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ABSTRACT. We continue the study from [I1}85] of localization cardinals
b.(€") and 2. (€") and their variants at regular uncountable k. We prove
that if k is measurable then these cardinals trivialize. We also provide
other fundamental restrictions in the most general setting. We prove the
results are optimal by forcing different values for bg+ (€), 014++ (€7) at
a measurable. As a by-product we prove the consistency of by (€*) <
by, (€*) for functions h, h’ € k", thus answering a question of Brendle,
Brooke-Taylor, Friedman and Montoya. Moreover, we study the relation
between these cardinals and other well-known cardinal invariants.

1. INTRODUCTION

The relation €* of eventual capture, also known as localization, was
introduced by Bartoszynski in [3] to provide a combinatorial perspective
on the ideal of Lebesgue measure zero subsets of reals. The key step in
his celebrated theorem from [2] that add(N) < add(M) is the fact thaﬂ
b(e*) = bp(€*) = add(N) and dually d(€*) = d,(€*) = cof (N) for every
strictly increasing function h : w — w tending to infinity. Since then local-
ization has appeared consistently in the literature of set theory of the reals.
See e.g. [4] for more details and history.

In the absence of an obvious null ideal on the generalized Baire space
k" the authors of [I1] studied the natural analogues of b, (€*) and ?,(€*)
as stand-ins for add(N') and cof(N) in the higher Cichori diagram for an
inaccessible cardinal x. They showed that these cardinals satisfy roughly
the same collection of facts as their natural analogue on w with a few key
differences. This analysis was furthered by van der Vlugt in [35]. The
purpose of this paper is study these cardinals further as well as some natural
variants with a particular emphasis on the case where x is measurable.

Starting with the work of Cummings and Shelah [15], cardinal invariants
on regular uncountable cardinals were studied, and recently have been of
interest [11, 12l 17, BI] due to several applications e.g. to ultrafilter the-
ory [7, 8] as well as explicating how the higher Baire and Cantor spaces
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Iprecise definitions of the cardinals here will be defined below.
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differ from their classical counterparts. Indeed there are fundamental dis-
crepancies between cardinal characteristics of the continuum and above the
continuum. The larger the cardinal is, it appears that more ZFC facts can
be proven. For example, while the pairs b,s and 0,t are independent in-
variants on w, Raghavan and Shelah [31], [32] proved that for every regular
uncountable cardinal x, s, < b, and that 9, < v, when x > 3,. For
w < Kk < 3, the question is still open. Other theorems of this kind include
recent result of Benhamou and Goldberg [§], that if there is a simple Pj-
points then b, =0, = A (and thus such A is unique). This is in contrast to
the result of Brauninger and Mildenberger [10] that there may be Py, - point
and Py,-point on w simultaneously. A more detailed look at more provable
inequalities was undertaken in [19].

Moving to larger cardinals, further discrepancies appear. For example,
Suzuki showed in [33] that s,, > « is equivalent to x being weakly compact.
Zapletal [38] and Ben-Neria Gitik [6] showed that s(x) > £ is equiconsistent
with o(k) = kTT. Ben-Neria and Gitik asked whether having s(k) > kT
while x is measurable has the same consistency strength, which turned out to
be false. Recent work of Benhamou and Ben-Neria [5] shows that preserving
measurability with s(k) > kT is equiconsistent with o(k) = k** + 1. The
moral of these results is that preserving measurability sometimes requires
extra large cardinal effort and that the presence of strong ultrafilters effects
cardinal characteristics.

In this paper we study the invariants by, (€%) and 9,(€%) where h: k — &
and Z is an ideal on k (see Definition with a particular emphasis on
the case where x is measurable. Here the differences become amplified as
both new ZFC results appear whose analogues on w and smaller regular
uncountable cardinals are independent and new independence results appear
whose analogues on w are ZFC-results. Our first main result on b,(€*) and
0, (€*) for k measurable represents a split with what should be expected for
higher cardinal invariants and this split is the central point of interest of
this paper:

Theorem. Suppose that k is a measurable cardinal, then b.(€*) = k™ and
0,.(€%) = 2. Moreover d4+(€*) = 2%, where Id" is the function mapping

a to at.

Denote by Id*¢(a) = at¢. We also provide further restriction on the size
of the cardinals by +¢(€*) and 0 4+¢(€¥).

Theorem. Suppose that k is a measurable cardinal, then
brgre(€) < wTEHL

and
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Our results generalize to many ideals Z; any ideal that can be extended
to a normal prime ideal such as the non-stationary ideal. Moreover, we par-
tially bring these result down to smaller large cardinals such as completely
ineffable cardinals (see Corollary .

To show the optimality of our result, we provide several consistency re-
sults. We prove the consistency of byy+(€*) > kT and d;4++(€*) < 27 at a
measurable cardinal:

Theorem. Relative to a supercompact cardinal, it is consistent for a super-
compact cardinal k that Kk < byg+(€*). It is also consistent that Oyg++ (€
) <27,

In particular, the above provides an answer to [II, Question 71], also
asked as [35, Question 4.3], since in the above model  is measurable and
therefore b, (€*) = kT < byg+(€¥).

The above theorems work equally well for the variants by, (€) and 9, (€
) where capture is only insisted upon on a club. Nevertheless we show
that, regardless of whether k satisfies a large cardinal property these “club
variants” are distinct.

Theorem. For any reqular uncountable cardinal and any strictly increasing
function h : k — K it is (separately) consistent that by (€*) < byp(€®) and
(€Y < op(€*). Moreover, relative to the consistency of a supercompact
cardinal, if h is the power function then the above are consistent with k being
supercompact.

Note that, by contrast, b, and 0, are equivalent to their club variants,
see [15]ﬂ Similarly we show that b,(€*) is independent of s, - thus showing
that the analogue of the Raghavan-Shelah result mentioned above also fails.

Theorem. Relative to the existence of a supercompact cardinal both strict
inequalities between byp(€*) and s, are consistent for any h : k — k. If
h is the power function or Id% then they are moreover consistent with k
remaining supercompact.

Regarding the consistency strength of the previous results on measurable
cardinals, in we discuss certain covering properties that an ultrapower
must satisfy in order to allow a large b. In particular the ultrapower should
compute certain cofinalities correct and should be correct about at least one
cardinal greater than x*. Another property the ultrapower should have is
that its cfY (ju(x)) must be quite large. We investigate the possibilities
of what c¢fY(jy(k)) can be and use a previous construction of Gitik to
obtain models where cfY (jy(x)) depends on the ultrafilter from optimal
assumptions.

The rest of this paper is organized as follows. In the next section we
introduce the localization cardinals in full generality and discuss some other

2For by, this is true always while for 0, it is only known above J, and open below,
see[15, Theorem 8§].
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preliminaries. In the following section we example ZFC-provable relations
on the localization cardinals under large cardinal assumptions. In §4 intro-
duces the forcing notions used to manipulate the localization cardinals and
develops a toolbox for separating them from related cardinal invariants
above the continuum. In §4.2| we prove that the ZFC results are optimal
at a measurable by manipulating the localization cardinals at a supercom-
pact. The final section finishes by discussing the aforementioned covering
properties. Throughout our notation is standard, conforming e.g. to the
monograph [26]. The reader is referred there for any undefined terms or
notation.

2. PRELIMINARIES

Let k > w be a cardinal. We denote by Id, the identity function, where
the domain of Id should be adapted to the context. For a set X and a
cardinal A\ we let [X]* denote the collection of subsets of X of cardinality
A. Also, Jp, denotes the bounded ideal on &; the ideal generated by the set
of ordinals k. We will always assume that functions h : K — x below never
output finite numbers.

Definition 2.1. Let h : kK — & be a function, and let Z be an ideal over k.
(1) A partial (h,Z)-slalom is a partial function ¢ : K — P(k) such that
dom(yp) € ZT and for every o € dom(p), p(a) € [s]/M.
(2) An (h,Z)-slalom is a partial h-slalom with dom(y) € Z*.
(3) A (partial) h-slalom is a (partial) (h, J;5)-slalom.
(4) A (partial) k-slalom is an (partial) Id-slalom.

Set (pSLE) SLE to be the set of (partial) (h,Z)-slaloms ¢. Again, drop
the superscript 7 for Z = J; and replace the subscript h with x when
h =1d. Clearly SL; C pSL%.

Definition 2.2. We define the binary relation €ZC k" x pSL% by f €L o
if and only if {a € dom(p) | f(a) ¢ p(a)} € Z.

For 7 = J;, we denote €l by €*. As with every binary relation, notions
of bounding and dominating numbers are induced:

Definition 2.3. Let h : kK — & be a function and Z an ideal over . Set
by(€7) = min{|F| | F C r*, Vo € SL,3f € F,~(f € ¢)}
bn(p €7) = min{|F| | F C k", Yo € pSL,3f € F,~(f €% ¢)}
on(ef) = min{|A| | A C SLy, Vf € s"3p € A, fer ¢}
n(p €f) =min{|A| | A C pSLy, Vf € k"o € A, fef ¢}

Again, for h = Id we replace the subscript h by k. For example, we
denote brg(€*) = b,(€*), and d1q(p €%) = d.(p €F). There are obvious
Tukey-Galois connections her

3For more background about Tukey-Galois connections see [9, §4]. Our notations follow
[IT, Def. 6&8].
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Proposition 2.4. Let 7 be an ideal extending Jy; and h : k — k be any
function. Then,
(k®,SLy, %) < (k%,pSLE, €T) < (K5, K", <*).

In particular:

(1) br(€?) < bp(p €F) < by

(2) on(€F) = on(p €7) > 2s

For f,g: k — k denote by f <% g if {a < k| f(a) > g(a)} € Z. By the

next fact, these are indeed cardinal characteristics:

Fact 2.5. Suppose Jf; € Z and h : k — k is such that for h is <z-above all
the constant functions. Then kT < by (%) < o,(e?) < 2%,

We have monotonicity in the parameters h and Z:

Proposition 2.6. Suppose that T C J and h <% t, then
(k®,SLy,€7) < (k*, SLy, €1).
In particular, 9,(€?) < 0,(€7) and by(e7) < by(e?).

