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ABSTRACT. We study two problems regrading the cofinal type of Fubini sums of ultrafilters
and the commutativity of cofinal types with respect to Fubini products of ultrafilters. Our
main result is that the cofinal type of sums of ultrafilters is the infimum Tukey-type of a
natural class of cofinal types. We then use this result to prove that the class of ultrafilters 𝑈
such that 𝑈 ⋅𝑈 ≡𝑇 𝑈 ×𝜔𝜔 is closed under Fubini sums. We conclude that for a large class
of ultrafilters, which includes all known examples, commutativity of cofinal types holds.

0. INTRODUCTION

In this paper, we study two questions regarding the cofinal type of ultrafilters. By the
cofinal type of an ultrafilter 𝑈 , we mean the Tukey-equivalence class of the ordered set
(𝑈,⊇). Before we reveal those question, let us lay out the definition of Tukey equivalence
and the Tukey order [18], which traces back to the study of Moore-Smith convergence of
nets in Topology. Given two posets, (𝑃 ,≤𝑃 ) and (𝑄,≤𝑄) we say that (𝑃 ,≤𝑃 ) ≤𝑇 (𝑄,≤𝑄)
if there is a cofinal map 𝑓 ∶ 𝑄 → 𝑃 , that is, 𝑓 () is cofinal in 𝑃 whenever  ⊆ 𝑄 is
cofinal. Dually, Schmidt [17] showed that the existence of a cofinal map is equivalent to
the existence of a map 𝑓 ∶ 𝑃 → 𝑄, which sends an unbounded set  in 𝑃 to an unbounded
set 𝑓 () in 𝑄. These are called unbounded maps or Tukey reductions. We say that 𝑃 and
𝑄 are Tukey equivalent, and write 𝑃 ≡𝑇 𝑄, if 𝑃 ≤𝑇 𝑄 and 𝑄 ≤𝑇 𝑃 ; the equivalence class
[𝑃 ]𝑇 is called the Tukey type or cofinal type of 𝑃 .

The problems we are interested in regard the correspondence between the Tukey order
and Fubini sums and products: Given ultrafilters 𝑈, 𝑉0, 𝑉1, 𝑉2, ... on 𝜔, the Fubini sum over
𝑈 , is an ultrafilter on 𝜔 × 𝜔, denote by

∑

𝑈 𝑉𝑛 consisting of all 𝐴 ⊆ 𝜔 × 𝜔 such that for
𝑈 -many 𝑛’s, then 𝑛th fiber of {𝑚 ∣ (𝑛, 𝑚) ∈ 𝐴} is in 𝑉𝑛. The Fubini product of 𝑈 and 𝑉 ,
denoted by 𝑈 ⋅ 𝑉 is defined as the Fubini sum over 𝑈 of the constant sequence 𝑉𝑛 = 𝑉 .

Here are the two main question this paper is concerned with:

Main Question 1. What is the Tukey-type of
∑

𝑈 𝑉𝑛 in terms of the Tukey-types of𝑈, 𝑉0, 𝑉1, ...?

Main Question 2. If the Tukey order on ultrafilter commutative? Namely, is it ture that
for any two ultrafilters 𝑈, 𝑉 , we have 𝑈 ⋅ 𝑉 ≡𝑇 𝑉 ⋅ 𝑈?

There is a good reason to believe that Main Question 1 is achievable, indeed the Tukey-
type of Fubini products of filters factores nicely [15, 9]:

Theorem 0.1 (Milovich, Dobrinen-Todorcevic). Let 𝐹 ,𝐺 are 𝜅-filters1, then 𝐹 ⋅ 𝐺 ≡𝑇
𝐹 × 𝐺𝜅 and in particular 𝐹 ⋅ 𝐹 ≡𝑇 𝐹 𝜅 .
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In the previous theorem and throughout this paper, 𝐹 𝜅 is a (full support) 𝜅-product of
copies of 𝐹 , with the order defined pointwise. Also, Dobrinen and Todorcevic showed
that

∑

𝑈 𝑉𝑛 ≤𝑇 𝑈 ×
∏

𝑛<𝜔 𝑉𝑛 (see Theorem 2.1). Hence it is tempting to conjecture that
∑

𝑈 𝑉𝑛 ≡𝑇 𝑈 ×
∏

𝑛<𝜔 𝑉𝑛. It turns out that in the must general case, this formula is not true
going to be true (see Example 2.3). Nonetheless, our first theorem shows that under some
assumption on the ultrafilters 𝑉𝑛, it is:

Theorem. Suppose that 𝑈, 𝑉0, 𝑉1, ... are an ultrafilter over 𝜔. Suppose that there is a set
𝑋0 ∈ 𝑈 , such that for every 𝑛 ≤ 𝑚 ∈ 𝑋0, 𝑉𝑛 ≤𝑇 𝑉𝑚. Then

𝑈 ×
∏

𝑛∈𝑋0

𝑉𝑛 ≡𝑇
∑

𝑈
𝑉𝑛

Note that this theorem captures Theorem 0.1 as well. To deal with the general case, we
first observe (see Fact 2.2) that better approximations of the cofinal type of

∑

𝑈 𝑉𝑛 are given
by any cofinal type in the set

(𝑈, ⟨𝑉𝑛 ∣ 𝑛 < 𝜔⟩) ∶= {𝑈 ×
∏

𝑛∈𝑋
𝑉𝑛 ∣ 𝑋 ∈ 𝑈}.

This simple observation motivates our principal conjecture, which addresses Main Question
1:

Conjecture 0.2. Let 𝑈, 𝑉0, 𝑉1, ...𝑉𝑛 be ultrafilters on 𝜔, the Tukey type of
∑

𝑈 𝑉𝑛 is the
greatest lower bound in the Tukey order of the set (𝑈, ⟨𝑉𝑛 ∣ 𝑛 < 𝜔⟩).

By greatest lower bound we mean that if ℙ is any directed order such that for all 𝑋 ∈ 𝑈 ,
ℙ ≤𝑇 𝑈 ×

∏

𝑛∈𝑋 𝑉𝑛, then ℙ ≤𝑇
∑

𝑈 𝑉𝑛. For example, this is true in the set up of the
previous theorem:

Theorem. Suppose that 𝑋0 ∈ 𝑈 , and
∑

𝑈 𝑉𝛼 ≡𝑇 𝑈 ×
∏

𝛼∈𝑋0
𝑉𝛼 . Then

∑

𝑈 𝑉𝛼 is the
greatest lower bound of (𝑈, ⟨𝑉𝑛 ∣ 𝑛 < 𝜔⟩).

We then provide an example where the assumption of the previous theorem fails:

Theorem. There consistently exists 𝑈, 𝑉0, 𝑉1, ... on 𝜔 such that for every 𝑋 ∈ 𝑈 ,

𝑈 <𝑇
∑

𝑈
𝑉𝑛 <𝑇 𝑈 ×

∏

𝑛∈𝑋
𝑉𝑛,

yet
∑

𝑈 𝑉𝑛 is the greatest lower bound of (𝑈, ⟨𝑉𝑛 ∣ 𝑛 < 𝜔⟩).

A key idea here is that
∑

𝑈 𝑉𝑛 a lower bound of (𝑈, ⟨𝑉𝑛 ∣ 𝑛 < 𝜔⟩) in a uniform way
in the sense that there is a system of cofinal maps which coheres (see Definition 2.6). We
show that given a coherent system of monotone cofinal maps from (𝑈, ⟨𝑉𝑛 ∣ 𝑛 < 𝜔⟩) to
an order ℙ, can be amalgamated to a single monotone cofinal map from the

∑

𝑈 𝑉𝑛 to ℙ.
Thus, our main result shows that

∑

𝑈 𝑉𝑛 is indeed a greatest lower bound among the posets
which uniformly below (𝑈, ⟨𝑉𝑛 ∣ 𝑛 < 𝜔⟩):

Theorem. Suppose that ℙ is a complete order2. Then ℙ is uniformly below (𝑈, ⟨𝑉𝛼 ∣ 𝛼 <
𝜆⟩) if and only if

∑

𝑈 𝑉𝛼 ≥𝑇 ℙ.

We then apply this theorem to show some progress on the Main Question 2, suggested
in [3]. This problem was studied in the past. Below is a list of the known results:

∙ If 𝑈, 𝑉 are 𝑝-points, then 𝑈 ⋅ 𝑉 ≡𝑇 𝑉 ⋅ 𝑈 (Milovich [15]).

2Note that any order can be cofinally embedded (and therefore Tukey equivalent) into a complete order, i.e.
the Boolean algebra of regular open cuts (see [11, Thm. 7.13]).
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∙ If 𝑈, 𝑉 are 𝜅-complete for 𝜅 > 𝜔 then 𝑈 ⋅𝑉 ≡𝑇 𝑉 ⋅𝑈 (Benhamou-Dobrinen [2]).
∙ For all 𝑈, 𝑉 , (𝑈 ⋅ 𝑈 ) ⋅ (𝑉 ⋅ 𝑉 ) ≡𝑇 (𝑉 ⋅ 𝑉 ) ⋅ (𝑈 ⋅ 𝑈 ) (Benhamou-Dobrinen [3])

The commutativity of cofinal types stands in sharp contrast to the Rudin-Keisler ordering
which is known to be highly non commutative with respect to Fubini product3. On mea-
surable cardinals, the situation is even more dramatic, due to a theorem of Solovey (see
[12, Thm. 5.7]) if 𝑈,𝑊 are 𝜅-complete ultrafilters on 𝜅 the 𝑈 ⋅𝑊 ≡𝑇 𝑊 ⋅ 𝑈 if and only
if 𝑊 ≡𝑅𝐾 𝑈𝑛 for some 𝑛 or vise versa. Recently, Goldberg [10] examined situations of
commutativity with respect to several product operations on countably complete ultrafilters.

