ∈ Lcl,hβ | ∀ξ ∈ supp(p) p ↾ ξ ⊩β p(ξ) = (f̌(fξ ↾ δ), ḟ}
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where Ḟ is some Lcl,hξ -name for a function and δ is such that the domain of f

is 2δ. We need to see that these sets are <κ-centered and cover some dense
subset of Lcl,hβ . To see centeredness take some f ∈ Fδ for some δ < κ and let

{pi | i ∈ λ} be a set of conditions in Pf for λ < κ. If ξ < β then for all i < λ
we have that if ξ ∈ supp(pi) then pi(ξ) is forced to have stem f(fξ ↾ δ).
As any family of λ-many conditions with the same stem are forced to be
jointly compatible this shows that the set {pi(ξ) | i ∈ λ} are forced to be
compatible. Since ξ was arbitrary this completes the proof of centeredness.

To show this set is dense, take simply a condition p ∈ Lcl,hβ which, we

assume has all its stems as check names. Now let δ be large enough so that
for all ξ, η ∈ supp(p) we have fξ ↾ δ ̸= fη ↾ δ. Now consider any function
f ∈ Fδ so that f(fξ) = s if and only if p ↾ ξ forces that s is the stem of
p(ξ) = s. Clearly p ∈ Pf for such an f . □

As an immediate consequence, we have the following.

Theorem 5.12. Let h, h′ ∈ κκ be strictly increasing. The following are
consistent.

(1) bh(∈∗) = κ+ < bh′(∈cl) = κ++

(2) dh′(∈cl) = κ+ < dh(∈∗) = κ++

Remark 5.13. Part of the interest in this result is that it contrasts with
the case of b and d which are provably equal to their club versions on an
inaccessible (and less), see [15].

Proof. For (1), simply begin in a model of GCH and iterate with LOCclh′,κ.
By Lemma 5.11 this suffices.

For (2), again assume GCH and first add κ++-many Cohen subsets to κ.
Enumerate these as {cα | α ∈ κ++} and work in V [cα | α ∈ κ++]. In this
model we will have that dh′(∈cl) = dh(∈∗) = κ++ = 2κ. Now perform a
κ+-length iteration of LOCclh′,κ. Since this forcing notion is κ-centered by

Lemma 5.11, we can apply [11, Lemma 59] to observe that there are κ-many
slaloms {ϕα | α ∈ κ} in V [cα | α ∈ κ++] so that any function avoiding all

of them will be forced to avoid any particular ϕ̇ for ϕ̇ a name for a slalom.
Suppose now towards a contradiction assume that dh(∈∗) = κ+. There is

then name for a single h-slalom ϕ̇ forced to capture κ++-many of the cα’s.
However, by the above fact, the corresponding family of {ϕα | α ∈ κ} will
already exist in some intermediate model of V [cα | α ∈ κ++] containing only
κ-many of the Cohen subsets. Note that then, the rest of the Cohen subsets
will avoid the ϕα’s, which contradicts the assumption of ϕ̇. □

As we mentioned in the preliminaries section, b(∈∗) ≤ b(∈cl) ≤ b(p ∈∗)
, and dually d(∈∗) ≥ d(∈cl) ≥ d(p ∈∗). Having separated the first two of
these we now separate the next two. We refer the reader to [18, Definition
4.4] for the definition of the higher Mathias forcing, M(F).
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Lemma 5.14. Let β ≤ (2κ)+ be an ordinal. Inductively define a <κ-

supported iteration {Pα, Q̇α | α < β} by allowing Ḟα to be a Pα-name for a

<κ-closed filter on κ and ⊩α Q̇α = M(Ḟα). Then ⊩β“For every h ∈ κκ ∩ V
which is monotone increasing there is no h-slalom φ so that f ∈cl φ for
every f ∈ κκ∩V ”. In particular it is consistent that pκ = µ > bh(∈cl) = κ+

is consistent for any regular µ > κ+.