These cardinals have another, slightly different characterization as well
which is sometimes useful. Given x, h and Z as above and two (Z, h)-slaloms
¢ and 1, let us write that ¢ CZ 1 if and only if {a € k| p(a) € ¥(a)} € T.
We then get, as usual, two cardinals by (C%), the least size of a family of

(Z, h)-slaloms with no single CZ-bound and 0, (C?%), the least size of a family
of (Z,h)-slaloms needed to CZ-dominate every (Z, h)-slalom.

Proposition 2.7. For any k with k<% = k, any ideal T on k extending the
bounded ideal and any funcion h : k — K,

(K:Hv SLfH 61) = (SLh7 SLh7 gI)
In particular, b,(C%) = by (€2) and 9,(C%) = op,(€7).
Proof. Given f : k — r we define ¢ ¢(a) = {fi(a)}, and note that if o5 C ¢
then f € . This shows (SLy,SLp, CT) < (k*,SLy,€). In the other
direction, since k<" = k we can fix for each infinite @ < x an enumeration
of [k]M*) in order type &, say {z® | i € k}. Now given an (Z, h)-slalom, v
define fy(a) = ¢ if and only if z¢ = ¢(a). Given an (Z, h)-slalom ¢, let
¥y be the (Z, h)-slalom defined by 1y () = Ujcy(q) 2§ and note that since
[p(@)] = [h(a)], [e(a)l = |h()]. Verifying that (¢ — fy,0 = ) is a
Tukey-Galois connection, suppose that f, €l o, then for each a such that
fu(a) € p(a), we will have by definition that :L"f;w (@) € Yo («). By definition
of fy(a), a:;‘fw(a) = 1() and therefore ¥ (o) C 1, (), as wanted. O

The following holds in the case of w because of its connection with the
null ideal but can be proved combinatorially using the lemma aboveﬁ

4The basic case of below - that b.(€") is regular was first pointed out to us by Jorg
Brendle and we thank him for sharing it with us.
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Proposition 2.8. For any k with k~% = k, any ideal T on k extending the
bounded ideal and any h : k — k we have that by, (%) is regular and v5,(€T)
has cofinality at least by, (€7T).

Proof. By Lemma it suffices to consider the cardinal invariants for CZ.
This relation is transitive, and for transitive orders the proof is almost iden-
tical to the usual analogous fact about b and 0. O

One specific case we will be interested in is when Z = N.S; is the nonsta-
tionary ideal. In this case we denote by f €% ¢ the variation of f V5 ¢
ie. f e ¢ if and only if {a | f(a) € ¢(a)} contains a club. It will be
convenient in such cases to treat slaloms as having a domain restricted to a
fixed club. This makes no difference as the next lemma shows.

Lemma 2.9. Let k be a reqular uncountable cardinal, A < 2%, and h : k — Kk
a strictly increasing function. The following are equivalent:

(1) For every family F C k" of size <\ there is an (cl, h)-slalom ¢ so
that f € ¢ for all f € F.

(2) For every family F C k" of size <\ there is a partial (cl, h)-slalom ¢
so that f €* ¢ for all f € F in the sense that {a € dom(9) | f(«) ¢
o(a)} is a bounded.

Proof. Let F C k" be of size A, say {fo | @« € A} = F. Since the tail of a
club is a club, we can complete any h-slalom as in (2) arbitrarily to obtain
a slalom as in (1). Conversely, assume (1) holds and let ¢ be an h-slalom
so that f, €@ ¢ for all @ < A. Let C, be the club of points on which f,
is caught by ¢. First observe (1) implies that b, > A, indeed, this follows
from the aforementioned fact that b, equals its club version. Now recall as
discussed in [I§] that b, is also the least size of a family of clubs on x with
no pseudo-intersection. Therefore we can find a single club C' C* C,, for all
a < X and hence ¢ [ C' is as desired. O

The following fact justifies the reason we shall only be interested in limit
cardinals.

Fact 2.10. Suppose that k = A1, then for every h : kK — & which is <Z-above
the constant function A, we have that by (€%) = by(p €F) = b.(€?) = b,
and 05(€7) = 0p(p €7) = 0,(€F) = 0,

The case of singular cardinals seems to be interesting, but it is left for
further research. Hence in this paper we will be focused on inaccessible

cardinals.
Regarding b, (p €*) we have the following lower bound.

Proposition 2.11. For any uncountable reqular cardinal k we have p, <
bi(p €7)

Proof. If k is a successor cardinal then b,(p €*) = b, by Fact above.
It is well known, see e.g. [I8] that p, < b,. Therefore we assume that x
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is inaccessible. By [I1, Lemma 58] there is a <x-closed, k-centered forcing
notion with canonical lower bounds (see Definition below) which gener-
ically adds a partial slalom eventually capturing all of the ground model
functions from x®. In particular for any A\ one can capture any particular
A many functions by a generic meeting A + x dense sets. By [I8, Theorem
1.8] if P is a <k-closed, k-centered forcing with canonical lower bounds then
there is always a generic filter meeting any <p,-many dense sets. Putting
these facts all together we get that for any <p.-many funtions f € k" there
is a partial slalom capturing all of them hence p,, < b, (p €%). O

We will show below that this proposition is false if b, (p €*) is replaced
by b, (€) or b,(€*).

Finally, one last preliminary concerns the large cardinal notions we will
need in this paper, which will provide us with a special kind of elemen-
tary embedding. Let us set up some notations here, given a transitive
model M, and a set X € M, we say that U is an M-ultrafilter over X if
(M,U) = U is an ultrafilter over X. Given such an ultrafilter we can form
the ultrapower of M by U, denoted by My, by considering all equivalence
classes [f]y for f: X — M € M. The ultrapower embedding jy : M — My
is given by jy(z) = [cz]u, where ¢, is the constant function with value
x. Whenever My is well-founded (or has a well founded part) we identify
it with its transitive collapse. Recall that Los’ theorem says that for any
formula ¥ (x1, ..., x,), and any functions f1,...,fp: X - M € M

{ze X[ M E¢(fi(x),..fo(x)} € U My = ¢([filo, - [falv)-

We will also need here the Rudin-Keisler order, given M-ultrafilters U, W
over X,Y respectively and a function f : X — Y € M, we say that f is a
Rudin-Keisler (RK) projection of U to W, if f,(U) :={B CY | f7'[B] €
U} = W. If there is am RK-projection of U to W we denote this by
W <gr U. It is well-known that f.(U) = W if and only if k¢([glw) :=
[g o flu is a well-defined elementary embedding kf : My — My such that
Jju = ky o jw. For more information regarding ultrapowers and the large
cardinal notions which are used in this paper (weakly compact, measurable,
strong, supercompact) see [26].

3. LOCALIZATION AT LARGE CARDINALS

The study of the various localization characteristics at a general inacces-
sible cardinal was initially addressed by the authors of [I1] who checked that
the straightforward modification of the localization forcing LOC defined in
[4, Section 3.1] (see Definition can be used to manipulate these cardi-
nals exactly the same as in the w case. In this section, we study b, (€*) and
0,.(€*) under the assumption that x is a large cardinal. The first results
show that we reach trivialities again, opposite to Fact once we go to a
measurable:
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Theorem 3.1. Suppose that k is a measurable then
0.(€*) = 2" and b, (€*) = k™.

Proof. Let U be a normal ultrafilter on x and A C SL, be a localizing
family i.e. Vf:k > rdp e A, f € .

For each ¢ € A, let X, = [¢]y. Since ¢ is a k-slalom, by Los theorem
and normality of the ultrafilter we get

X, € Lo = [y (k)]
Note that since Vi is closed under x-sequences, Viy and V agree of which
sets have cardinality x. In V, let A\ = [{X, | ¢ € A}|, to finish, we will
prove that A = 2%. Since each ordinal a < ji(k) is of the form ji(f)(k) for
some f: Kk = K, Uye 4 Xp = ju(k). Recall that lju(x)]Y = 2% and since for
every ¢ € A, | X,| = K, we must have that |A| = 2".

For the second part, for each a < jy(k) let fo : K — K be such that
[folu = . Letﬂ}' = {fa | @ < T}, we claim that F must be €*-unbounded
and therefore witnessing that b, (€*) = x*. Indeed, let ¢ € ], [x]"@],
then [¢]y € [ju (k)] and therefore it cannot contain x*. So there if & < ™
such that [fo]y = a ¢ [p]y. This means that for a U-measure one set of
v’s (and in particularly, for unboundedly many v’s) fo(v) ¢ ¢(a), namely

_‘(fa € ).

Let us provide some precise ZFC-restrictions, where we only assume the
inaccessibility of k.

Theorem 3.2. Suppose that k is inaccessible, T is an ideal on k and let
h:k — k. Then

(1) On(€D) - [Tlap h(@)/Z] = |K*/T].
(2) ba(€?) = min{| [T, )"/ T T € T}

Proof. Clearly, [[,..h(a)/Z C k"/I. Also, given a localizing family A
of (Z, h)-slaloms, we may assume that the family consists of distinct (Z, h)-
slaloms modulo Z. Enumerate k<" as x (which is possible by inaccessibility).
Then the family A can be identified with a x*/Z family and therefore 9, (€
) < |K%/Z|. We conclude that 04(€7) - |T[, . h(a)/Z] < |"/Z|.

For the other direction, fix A a localizing family of (Z, h)-slaloms. Each
[+ k — k is localized by some ¢ € A, so there is g € [],.,. h(«) such that
on a measure one set of a’s f(«) is the g(a)-th element in ¢(«). Hence
(g, ) determines f up to an Z-null set.

For (2), consider a representative family A for [[h(a)*/J. Then A must
be unbounded, otherwise, there is ¢, such that |p(a)| = |h(a)|. But then
also p(a) N h(a)* is a localizing slalom and since |p(a) N h(a)™| < h(a)™
we have sup(p(a) N h(a)T) +1 = g(a) < h(a)™. Since g € [[h(a) /T, its
supposed to be caught by ¢ on a measure one set in Z and therefore by a

5We remark here that the functions fa can be taken to be the canonical functions.
This fact will be used later in the paper as the canonical functions are highly definable.
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measure one set in J. But ¢ is also represented by a function in A, and this
leads to a contradiction. Given any A with |A| < min{|[[h(a)T/T||Z C
J}. If A cannot be (h,Z)-slalomed, then it must be that

X ={a<k||{f(@)]ac A} >h(a)"} €T".