Our contribution is to study classes of the form
𝐷 ∶= {𝑈 ∣ 𝑈 ⋅ 𝑈 ≡𝑇 𝑈 ×𝐷}

We will show that any two ultrafilter in such a class Tukey-commute. Then our main result
is to show that following:

Theorem. 𝜔𝜔 is closed under Fubini sums.

The class 𝜔𝜔 is extremely large. It includes:
(I) Tukey-top ultrafilters.

(II) 𝑝-points ([15, Thm. 5.4]) and their sums (Theorem above).
(III) Every ultrafilter satisfying 𝑈 ⋅ 𝑈 ≡𝑇 𝑈 (Claim 3.4), hence:

(a) Ultrafilters of the form 𝑈 ⋅ 𝑈 (Theorem 0.1).
(b) Stable ordered union ultrafilters [3, Thm. 4.2].
(c) Generic ultrafilters for 𝑃 (𝜔)∕𝐼 where 𝐼𝜔 ≡𝑇 𝐼 , and ⊩𝑃 (𝜔)∕𝐼 ”𝐼 ≤𝑇 𝐺̇"4 [1,

Cor. 1.19]
(d) Ultrafilters arising from topological Ramsey spaces [5, Thm 4.6]

To see why the above ultrafilters cover all knwon example, note that an ultrafilter which
does not fall under (I),(II),(III) above must be either:

(1) Basically generated and not an iterated sum of 𝑝-points (see Question 26 in [9]).
Or

(2) non-Tukey-top which is not basically generated– the known examples for such ul-
trafilters are generic ultrafilters for 𝑃 (𝜔)∕f in⊗𝛼 [4, 7].

Note that by the recent result of Cancino and Zapletal [6], it is consistent that every ultrafilter
on 𝜔 is Tukey-top hence therefore the commutativity of cofinal types is indeed consistent.

1. PRELIMINARIES

In this section we set up notations, and provide basic facts and definitions regarding
ultrafilters and the Tukey order. Given a set 𝑋 ⊆ 𝜔, such that |𝑋| = 𝛼 ≤ 𝜔, we denote
by ⟨𝑋(𝛽) ∣ 𝛽 < 𝛼⟩ be the increasing enumeration of 𝑋. The principal operation we are
considering in this paper is the Fubini/tensor sums and products of ultrafilters.

Definition 1.1. Suppose that 𝐹 is a filter over an infinite set 𝑋 and for each 𝑥 ∈ 𝑋, 𝐺𝑥 is
a filter over an infinite set 𝑌𝑥. We denote by

∑

𝐹 𝐺𝑥 the filter over
⋃

𝑥∈𝑋{𝑥} × 𝑌𝑥, defined
by

𝐴 ∈
∑

𝐹
𝐺𝑥 if and only if {𝑥 ∈ 𝑋 ∣ (𝐴)𝑥 ∈ 𝐺𝑥} ∈ 𝐹

3For example if 𝑈,𝑊 are non-isomorphic Ramsey ultrafilters then 𝑈 ⋅𝑊 ≢𝑅𝐾 𝑊 ⋅ 𝑈 . Just otherwise, by a
theorem of Rudin (see for example [12, Thm. 5.5], 𝑈,𝑊 should be Rudin-Frolík (and therefore Rudin-Keisler)
comparable, contradicting the RK-minimality of Ramsey ultrafilters.

4for example f in⊗𝛼 .
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where (𝐴)𝑥 = {𝑦 ∈ 𝑌𝑥 ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} is the 𝑥th-fiber of 𝐴. If for every 𝑥, 𝐺𝑥 = 𝐺 for
some fixed 𝑉 over a set 𝑌 , then 𝐹 ⋅𝐺 is defined as

∑

𝐹 𝐺, which is a filter over 𝑋 × 𝑌 . 𝐹 2

denotes the filter 𝐹 ⋅ 𝐹 over 𝑋 ×𝑋.

We distinguish here between 𝐹 ⋅ 𝐺 and 𝐹 × 𝐺 which is the cartesian product of 𝐹 and
𝐺 with the pointwise order 5.

For any set 𝑋 and cardinal 𝜆 [𝑋]𝜆 denotes the set of all subsets of 𝑋 of cardinality 𝜆,
and [𝑋]<𝜆 =

⋃

𝛼<𝜆[𝑋]𝛼 . In particular we set f in = [𝜔]<𝜔, and FIN = fin ⧵ {∅}.

Definition 1.2. Let 𝐹 be a filter over a regular cardinal 𝜅 ≥ 𝜔.
(1) 𝐹 is 𝜆-complete if 𝐹 is closed under intersections of less than 𝜆 many of its mem-

bers.
(2) 𝐹 is selective if for every function 𝑓 ∶ 𝜅 → 𝜅, there is an 𝑋 ∈ 𝐹 such that 𝑓 ↾ 𝑋

is either constant or one-to-one.
(3) 𝐹 is rapid if for each normal function 𝑓 ∶ 𝜅 → 𝜅 (i.e. increasing and continuous),

there exists an 𝑋 ∈ 𝐹 such that otp(𝑋 ∩ 𝑓 (𝛼)) ≤ 𝛼 for each 𝛼 < 𝜅. (i.e. bounded
pre-images), there is an 𝑋 ∈ 𝐹 such that |𝑓−1({𝛼}) ∩𝑋| ≤ 𝛼 for every 𝛼 < 𝜅.

(4) 𝐹 is a 𝑝-point if whenever 𝑓 ∶ 𝜅 → 𝜅 is unbounded6 on a set in 𝐹 , it is almost one-
to-one mod 𝐹 , i.e. there is an 𝑋 ∈ 𝐹 such that for every 𝛾 < 𝜅, |𝑓−1[𝛾] ∩𝑋| < 𝜅.

a 𝜅-filter is a uniform7, 𝜅-complete filter.

The following fact is well known.

Fact 1.3. Suppose that 𝑈, 𝑉𝛼 are ultrafilters on 𝜅 ≥ 𝜔 where each 𝑉𝛼 is uniform. Then
∑

𝑈 𝑉𝛼 is not a 𝑝-point.

Indeed the function 𝜋1 – the projection to the first coordinate – is never almost one-to-
one on a set in 𝑋 ∈

∑

𝑈 𝑉𝛼 . Given a function 𝑓 ∶ 𝐴 → 𝐵, for 𝑋 ⊆ 𝐴 we let 𝑓 (𝑋) =
{𝑓 (𝑥) ∣ 𝑥 ∈ 𝑋}, for 𝑌 ⊆ 𝐵 we let 𝑓−1𝑌 = {𝑥 ∈ 𝑋 ∣ 𝑓 (𝑥) ∈ 𝑌 }, and let rng(𝑓 ) = 𝑓 (𝐴).

Definition 1.4. Let 𝐹 ,𝐺 be filters on 𝑋, 𝑌 resp. We say that 𝐹 is Rudin-Keisler below 𝐺,
denoted by 𝐹 ≤𝑅𝐾 𝐺, if there is a Rudin-Keisler projection 𝑓 ∶ 𝑌 → 𝑋 such that

𝑓∗(𝐺) ∶= {𝐴 ⊆ 𝑋 ∣ 𝑓−1(𝐴) ∈ 𝐺} = 𝐹
We say that are RK-isomorphic, and denote it by 𝐹 ≡𝑅𝐾 𝐺 if there is a bijection 𝑓 such
that 𝑓∗(𝐹 ) = 𝐺.

It is well known that if 𝐹 ≤𝑅𝐾 𝐺 ∧𝐺 ≤𝑅𝐾 𝐹 then 𝐹 ≡𝑅𝐾 𝐺 and that 𝐹 ,𝐺 ≤𝑅𝐾 𝐹 ⋅𝐺
via the projection to the first and second coordinates respectively. Also, the Rudin-Keisler
order implies the Tukey order. A selective ultrafilter over 𝜅 is characterized as being Rudin-
Keisler minimal among 𝜅-ultrafilters.

Next, let us record some basic terminology and facts regarding cofinal types. Given two
directed partially ordered sets ℙ,ℚ, the Cartesian product ℙ ×ℚ ordered pointwise, is the
least upper bound of ℙ,ℚ in the Tukey order (see [8]). It follows that 𝐹 × 𝐺 ≤𝑇 𝐹 ⋅ 𝐺.
More generally, for partially ordered sets ℙ𝑖 = (𝑃𝑖,≤𝑖) for 𝑖 ∈ 𝐼 , we denote by

∏

𝑖∈𝐼 (ℙ𝑖,≤𝑖
) = (

∏

𝑃𝑖,≤), where
∏

𝑖∈𝐼 𝑃𝑖 = {𝑓 ∣ dom(𝑓 ) = 𝐼 and ∀𝑖, 𝑓 (𝑖) ∈ 𝑃𝑖} is equipped with the
everywhere domination order, namely, 𝑓 ≤ 𝑔 iff for all 𝑖 ∈ 𝐼 , 𝑓 (𝑖) ≤𝑖 𝑔(𝑖). If the order is
clear from the context we omit it and just write

∏

𝑖∈𝐼 ℙ𝑖. This is the case when ℙ𝑖 = 𝑈𝑖 is

5There are papers which consider the filter {𝐴 × 𝐵 ∣ 𝐴 ∈ 𝐹 ,𝐵 ∈ 𝐺} and denote it by 𝐹 × 𝐺, this filter will
not be considered in this paper so there is no risk of confusion.

6Namely, 𝑓−1[𝛼] ∉ 𝐹 for every 𝛼 < 𝜅
7i.e for every 𝑋 ∈ 𝑈 , |𝑋| = 𝜅.
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a filter ordered by reversed inclusion of an ideal ordered by inclusion. If for every 𝑖 ∈ 𝐼 ,
ℙ𝑖 = ℙ we simply write ℙ𝐼 .