Proof. Let β, {Ḟα}α<β and h be as in the statement of the lemma. By [11,
Lemma 55] we can pass to a dense set and hence assume without loss that
if p ∈ Pβ then for all α ∈ supp(p) there is an s ∈ κ<κ so that p ↾ α ⊩
p(α) = (š, Ȧ) for some Ȧ. Let us restrict to this dense subset. Since no
new slaloms are added at stage (2κ)+ we can assume that β ≤ 2κ. By [18,
Lemma 4.5] M(F) has clb for any κ-complete F and hence by [11, Lemma
55] the iteration is κ-centered. In general, it is not clear that Pβ has clb,
but in this specific case it turns out to be true, a fact we show now. By the
Engelking-Karlowicz theorem, [16], there are functions fi : β → κ<κ so that
every partial function from β to κ<κ of size <κ is contained in one of the
fi’s. Let Pi be the <κ-centered set of conditions p so that if ξ ∈ supp(p)
then the stem of p(ξ) is fi(ξ).

Proposition 5.15. If κ is measurable then pκ ≤ sκ.

Proof. Let µ < pκ and let {Ai | i ∈ µ} ⊆ [κ]κ. Let U be a measure on κ
and for each i < µ let Xi ∈ U be such that either Xi ∩ Ai = ∅ or Xi ⊆ Ai.
Applying pκ > µ we can find an X∗ ⊆∗ Xi for all i < µ and hence X∗

witnesses that {Ai | i ∈ µ} is not a splitting family. □

We note that it is not always the case that sκ ≥ pκ, since it is possible
that sκ = κ. Even if sκ > κ (which is equivalent by Suzuki to κ being weakly
compact), it is still possible that pκ > sκ.

First, as a preliminary observation observe that if f : β → κ<κ is any
(partial) function and p0, p1 ∈ Pβ are such that supp(p0), supp(p1) ⊆ dom(f)
and for all i < 2 and for all ξ ∈ supp(pi) we have that f(ξ) is the stem of
pi(ξ) then p0 and p1 are compatible. Note moreover this will be true for
not just two conditions but any family of less than κ many will be jointly
compatible under these conditions.

Next, for any sequence of fi’s of length λ < κ, say f⃗ = {fiξ | ξ < λ}
define a function lim f⃗ as the (partial) function from β to κ<κ defined by

lim f⃗(α) = s ∈ κ<κ if and only if for a tail of ξ < η < λ we have that
fiξ(α) ⊆ fiη(α) and s is the union of the fiξ(α)’s. In other words take
the coordinate wise union of the stems given by the fi’s if this is defined
(on a tail) and leave it undefined otherwise. Note that, by the previous
paragraph, if {pi | i < δ < κ} is some family of conditions of size <κ all

of whose supports are contained in the domain of lim(f⃗) and whose stems

agree with lim(f⃗) then they have a joint lower bound. Let us say that a

condition like this is compatible with lim(f⃗). The point is the following.



26 TOM BENHAMOU AND COREY BACAL SWITZER

Claim 5.16. Let λ < κ and let {pi | i ∈ λ} be a decreasing sequence of

conditions so that for each i we have that pi ∈ Pξi. If f⃗ denotes the sequence
of functions ⟨fξi | i < λ⟩, then there is a lower bound on the sequence p∗

compatible with lim(f⃗).

Proof. Let p∗ be the greatest lower bound of the sequence. In other words,
for each α ∈

⋃
i<λ supp(pi) we define p∗(α) to be (σ∗α, Ȧ

∗
α) where σ∗α is the

check name for the union of the stems in the αth-coordinate of the pi’s and
Ȧ∗
α is the name for the intersection of the second coordinates (which exists

by <κ-closure of the functions). For each α ∈ supp(p∗), note that there is
a tail of i < λ so that α ∈ supp(p) and for this tail the set of fξi(α)’s is

increasing hence α ∈ dom(lim f⃗) and is equal to the stem of p∗(α). The rest
is now clear. □

Given any sequence f⃗ of the functions fi of length less than κ, let Q
f⃗

be the set of conditions compatible with lim f⃗ . Note that by choosing f⃗ to
be the constant function for some fixed fi we recover Pi and hence a dense
subset of Pβ is covered by the Q

f⃗
’s. Note that since κ<κ = κ there are only

κ many sequences f⃗ . But now the proof of the claim above gives that the

map f⃗ 7→ lim f⃗ gives canonical lowerbounds, which completes the proof by
Lemma 5.10.

□

A consequence of this lemma is the following.