Let Z C J be an ideal with x \ X € J. For each a, let 7, be the transitive
collapse of {f(«) | a € A} to some 6,. The each f € A can be uniquely
identified with g € [[,.,. Oa-

We claim that |[[0o/J| > |[] ()" /T|. Given f € [[h(a)™ map it to
[f*], where f*(a) = min(f(a),0F). Then for any a € X, f*(a) = f(«) so.
It follows that |A| = [[I,<, Oal = |Tacy, R(e)T/T]|, contradiction. O

Question 3.3. Is the previous theorem true for weakly inaccessible?

Recall that if Z extends the bounded ideal then |x"/Z| = 2" and item (1)
above translates to:

on(€h) | I mle)/z| = 2~
a<kK
The reason is that we can code every X C k as a function a — X N« which
in turn can be coded a function from x to x (since & is strongly inaccessible)
and each two distinct such functions are different modulo J;j.

Corollary 3.4.
(1) If there is an ultrafilter U O I* such thaﬁ |(—o0, [h]r)| < 2%, then
Dh(EI) =2,
(2) by(e?) = min{|(—oo, [hF]y)| | T* C U is an ultrafilter}.

Proof. Both (1) and (2), follows from the fact that if
1cJ=|]]9@/T1<I]] 9()/zl,

a<k a<k

and the Prime Ideal Lemma: every ideal can be extended to a prime ideal.
O

If My is well-founded we can just consider the V-cardinality of the ordinal
[h]y. This way, we can start deriving corollaries for large cardinals. First,
at measurable cardinals we can recover and extend Theorem [3.1k

Corollary 3.5. If T* can be extended to a normal ultrafilter then d,.(€?) =
2% and b, (€?) = k. Moreover, 04+ (€T) = 2~.

Proof. In this case, let Z* C U be a normal measure [Id]y = k < 2% and
[Id*)y = (kT)Mv = k*. For the moreover part, if d;4+(€Z) < 2%, then
kT < 2% as kT < dq+(€F). But then |[IdT]y|Y = s+ < 2%, which implies
014+ (€2) = 2%, contradiction. O

6For a linear order L = (L,<p), for any £ € L we denote (—oo,f) = {¢' e L | ¢’ <r, £}.
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Note that the previous corollary applies to the bounded and non-stationary
ideals on a measurable. For the bounding number, we obtain further restric-
tions at large cardinals.

Corollary 3.6. Let Z C U be a o-complete ultrafilter on k and h : k — K
be any function. Then

(1) bu(er) < ([P0 < [h])-

(2) on(el) < 28 implies 25 = |[h]y|V.

Hence if k is measurable then b+ (€*) < k71, by++(€%) < k13 and so
on. But also if djq++(€*) < 2% then 2° < x**+. In Section [4.2] we will see
that it is consistent on a measurable cardinal that b4+ (€*) = k™1 and that
g+ (k) = KT < 2.

Corollary 3.7. There cannot be two functions hi,he and a o-complete ul-
trafilter U such that:

(1) l[ha]url” < |[haul”

(2) O, (€%), 0, (%) < 27,
Remark 3.8. In [36], it was asked whether there could be functions hg(a) <
hi(a) < ha(a) = 2M0(@) such that dp,,(€*) < o5, (€) < 4, (€*). The previ-
ous corollary gives some limitations for this situation to occur at a measur-
able cardinal: it must be that for any ultrafilter U, k3 < 2% = |[h1]y|V =
|[ha];], so by = 1d*T for example is ruled out.

Some of the arguments we gave above at a measurable cardinal work for
smaller large cardinals. Let us recall the definition of completely ineffable
cardinals from [I]. A set @ # R C P(k) is called a stationary class if every
A € R is stationary and R is upwards closed with respect to inclusion.

Definition 3.9. A cardinal x is completely ineffable, if there is a stationary
class R such that for every A € R and F : [A]> — 2, there is B € R such
that F | [B]? is constant.

Nielsen and Welch [30] proved that being completely ineffable is equivalent
to having a winning strategy in the normal filter game of length w. This
gives also the following characterization:

Theorem 3.10. x is completely ineffable if and only if there is a set forc-
ing generic extension V[G] in which there is a weakly amenable normal
V -ultrafilter.

Corollary 3.11. If k is completely ineffable then by(€*) = k™.

Proof. Since k is weakly amenable there is a set forcing extension V[G]
containing a normal, weakly amenable V-ultrapower, U. In V[G], let j :
V — My be the ultrapower. By normality and weak amenability, M is
well-founded up to (2%)*Mv and (k+)Mv = (k)Y (since P(k)V = P(k)Mv).
Let us prove that the canonical functions are unbounded: suppose not, then
there is ¢ : Kk — P(k) € V which localizes each canonical function. Then
My E kT C [p]y and also by normality My = |[¢]y| = &, contradiction. [J
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Question 3.12. Suppose « is completely ineffable. Is 9,,(€*) = 257 Do we
get further restriction on by, (€*) for A > 1d?

In fact we do not even know the following:

Question 3.13. Is there a large cardinal notion strictly weaker than a
measurable cardinal which implies that d,(€*) = 2"7?

A natural question along these lines concerns what the possible behavior
of the localization cardinals can be at a weakly compact. Using the forcing
from the next section, we will see that it is consistent that b,(€*) > s
for a weakly compact cardinal k. In fact this will even hold at a strongly
unfoldable cardinal.

4. LOCALIZATION FORCING AND LARGE CARDINALS

In this section we look at the main forcing for changing by, (€*) and 0,(€)
for h : Kk — k and apply some observations about it to show that certain
instances can preserve measurability. The basic case where h = Id was
initially introduced in [I1, Definition 50], itself the obvious generalization
of the localization forcing on w, as presented in e.g. [4, Section 3.1], see
also [34] Section 3.8] for a more in-depth treatment of the properties of this
forcing notion. Our presentation is simply a further generalization to allow
for arbitrary width slaloms. We begin with the main definitions.

4.1. The Forcing Notion LOC, ,.. For simplicity in this subsection fix an
uncountable cardinal k so that k<% = k. Let us introduce the main forcing
notion:

Definition 4.1. Let h : K — k be a function, LOC,, ,, consists of pairs
(0,F) where ¢ : v — P(k) for some v < k such that |o(a)| < |h(a)|.
F : k — P(k) is a function such that |F'(a)| < |h(7)] for every a < k. Define
(0,F) < (7,G)ifr Coand G(o) C F(a) and for every o € dom(o)\dom(r),
G(a) Co(a).

For a condition p = (o, F') € LOC,, ,, as above we refer to o as the stem of
p and call any such o a stem. The intention of this forcing is to add, similar
to Hechler forcing, a slalom that localizes every ground model function.
Suppose that G C LOC,, ., is V-generic and let pg = U(o, Pea O An easy
density argument shows the following.

Proposition 4.2. ¢¢ is an h-slalom and for every f : k > €V, f €" pg.

Remark 4.3. Note that what is perhaps a more natural definition here is to
have conditions (o, F') as above but the cardinality restriction on F' to be
|F'(a)| < |h(c)| rather than |h(]o|)|. However the two forcing notions are
equivalent via properly coding [n]h(a) as ordinals below x, as done in the
proof of proposition

Modulo the fact that LOC,, , is (nearly) <x-closed and x*-c.c. (proved
below) we therefore easily get the following.



12 TOM BENHAMOU AND COREY BACAL SWITZER

Proposition 4.4. Let k be inaccessible and h : k — K increasing. Let
Kk < X < p be cardinals with \ regular and cf(u) > k. The following are
consistent.

(1) bp(e*) =2 =

(2) bp(e*) =op(e’) =A< u=2"
Proof. For (1) simply iterate LOC), , with <s-supports for A-many steps.

For (2) begin in a model of 2% = p and iterate for A-many steps. See [I1],
Proposition 52] for more details. O

We now examine some of the properties of LOC,, ..

Proposition 4.5 ([11, Lemma 5.1]). Assume that k is inaccessible and that
h ik — K is increasing. There is a dense set of conditions in LOC,, .. for
which the restriction to this set is k-linked.

Remark 4.6. First, to be clear, here, k-linked means that there is a partition
of the forcing notion into x many pieces, each of which has its elements
pairwise compatible. Note however this is different being x-centered forcing
notion i.e. the pieces of the partition are such that any <k-many have a
joint lower bound. The difference can be seen by the fact below.

Fact 4.7 ([1T, Lemma 59]). If £ is a strongly inaccessible cardinal, h : Kk — K
is monotone increasing and P is a k-centered forcing notion, then for every
P-name of an h-slalom, ¢, there are k-many h-slaloms, {¢, |« € Kk} € V so
that if g : kK — & is not localized by any ¢, then IFp § ¢* . In particular,
no k-centered P can add an h-slalom localizing (k)V.

Consequently LOC;, ., can never have a r-centered dense subset.
Next, regarding closure properties of LOCy,  , in [I1] it was inaccurately

stated that LOC;, ,, is </€—closedﬂ

Example 4.8. To see a counterexample, suppose ¢ is a partial slalom with
domain w, K > wy and h : kK — K is such that h(w) is countable (say the
identity). For each o < w; let F,, be a function so that F,(w) = . Then
clearly (o, Fy,) is a condition and if o < 8 then (o, F,,) > (o, F). However,
there is no joint lower bound on these w;-many conditions because any such
(¢’, F) would have to have ¢/(w) 2 wy, which is not possible. This could be
avoided by strengthening to a dense set, as we show below.