2. ON THE COFINAL TYPES OF FUBINI SUMS OF ULTRAFILTERS

The purpose of this section is to study the cofinal type of sums of ultrafilter. The follow-
ing theorem [9] provides the starting point:

Theorem 2.1 (Dobrinen-Todorcevic). Let 𝐹 be a filter over 𝜆 and (𝐺𝛼)𝛼<𝜆 be any sequence
of filters. Then:

∑

𝐹
𝐺𝛼 ≤𝑇 𝐹 ×

∏

𝛼<𝜆
𝐺𝛼

More generally, we have:

Fact 2.2. Let 𝑈 be an ultrafilter over 𝜆 ≥ 𝜔 and 𝑈𝛼 on 𝛿𝛼 . For every 𝑋 ∈ 𝑈 , we have
∑

𝑈 𝑉𝛼 ≤𝑇 𝑈 ×
∏

𝛼∈𝑋 𝑉𝛼 .

Proof. Since the set  ⊆
∑

𝑈 𝑉𝛼 , of all 𝑌 such that 𝜋1(𝑌 ) ⊆ 𝑋 is a cofinal in
∑

𝑈 𝑉𝛼a, the
map 𝐹 ∶ 𝑈 ×

∏

𝛼∈𝑋 𝑉𝛼 →
∑

𝑈 𝑉𝛼 defined by

𝐹 (⟨𝑍, ⟨𝐴𝛼 ∣ 𝛼 ∈ 𝑋⟩⟩) =
⋃

𝛼∈𝑍∩𝑋
{𝛼} × 𝐴𝛼

is monotone and cofinal. □

Example 2.3. Suppose that 𝑈 and 𝑉 are Tukey incomparable ultrafilters on 𝜔, and 𝑈 ≡𝑇
𝑈 ⋅ 𝑈 . This situation is obtained for example under 𝐶𝑜𝑣() = 𝔠 8. The incomparability
ensures that 𝑈 × 𝑉 >𝑇 𝑈 . Let 𝑉0 = 𝑉 and 𝑉𝑛 = 𝑈 for 𝑛 > 0. Then

∑

𝑈
𝑉𝑛 = 𝑈 ⋅ 𝑈 ≡𝑇 𝑈 <𝑇 𝑈 × 𝑉 ≤𝑇 𝑈 ×

∏

𝑛<𝜔
𝑉𝑛.(1)

Assume that 𝑈 concentrates on ℕ𝑒𝑣𝑒𝑛, let

𝑉 ′
𝑛 =

{

𝑈 𝑛 = 2𝑘
𝑉 𝑛 = 2𝑘 + 1

and 𝑉 ′′
𝑛 =

{

𝑈 𝑛 = 2𝑘
𝑉 𝑛 = 2𝑘 + 1

.

Then
∑

𝑈
𝑉 ′
𝑛 = 𝑈 ⋅ 𝑈 <𝑇 𝑈 × 𝑉 =

∑

𝑈
𝑉 ′′
𝑛(2)

Example (1) illustrates the fact that the sum is insensitive to a neglectable set of co-
ordinates, while the product is. Example (2) illustrates that the product is insensitive to
permutations of the indexing set, while the sum is.

First, let us present a theorem which deals with a specific situation of sums, but is general
enough to captures Theorem 0.1 as a special case 9:

Theorem 2.4. Suppose that 𝑈, 𝑉𝑛 are an ultrafilter over 𝜔. Suppose that there is a set
𝑋0 ∈ 𝑈 , such that for every 𝑛 ≤ 𝑚 ∈ 𝑋0, 𝑉𝑛 ≤𝑇 𝑉𝑚. Then

𝑈 ×
∏

𝑛∈𝑋0

𝑉𝑛 ≡𝑇
∑

𝑈
𝑉𝑛

8By Ketonen [13], this assumption implies that there are (2𝑐 )+-many distinct selective ultrafilters. Then there
are two Tukey incomparable selective ultrafilters and by Dobrinen and Todorcevic [9], 𝑈 ⋅ 𝑈 ≡𝑇 𝑈 for any
selective ultrafilter.

9Taking 𝑉𝑛 = 𝑉 for all 𝑛.
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Proof. For the easy direction, use Fact 2.2. Also𝑈 ≤𝑇
∑

𝑈 𝑉𝑛 and by the Tukey-minimality
of the cartesian product, it remains to show

∏

𝑛∈𝑋0
𝑉𝑛 ≤𝑇

∑

𝑈 𝑉𝑛. First define for 𝑛 ∈ 𝑋0,
𝑛+ = min(𝑋0 ⧵ 𝑛 + 1) and let 𝑓𝑛+,𝑛 ∶ 𝑉𝑛+ → 𝑉𝑛 monotone and cofinal. Denote by
𝑛+𝑘 = (𝑛+(𝑘−1))+ the 𝑘th successor of 𝑛 in 𝑋0 and let

𝑓𝑛+𝑘,𝑛 = 𝑓𝑛+𝑘,𝑛+(𝑘−1)◦...◦𝑓𝑛+2,𝑛+◦𝑓𝑛+,𝑛.

Moreover, let 𝑓𝑛,𝑛 = id𝑉𝑛 . Hence each 𝑓𝑚,𝑛 ∶ 𝑉𝑚 → 𝑉𝑛 is monotone cofinal, and if
𝑘 ∈ 𝑋0 ∩ [𝑛, 𝑚] then 𝑓𝑚,𝑛 = 𝑓𝑘,𝑛◦𝑓𝑚,𝑘.

Define ⊆
∑

𝑈 𝑉𝑛 to consist of all𝐴 ∈
∑

𝑈 𝑉𝑛 in standard form10 such that 𝜋0(𝐴) ⊆ 𝑋0,
and for all 𝑛 < 𝑚 in 𝜋0(𝐴), 𝑓𝑚,𝑛((𝐴)𝑚) ⊆ (𝐴)𝑛.

Define 𝐹 ∶  →
∏

𝑛∈𝑋0
𝑉𝑛 by setting

𝐹 (𝐴)𝑘 = 𝑓𝑚𝐴
𝑘 ,𝑘

((𝐴)𝑚), where 𝑚𝐴
𝑘 = min(𝜋(𝐴) ⧵ 𝑘) ≥ 𝑘.

The following claim concludes the proof:

Claim 2.5.
(1)  is a base for

∑

𝑈 𝑉𝑛.
(2) 𝐹 is monotone and cofinal.

Proof of Claim. To see (1), let 𝐵 ∈
∑

𝑈 𝑉𝑛. Find 𝐴′ ⊆ 𝐵 in standard form, and let 𝑋 =
𝜋(𝐴′). Define a sequence 𝐴𝑛 be induction on 𝑛 ∈ 𝑋. Set 𝐴min(𝑋) = (𝐴′)min(𝑋). Suppose
that 𝑚 ∈ 𝑋 and 𝐴𝑘 ∈ 𝑉𝑘 is defined for all 𝑘 ∈ 𝑋 ∩𝑚. For each 𝑘 ∈ 𝑋 ∩𝑚, find 𝐶𝑚,𝑘 ∈ 𝑉𝑚
such that 𝑓𝑚,𝑘(𝐶𝑚,𝑘) ⊆ 𝐴𝑘. Define 𝐴𝑚 = (𝐴′)𝑚 ∩ (

⋂

𝑘∈𝑋∩𝑚 𝐶𝑚,𝑘). By monotonicity,
𝑓𝑚,𝑘(𝐴𝑚) ⊆ 𝐴𝑘 and 𝐴 =

⋃

𝑘∈𝑋{𝑘} × 𝐴𝑘 is as wanted.
To see (2), if 𝐴 ⊆ 𝐵, then for every 𝑘 ∈ 𝑋0, 𝑚𝐴

𝑘 > 𝑚𝐵
𝑘 , hence

𝐹 (𝐴)𝑘 = 𝑓𝑚𝐴
𝑘 ,𝑘

((𝐴)𝑚𝐴
𝑘
)

⊆ 𝑓𝑚𝑘
𝐴,𝑘

((𝐵)𝑚𝐴
𝑘
)

= 𝑓𝑚𝐵
𝑘 ,𝑘

(𝑓𝑚𝐴
𝑘 ,𝑚

𝐵
𝑘
((𝐵)𝑚𝐴

𝑘
))

⊆ 𝑓𝑚𝐵
𝑘 ,𝑘

((𝐵)𝑚𝐵
𝑘
) = 𝐹 (𝐵)𝑘.