Theorem 5.17. Assume GCH. Let κ be strongly inaccessible and h : κ→ κ
strictly increasing. There is a cofinality preserving forcing extension in which
bh(∈cl) = κ+ < pκ = κ++.

Proof. Simply iterate to force with all possible M(F) as in the description
of the lemma above. Clearly good enough bookkeeping will ensure that
pκ = κ++ holds in the extension while bh(∈∗) = κ+ will be witnessed by the
ground model functions - this is the content of Lemma 5.14. □

Since pκ ≤ b(p ∈∗) we have the following immediate corollary.

Corollary 5.18. It is consistent that bh(∈cl) < b(p ∈∗).

Regarding pκ it turns out the other inequality is also consistent.

Lemma 5.19. Denote by Add(κ, κ+) the standard forcing to add κ+ many

Cohen subsets. If µ > κ+ is a regular cardinal and L̇hµ is the Add(κ, κ+)-
name for the <κ-supported iteration of LOCh,κ (for any h ∈ V ) of length

µ. Then Add(κ, κ+) ∗ L̇hµ forces that pκ = κ+ < bh(∈∗) = µ.

This is similar to the proof of [18, Theorem 4.8].

Proof. Let c⃗ = {ci | i ∈ κ+} denote the generic Cohen subsets added by
Add(κ, κ+). We want to show that this forms a witness to pκ = κ+ after



EVENTUAL CAPTURE ON A MEASURABLE CARDINAL 27

forcing with L̇hµ. Applying Lemma 4.11 to Add(κ, κ+) ∗ L̇hµ we can assume

there is a dense set of conditions of Add(κ, κ+) ∗ L̇hµ of the form (p, ā, Ḟ )

where ā ∈ V is the set of stems of the conditions in the support and p ⊩ Ḟ
is the set of possible promises in the support. Moreover by the κ+-cc it’s
clear that if ẋ is a Add(κ, κ+)∗ L̇hµ name for a subset of κ then the transitive
closure of (a nice name for) ẋ is coded by a set of ordinals of size κ and in
particular there is a γ < κ+ so that ẋ ∈ V [ci | i ̸= γ].

Now suppose that ẋ is such a name. Let’s show that it isn’t a pseudo-
intersection of c⃗. Let γ be as above for ẋ. We want to show that ⊩ ẋ ⊈∗ cγ .

Suppose that there is an ξ < κ so that (p, ā, Ḟ ) ⊩ ẋ \ ξ ⊆ cγ . Now let y ⊇ p
be one Cohen generic and let y′ = yc ∩ [dom(p), κ) ∪ p. This is also Cohen

generic. Then V [y] = V [y′] so in this model there are the conditions (ā, Ḟ y)

and (ā, Ḟ y
′
) which are compatible since they have the same stems. Pick a

common strengthening (b̄, Ġ) which, without loss of generality also decides
some δ ∈ ẋ \ (ξ ∪ dom(p)). But δ is only in one of y and y′ which is a
contradiction. □

In [31] Raghavan and Shelah showed that, contrary to the countable case,
sκ ≤ bκ for any regular, uncountable cardinal. Nevertheless this is not the
case if we replace bκ by bh(∈∗).

Lemma 5.20. Assume GCH.

(1) If κ is strongly unfoldable there is a forcing extension in which κ is
still strongly unfoldable and sκ = κ+ < bh(∈∗) = bh(∈cl) = λ for
any regular λ > κ+.

(2) If κ is supercompact then there is a forcing extension in which bh(∈∗

) = bh(∈cl) = κ+ < sκ = λ for any regular λ > κ+.

Proof. We being with Item (1). This is essentially the same as the proof of
Lemma 5.19. It is easy to show in the above that the family of Cohen subsets
we added will be a splitting family in the final model. The assumption of
strong unfoldability is simply needed to ensure, by Theorem 4.14 that (after
preparation) we can assume κ remains strongly unfoldable and hence weakly
compact in the final model so that we can have sκ > κ - which will fail
otherwise by Suzuki’s theorem from [33].

Similarly, if κ is indestructibly supercompact then we can force pκ >
κ+ while preserving bh(∈cl) = κ+ for any monotone increasing h : κ →
κ. Therefore, it suffices simply to see the following claim. Recall that by
Proposition 5.15 sκ ≥ pκ on a measurable cardinal.