Abstracting from the example above, observe that <k-length sequences
of conditions have lower bounds if the stems all properly extend one another.
Motivated by this, let us call this the strict order, denoted mhﬁ. Con-
cretely mh’,{ is the forcing notion defined to have the same underlining
set as LOC,, ,, but with p <giet ¢ if and only if p < ¢ with the normal order

and o 2 0% By what we have seen, LOC,, , is <k-closed and (has a dense
subset which is) x-linked. It is then not hard to check that these forcing
notions are forcing equivalent.

"The proof does not include details for the claim.
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Proposition 4.9. The identity map is a dense embeddz’ngﬁ of LOC,, ,, into
LOGC;, ..

This will be useful in that we can treat LOC,, ,, therefore as a <r-closed
forcing notion, thus simplifying some of the arguments below. As such, we
will implicitly work with the strict order moving forward.

Let us note that even with the strict order, Example shows that the
forcing is not <k-directed closed. It is impossible to adjust the definition
of LOC}, ,, as we did with the strict order to make this forcing notion <x-
directed closed, since there are ZFC constraints on measurable cardinals
which ensure that certain iterations of LOC,, , will not preserve measura-
bility in general. The exact amount of directness is determined by h. The
following proposition plays a crucial in showing the optimality of our results
from the previous section:

Proposition 4.10. Suppose that A = {(0;, F;) | i < h(\)} is a directed
system of conditions such that dom(o;) < A and ;) 0i has domain at
least \. Then A has a lower bound.

Proof. Let 0 = J;epny i and F(a) = Uepn Fi(a). Note that for each
i < h(\) we have that for every a > X\ |F;(a)| < h(|o;|) < h(A) and hence
in particular |F(a)| < |h(«)|, hence (o, F') is a legitimate condition. Given
i < h(\) we clearly have o; C o, and F;(a) C F(a). For a € X\ dom(o;) let
B be such that o € dom(og). Since 03, 0; are compatible, we will have that
Fi(a) C og(a) = o(B). 0

We will need a similar result for the <s-support iteration of LOC,, ,.
Concretely, this iteration is the following. For an ordinal § we define Lg to
be the set of all partial functions p with domain a subset of § of size <k
so that for all a € dom(p) recursively we can define p() to be a L” name
for a condition in LOCy .. Moving forward, we fix this notation to refer
to such iterations. The following fact is obvious in the w case but requires
some additional work in the uncountable case.

Lemma 4.11. Let § be an ordinal. There is a dense set of conditions p in
the <r-support iteration of LOC,, , so that for all o € dom(p) we have that

p(a) is of the form p(a) = (67, F) for some o € ([r]<F)<".

Proof. By replacing the standard order by the strict order we obtain that Lg
is forcing equivalent to a <k-closed forcing notion. Similarly for each o < §
let G, denote the canonical name for the " generic and, in the extension
let this object be called G,. Note that for all @ < 8 < § we have that
Go = GgNP,. We make similar notational choices regarding things like
]Lgﬂ, the tail of the iteration. Note that by the definability of the forcing

8See [27, Def. 7.7).
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notion, for any o < § we have that L forces the tail to be simply the <x-
supported iteration of LOC,, ,, indexed by [a, ) as computed in V[G,]. We
will prove the lemma by induction on 4.

Case 1: 6 = £+ 1 is a successor ordinal. Thus L? = L? * ]L@(Ch’,{. By the

inductive assumption moreover we can pass to a dense set of p € LZ which
has the form described in the statement of the lemma. Moreover by closure
every name for a stem is forced to be a ground model sequence and, by
strengthening further we obtain the result in this case.

Case 2: § is a limit ordinal. Let p € Lg. If cf(6) > K then the support of
p is bounded in é and we can apply our inductive hypothesis. Therefore
we can assume without loss of generality that cf(d) < x and supp(p) is
cofinal in 6. Let us fix that the cofinality of § is some A < k and choose a
strictly increasing, cofinal sequence {d; | i € A} C §. Applying our inductive
hypothesis, we can recursively construct a sequence {p; | i € A} as follows:

(1) p=po

(2) pi+1 < p; and every stem appearing in p;+1 [ §; is a check name.

(3) If € is a limit ordinal then p¢ is defined as follows. First, supp(pg) =
UK5 supp(p;). Next for each a € supp(pe¢) define pe() as the pair of
names for the union of the stems of p;(a) for i < £ and the name for
the function mapping each ¢ above the supremum of the the union
of the stems to the union of the sets F(¢) for F the name for the
second coordinate of p;(a).

Unwinding the third item note that p¢(«) is simply the name for lower
bound on the p;(«)’s which exists by <k-closure (of the strict order). Note
moreover that, by applying item (2), for all 1 < £ in this situation we have
that pe [ 0; has all of its stems decided as check names since the union of
check names is literally the check name of the union. A straightforward
verification now shows that py (in the parlance above) is the desired condi-
tion. U

From now on we will treat iterations like this as restricted to this dense
subset.

Proposition 4.12. Let A < k and ¢ be any ordinal and A = {p; | i < h(\)}
is a directed system of conditions in the dense set of conditions from Lemma
of LY such that for every a € Ui<h()\) supp(p;) it is forced that the
supremum of the stems at coordinate o has length at least \. Then A has a
lower bound.

Proof. Due to the dense set we restricted to, we can argue exactly as in
Lemma {4.11] coordinate-wise. There is no issue with the iteration, as every-
thing is decided from the stems. ([

4.2. Consistency Results and Large Cardinal Preservation. Let us
apply use the iteration of LOC, ; to show that Corollary is optimal in
the sense that the bounds may fail when h # Id. The difficulty is of course
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to preserve large cardinal notions after iterating LOC, ... First notice that
certain small large cardinals are easily seen to be preserved by iterating
LOC,.. For example, inaccessibles or Mahlo cardinals, and therefore it is
possible to alter the values of b, (€*),0,(€*) and preserve those properties.

Moving a bit higher, it is alreacy unclear if weakly compact cardinals is
preserved by the localization forcing. However, there is an easy fix here by
invoking the work of Hamkins and Johnstone from [25]. Recall the following
definition due to Villaveces [37].

Definition 4.13. An inaccessible cardinal « is strongly unfoldable if for
every ordinal f and every transitive set M of size k with k € M, M |= ZFC™
and M <" C M there is a transitive set N and an elementary embedding
j: M — N with critical point s such that § < j(k) and Vp C N.

Intuitively, strongly unfoldable cardinals are to strong cardinals what
weakly compact cardinals are to measurable cardinals. Villaveces [37] showed
that strongly unfoldable cardinals are totally indescribable and in particular
[}-indescribable (i.e. weakly compact).

Theorem 4.14 (Hamkins-Johnstone, see [25]). If k is strongly unfoldable
there is a generic extension in which it is still strongly unfoldable and more-
over remains so in any further <w-closed, k*-preserving forcing extension.

Applying an iteration of LOC,, to the model above we get following im-
mediately.

Corollary 4.15. Relative to the consistency of a strongly unfoldable cardinal
the following are consistent.

(1) There is a weakly compact cardinal K so that b(€*) > k.
(2) There is a weakly compact cardinal K so that 0,.(€*) < 2~.

Note that here it is important that we can force with the strict order, as
k-strategically closed forcing notions alone might kill the weak compactness
of a cardinal.

Question 4.16.

(1) In the gap between strongly unfoldable and completely ineffable car-
dinals, is b, (€*) = k* always true? e.g. ineffable cardinals or subtle
cardinals?

(2) Can a weakly compact cardinal be the first place where b, (€*) > k™7

(3) What is the consistency strength of the statement “x is weakly com-
pact and by (€*) > k77

Next, let us move to higher cardinals, in which we know that b, (€*) and
0,,(€*) cannot be altered. The question here is about the cardinals by (€*)

and 0,(€*) where h # Id. Recall that we denote by Id*¢ the function
mapping o to the *-cardinal past «, i.e. a¢. Also 29 denotes a — 2.

Theorem 4.17. Let k be a supercompact cardinal and assume GCH. Then
there is a forcing extension Vy, in which GCH holds above k, and in Vp,
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the supercompactness of k is indestructible under L{\dﬁ, where & is below the
first inaccessible above k and X is any ordinal below k+Et1.

Proof. Let k be a supercompact cardinal, 2¢ = k%, and let / be a Laver
function [29]. Consider the Easton support iteration (P, Qs | o < &, 8 < ),
such that for every o < &, Q4 is a name for the trivial forcing unless a is
inaccessible and ¢(«) is a P,-name for a a-closed forcing notion, in which
case, we set Qq = (). Let Vy = V[G,], where G, is V-generic for P,. By
the Easton support, |P;| = x and in Vj, GCH holds above k.

Let us claim that in Vj, x is indestructible under Lf\dﬁ. By Lemma
we may restrict the form of conditions in ]L,f\dJrs to be partial functions p
with dom(p) C X of size <k (the support of p) and for every a € dom(p),
p(a) = (58, FP), such that for every v < , FE(v) is a L™ nice name for
a subset of & of cardinality at most |05 |*¢.

Let g, be Vy-generic for Ll)\dﬁ. In Vjp, let U be a normal fine Py, (kT¢)-
ultrafilter such that jy(¢)(k) = I[Jf\d%. Since My, is closed under x*¢-
sequences, elementarity implies that

jz,{(IP),..i * LIAdJrE) = ]P)n * R/\ * P(K,ju(ﬁ)) * ju(L&d+§)

We would like to lift the embedding ji; to V|G, * g.]. First, we note that
Gy * g, 18 also My-generic for Py x* Lf\dﬁ. By the x*-chain condition of
P. *H_&‘ﬁg, My |G * gy is closed under kT¢-sequences from V|G, * g,] (see for
example [14]). Now, we can construct H € V[Gy, * g,;] which is My[Gy, * g,]-
generic for P, j (+)).- This is possible since from the perspective of V|G, *
gx], and by the cardinal arithmetic assumption, there are only x*¢*!'-many
dense sets to meetﬂ However, the forcing P, j,(x)) 18 xT¢*closed from the
perspective of V[G * g.] as k1€ is below the next M -inaccessible which
makes the forcing P, ; (+)) closed (this is where the assumption that ¢ is
below the next inaccessible is used). Also note that by the Easton support,
JiyGr = G,. Hence, by the usual Silver criterion, in V|G, * gx|, ju lifts to
J : VIGx] = My|Gyg * g, * H].