To see it is cofinal, take any ⟨𝐴𝑛 ∣ 𝑛 ∈ 𝑋0⟩ ∈
∏

𝑛∈𝑋0
𝑉𝑛. By the construction of (1),

we can find 𝐴∗
𝑛 ⊆ 𝐴𝑛, 𝐴∗

𝑛 ∈ 𝑉𝑛 such that if 𝑛 < 𝑚 are in 𝑋0, then 𝑓𝑚,𝑛(𝐴∗
𝑚) ⊆ 𝐴∗

𝑛. Let
𝐴∗ =

⋃

𝑛∈𝑋0
{𝑛} × 𝐴∗

𝑛. Then 𝐴∗ ∈  , and 𝐹 (𝐴∗) = ⟨𝐴∗
𝑛 ∣ 𝑛 ∈ 𝑋0⟩. □

□

Parts of our theory applies to ultrafilter over arbitrary cardinal. Thus our initial assump-
tion is that 𝑈 is a 𝜆-ultrafilter for 𝜆 ≥ 𝜔 and ⟨𝑉𝛼 ∣ 𝛼 < 𝜆⟩ is a sequence of ultrafilters such
that each 𝑉𝛼 is a 𝛿𝛼-ultrafilter where 𝛿𝛼 ≥ 𝜔. Towards our first result, consider the set

(𝑈, ⟨𝑉𝛼 ∣ 𝛼 < 𝜆⟩) = {𝑈 ×
∏

𝛼∈𝑋
𝑉𝛼 ∣ 𝑋 ∈ 𝑈}

ordered by the Tukey order. This is clearly a downward-directed set. Our goal is to prove
that in some sense,

∑

𝑈 𝑉𝛼 is the greatest lower bound of (𝑈, ⟨𝑉𝛼 ∣ 𝛼 < 𝜆⟩).
Consider the maps

𝜋𝑋 ∶ 𝑈 ×
∏

𝛼∈𝑋
𝑉𝛼 →

∑

𝑈
𝑉𝛼 , 𝜋𝑋,𝑌 ∶ 𝑈 ×

∏

𝛼∈𝑋
𝑉𝛼 → 𝑈 ×

∏

𝛼∈𝑌
𝑉𝛼

10A set 𝐵 ∈
∑

𝑈 𝑉𝛼 is said to be in standard form if for every 𝛼 < 𝜆, either (𝐵)𝛼 = ∅ or (𝐵)𝛼 ∈ 𝑉𝛼 .
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Defined for 𝑋, 𝑌 ∈ 𝑈 where 𝑌 ⊆ 𝑋 defined by

𝜋𝑋(⟨𝑍, ⟨𝐴𝛼 ∣ 𝛼 ∈ 𝑋⟩⟩) =
⋃

𝛼∈𝑋∩𝑍
{𝛼} × 𝐴𝛼 and

𝜋𝑋,𝑌 (⟨𝑍, ⟨𝐴𝛼 ∣ 𝛼 ∈ 𝑋⟩⟩) = ⟨𝑍, ⟨𝐴𝛼 ∣ 𝛼 ∈ 𝑌 ⟩⟩.

Then
(1) 𝜋𝑋 is monotone cofinal and rng(𝜋𝑋) is exactly all the sets 𝐵 ∈

∑

𝑈 𝑉𝛼 in standard
form such that 𝜋(𝐵) ⊆ 𝑋.

(2) 𝜋𝑋,𝑌 is monotone cofinal (infact onto).
(3) 𝜋𝑌 ◦𝜋𝑋,𝑌 (𝐶) ⊆ 𝜋𝑋(𝐶).

Suppose that
∑

𝑈 𝑉𝛼 ≥𝑇 ℙ. Recall that if ℙ is complete11 (e.g. (𝐹 ,⊇) where 𝐹 is a filter
or any product of complete orders), then ℚ ≥𝑇 ℙ implies that there is a monotone12 cofinal
map 𝑓 ∶ ℚ → ℙ. Suppose that ℙ is complete and let 𝑔 ∶

∑

𝑈 𝑉𝛼 → ℙ be monotone cofinal.
Define 𝑓𝑋 = 𝑔◦𝜋𝑋 . Then 𝑓𝑋 is monotone cofinal from 𝑈 ×

∏

𝛼∈𝑋 𝑉𝛼 to ℙ. Moreover, we
have that if 𝑌 ⊆ 𝑋 then

𝑓𝑌 (𝜋𝑋,𝑌 (𝐶)) = 𝑔(𝜋𝑌 (𝜋𝑋,𝑌 (𝐶)) ≥ℙ 𝑔(𝜋𝑋(𝐶)) = 𝑓𝑋(𝐶)

Definition 2.6. A sequence of monotone cofinal maps

⟨𝑓𝑋 ∶ 𝑈 ×
∏

𝛼∈𝑋
𝑉𝛼 → ℙ ∣ 𝑋 ∈ 𝑈⟩

if said to be coherent if

(†) whenever 𝑌 ⊆ 𝑋, and 𝐶 ∈ 𝑈 ×
∏

𝛼∈𝑋
𝑉𝛼 , 𝑓𝑌 (𝜋𝑋,𝑌 (𝐶)) ≥ℙ 𝑓𝑋(𝐶).

A poset ℙ is said to be uniformly below (𝑈, ⟨𝑉𝛼 ∣ 𝛼 < 𝜆⟩) if there is a coherent sequence
of monotone cofinal maps ⟨𝑓𝑋 ∶ 𝑈 ×

∏

𝛼∈𝑋 𝑉𝛼 → ℙ ∣ 𝑋 ∈ 𝑈⟩.

The following theorem says that
∑

𝑈 𝑉𝛼 is the greatest lower bound among all the posts
uniformly below (𝑈, ⟨𝑉𝛼 ∣ 𝛼 < 𝜆⟩).

Theorem 2.7. Suppose that ℙ is a complete order. Then ℙ is uniformly below (𝑈, ⟨𝑉𝛼 ∣
𝛼 < 𝜆⟩) if and only if

∑

𝑈 𝑉𝛼 ≥𝑇 ℙ.

Proof. From right to left was already proven in the paragraph before Definition 2.6. Let us
prove from left to right. Let ⟨𝑓𝑋 ∣ 𝑋 ∈ 𝑈⟩ be the sequence witnessing that ℙ is uniformly
below (𝑈, ⟨𝑉𝛼 ∣ 𝛼 < 𝜆⟩). Let  ⊆

∑

𝑈 𝑉𝛼 be the usual cofinal set consisting of sets is a
standard form. Define 𝐹 ∶  → ℙ monotone and cofinal,

𝐹 (𝐴) = 𝑓𝜋1(𝐴)
(

⟨

𝜋1(𝐴), ⟨(𝐴)𝛼 ∣ 𝛼 ∈ 𝜋(𝐴)⟩
⟩

)

To see that 𝐹 is monotone, let 𝐴,𝐵 ∈  such that 𝐴 ⊆ 𝐵. Define the auxiliary sequence

𝑋𝛼 =

{

(𝐴)𝛼 𝛼 ∈ 𝜋1(𝐴)
(𝐵)𝛼 𝛼 ∈ 𝜋1(𝐵) ⧵ 𝜋1(𝐴)

. Note that𝑋𝛼 ⊆ (𝐵)𝛼 and that𝜋𝜋1(𝐵),𝜋1(𝐴)(⟨𝜋1(𝐴), ⟨𝑋𝛼 ∣

11i.e., every bounded subset of ℙ has a least upper bound.
12𝑓 ∶ ℚ → ℙ is called monotone if 𝑞1 ≤ℚ 𝑞2 ⇒ 𝑓 (𝑞1) ≤ℙ 𝑓 (𝑞2).
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𝛼 ∈ 𝜋1(𝐵)⟩⟩) = 𝐹 (𝐴). It follows by monotonicity of the functions, and by (†) that

𝐹 (𝐴) = 𝑓𝜋1(𝐴)(⟨𝜋1(𝐴), ⟨(𝐴)𝛼 ∣ 𝛼 ∈ 𝜋1(𝐴)⟩⟩)
= 𝑓𝜋1(𝐴)(𝜋𝜋1(𝐵),𝜋1(𝐴)(⟨𝜋1(𝐴), ⟨𝑋𝛼 ∣ 𝛼 ∈ 𝜋1(𝐵)⟩⟩)
≥ℙ 𝑓𝜋1(𝐵)(⟨𝜋1(𝐴), ⟨𝑋𝛼 ∣ 𝛼 ∈ 𝜋1(𝐵)⟩⟩)
≥ℙ 𝑓𝜋1(𝐵)(⟨𝜋1(𝐵), ⟨(𝐵)𝛼 ∣ 𝛼 ∈ 𝜋1(𝐵)⟩⟩ = 𝐹 (𝐵)

To see it is cofinal, let 𝑝 ∈ ℙ be any element, fix any 𝑋 ∈ 𝑈 , since 𝑓𝑋 is cofinal, there
is 𝑍 ∈ 𝑈 ↾ 𝑋 and ⟨𝐴𝛼 ∣ 𝛼 ∈ 𝑋⟩ ∈

∏

𝛼∈𝑋 𝑉𝛼 such that 𝑓𝑋(⟨𝑍, ⟨𝐴𝛼 ∣ 𝛼 ∈ 𝑋⟩⟩) ≥ℙ 𝑝.
Consider 𝐴 =

⋃

𝛼∈𝑍{𝛼} × 𝐴𝛼 . Then

𝐹 (𝐴) = 𝑓𝑍 (⟨𝑍, ⟨𝐴𝛼 ∣ 𝛼 ∈ 𝑍⟩⟩)
= 𝑓𝑍 (𝜋𝑋,𝑍 (⟨𝑍, ⟨𝐴𝛼 ∣ 𝛼 ∈ 𝑋⟩⟩))
≥ℙ 𝑓𝑋(⟨𝑍, ⟨𝐴𝛼 ∣ 𝛼 ∈ 𝑋⟩) ≥ℙ 𝑝

□

Lemma 2.8. Suppose that ℙ is complete and for each 𝑋 ∈ 𝑈 , 𝑋 ⊆ 𝑈 ×
∏

𝛼∈𝑋 𝑉𝛼 is such
that:

(1) 𝑋 is a cofinal subset of 𝑈 ×
∏

𝛼∈𝑋 𝑉𝛼 .
(2) 𝑓𝑋 ∶ 𝑋 → ℙ is monotone cofinal.
(3) whenever 𝑌 ⊆ 𝑋, 𝜋𝑋,𝑌 (𝑋) ⊆ 𝑌 and 𝑓𝑌 (𝜋𝑋,𝑌 (𝐶)) ≥ℙ 𝑓𝑋(𝐶)

Then ℙ is uniformly below (𝑈, ⟨𝐵𝛼 ∣ 𝛼 < 𝜆⟩).

Proof. Let us define coherent functions 𝑓 ∗
𝑋 ∶ 𝑈 ×

∏

𝛼∈𝑋 𝑉𝛼 → ℙ by

𝑓 ∗
𝑋(𝐴) = sup{𝑓𝑋(𝐵) ∣ 𝐴 ⊆ 𝐵 ∈ 𝑋}.