□

Putting together all of this, we get the following.

Theorem 5.21. If κ is inaccessible then bh(∈∗) and bh(∈cl) are independent
of pκ. If κ is supercompact then this is true of sκ as well.
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5.2. Consistency Results at a Measurable for Cardinal Invariants.
The observant reader will notice that none of the lifting arguments presented
thus far interfere in any way with the forcing arguments used to obtain the
cardinal invariant inequalities in Subsection 5.1. Similarly all of the above
results could have been proved for the club variant. As such we obtain
the following theorems, each of which has a proof almost analogous to the
corresponding results in Subsection 5.1. First we note that the foregoing
could have been done for the club variant and in particular the following
holds.

Theorem 5.22. Relative to a supercompact cardinal, for every ξ > 1 the
following are each consistent.

(1) There is a measurable cardinal κ and bκ,Id+ξ(∈cl) = κ+ξ+1 > κ+. In

particular, bId+ξ(∈cl) > bκ(∈cl).
(2) There is a measurable cardinal κ and dκ,Id+ξ+1(∈cl) = κ+ < κ+ξ+1 =

2κ. In particular, dId+ξ+1(∈cl) < dκ(∈cl).

Next we note that since the above is simply obtained by some forcing
with an iteration of LOCclh,κ we can apply Theorem 5.12 to this situation to
obtain the following.

Theorem 5.23. For every ξ0, ξ1 > 1, relative to a supercompact cardinal κ
the following are consistent.

(1) κ is supercompact and bId+ξ0 (∈∗) = κ+ < bId+ξ1 (∈cl) = κ++

(2) κ is supercompact, κ+ ≤ cf(λ) ≤ λ ≤ κ+ξ, and dκ,Id+ξ1+1(∈cl) = λ

and 2κ = κ+ξ0+1 = dκ,Id+ξ0+1(∈∗).

Finally we note that similarly at a measurable we can obtain both in-
equalities for comparing pκ and sκ and the bounding number for either the
standard eventual capture relative to Id+ξ or the club variant.

Theorem 5.24. For every ξ > 1, relative to a supercompact cardinal κ it
is consistent that κ is measurable and and of the following hold.

(1) bId+ξ(∈∗) = bId+ξ(∈cl) < sκ = pκ
(2) bId+ξ(∈∗) = bId+ξ(∈cl) > sκ = pκ

In particular bId+ξ(∈∗) and bId+ξ(∈cl) are independent of pκ and sκ and

bId+ξ(∈cl) can be strictly less than bκ(p ∈∗) at a measurable.

6. Covering and cofinality correctness of the ultrapowers

Our bounds on bh(∈∗) at the case of a measurable cardinal 3.5 were
obtained by the ability to cover the functions below the ([h]+U )MU . Let us
state the exact covering property we can extract from a large bh(∈∗):

Proposition 6.1. Let h : κ → κ be any function. If bh(∈∗) ≥ λ, then
for every σ-complete ultrafilter U and set X ⊆ jU (κ), |X|V < λ, there is
Y ∈MU , MU |= |Y | ≤ |[h]U | such that X ⊆ Y .
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Proof. For each x ∈ X, set a representing function fx i.e. [fx]U = x. Since
|{fx | x ∈ X}| = |X| < bh(∈∗), there is an h-slalom φ such that for every
x ∈ X, fx ∈∗ φ. Let Y = [φ]U ∈ MU . Then MU |= |Y | ≤ |[h]U | and for
every x ∈ X, x = [fx]U ∈ [φ]U . □

Corollary 6.2. For every ordinal λ with cfMU (λ) ≤ jU (κ), if cfV (λ) <
bh(∈∗) then cfMU (λ) ≤ |[h]U |

Suppose that [h]U = κ+ and bh(∈∗) > κ+, then the previous corollary says
that MU computes cofinality κ+ ordinals correctly as long as they are not
greater than jU (κ). One particularly interesting choice of λ is λ = (κ++)MU :

Corollary 6.3. Suppose κ+ < bId+(∈∗) then for any normal ultrafilter U ,
κ++ = (κ++)MU .