Next, we lift j to V[Gy * g,;] for which we will need to construct a master
condition. The obstacle here is that ju(]Lf\dH) is not k-directed closed. So
we need to argue differently that there is a lower bound for j”g,.

For this, we note that j”¢g., = {j(q) | ¢ € G} is a collection of |\|-
many elements of ju(]L{\dH) in My[Gy * gx * H], and for every ¢ € G, and
a € dom(j(q)), dom(cl) C k. Since |A| < kT¢ = 1d**(k), we can apply
Proposition and find a lower bound p* € ju(L&d+§) for jjigs-

Finally, we can construct an My [G*g,*H]-generic filter g, for ]'M(I[.&d+€ ),
with p* € g;(,), since again there are only £**!-many dense subsets to meet

9f D € My is dense for ji(P,), then D = [f]u, where f : P, (x¢) — P(P,). Since P,

. +¢
has size &, we have that at most (2%)* = x*T'-many such dense sets.
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and the forcing is sufficiently closed. It follows that in V[Gy * gx], jus lifts,
and therefore x remains supercompact. O

Remark 4.18. It is also possible to preserve an inaccessible degree of super-
compactness. However, to do so, we would have to force V-generic filters at
for the localization forcing at those levels and transfer the upper part of the
generic along the supercompactness embedding (see [14]).

Corollary 4.19. For every n and every k < A = cf(\) < w1 4t s
consistent relative to an supercompact cardinal that bygin1(€*) = X and
K 1s measurable. In particular, for any n > 0 it is consistent that k is
measurable and byg+n+1(€*) > by (€¥).

Proof. Applying Theorem for £ =+ 1, we obtain a model such that
]L&dﬂ preserves the measurability of x. For the second part we use Theorem

B.1 O

The previous corollary answers Question 71 from [I1], also posed as [35,
Question 4.3]. Recall that by Corollary brgtn(€*) < kF17L 50 in light
of Corollary [4.19] the only remaining case is whether we can get b4+, (€*) =
kT A similar argument will now show the answer is positive. The main
point here is to strengthen Theorem

Theorem 4.20. Let k be a supercompact cardinal and assume GCH. Then
there is a forcing extension Vy, in which GCH holds above k, and in Vp,
the supercompactness of k s resilient to the <k-support iteration of length
kT of LOCyy+¢ ., where & is any ordinal.

Proof. We keep the notations from Theorem [£.17] The argument starts the
same and the problem concentrates as expected in the construction a mas-

ter condition for j;jg,. in J'u(Liﬂil)- To do that, we need a refinement of
Proposition 4.12] Fixing a < xT€+1, a stage of the iteration, by the GCH
above r, there are only k¢ nice Lladﬁ—names for a subset of x and only
kTémany functions F : k — {Lladﬁ—nice names for subsets of k}. Con-
sider j{;gx, and let us form a master condition p* € ju(LL‘irzil). First let
dom(p*) = jj;k T For each o < k7¢FL, we define p*(jy () = (0, F),
where o7, = U ¢, 04, and for each v < jy(k), F;(v) is defined to be a nice
bcon Ju(F%)(v). Tt is important to note here that F*(v) is forced
to be a collection of cardinality xt¢ = Id*¢(k) for every a, although |g,| =
£ ¢+ Indeed, there are only x*¢-many elements in the sets {F% | p € gx},
and therefore only xT¢-many elements in {j;/(F%) | p € gx}- O

name for | J

Corollary 4.21. For any ordinal £ it is consistent relative to a supercompact
cardinal, that  is measurable and b, re(€%) = kT,

Question 4.22. Is it consistent to have b+ (€%) < byg++(€*) at any regular
uncountable cardinal?
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Regarding the dominating localization numbers we can use again Theo-

rem [L.IT

Corollary 4.23. Relative to a supercompact cardinal, for every & and every
cf(A) =A< p < kTS with 67 < cf (), it is consistent that 0,_1q+e(€%) = A
and 2% = p.

Proof. From the model of Theorem [4.17| force with LLdjf\. U

Again, note that this result is optimal by since if 9, 1¢(€*) < 2%, then

2% < k7€, So the above corollary given the consistency of g+ (%) =kt <
2 = g,

Remark 4.24. Regarding the consistency strength of the statement b+ (€*
) > kT, our result show that this is consistent from what seems to be
an overkill- a supercompact cardinal. We conjecture that the consistency
strength is much lower, and in fact that it is the optimal one, i.e., a mea-
surable cardinal k with o(k) = k*T.

Question 4.25. What is the consistency strength of b+ (€*) > & at a
measurable? What is the consistency of d4++(€*) < 277

Recent results of Gitik [23] addressed a similar problem, getting the con-
sistency of b, > kT from optimal assumptions, and we conjecture that
similar methods can be used to treat Question [4.25

So far we have seen that changing the parameter h, we can play with the
value of by (€*). To round up the picture, let us shopw that we can insist
on having h = Id, altering the value of b.(€%) and d.(€%). Of course, the
answer depends on the ideal Z. For example, if 7 can be extended to a
normal ideal, then we know by Theorem that the answer is no.

Let us show that there are ideals Z for which the value can differ: Suppose
that Z = J5[X*], where X* = {a™t | & < s} is the set of double successor
cardinals. Namely, Z* (the dual filter) is generated by sets of the form
X*\ € for £ < k. There is a similar forcing to LOC,, that adds a localizing
(k,Z*)-slalom:

Definition 4.26. Let LOCZ" consist of conditions p = (o, F') such that
dom(c) = X*NAP + 1 and F : X* — P(k) is such that for every every
a € X*\ VP +1, |F(a)] < (v?)*. The order is completely analogous to
LOC,.

It is important here that Z is chosen concretely so we can force a set in
I* by initial segments. To that end, the choice of X* has some degree of
freedom. Again, the forcing LOCL" is s-linked, has an equivalent suborder
which is k-closed, and adds a (k,Z*)-slalom ¢ such that for every f: k —
k € V with {a < k| f(a) € p(a)} € ZT. We can iterate this forcing as
before, and the iteration produces a model where b, (€Z") > x™.

Theorem 4.27. Relative to a supercompact cardinal, it is consistent that
be(€T) > K.
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Proof. The proof again is similar to Theorem we iterate the forcing,
exploiting the fact that Z* has a canonical definition and we keep the no-
tations from All the proof goes through without any changes, except
the part where we have to find a master condition above j;;g.. To do that,
we can simply note that x,x" ¢ jy(X*), and therefore there is no risk by
taking unions of x**-many sets at each coordinate in jy(X*) \ &, to form
Ju(F2). O

5. CLUB LOCALIZATION FORCING

The ZFC results from at measurable apply equally well for the non-
stationary ideal at k. In this section we consider a variant of LOC,, ,, for
adding a slalom capturing every ground model element of k% on a club and
use this to show that the bounds are optimal for club capturing as well.
Nevertheless, in contrast to [15], we also show that the localization numbers
for club capturing are not equal to the mod bounded counterparts, even at
a measurable cardinal.

Definition 5.1. Let h : Kk — K be strictly increasing, ]L(O)(Cffﬁ consists of
pairs (o, F') where o : ¢ — P(k) for some closed, bounded ¢ C k such that
lo(a)] < |h(a)| foreach a € ¢. F : k — P(k) is a function such that |F(«)| <
|h(max(c))| for every o < k. Define (o, F) < (7,G) if o end-extends 7 i.e.
o =71 [ dom(7) and G(a) C F(«) and for every a € dom(o) \ dom(7),
G(a) Co(a).

Note that generically, the domain of the slalom we are building will be a
new club subset of x (indeed, it will be generic for the standard forcing to

add a club via bounded approximations). Again an easy density argument
shows the following.

Proposition 5.2. Suppose that G C ]L(O)(Cfllﬁ is V-generic and let p =
U(U,F)GG’U then ¢ is a (cl, h)-slalom and for every f:k -k €V, f €% ¢.

Similarly we have the following.

Proposition 5.3. Let k be inaccessible and h : kK — kK monotone increasing.
Let k < A < p be cardinals with X regular and p of cofinality >rk. The
following are consistent.

(1) bp(e?) =28 = A

(2) wp(eh) =A< p=2"

We now again examine some of the key properties of L@CZ{ ..» emphasizing
the differences with LOC;, .

Proposition 5.4. Assume that k is inaccessible and that h : Kk — Kk is
monotone increasing.

(1) L(O)(Cffﬁ is K-closed.
(2) I[.,(O)(Cfi,£ is K-centered.
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Proof. We remark that this is different than the case of LOC,, ,; as we obtain
a genuine <k-closed poset, with no need to pass to the strict order. Let
(pi | © € v < K) be a decreasing sequence of conditions of some length
v < k. If the stems of the conditions properly extend cofinally often then
we can obtain a lower bound in almost the same way described in the proof
of Proposition [1.5] Concretely, if A <  and {(0;, F;) | i € A} is a decreasing
sequence of conditions with strictly increasing stems then as before we get
that |(J;c\ Fi(sup(o;))| < h(sup;ey|oi]). This allows us to define a lower
bound. The difference is now because the domain has to be closed we need
to extend the union of the stems to one more point. This is now easy because
we can append | J;c, Fi(sup(o;)) to the union of the stems.
If the stems stabilize at some initial stage, then we can simply find a
o 2 U, 0i, where o; is the stem of p; so that dom(o)\dom ;. o; consists
of a single point ¢ larger than + and hence in particular large enough that
o(§) 2 Use, Fi(§) for F; the second coordinate of p;. We remark for later
purposes that this ¢ depends not only on the stems but also on the functions
E;.
For (2), since k = k<%, it suffices to show that if A\ < k and {p;};c) all
have the same stem then they have a lower bound. This is exactly however
as in the first paragraph as we can omit ordinals from the domain to find a
lower bound whose next point is large accommodate the promises. O

A consequence of this fact, using [I1, Lemma 59] is that the forcing
]L@(Cfllﬁ does not add an h’-slalom capturing the ground model elements
of k" for any A’ € K NV which is monotone increasing. This is also true
for iterations, assuming they are of length at most (2%)*, a fact whose proof
however we delay until later.