Note that if 𝐵′ ∈ 𝑋 is such that 𝐵′ ⊆ 𝐴, then the set {𝑓𝑋(𝐵) ∣ 𝐴 ⊆ 𝐵 ∈ 𝑋} is bound
in ℙ by 𝑓𝑋(𝐵′) (as 𝑓𝑋 is monotone). Hence 𝑓 ∗

𝑋(𝐴) is well defined by completeness of ℙ.
Since 𝑓𝑋 is monotone cofinal, 𝑓 ∗

𝑋 is monotone cofinal. To see (†), suppose that 𝑌 ⊆ 𝑋,
and 𝐶 ∈ 𝑈 ×

∏

𝛼<𝜆 𝑉𝛼 , then for every 𝐶 ⊆ 𝐵 ∈ 𝑋 , by (3), 𝜋𝑋,𝑌 (𝐶) ⊆ 𝜋𝑋,𝑌 (𝐵) ∈ 𝑌
and 𝑓𝑋(𝐵) ≤ 𝑓𝑌 (𝜋𝑋,𝑌 (𝐵)). If follows that 𝑓 ∗

𝑋(𝐶) ≤ 𝑓 ∗
𝑌 (𝜋𝑋,𝑌 (𝐶)). □

Corollary 2.9. Let 𝑈 be an ultrafilter on 𝜆 ≥ 𝜔 and that each 𝑉𝛼 is a 𝛿𝛼-complete ultrafilter
on some 𝛿𝛼 > 𝛼. If ℙ ≤𝑇 𝑉𝛼 for every 𝛼 < 𝜆, then ℙ𝜆 ≤𝑇

∑

𝑈 𝑉𝛼 .

Proof. By moving to the Boolean completion of ℙ, we may assume that ℙ is complete (see
e.g [11]). We fix for every 𝛼 < 𝜆, 𝑓𝛼 ∶ 𝑉𝛼 → ℙ monotone and cofinal. For every 𝑋 ∈ 𝑈 ,
we define a cofinal set𝑋 ⊆ 𝑈×

∏

𝛼∈𝑋 𝑉𝛼 consisting of all the elements ⟨𝑍, ⟨𝐴𝛼 ∣ 𝛼 ∈ 𝑋⟩⟩

such that for every 𝛼 < 𝛽 in 𝑋, 𝑓𝛼(𝐴𝛼) ≤ℙ 𝑓𝛽(𝐴𝛽).

Claim 2.10. 𝑋 is cofinal in 𝑈 ×
∏

𝛼∈𝑋 𝑉𝛼

Proof of claim. Let ⟨𝑍, ⟨𝐵𝛼 ∣ 𝛼 ∈ 𝑋⟩⟩. Set 𝐵0 = 𝐴0, and recursively suppose that 𝛽 ∈ 𝑋
and 𝐴𝛼 was defined for all 𝛼 ∈ 𝑋 ∩ 𝛽. Since 𝑓𝛼 is cofinal, there is 𝐶𝛼 ∈ 𝑉𝛽 such that
𝑓𝛼(𝐴𝛼) ≤ℙ 𝑓𝛽(𝐶𝛼). The 𝐴𝛽 ∶= 𝐵𝛽 ∩

⋂

𝛼<𝛽 𝐶𝛼 is in 𝑉𝛽 by 𝛿𝛽-completeness. 𝐴𝛽 ∈ 𝑉𝛽 . By
monotonicity of 𝑓𝛽 , for every 𝛼 < 𝛽, 𝑓𝛼(𝐴𝛼) ≤ℙ 𝑓𝛽(𝐴𝛽). □

Note that 𝜋𝑋,𝑌 (𝑋) ⊆ 𝑌 . Define 𝑓𝑋 ∶ 𝑋 → ℙ𝜆 by

𝑓𝑋(⟨𝑍, ⟨𝐴𝛼 ∣ 𝛼 ∈ 𝑋⟩⟩) = ⟨𝑓𝑋(𝛼)(𝐴𝑋(𝛼)) ∣ 𝛼 < 𝜆⟩.
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Let ⟨𝑍, ⟨𝐴𝛼 ∣ 𝛼 ∈ 𝑋⟩⟩ ∈ 𝑋 , and let 𝑌 ⊆ 𝑋, then 𝑌 (𝛼) ≥ 𝑋(𝛼). Hence, by definition of
𝑋 , 𝑓𝑋(𝛼)(𝐴𝑋(𝛼)) ≤ℙ 𝑓𝑌 (𝛼)(𝐴𝑌 (𝛼)). We conclude that

𝑓𝑋(⟨𝑍, ⟨𝐴𝛼 ∣ 𝛼 ∈ 𝑋⟩⟩) = ⟨𝑓𝑋(𝛼)(𝐴𝑋(𝛼)) ∣ 𝛼 < 𝜆⟩
≤ℙ𝜆 ⟨𝑓𝑌 (𝛼)(𝐴𝑌 (𝛼)) ∣ 𝛼 < 𝜆⟩
= 𝑓𝑌 (⟨𝑍, ⟨𝐴𝛼 ∣ 𝛼 ∈ 𝑌 ⟩⟩) = 𝑓𝑌 (𝜋𝑋,𝑌 (⟨𝑍, ⟨𝐴𝛼 ∣ 𝛼 ∈ 𝑋⟩⟩)).

By Lemma 2.8, ℙ𝜆 is uniformly below (𝑈, ⟨𝑉𝛼 ∣ 𝛼 < 𝜆⟩) and by Theorem 2.7, ℙ𝜆 ≤𝑇
∑

𝑈 𝑉𝛼 . □

In particular, if 𝑈𝛼 is Tukey-top for a set of 𝛼’s in 𝑈 , then
∑

𝑈 𝑈𝛼 is Tukey top.
It is unclear whether every ℙ which is a Tukey lower bound for (𝑈, ⟨𝑉𝛼 ∣ 𝛼 < 𝜆⟩)

is Tukey below
∑

𝑈 𝑉𝛼 . Let us give a few common configurations of the Tukey relation
among the ultrafilters 𝑉𝛼 in which

∑

𝑈 𝑉𝛼 is the greatest lower bound in the usual sense.
Let us denote that by

∑

𝑈 𝑉𝛼 = inf((𝑈, ⟨𝑉𝛼 ∣ 𝛼 < 𝜆⟩)).
The following is a straightforward corollary from Theorem 2.7:

Corollary 2.11. Let 𝑋0 ∈ 𝑈 , then
∑

𝑈 𝑉𝛼 ≡𝑇 𝑈 ×
∏

𝛼∈𝑋0
𝑉𝛼 if and only if 𝑈 ×

∏

𝛼∈𝑋0
𝑉𝛼

is uniformly below (𝑈, ⟨𝑉𝛼 ∣ 𝛼 < 𝜆⟩). In that case
∑

𝑈 𝑉𝛼 = inf((𝑈, ⟨𝑉𝛼 ∣ 𝛼 < 𝜆⟩).

The following corollary follows from Theorem 2.4.

Corollary 2.12. Suppose that 𝑈, 𝑉𝑛 are ultrafilters on 𝜔, such that on a set 𝑋0 ∈ 𝑈 , for
every 𝑛 ≤ 𝑚 ∈ 𝑋0, 𝑉𝑛 ≤𝑇 𝑉𝑚. Then

𝑈 ×
∏

𝑛∈𝑋0

𝑉𝑛 ≡𝑇
∑

𝑈
𝑉𝑛 = inf((𝑈, ⟨𝑉𝛼 ∣ 𝛼 < 𝜆⟩))

The second case in which
∑

𝑈 𝑉𝛼 turns out to be the greatest lower bound is described
in the following Lemma:

Lemma 2.13. Suppose that there is a set𝑋0 ∈ 𝑈 such that for every 𝛼 < 𝛽 ∈ 𝑋0, 𝑉𝛼 is a 𝜅-
complete ultrafilter such that 𝑉𝛼 ⋅𝑉𝛼 ≡𝑇 𝑉𝛼 >𝑇 𝑉𝛽 . Then

∑

𝑈 𝑉𝛼 = inf((𝑈, ⟨𝑉𝛼 ∣ 𝛼 < 𝜆⟩))
is a strict greatest lower bound.

Proof. First note that for every 𝑌 ⊆ 𝑋, by the assumptions,

𝑉min(𝑌 ) ≤𝑇
∏

𝑚∈𝑌
𝑉𝑚 ≤𝑇

∏

𝑚∈𝑌
𝑉min(𝑌 ) ≡𝑇 𝑉min(𝑌 ) ⋅ 𝑉min(𝑌 ) ≡𝑇 𝑉min(𝑌 ).

Therefore, if ℙ ≤𝑇 𝐵 for every 𝐵 ∈ (𝑈, ⟨𝑉𝛼 ∣ 𝛼 < 𝜆⟩) then ℙ ≤𝑇 𝑉𝛼 for every 𝛼 ∈ 𝑋.
By corollary 2.9, it follows than that ℙ ≤𝑇

∑

𝑈 𝑉𝛼 . Moreover,
∑

𝑈 𝑉𝛼 is strictly below
(𝑈, ⟨𝑉𝛼 ∣ 𝛼 < 𝜆⟩), since if 𝛽 < 𝜆, then

∑

𝑈 𝑉𝛼 ≤𝑇 𝑉𝛽+1 <𝑇 𝑉𝛽 . □

Our next goal is to prove that the assumptions of Lemma 2.13 are consistent. To do that,
we will need a theorem of Raghavan and Todorcevic from [16] regarding the canonization
of cofinal maps from basically generated ultrafilters. Basically generated ultrafilters were
introduced by Dobrinen and Todorcevic [9], we say that𝑈 is basically generated if there is a
cofinal set ⊆ 𝑈 closed under intersections, such that for every sequence ⟨𝑏𝑛 ∣ 𝑛 < 𝜔⟩ ⊆ 
which converges13 to an element of , there is 𝐼 ∈ [𝜔]𝜔 such that

⋂

𝑖∈𝐼 𝐴𝑖 ∈ 𝑈 . Dobrinen
and Todorcevic proved that 𝑝-point ultrafilter 𝑈 is basically generated and that the class of
basically generated ultrafilters is closed under sums ([9, Thm. 14 & 16]).