In relation to Question 4.25, this corollary puts some restrictions on the
kind of embeddings we can expect to lift in order to show that κ is a mea-
surable cardinal with bId+(∈∗) > κ+. To see further restrictions, consider
the following example:

Example 6.4. If we try to force bId+(∈∗) > κ+ from less than super-
compactness, we need to create a normal ultrapower which computes κ++

correctly. One standard way of doing this is due to Woodin (see [14]): start
with a (κ, κ++)-extender E and then lift jE to an ultrapower embedding in
a generic extension which preserves cofinalities. Such ultrapowers are not
going to work for a different reason–the ordinal jE(κ). It is inaccessible in
MU , but has cofinality κ+ in V in contrast with Corollary 6.2.

6.1. On the V -cofinality of jU (κ). Example 6.4 illustrates a situation
where we should consider the cofinality of jU (κ). In this case, if we would
like to obtain models where bId+(∈∗) > κ+ we need to be able to have
embeddings cfV (jU (κ)) > κ+. For example, in the Kunen-Paris Model
[28] or the Friedman-Magidor Model [20], we can even argue that for every
ultrafilter U , cfV (jU (κ)) = κ+ for any normal ultrafilter U . The reason is
that whenever we force over a model of GCH and lift an extender/ultrafilter
embedding from the ground model, jU (κ) is always going to have cofinality
κ+. We have the following bound for jU (κ):

Proposition 6.5 (Folklore). Let κ > ω. For every σ-complete ultrafilter U
over κ, bκ ≤ cfV (jU (κ)) ≤ dκ.

We have uniform bounds for cf(jU (κ)), so it is reasonable to conjecture
that cf(jU (κ)) might not depend on U . This invites the following interesting
question:

Can there be two ultrafilters U,W such that cfV (jU (κ)) ̸= cfV (jW (κ))?

By Propositions 6.5, another scenario in which we get a single cofinality
(which is not necessarily κ+) is:
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Corollary 6.6. Suppose that bκ = dκ = λ, then cfV (jU (κ)) = λ for any
uniform ultrafilter on κ.

In particular, this situation occurs if bh(∈∗) = 2κ. In [8], the cardinal
invariants bκ, dκ were used to show that there can be at most one λ for
which there is a simple Pλ-point.

Definition 6.7 (Benhamou-Goldberg). An ultrafilter U over κ is called a
simple πPλ-point if πp(U) = πch(U).

Corollary 6.8. If there is a simple πPλ-point, then for every uniform ul-
trafilter U on κ, cfV (jU (κ)) = λ.

The above applies to several models of importance:

Corollary 6.9. In the following models, there is cfV (jU (κ)) is unique:

(1) The extender-based Magidor-Radin models [8].
(2) The iteration of generalized Mathias forcing [12].

Let us restrict ourselves to model where bκ < dκ. The simplest forcing
which does that is the good old Cohen forcing. M. Canjar [13], exploited
this situation in the Cohen model to obtain ultrafilters on ω with varying
cofinalities. He used the filter extension property and properties of the Co-
hen generic reals. If we would like to work below the levels of super and
strongly compact cardinals, the filter extension property is not available any-
more. Fortunately, this can be replaced by Woodin’s surgery argument, and
a later improvement due to Gitik [21], which stays in the optimal framework
of a measurable cardinal with Mitchell order o(κ) = κ++. For the proof, see
[14]:

Theorem 6.10. Assume GCH and suppose that there is an elementary
embedding j : V →M such that:

(1) |j(κ)|V = κ++.
(2) there is a function f : κ→ κ such that j(f)(κ) = κ++.
(3) Mκ ⊆M .

Then for every V -generic11 G ⊆ Pf ∗ Add(κ, κ++), j lifts to an ultrapower
by a normal κ-complete ultrafilter U over κ. In particular, jU (κ) = j(κ).

These kinds of embeddings were used in [24] and in [22]

Theorem 6.11 (Gitik [21]). Assume that there is a coherent sequence U⃗
of length κ++. Then it is consistent that there is a forcing extension where
GCH holds and there is a commutative12 Rudin-Keisler increasing sequence
⟨Ui | i < κ++⟩.

11The forcing Pf is the Easton support iteration of Add(α, f(α)) for every inaccessible
α < κ.