We also note for later that L(O)(C,Cll .. is not directed closed, as can be seen
by an example similar to that of Ex7ample

Example 5.5. Partition w; (for example) into w many pieces, say {A,, | n <
w}. Let for each n < w and each a € A,, the condition p, o = (0p,a: Fna)
be defined as follows. First, the domain of oy, o is n and for each k < n we
have oy, o (k) = k. Let F}, o(w) = {a} and be the empty set otherwise. Then
all the py o’s are compatible (and there is only wi-many of them) but any
joint lower bound (o, F') would have to have F(w) = w; and w € dom(o),
which is not possible.

However it has the same “almost”-directed closure. The proofs of these
are nearly identical to the corresponding facts for LOC,, ,, however the same
difference appears again.

Proposition 5.6. Suppose that A = {(04, F;) | i < h(\)} is a directed
system of conditions in ]L(O)(Cff’ﬁ such that J;cp(y) dom(oi) > A or there an
i < h(X) so that o; O oj for all j < h(X). Then A has a lower bound.
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Proof. The proof is nearly verbatim as that of Proposition except for
the case that o; O o; for all j < h(\). Here, however the exact same
argument for centeredness works.

O
Let us now explore properties of iterations of L@Cin.

Lemma 5.7. The set of conditions p so that if & € dom(p) then p | « forces
that p(«) has its first coordinate a check name is dense. In other words, the
set of conditions where all stems are decided is dense.

Proof. || Let Lg’h be the -length iteration of }L(O)(CZ{H with <k-support and

cl,h cl,h cl,h . Lebh . .

L a3 the Lo -name for L,"" as computed in V= | where v is the unique
ordinal such that o ++ = 8. Fix an ordinal § and assume inductively that
for all @ < 8 < § we have that L™ forces that L;lg has a dense subset
consisting of conditions whose stems are check names. We want to show
that the same holds for @ < §. The case where § is a successor ordinal
follows directly from the induction hypothesis. Hence let us assume ¢ is a
limit ordinal. Let p € Lgl’h. If supp(p) is bounded below § then again the
induction hypothesis suffices so we assume that the support of p is cofinal
in 6. Note this implies moreover that cf(d) := X\ < k. Let {§; | i € \} C§
be cofinal and strictly increasing.

By mimicking the proof of Lemma [£.11] we obtain a g, which almost a
condition in the sense that ¢ is a function with domain a subset of § whose
cardinality is less than ~ and for each a € dom(q) we have that g(a) is a
L& name for a pair (59, F99) so that the following hold.

(1) 9% is a check name for an h-slalom whose domain is closed in its
supremum. Denote by ¢ the sequence whose check name is 62 and
let v be the supremum of the domain of o.

(2) F9 is a function from [y, x) so that for each & € [y, x) we have that
Foo(€) is forced to have size h(7).

(3) Foreveryi < Athereisap) € Lgi’h so that p} < p [ d;, ¢ < p; (modulo
the fact that ¢ is not a condition as its stems are not closed) and p/
forces that for all a € [d;,d;4+1) N supp(q) that ¢(«) with the stem
restricted to some £ < v is a condition strengthening p(«).

In short, ¢ is essentially what we want, except that the stems might not
be closed in their supremum. However they already extend some condition
which forced that some restriction of the stem was strengthening p coor-
dinate wise. Now, applying the <k-closure we can find a single ¢’ which
strengthens ¢ and decides the top node of each stem to be some check name.
This ¢ itself may not have its stems be check names, but it determines val-
ues for the top of the stems from ¢ and putting these on top is the desired
condition.

1OUsually these kind of proofs use canonical lower bounds (see Definition below),
which are not available here by Lemma Thus, the proof is done by hand.
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U
Using this we have the analogue of Proposition

Proposition 5.8. Suppose that ¢ is an ordinal and A = {p; | i < h(\)} is
a directed system of conditions in the dense set of conditions described in
Lemma of the length §, < k-support iteration of IL,(O)(C‘;L{N such that for
every a € U, cp(n) supp(p;) either one of the alternatives of Pmposz'tz’on
then A has a lower bound.

The proof is nearly identical to that of Proposition [4.12]so we omit it.

Definition 5.9. Let x be a regular cardinal and PP be a forcing notion
which is <k-closed and r-centered as witnessed by P = (J,.,. P;. We say
that P has canonical lower bounds (as witnessed by f) if there is a function
f : k<" — kK so that for every A\ < k and every decreasing sequence of
conditions {p; | i € A\} (if i < j then p; > p;) with p; € P, for all i < X\ we
have that there is a lowerbound p* on the sequence in Py icn))-

If P is <k-closed and x-centered with canonical lower bounds we will sim-
ply write that P has clb. Note that if P has clb then it is <x-closed and
kT-c.c. so in particular it will not collapse cardinals, a fact used implicitly
and repeatedly in what follows. Most standard examples of k-centered gen-
eralizations of forcing notions that are well known in set theory of the reals
to the higher Baire spaces have clb. Interestingly, the next lemma shows
that L@(Cﬁl’ﬁ does not have clb.

Lemma 5.10. Suppose that P has clb and h : k — & is a function. If ¢
is a P-name for an h-slalom there is a function g : k — r € V such that
e g € ¢

Proof. Let f : k<" — K witness that P has canonical lower bounds. Let
P = UV < Py be the centered pieces. For each v < « let ¢, be the slalom

defined by ¢,(8) = {6 | 3p€ P, pl- 6 € ¢(B)}. Since P is s-centered this is
an h-slalom. For each a < x denote by s(a) the set of all functions of size
at most a with domain and range subsets of «. Let g : Kk — & be such that
for each o < k& we have g(a) & Usey(a) @1(s)(). Note that such a g exists
since |s(a)| x h(a) < k since k is strongly inaccessible.

Now towards a contradiction suppose p € P forces that C' names a club,
and for all 8 € C we have §(8) € ¢(8). Let @ >> x be sufficiently large and
let M < Hy be a model so that p,P,C, g, ¢, s € M and |M| < k. Moreover
assume that if 7 := sup(M N k) then M is closed under <~-sequences and
that |M| = ~. In particular M N~ = . This is possible by inaccessiblity.
By recursion using the <r-closure define a sequence pys := {p; | i < § < K}
so that py; generates an M-generic filter. Note this is where we need the
closure - as we need to assume that the initial segments of the sequence are
in M. For each i let p; € P,, and note that 7; € M and hence ~; < v with
po = p. Let s = (y; | i € ) and note that s € s(y). Thus by construction
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we have g(7) & ¢ys) (7). Now let ¢ € Py(,) be the lower bound on the p;’s
given by the canonical lower bounds. We have by density plus the fact that
~ N M is cofinal in + that ¢ IF v € C and hence ¢ IF §(¥) € ¢(¥), but this
contradicts the sentence a few lines ago. ([

Intuitively, the reason why clb fails for ]L(O)(CZ{K is because the domain is
required to be a closed set and hence if we take a sequence of conditions with
strictly increasing stems we cannot simply put their union as the stem of the
lower bound. Rather we need to extend to the closure of that union. Then,
we are required to state explicitly which ordinals the slalom captures at the
closure point. This cannot be decided from the stems alone - an observation
we remarked upon in the proof of the k-closure of the forcing. In the next
section, we will put these facts together to obtain several inequalities.

5.1. Consistency Results and Cardinal Characteristic Inequalities.
We continue our discussion from the previous section on ]L(O)(Cfi . and obtain
several consistent cardinal characteristic inequalities. These results hold for
an inaccessible cardinal k but the proofs are flexible enough that we will be
able to apply them to preserve larger cardinals when interwoven with the
lifting arguments from § First, we separate the standard localization
numbers from their club variants. The following lemma gives the requisite
preservation result.

Lemma 5.11. Let x be strongly inaccessible, let h,h' € k" be monotone
increasing functions and suppose B < (2°)*. The <rk-support iteration of

L@(Cffﬁ does not add an h'-slalom capturing all of the ground model elements
of K".

Proof. Since for B = (2%)", no new elements of k* are added at the final
stage, it suffices to consider the case where 3 < (2%)* and hence we by [11,
Lemma 59] we simply have to show that §-length iterations are k-centered
in this case. By Lemma we can treat every element of the iteration as
having all stems be check names so we restrict to this set.

The key point is that the iterands are <x-centered by Proposition |5.4]and
the centered pieces are simply the ones with the same stem. The rest of this
argument is almost exactly as in [I1, Lemma 55], however there, canonical
lower bounds were used, which are not available here so we go through the
details. As [ < 27 there is an injection from S to 2 given by a — f,.
Denote by Fj the set of all functions f with domain 2° and range the set
of stems of conditions in I[,,(O)(C‘fi,€ for each § < k. Note that this set remains
the same in all iterations by the < closure. Let F := (J,c,. Fi and note
that this set has size & since 2 has size < by inaccessibility and K<k = .
We remark that if f € F and = € 2 then f(z) is a stem and hence it makes
sense to say things like p [ o -5 p(a) = (f(x), F,). For each f € F let

Pp={peL{" | V¢ € supp(p)p | € IFg (&) = (F(fe | 0), f}
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cl,h

where F is some ]L -name for a function and ¢ is such that the domain of f

is 20. We need to see that these sets are <k-centered and cover some dense
subset of Lg’h. To see centeredness take some f € Fs for some § < k and let
{pi | i € A} be a set of conditions in Py for A < k. If £ < § then for all i < A
we have that if £ € supp(p;) then p;(§) is forced to have stem f(fe | 9).
As any family of A-many conditions with the same stem are forced to be
jointly compatible this shows that the set {p;(§) | i € A\} are forced to be
compatible. Since £ was arbitrary this completes the proof of centeredness.

To show this set is dense, take simply a condition p € Lg’h
assume has all its stems as check names. Now let d be large enough so that
for all £,m € supp(p) we have fe [ § # f, [ §. Now consider any function
[ € Fs so that f(fe) = s if and only if p [ & forces that s is the stem of
p(§) = s. Clearly p € Py for such an f. O

which, we

As an immediate consequence, we have the following.