13A sequence ⟨𝐴𝑛 ∣ 𝑛 < 𝜔⟩ of subsets 𝜔 is said to converge to 𝐴 if for every 𝑛 < 𝜔 there is 𝑁 < 𝜔 such that
for every 𝑚 ≥ 𝑁 , 𝐴𝑚 ∩ 𝑛 = 𝐴 ∩ 𝑛.
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Theorem 2.14 (Raghavan-Todorcevic). Let 𝑈 be a basically generated ultrafilter and 𝑉
be any ultrafilter such that 𝑉 ≤𝑇 𝑈 . Then there is 𝑃 ⊆ FIN such that:

(1) ∀𝑡, 𝑠 ∈ 𝑃 , 𝑡 ⊆ 𝑠 ⇒ 𝑡 = 𝑠.
(2) 𝑉 is Rudin-Keisler below 𝑈 (𝑃 ), namely, there is 𝑓 ∶ 𝑃 → 𝜔 such that 𝑉 = {𝑋 ⊆

𝜔 ∣ 𝑓−1[𝑋] ∈ 𝑈 (𝑃 )}.
(3) 𝑈 (𝑃 ) ≡𝑇 𝑉 .

Where is the filter 𝑈 (𝑃 ) = {𝐴 ⊆ 𝑃 ∣ ∃𝑎 ∈ 𝑈.[𝑎]<𝜔 ⊆ 𝐴}.

The forcing notion 𝑃 (𝜔)∕f in consists of infinite sets, ordered by inclusion up to a finite
set. Namely, 𝑋 ≤∗ 𝑌 if 𝑋 ⧵ 𝑌 is finite. In the next proposition, we consider the forcing
notion ℙ =

∏

𝑛<𝜔 𝑃 (𝜔)∕f in, where elements of the product have full support. For more
information regarding forcing we refer the reader to [14].

The following items summarize the properties of ℙ which we will need:
∙ ℙ is 𝜎-closed, and therefore does not add reals, and 𝜔1 is preserved.
∙ The projection to the 𝑛th coordinate projects ℙ to 𝑃 (𝜔)∕f in14.
∙ If 𝐺 ⊆ ℙ is generic over 𝑉 , then 𝑈𝑛 ∶= 𝜋𝑛(𝐺) = {𝑋 ∈ 𝑃 (𝜔) ∣ ∃𝑓 ∈ 𝐺.𝑓 (𝑛) ≤∗

𝑋} is an ultrafilter over 𝜔 in 𝑉 [𝐺].
∙ Each 𝑈𝑛 is a selective ultrafilter and 𝑈𝑛 ∉ 𝑉 [⟨𝑈𝑚 ∣ 𝑚 ∈ 𝜔 ⧵ {𝑛}⟩].

Proposition 2.15. Let ℙ be a full support product of 𝜔-copies of 𝑃 (𝜔)∕f in. Let 𝐺 ⊆ ℙ be
generic over 𝑉 . Then in 𝑉 [𝐺] there is a sequence of ultrafilters 𝑉𝑛, such that 𝑉0 >𝑇 𝑉1 >𝑇
𝑉2... and 𝑉𝑛 ⋅ 𝑉𝑛 ≡ 𝑉𝑛.

Proof. For each 𝑛 < 𝜔, 𝑈𝑛 is a selective ultrafilter and therefore by Dobrinen and Todor-
cevic [9], 𝑈𝑛 ⋅ 𝑈𝑛 ≡𝑇 𝑈𝑛 ≡𝑇 (𝑈𝑛)𝜔. For every 𝑛 < 𝜔, define15

𝑉𝑛 =
∑

𝑈0

(𝑈𝑛+1 ⋅ 𝑈𝑛+2 ⋅ ... ⋅ 𝑈𝑛+𝑚)0<𝑚<𝜔

Note that each 𝑉𝑛 is basically generated as the product and sum of such.

Lemma 2.16.
(1) 𝑉𝑛 ≡𝑇 𝑈0 ×

∏

𝑛<𝑚<𝜔 𝑈𝑚.
(2) 𝑉𝑛 ⋅ 𝑉𝑛 ≡𝑇 𝑉𝑛.
(3) 𝑉0 >𝑇 𝑉1 >𝑇 𝑉2....

Proof of Lemma. For (1), we note that for each 0 < 𝑚, the ultrafilters 𝑈𝑛+1 ⋅ ... ⋅ 𝑈𝑛+𝑚 ≤𝑇
𝑈𝑛+1 ⋅ ... ⋅ 𝑈𝑛+𝑚+1. Hence by Theorem 2.4,

𝑉𝑛 ≡𝑇 𝑈0 ×
∏

0<𝑚<𝜔
𝑈𝑛+1 ⋅ ... ⋅ 𝑈𝑛+𝑚

By Milovich’s Theorem 0.1, and by our assumptions, for each 𝑛, 𝑚

𝑈𝑛+1 ⋅ ... ⋅ 𝑈𝑛+𝑚 ≡𝑇 𝑈𝑛+1 × (𝑈𝑛+2 ⋅ 𝑈𝑛+2) × ... × (𝑈𝑛+𝑚 ⋅ 𝑈𝑛+𝑚) ≡𝑇 𝑈𝑛+1 × ... × 𝑈𝑛+𝑚.

14A function from 𝑓 ∶ ℙ → ℚ is called a projection of forcing notions if 𝑓 is order-preserving, rng(𝑓 ) is
dense in ℚ, and for every 𝑝 ∈ ℙ and 𝑞 ≤ℚ 𝑝, there is 𝑝′ ≤ℙ 𝑝 such that 𝑓 (𝑝′) ≤ℚ 𝑞.

15We thank Gabe Goldberg for pointing out this definition of 𝑉𝑛.
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Hence

𝑉𝑛 ≡𝑇 𝑈0 ×
∏

0<𝑚<𝜔
𝑈𝑛+1 × ... × 𝑈𝑛+𝑚

≡𝑇 𝑈0 ×
∏

0<𝑚<𝜔
(𝑈𝑛+𝑚)𝜔

≡𝑇 𝑈0 ×
∏

0<𝑚<𝜔
𝑈𝑛+𝑚 ⋅ 𝑈𝑛+𝑚 ≡𝑇 𝑈0 ×

∏

0<𝑚<𝜔
𝑈𝑛+𝑚

For (2), we use (1). For each 𝑛 < 𝜔,

𝑉𝑛 ⋅ 𝑉𝑛 ≡𝑇 (𝑉𝑛)𝜔

≡𝑇 (𝑈0 ×
∏

0<𝑚<𝜔
𝑈𝑛+𝑚)𝜔

≡𝑇 (𝑈0)𝜔 ×
∏

0<𝑚<𝜔
(𝑈𝑛+𝑚)𝜔

≡𝑇 𝑈0 ×
∏

0<𝑚<𝜔
𝑈𝑛+𝑚 ≡𝑇 𝑉𝑛

To see (3), note that from (1), we have 𝑉0 ≥𝑇 𝑉1 ≥𝑇 𝑉2..... Suppose toward a contradiction
that 𝑉𝑛 ≡𝑇 𝑉𝑛+1 for some 𝑛. Then 𝑈𝑛+1 ≤𝑇 𝑉𝑛+1. Note that

𝑉𝑛+1 ∈ 𝑉 [𝑈0, ⟨𝑈𝑚 ∣ 𝑛 + 1 < 𝑚 < 𝜔⟩].

By mutual genericity 𝑈𝑛+1 ∉ 𝑉 [𝑈0, ⟨𝑈𝑚 ∣ 𝑛 + 1 < 𝑚 < 𝜔⟩]. Since 𝑉𝑛+1 is basically
generated, Theorem 2.14 implies that there is 𝑃 ⊆ 𝐹𝐼𝑁 such that 𝑈𝑛+1 ≤𝑅𝐾 𝑉𝑛(𝑃 ). Note
that since ℙ is 𝜎-closed, 𝑃 ∈ 𝑉 and therefore 𝑉𝑛(𝑃 ) ∈ 𝑉 [𝑈0, ⟨𝑈𝑚 ∣ 𝑛 + 1 < 𝑚 < 𝜔⟩].
Also the Rudin-Keisler projection 𝑓 such that 𝑓∗(𝑉𝑛(𝑃 )) = 𝑈𝑛+1 is in the ground model
and therefore 𝑈𝑛+1 ∈ 𝑉 [𝑈0, ⟨𝑈𝑚 ∣ 𝑛 + 1 < 𝑚 < 𝜔⟩], contradiction. □

□

It follows that
∑

𝑈0
𝑉𝑛 = inf((𝑈0, ⟨𝑉𝑛 ∣ 0 < 𝑛 < 𝜔⟩)) is a strict greatest lower bound. Let

us also prove that 𝑈0 <𝑇
∑

𝑈 𝑉𝑛. We need the following standard fact.

Fact 2.17. Suppose that
∑

𝑈 𝑉𝑛 =
∑

𝑈 𝑉 ′
𝑛 then {𝑛 < 𝜔 ∣ 𝑉𝑛 = 𝑉 ′

𝑛 } ∈ 𝑈

Proof. Just otherwise, 𝑌 = {𝑛 < 𝜔 ∣ 𝑉𝑛 ≠ 𝑉 ′
𝑛 } ∈ 𝑈 , in which case, for every 𝑛 ∈ 𝑌

take 𝑋𝑛 ∈ 𝑉𝑛 such that 𝑋𝑐
𝑛 ∈ 𝑉 ′

𝑛 . Then 𝐴 =
⋃

𝑛∈𝑌 {𝑛} × 𝑋𝑛 ∈
∑

𝑈 𝑉𝑛, while 𝐴′ =
⋃

𝑛∈𝑌 {𝑛} ×𝑋𝑐
𝑛 ∈

∑

𝑈 𝑉 ′
𝑛 . However 𝐴 ∩ 𝐴′ = ∅ which contradicts

∑

𝑈 𝑉𝑛 =
∑

𝑈 𝑉 ′
𝑛 . □

Proposition 2.18. 𝑈0 <𝑇
∑

𝑈0
𝑉𝑛

Proof. Otherwise, there would have been a continuous cofinal map 𝑓 ∶ 𝑈0 →
∑

𝑈0
𝑉𝑛.