12A Rudin-Keisler increasing sequence is commutative, if the Rudin-Keisler projections
πα,β commute. Namely for every α < β < γ, πα,γ = πβ,γ ◦ πα,β .
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Corollary 6.12. Relative to a measurable cardinal κ with o(κ) = κ++,
it is consistent that there are two κ-complete ultrafilters U,W such that
cfV (jU (κ)) ̸= cfV (jW (κ)).

Proof. Work in the generic extension V0 of Theorem 6.11. Let us produce
two embeddings j1 : V0 → M (1) and j(2) : V0 → M (2) as in Theorem 6.10
each witness a different cofinality of j(i)(κ). Indeed, we let jUi : V0 → MUi

be the ultrapower embedding of V0 by Ui. For i < j there is a factor map
ki,j : MUi → MUj defined using the Ruding Keisler projection πi,j of Uj to
Ui by ki,j([f ]Ui) = [f ◦ πi,j ]U . It follows that jUj = ki,j ◦ jUi . It is not hard

to check that the commutativity of the system U⃗ = ⟨Ui | i < κ++⟩ ensures
that the functions ki,j commute and therefore we may take a direct limit
M∞ = dir lim ⟨MUi , ki,j | i < j < κ++⟩. Let j∞ : V0 → M∞ be the direct
limit embedding of the system ⟨jUi , ki,j | i < j < κ++⟩. By the GCH in V0,
it is not hard to see that κ1 := j∞(κ) = κ++, and that Mκ

∞ ⊆ M∞, but
there cannot be a function f : κ → κ such that j∞(f)(κ) = κ++ = j∞(κ).
To overcome this problem, we follow the proof from [21, §2, p.212], we
may assume that V0 is a generic extension of a ground model V by an
Easton support iteration of adding one Cohen function fα : α→ α for every
inaccessible α ≤ κ. Suppose V0 = V [H][fκ], where H is V -generic for the
iteration up to (not including) κ and fκ is V [H]-generic for Add(κ, a). to

obtain the embedding j(1), take again the direct limit by j∞(U⃗) starting from

M∞. We obtain j′ : M∞ → M (1) with κ2 := j′(κ1) = (κ++
1 )M∞ > κ++.

By elementarity of j′ ◦ j, note that M (1) is a generic extension of a ground
model M∗ = j′(j∞(V )), namely M (1) = M∗[j

′(j∞(H))][f ′κ2 ]. Let us change
one value in f ′κ2 : κ2 → κ2, by setting fκ2(κ) = κ++ and fκ2(α) = f ′κ2(α)

elsewhere. Then clearly, fκ2 remains M∗[j
′(j∞(H))]-generic, and M (1) =

M∗[j
′(j∞(H))][f ′κ2 ] = M∗[j

′(j∞(H))][fκ2 ].

Finally, we let j(1) : V0 → M (1) be defined by j ↾ V = j′ ◦ j∞ ↾ V and
j(H) = j′(j∞(H)) and j(1)(fκ) = fκ2 . To summarize, we have that:

(1) cfV (j(1)(κ)) = cfV (j∞(κ++)) = κ++.

(2) j(1)(fκ)(κ) = κ++.

(3) (M (1))κ ⊆M (1).

For the embedding j(2), we do something similar to the above which is
exactly as in [21], applying the ultrapower by j∞(U0) from jj∞(U0) : M∞ →
M (2) and changing the value of jj∞(U0)(j∞(fκ))(κ) to be κ++. This produces

an embedding j(2) : V → M (2) such that j(2)(κ) = jj∞(U0)(j∞(κ)). We

conclude that j(2) satisfy:

(1) cfV (j(2)(κ)) = cfV (j∞(κ+)) = κ+.

(2) j(2)(fκ)(κ) = κ++.

(3) (M (2))κ ⊆M (2).

We may now apply Theorem 6.10 to obtain that in the generic extension
by Pfκ ∗Add(κ, κ++), we may lift j(1), j(2) to normal ultrapower embedding
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jU(1) , jU(2) respectively, and cfV (jU(1)(κ)) = κ++ while cfV (jU(2)(κ)) = κ+,
as wanted. □
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2. Tomek Bartoszyński, Additivity of measure implies additivity of category, Trans. Amer.
Math. Soc. 281 (1984), no. 1, 209–213. MR 719666

3. , Combinatorial aspects of measure and category, Fund. Math. 127 (1987),
no. 3, 225–239. MR 917147
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