Theorem 5.12. Let h,h' € k" be strictly increasing. The following are
consistent.

(1) bh(E*) =KrT < bh/(ed) =gtT

(2) o (€)= Kkt <op(e¥) = wtt

Remark 5.13. Part of the interest in this result is that it contrasts with
the case of b and 0 which are provably equal to their club versions on an
inaccessible (and less), see [15].

Proof. For (1), simply begin in a model of GCH and iterate with ]L(O)(Cff,’ﬁ.
By Lemma this suffices.

For (2), again assume GCH and first add x*+-many Cohen subsets to .
Enumerate these as {c, | @ € k™7} and work in Ve, | @ € k*]. In this
model we will have that Dh/(ed) = 0(€*) = kT = 2%, Now perform a

KT length iteration of L(O)(C . Since this forcing notion is x-centered by
Lemma we can apply [11 Lemma 59] to observe that there are k-many
slaloms {¢, | @ € K} in V]c, | @ € k7] so that any function avoiding all
of them will be forced to avoid any particular qb for (;5 a name for a slalom.
Suppose now towards a contradiction assume that 9,(€*) = x*. There is
then name for a single h-slalom ¢ forced to capture x*+-many of the cq’s
However, by the above fact, the corresponding family of {¢, | « € k} will
already exist in some intermediate model of V[c, | & € kT 1] containing only
rk-many of the Cohen subsets. Note that then, the rest of the Cohen subsets
will avoid the ¢,’s, which contradicts the assumption of gb O

As we mentioned in the preliminaries section, b(c*) < b(€%) < b(p €*)
, and dually 9(€*) > 9(€) > o(p €*). Having separated the first two of
these we now separate the next two. We refer the reader to [18, Definition
4.4] for the definition of the higher Mathias forcing, M(F).
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Lemma 5.14. Let < (2%)" be an ordinal. Inductively define a <k-
supported iteration {Po, Qq | a < B} by allowing Fy to be a Py-name for a
<k-closed filter on k and I, Q, = M(j—"a). Then g “For every h € "NV
which is monotone increasing there is no h-slalom ¢ so that f €% ¢ for
every f € k¥ NV 7. In particular it is consistent that p,. = pu > b (€%) = w7
is consistent for any reqular p > k™.

Proof. Let f3, {fa}a<5 and h be as in the statement of the lemma. By [T,
Lemma 55| we can pass to a dense set and hence assume without loss that
if p € Pg then for all & € supp(p) there is an s € k<" so that p | « IF
p(a) = (3, A) for some A. Let us restrict to this dense subset. Since no
new slaloms are added at stage (2%)* we can assume that 3 < 2%. By [I8],
Lemma 4.5] M(F) has clb for any x-complete F and hence by [1I, Lemma
55] the iteration is k-centered. In general, it is not clear that Pg has clb,
but in this specific case it turns out to be true, a fact we show now. By the
Engelking-Karlowicz theorem, [16], there are functions f; : 8 — k<" so that
every partial function from 3 to k<® of size <k is contained in one of the
fi’s. Let P; be the <k-centered set of conditions p so that if £ € supp(p)
then the stem of p(&) is f;(£).

Proposition 5.15. If k is measurable then p, < 5.

Proof. Let pn < p, and let {A; | ¢ € u} C [k]". Let U be a measure on K
and for each 7 < p let X; € U be such that either X; N A; = 0 or X; C A;.
Applying p, > p we can find an X* C* X, for all i < p and hence X*
witnesses that {A; | i € p} is not a splitting family. O

We note that it is not always the case that s, > p,, since it is possible
that s, = k. Even if 5, > x (which is equivalent by Suzuki to x being weakly
compact), it is still possible that p, > 5.

First, as a preliminary observation observe that if f : § — k<" is any
(partial) function and pg, p1 € Pg are such that supp(po), supp(p1) € dom(f)
and for all ¢ < 2 and for all £ € supp(p;) we have that f(§) is the stem of
pi(§) then po and p; are compatible. Note moreover this will be true for
not just two conditions but any family of less than x many will be jointly
compatible under these conditions.

Next, for any sequence of f;’s of length A\ < k, say f = {fie 1§ <A}

<K

define a function lim f as the (partial) function from f to x<* defined by

—

lim f(a) = s € k<" if and only if for a tail of &€ < n < A\ we have that
fie(a) C fi,(a) and s is the union of the f;.(a)’s. In other words take
the coordinate wise union of the stems given by the f;’s if this is defined
(on a tail) and leave it undefined otherwise. Note that, by the previous
paragraph, if {p; | i < § < k} is some family of conditions of size <k all
of whose supports are contained in the domain of lim( f ) and whose stems

—

agree with lim(f) then they have a joint lower bound. Let us say that a

—

condition like this is compatible with lim(f). The point is the following.
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Claim 5.16. Let A < k and let {p; | i € A} be a decreasing sequence of
conditions so that for each i we have that p; € F,. Iffdenotes the sequence
of functions (fe, | i < \), then there is a lower bound on the sequence p*
compatible with lim(f).

Proof. Let p* be the greatest lower bound of the sequence. In other words,
for each a € |J;_, supp(p;) we define p*(a) to be (o7, A*) where ¢* is the
check name for the union of the stems in the aP-coordinate of the p;’s and
A? is the name for the intersection of the second coordinates (which exists
by <k-closure of the functions). For each a € supp(p*), note that there is
a tail of i < A so that a € supp(p) and for this tail the set of f¢, (a)’s is

increasing hence a € dom(lim f) and is equal to the stem of p*(«). The rest
is now clear. g

Given any sequence f of the functions f; of length less than «, let @ 7

be the set of conditions compatible with lim f Note that by choosing f to
be the constant function for some fixed f; we recover P; and hence a dense
subset of Pz is covered by the @ f’s. Note that since k<" = k there are only

K many sequences f But now the proof of the claim above gives that the

map f +— lim f gives canonical lowerbounds, which completes the proof by
Lemma [5.10)
O

A consequence of this lemma is the following.

Theorem 5.17. Assume GCH. Let k be strongly inaccessible and h : Kk — K
strictly increasing. There is a cofinality preserving forcing extension in which
br(e?) =kt < po=rtT.

Proof. Simply iterate to force with all possible M(F) as in the description
of the lemma above. Clearly good enough bookkeeping will ensure that
pr = kT holds in the extension while by, (€*) = k™ will be witnessed by the
ground model functions - this is the content of Lemma O

Since p,, < b(p €*) we have the following immediate corollary.
Corollary 5.18. It is consistent that by, (€%) < b(p €*).
Regarding p, it turns out the other inequality is also consistent.

Lemma 5.19. Denote by Add(x, ™) the standard forcing to add k% many

Cohen subsets. If p > k™ is a reqular cardinal and ]LZ is the Add(k,k™)-
name for the <r-supported iteration of LOCy, ., (for any h € V') of length

w. Then Add(k, k™) * LZ forces that p, = kT < bp(€*) = p.
This is similar to the proof of [I8, Theorem 4.8].

Proof. Let ¢ = {c; | i € kT} denote the generic Cohen subsets added by
Add(k,xT). We want to show that this forms a witness to p, = xT after
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forcing with ]LZ Applying Lemma to Add(k, m+) * ]LZ We can assume
there is a dense set of conditions of Add(k,k™) x }LZ of the form (p,a, F)

where @ € V is the set of stems of the conditions in the support and p I F'
is the set of possible promises in the support. Moreover by the x*-cc it’s
clear that if & is a Add(k, k™) *]LZ name for a subset of x then the transitive
closure of (a nice name for) & is coded by a set of ordinals of size x and in
particular there is a v < k™ so that & € Vi¢; | i # 4]

Now suppose that & is such a name. Let’s show that it isn’t a pseudo-
intersection of & Let v be as above for . We want to show that I- & Z* ¢,.
Suppose that there is an & < & so that (p,a, F) IF &\ & C cy. Now let y D p
be one Cohen generic and let 3/ = y° N [dom(p), k) Up. This is also Cohen
generic. Then V[y] = V[y/] so in this model there are the conditions (a, F¥)
and (@, F¥") which are compatible since they have the same stems. Pick a
common strengthening (b, G) which, without loss of generality also decides
some § € &\ (£ Udom(p)). But § is only in one of y and 3’ which is a
contradiction. O

In [31] Raghavan and Shelah showed that, contrary to the countable case,
5, < by for any regular, uncountable cardinal. Nevertheless this is not the
case if we replace b, by by (€*).

Lemma 5.20. Assume GCH.

(1) If k is strongly unfoldable there is a forcing extension in which K is
still strongly unfoldable and s, = k't < bj(€%) = bp(€?) = X for
any reqular A > k.

(2) If k is supercompact then there is a forcing extension in which by (€*
) = bp(€) = vt < 5, = A for any regular A > .

Proof. We being with Item (1). This is essentially the same as the proof of
Lemmal[5.19] It is easy to show in the above that the family of Cohen subsets
we added will be a splitting family in the final model. The assumption of
strong unfoldability is simply needed to ensure, by Theorem that (after
preparation) we can assume £ remains strongly unfoldable and hence weakly
compact in the final model so that we can have s, > x - which will fail
otherwise by Suzuki’s theorem from [33].

Similarly, if x is indestructibly supercompact then we can force p, >
xT while preserving by (€?) = x* for any monotone increasing h : xk —
k. Therefore, it suffices simply to see the following claim. Recall that by
Proposition [5.15| 5, > p, on a measurable cardinal.

O

Putting together all of this, we get the following.

Theorem 5.21. If k is inaccessible then by, (€*) and by (€%) are independent
of vi. If Kk is supercompact then this is true of 5, as well.
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5.2. Consistency Results at a Measurable for Cardinal Invariants.
The observant reader will notice that none of the lifting arguments presented
thus far interfere in any way with the forcing arguments used to obtain the
cardinal invariant inequalities in Subsection Similarly all of the above
results could have been proved for the club variant. As such we obtain
the following theorems, each of which has a proof almost analogous to the
corresponding results in Subsection First we note that the foregoing
could have been done for the club variant and in particular the following
holds.