Since 𝑈0 is a selective ultrafilter, by Todorcevic [16], if 𝑉 ≤𝑇 𝑈0, then there is 𝛼 < 𝜔1
such that 𝑉 =𝑅𝐾 𝑈𝛼

0 for some 𝛼 < 𝜔1. It follows that
∑

𝑈0
𝑉𝑛 ≡𝑅𝐾 𝑈𝛼

0 for some 𝛼 < 𝜔1.
If 𝛼 > 1, then 𝑈𝛼

0 =
∑

𝑈0
𝑈𝛼𝑛
0 for some 𝛼𝑛 < 𝛼 (The 𝛼𝑛’s might be constant). It follows

that 𝑌 = {𝑛 < 𝜔 ∣ 𝑉𝑛 =𝑅𝐾 𝑈𝛼𝑛
0 } ∈ 𝑈0. Since for any 𝛽 < 𝜔1, 𝑈𝛽

0 ∈ 𝑉 [𝑈0], for any
0 < 𝑛 ∈ 𝑌 , we conclude that 𝑉𝑛 ∈ 𝑉 [𝑈0] and in particular 𝑈1 ∈ 𝑉 [𝑈0], contradicting the
mutual genericity. If 𝛼 = 1, then 𝑈0 =𝑅𝐾

∑

𝑈0
𝑉𝑛 which implies that

∑

𝑈0
𝑉𝑛 is a 𝑝-point,

contradicting Fact 1.3.
□
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3. COMMUTATIVITY OF COFINAL TYPES

In this section, we provide some information regarding Main Question 2: whether every
two ultrafilters 𝑈, 𝑉 satisfy 𝑈 ⋅ 𝑉 ≡𝑇 𝑉 ⋅ 𝑈 . Let us start with a few consequences of
commutativity:

Proposition 3.1. Suppose that 𝑈,𝑊 are ultrafilters on 𝜔 satisfying 𝑈 ⋅𝑊 ≡𝑇 𝑊 ⋅ 𝑈 if
and only if 𝑈 ⋅𝑊 ≡𝑇 𝑈𝜔 ×𝑊 𝜔 and 𝑊 ⋅ 𝑈 ≡𝑇 𝑊 𝜔 × 𝑈𝜔.

Proof. The implication from right to left follows easily since 𝑈𝜔 × 𝑊 𝜔 ≡𝑇 𝑊 𝜔 × 𝑈𝜔.
For the other direction, recall that by Theorem 0.1 that 𝑈 ⋅𝑊 ≡𝑇 𝑈 ×𝑊 𝜔 and 𝑊 ⋅𝑈 ≡𝑇
𝑊 × 𝑈𝜔. Hence, if 𝑈 ⋅𝑊 ≡𝑇 𝑊 ⋅ 𝑈 then 𝑊 × 𝑈𝜔 ≡𝑇 𝑈 ×𝑊 𝜔 from which it follows
that 𝑊 × 𝑈𝜔 ≡𝑇 𝑈 ×𝑊 𝜔 ≡𝑇 𝑈𝜔 ×𝑊 𝜔. □

We say that a class  of ultrafilters on 𝜔 is a commutative class if for every 𝑈,𝑊 ∈
, 𝑈 ⋅ 𝑊 ≡𝑇 𝑊 ⋅ 𝑈 . The previous proposition says that a certain class of ultrafilter
is commutative, the reason must be that inside that class, 𝑈 ⋅ 𝑊 has a formula which is
symmetric in 𝑈,𝑊 . This is formally expressed in (1) of the following proposition.

Proposition 3.2. Let  be a class of ultrafilters.
(1)  is commutative if and only if there is 𝑓 ∶ 𝛽𝜔 × 𝛽𝜔 → 𝑃 (𝔻𝕆(𝔠)) 16 such that:

(a) 𝑓 is symmetric: 𝑓 (𝑈,𝑊 ) = 𝑓 (𝑊 ,𝑈 ).
(b) For all 𝑈,𝑊 ∈ , 𝑈 ⋅𝑊 ≡𝑇

∏

𝑓 (𝑈,𝑊 ).
(2) If  is a commutative class then so is {𝑈1 ⋅ 𝑈2... ⋅ 𝑈𝑛 ∣ 𝑈1, ..., 𝑈𝑛 ∈ }
(3) Let 𝐷 be a cofinal type, denote by 𝐷 = {𝑈 ∣ 𝑈 ⋅ 𝑈 ≡𝑇 𝑈 × 𝐷}. Then 𝐷 is a

commutative class.
(4) Suppose that 𝑈 ∈ 𝐷 and 𝑈 ≤𝑇 𝑊 and 𝑈 commutes with 𝑊 , then 𝑊 ∈ 𝐷.

Proof. To see (1), for the implication from left to right, set 𝑓 (𝑈,𝑊 ) = {𝑈𝜔,𝑊 𝜔}. Then
𝑓 (𝑈,𝑊 ) = 𝑓 (𝑊 ,𝑈 ) and by the previous proposition, for 𝑈,𝑊 ∈ , 𝑈 ⋅ 𝑊 ≡𝑇 𝑈𝜔 ×
𝑊 𝜔 =

∏

𝑓 (𝑈,𝑊 ). For the other direction, given 𝑓 satisfying (a),(b), we have that

𝑈 ⋅𝑊 ≡𝑇
∏

𝑓 (𝑈,𝑊 ) =
∏

𝑓 (𝑊 ,𝑈 ) ≡𝑇 𝑊 ⋅ 𝑈

for all 𝑈,𝑊 ∈ . Hence  is a commutative class.
(2) follows by the associativity 𝑈 ⋅ (𝑊 ⋅ 𝑍) ≡𝑅𝐾 (𝑈 ⋅𝑊 ) ⋅ 𝑍 for any three ultrafilters

𝑈,𝑊 ,𝑍. For (3), take any 𝑈, 𝑉 ∈ 𝐷. By Theorem 0.1

𝑉 ⋅ 𝑈 ≡𝑇 𝑉 × 𝑈𝜔 ≡𝑇 𝑉 × 𝑈 ⋅ 𝑈 ≡𝑇 𝑉 × 𝑈 ×𝐷.

The formula above is symmetric for 𝑉 ,𝑈 , and by (1), 𝐷 is commutative.
To see (4), First note that 𝑈 ≤𝑇 𝑊 and

𝑊 ×𝐷 ≡𝑇 𝑊 × 𝑈 ×𝐷 ≡𝑇 𝑊 × 𝑈 ⋅ 𝑈
≤𝑇 𝑊 ×𝑊 ⋅𝑊 ≡𝑇 𝑊 ⋅𝑊
≡𝑇 𝑈 ×𝑊 ⋅𝑊 ≡𝑇 𝑈 ⋅𝑊
≡𝑇 𝑊 ⋅ 𝑈 ≡𝑇 𝑊 × 𝑈 ×𝐷 ≡𝑇 𝑊 ×𝐷

It follows that 𝑊 ⋅𝑊 ≡𝑇 𝑊 ×𝐷. □

Example 3.3. Consider {0}, 𝜔, and 𝜔𝜔 . Is it easy to see that

{0} = 𝜔 = {𝑈 ∣ 𝑈 ⋅ 𝑈 ≡𝑇 𝑈}.

16We denote by 𝔻𝕆(𝔠) the class of directed orders of size at most 𝔠.
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Dobrinen and Todorcevic [9] showed that if 𝑈 is a rapid 𝑝-point then 𝑈 ⋅𝑈 ≡𝑇 𝑈 , namely
𝑈 ∈ 0. Also, Milovich [15] showed that if 𝑊 is a 𝑝-point, then 𝑊 ⋅ 𝑊 ≡𝑇 𝑊 × 𝜔𝜔,
namely 𝜔𝜔 includes all 𝑝-points.

Claim 3.4. {0} ⊆ 𝜔𝜔 .

Proof. Just note that 𝜔𝜔 ≤𝑇 𝑈 ⋅𝑈 for every uniform ultrafilter 𝑈 and therefore if 𝑈 ⋅𝑈 ≡𝑇
𝑈 then 𝑈 ≡𝑇 𝑈 × 𝜔𝜔 and in particular 𝑈 ⋅ 𝑈 ≡𝑇 𝑈 × 𝜔𝜔.

𝑈 ⋅𝑊 𝑊 ⋅𝑊 ≡𝑇 𝑊 × 𝜔𝜔. 𝑈 ⋅ 𝑈 ≡𝑇 𝑈 × 𝐼𝜔. 𝑈 ⋅𝑊 ≡𝑇 𝑈 ×𝑊 × 𝜔𝜔 □

Let us turn to the main Theorem of this section:

Theorem 3.5. 𝜔𝜔 is closed under Fubini sums.

Proof. Suppose that {𝑊 ,𝑊0,𝑊1, ...} ⊆ 𝜔𝜔 . We need to prove that
∑

𝑊
𝑊𝑛 ⋅

∑

𝑊
𝑊𝑛 ≡𝑇

∑

𝑊
𝑊𝑛 × 𝜔𝜔.

Note that
∑

𝑊 𝑊𝑛 ≥𝑇 𝜔𝜔, so we will end up getting
∑

𝑊 𝑊𝑛 ⋅
∑

𝑊 𝑊𝑛 ≡𝑇
∑

𝑊 𝑊𝑛. It is
not hard to see that

∑

𝑊
𝑊𝑛 ⋅

∑

𝑊
𝑊𝑛 ≥𝑇

∑

𝑊
𝑊𝑛 × 𝜔𝜔.

For the other direction, recall that
∑

𝑊 𝑊𝑛 ⋅
∑

𝑊 𝑊𝑛 ≡𝑇 (
∑

𝑊 𝑊𝑛)𝜔. Let us prove that
(
∑

𝑊 𝑊𝑛)𝜔 is a uniformly below (𝑊 , ⟨𝑊𝑛 ∣ 𝑛 < 𝜔⟩). Since (
∑

𝑊 𝑊𝑛)𝜔 is complete,
Theorem 2.7 can then be applied that get

∑

𝑊 𝑊𝑛 ≥𝑇 (
∑

𝑊 𝑊𝑛)𝜔.
Let 𝑓 ∶ 𝑊 ×𝜔𝜔 → 𝑊 𝜔 and 𝑓𝑛 ∶ 𝑊𝑛×𝜔𝜔 → 𝑊 𝜔

𝑛 be monotone and cofinal maps, which
exists by the assumption that𝑊 ,𝑊𝑛 ∈ 𝜔𝜔 . We need to define a sequence of monotone and
cofinal maps ⟨𝑔𝑋 ∶ 𝑊 ×

∏

𝑛∈𝑋 𝑊𝑛 → (
∑

𝑊 𝑊𝑛)𝜔 ∣ 𝑋 ∈ 𝑊 ⟩ such that (†) of definition
2.6 holds.

Let ⟨𝐵, ⟨𝐴𝑛 ∣ 𝑛 ∈ 𝑋⟩⟩ ∈ 𝑊 ×
∏

𝑛∈𝑋 𝑊𝑛, by lemma 2.8, we may restrict ourselves to
sequences satisfying that

(⋆) for every 𝑛1, 𝑛2 ∈ 𝑋, 𝑛1 < 𝑛2 ⇒ min(𝐴𝑛1 ) < min(𝐴𝑛2 ).

The first step is to produce 𝜔-many functions in 𝜔𝜔 which are going to be the inputs of
𝑓𝑛’s. Fix a partition of 𝜔 i.e. 𝜔 =

⋃

𝑙<𝜔𝑍𝑙 such that the 𝑍𝑙’s are pairwise disjoint and
infinite. Recall that for a set 𝐶 of natural numbers, 𝐶(𝑟) denotes the 𝑟th element of 𝐶 in its
increasing enumeration. Define 𝜑𝑋,𝑖 by induction on 𝑖. For 𝑖 = 0, 𝜑𝑋,0(𝑘) = 𝑋(𝑍0(𝑘)).
Inductively, 𝜑𝑋,𝑖+1(𝑘) = max(𝜑𝑋,𝑖(𝑘), 𝑋(𝑍𝑖+1(𝑘))).

Claim 3.6. If 𝑌 ⊆ 𝑋, then for every 𝑖, 𝜑𝑋,𝑖 ≤ 𝜑𝑌 ,𝑖.

Proof. Clearly, for every 𝑚 < 𝜔, 𝑋(𝑚) ≤ 𝑌 (𝑚). So by definition, 𝜑𝑋,0 ≤ 𝜑𝑌 ,0. Suppose
this was true for 𝑖, and let 𝑘 < 𝜔, then by the induction hypothesis and our first observation,

max(𝜑𝑋,𝑖(𝑘), 𝑋(𝑍𝑖+1(𝑘))) ≤ max(𝜑𝑌 ,𝑖(𝑘), 𝑌 (𝑍𝑖+1(𝑘)).

□

The 𝑖’s function we will use is ℎ𝑖
⟨𝐴𝑛∣𝑛∈𝑋⟩

(𝑘) = min(𝐴𝜑𝑋,𝑖(𝑘)). This is well defined as by
the definition of 𝜑𝑋,𝑖, 𝜑𝑋,𝑖(𝑘) ∈ 𝑋. If 𝑌 ⊆ 𝑋, then by the claim 𝜑𝑋,𝑖(𝑘) ≤ 𝜑𝑌 ,𝑖(𝑘), and by
(⋆), ℎ𝑖

⟨𝐴𝑛∣𝑛∈𝑋⟩

(𝑘) ≤ ℎ𝑖
⟨𝐴𝑛∣𝑛∈𝑌 ⟩

(𝑘). Now define 𝑔𝑋(⟨𝐵, ⟨𝐴𝑘 ∣ 𝑘 ∈ 𝑋⟩⟩) by

⟨𝜋𝑋(⟨𝑓 (𝐵, ℎ0
⟨𝐴𝑘∣𝑘∈𝑋⟩

)𝑚, ⟨𝑓𝑛(𝐴𝑛, ℎ
𝑛+1
⟨𝐴𝑘∣𝑘∈𝑋⟩

)𝑚 ∣ 𝑛 ∈ 𝑋⟩) ∣ 𝑚 < 𝜔⟩
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The above seemingly complicated definition is nothing but the composition of the following
quite natural monotone cofinal maps:

𝑊 ×
∏

𝑛∈𝑋
𝑊𝑛

(𝑖𝑑,⟨ℎ𝑖∗∣𝑖<𝜔⟩)
⟶ 𝑊 × (

∏

𝑛∈𝑋
𝑊𝑛) × (𝜔𝜔)𝜔

⟶ (𝑊 × 𝜔𝜔) ×
∏

𝑛∈𝑋
(𝑊𝑛 × 𝜔𝜔)

(𝑓,⟨𝑓𝑛∣𝑛∈𝑋⟩)
⟶ 𝑊 𝜔 ×

∏

𝑛∈𝑋
𝑊 𝜔

𝑛

⟶ (𝑊 ×
∏

𝑛∈𝑋
𝑊𝑛)𝜔

𝜋𝜔𝑋
⟶ (

∑

𝑊
𝑊𝑛)𝜔

So 𝑔𝑋 is clearly monotone cofinal as the composition of such functions. To see (†), let
𝑌 ⊆ 𝑋, we ensured that ℎ𝑖

⟨𝐴𝑛∣𝑛∈𝑋⟩

≤ ℎ𝑖
⟨𝐴𝑛∣𝑛∈𝑌 ⟩

. Since 𝑓, 𝑓𝑛 are monotone functions, for
any 𝑚 < 𝜔,

𝐵𝑌 ,𝑚 ∶= 𝑓 (𝐵, ℎ0
⟨𝐴𝑘∣𝑘∈𝑌 ⟩

)𝑚 ⊆ 𝑓 (𝐵, ℎ0
⟨𝐴𝑘∣𝑘∈𝑋⟩

)𝑚 =∶ 𝐵𝑋,𝑚

and for any 𝑛 ∈ 𝑌 ,
𝐵𝑛
𝑌 ,𝑚 ∶= 𝑓𝑛(𝐴𝑛, ℎ

𝑛+1
⟨𝐴𝑘∣𝑘∈𝑌 ⟩

)𝑚 ⊆ 𝑓𝑛(𝐴𝑛, ℎ
𝑛+1
⟨𝐴𝑘∣𝑘∈𝑋⟩

)𝑚 = 𝐵𝑛
𝑋,𝑚.

By definition of 𝜋𝑋 and 𝜋𝑌 :

𝜋𝑌 (⟨𝐵𝑌 ,𝑚, ⟨𝐵
𝑛
𝑌 ,𝑚 ∣ 𝑛 ∈ 𝑌 ⟩⟩) =

⋃

𝑛∈𝑌 ∩𝐵𝑌 ,𝑚

{𝑛} × 𝐵𝑛
𝑌 ,𝑚

⊆
⋃

𝑛∈𝑋∩𝐵𝑋,𝑚

{𝑛} × 𝐵𝑛
𝑋,𝑚 = 𝜋𝑋(⟨𝐵𝑋,𝑚, ⟨𝐵

𝑛
𝑋,𝑚 ∣ 𝑛 ∈ 𝑋⟩⟩)

By definition of 𝑔𝑌 , 𝑔𝑋 and 𝜋𝑋,𝑌 , for all 𝑚 < 𝜔:
𝑔𝑌 (𝜋𝑋,𝑌 (⟨𝐵, ⟨𝐴𝑛 ∣ 𝑛 ∈ 𝑋⟩⟩))𝑚 = 𝑔𝑌 (⟨𝐵, ⟨𝐴𝑛 ∣ 𝑛 ∈ 𝑌 ⟩⟩)𝑚

= 𝜋𝑌 (⟨𝐵𝑌 ,𝑚, ⟨𝐵
𝑛
𝑌 ,𝑚 ∣ 𝑛 ∈ 𝑌 ⟩⟩)

⊆ 𝜋𝑋(⟨𝐵𝑋,𝑚, ⟨𝐵
𝑛
𝑋,𝑚 ∣ 𝑛 ∈ 𝑋⟩⟩) = 𝑔𝑋(⟨𝐵, ⟨𝐴𝑛 ∣ 𝑛 ∈ 𝑋⟩⟩)𝑚

Hence, 𝑔𝑌 (𝜋𝑋,𝑌 (⟨𝐵, ⟨𝐴𝑛 ∣ 𝑛 ∈ 𝑋⟩⟩)) ≥ 𝑔𝑋(⟨𝐵, ⟨𝐴𝑛 ∣ 𝑛 ∈ 𝑋⟩⟩). □

The main question remaining from this paper is still, whether the commutativity of co-
final types is true in general. Let us formulate two related questions which relate to the
results of this paper:

Question 3.7. Is is consistent that 𝜔𝜔 includes all non principal ultrafilters?

Question 3.8. Is the class of basically generated ultrafilters a subclass of 𝜔𝜔?
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