Theorem 5.22. Relative to a supercompact cardinal, for every & > 1 the
following are each consistent.

(1) There is a measurable cardinal  and b, 1qre(€) = kTS > kT In
particular, byyre(€) > b(€). ’

(2) There is a measurable cardinal £ and 0,_1qrer1(€9) = kT < T4 =
2. In particular, Oy ver1(€) < DH(ECZ)j.

Next we note that since the above is simply obtained by some forcing

with an iteration of }L(O)(Czlﬁ we can apply Theorem to this situation to
obtain the following.

Theorem 5.23. For every &y, &1 > 1, relative to a supercompact cardinal k
the following are consistent.

(1) & is supercompact and byy+e, (€) =
(2) & is supercompact, kT < cf(X) < A
and 2° = g1OT =0 |11 (€7),

KT and 0, g (€9) = X

Finally we note that similarly at a measurable we can obtain both in-
equalities for comparing p,, and s, and the bounding number for either the
standard eventual capture relative to Id*¢ or the club variant.

Theorem 5.24. For every £ > 1, relative to a supercompact cardinal x it
is consistent that k is measurable and and of the following hold.

(1) bygre(€) = brgre(€Y) < s = Py

(2) bId+€(€*) = bId+€(€Cl) > 85k = Pk
In particular bygie(€*) and byyre(€) are independent of p. and s, and
bygre(€) can be strictly less than b.(p €*) at a measurable.

6. COVERING AND COFINALITY CORRECTNESS OF THE ULTRAPOWERS

Our bounds on bp(€*) at the case of a measurable cardinal were
obtained by the ability to cover the functions below the ([h];)™vU. Let us
state the exact covering property we can extract from a large by(€*):

Proposition 6.1. Let h : Kk — K be any function. If bp(€*) > A, then
for every o-complete ultrafilter U and set X C jy(k), |X|Y < X, there is
Y € My, My = Y| <|[h|u]| such that X C Y.
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Proof. For each z € X, set a representing function f, i.e. [f;]y = x. Since
H{fe | z € X} = |X| < bp(€¥), there is an h-slalom ¢ such that for every
x € X, fr € p. Let Y = [p|ly € My. Then My = |Y]| < |[h]y| and for
every z € X, x = [fz]u € [¢]u- O

Corollary 6.2. For every ordinal X\ with cfMv(\) < ju(k), if cfV(\) <
bu(€) then f Mo () < [[B]y]

Suppose that [h]y = kT and by, (€*) > kT, then the previous corollary says
that My computes cofinality T ordinals correctly as long as they are not
greater than ji(k). One particularly interesting choice of A is A = (k+1)Mv:

Corollary 6.3. Suppose kT < byy+(€*) then for any normal ultrafilter U,
it = (k)Mo

In relation to Question this corollary puts some restrictions on the
kind of embeddings we can expect to lift in order to show that x is a mea-
surable cardinal with b +(€*) > k™. To see further restrictions, consider
the following example:

Example 6.4. If we try to force byg+(€*) > s* from less than super-
compactness, we need to create a normal ultrapower which computes £+
correctly. One standard way of doing this is due to Woodin (see [14]): start
with a (k, kT T)-extender E and then lift jg to an ultrapower embedding in
a generic extension which preserves cofinalities. Such ultrapowers are not
going to work for a different reason—the ordinal jg (k). It is inaccessible in
My, but has cofinality x* in V in contrast with Corollary

6.1. On the V-cofinality of jy(x). Example illustrates a situation
where we should consider the cofinality of jiy(k). In this case, if we would
like to obtain models where bj;+(€*) > kT we need to be able to have
embeddings cf" (jy(k)) > k. For example, in the Kunen-Paris Model
[28] or the Friedman-Magidor Model [20], we can even argue that for every
ultrafilter U, c¢f" (jy(k)) = kT for any normal ultrafilter U. The reason is
that whenever we force over a model of GC'H and lift an extender /ultrafilter
embedding from the ground model, jy (k) is always going to have cofinality
k. We have the following bound for jy(k):

Proposition 6.5 (Folklore). Let k > w. For every o-complete ultrafilter U
over 1, b, < cfV (ju (k) < 0,.

We have uniform bounds for c¢f(jy(k)), so it is reasonable to conjecture
that cf(jy(x)) might not depend on U. This invites the following interesting
question:

Can there be two ultrafilters U, W such that cf" (ju (k) # cf¥ (Gw (k))?

By Propositions another scenario in which we get a single cofinality
(which is not necessarily ™) is:
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Corollary 6.6. Suppose that b, = 0, = A, then cfY (ju(k)) = X for any
uniform ultrafilter on k.

In particular, this situation occurs if by(€*) = 2. In [§], the cardinal
invariants b,, 0, were used to show that there can be at most one A for
which there is a simple P)-point.

Definition 6.7 (Benhamou-Goldberg). An ultrafilter U over k is called a
simple 7 Py-point if 7p(U) = wch(U).

Corollary 6.8. If there is a simple wPy-point, then for every uniform ul-
trafilter U on r, cf¥ (ju(k)) = \.

The above applies to several models of importance:

Corollary 6.9. In the following models, there is cfY (ju(k)) is unique:

(1) The extender-based Magidor-Radin models [8].
(2) The iteration of generalized Mathias forcing [12].

Let us restrict ourselves to model where b, < 0,. The simplest forcing
which does that is the good old Cohen forcing. M. Canjar [13], exploited
this situation in the Cohen model to obtain ultrafilters on w with varying
cofinalities. He used the filter extension property and properties of the Co-
hen generic reals. If we would like to work below the levels of super and
strongly compact cardinals, the filter extension property is not available any-
more. Fortunately, this can be replaced by Woodin’s surgery argument, and
a later improvement due to Gitik [21], which stays in the optimal framework
of a measurable cardinal with Mitchell order o(k) = k™. For the proof, see
[14]:

Theorem 6.10. Assume GCH and suppose that there is an elementary
embedding j :' V — M such that:

(1) ()" =kt

(2) there is a function f: k — k such that j(f)(rk) = kTT.

(3) M" C M.
Then for every V—generiE G C Py« Add(k, k™), j lifts to an ultrapower
by a normal k-complete ultrafilter U over k. In particular, ju(k) = j(k).

These kinds of embeddings were used in [24] and in [22]

Theorem 6.11 (Gitik [21]). Assume that there is a coherent sequence U
of length k™. Then it is consistent that there is a forcing extension where

GCH holds and there is a commutativﬂ Rudin-Keisler increasing sequence
<Ui ’ 1< /{H').

HThe forcing Py is the Easton support iteration of Add(a, f(c)) for every inaccessible
a < K.

12A Rudin-Keisler increasing sequence is commutative, if the Rudin-Keisler projections
Ta,s commute. Namely for every oo < 8 < 7, Ta,y = T3,y 0 Ta,3-
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Corollary 6.12. Relative to a measurable cardinal xk with o(k) = xTT,
it is consistent that there are two k-complete ultrafilters U, W such that

cfV (ju (k) # ef¥ (iw (k).

Proof. Work in the generic extension V of Theorem [6.11] Let us produce
two embeddings j* : Vo — M® and ;@ : Vj — M® as in Theorem
each witness a different cofinality of j(i)(/{). Indeed, we let jy, : Vo — My,
be the ultrapower embedding of Vy by U;. For i < j there is a factor map
kij : My, — My, defined using the Ruding Keisler projection 7; ; of U; to
U; by ki j([flu,) = [f o mijlu. Tt follows that ji; = ki j o ju,. It is not hard
to check that the commutativity of the system U = (U; | i < k1) ensures
that the functions k;; commute and therefore we may take a direct limit
My = dirlim (My,, ki j | i < j < kTT). Let joo : Vo — Moo be the direct
limit embedding of the system (ju,, ki | i < j < xT1). By the GCH in 1,
it is not hard to see that k1 := joo(rk) = k71, and that M% C M, but
there cannot be a function f : k — k such that joo(f)(k) = KT = joo (k).
To overcome this problem, we follow the proof from [21 §2, p.212], we
may assume that V{ is a generic extension of a ground model V by an
Faston support iteration of adding one Cohen function f, : @« — « for every
inaccessible a < k. Suppose Vpy = V[H][fx], where H is V-generic for the
iteration up to (not including) x and f, is V[H]-generic for Add(x,a). to
obtain the embedding j(1), take again the direct limit by jso (U) starting from
M. We obtain j/ : Moo — MM with ke = §'(k1) = (kfT)Me > gtt,
By elementarity of j/ o j, note that M) is a generic extension of a ground
model M, = j'(joo(V)), namely MW = M, [j(joo(H))][fL,]- Let us change
one value in f]  : kg — kg, by setting fy,(k) = «TF and fs,(a) = fi,(a)
elsewhere. Then clearly, f., remains M, [j'(joo(H))]-generic, and M) =
ML Goo (O] = Mol Gioo (E)) L)

Finally, we let j® : Vj — M® be defined by j | V = j/ 0 joo | V and
G(H) = j'(joo(H)) and jM(f.) = fx,. To summarize, we have that:

(1) Cfv( J(k)) = efV (joo (K1) = KT

(2) G (fe)(r) = KT

(3) (M) € M),
For the embedding j®, we do something similar to the above which is
exactly as in [21], applying the ultrapower by joo(Uo) from j;_ (1) : Moo —
M@ and changing the value of Jjoo (U0) (Joo (f)) (k) to be k. This produces
an embedding j® : V — M® such that j® (k) = Jjoe (o) (Joo (k). We
conclude that 7 satisfy:

(1) efV ([P (R) = efY (joo(wT)) = KT

(2) 5@ (fe)(r) = .

(3) (M@ M3,
We may now apply Theorem to obtain that in the generic extension
by Py + Add(k, x*), we may lift j), 5?) to normal ultrapower embedding
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Ju@, Jue respectively, and cfv(jU(l)(m)) = kTt while ch(jU@)(/i)) =KT,

as

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

wanted. 0
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