SUPERCOMPACT MEASURES AND THE GALVIN PROPERTY

TOM BENHAMOU AND BEN-ZION WELTSCH

ABSTRACT. We study saturation properties of o-complete measures on P_(4),
where A can be either regular or singular. In particular, we prove that in contrast
to Galvin’s theorem, the Galvin property from [5] fails for normal fine ultrafilters
on P_(4), answering a question of the first author and Goldberg from [9]. We then
provide several applications of our results: to ultrafilters on successors under
U A, we generalize a result of Gitik regarding density of ground model sets in
supercompact Prikry extensions, and to generating sets of P,.(4) measures. In the
second part of the paper, we study variations of the Galvin property suitable for
ultrafilters over P,(4), and generalize a result of Foreman-Magidor-Zeman [17,
Thm. 1.2] on determinacy of filter games to the two-cardinal setting, answering
a question of the first author and Gitman from [8].

INTRODUCTION

The motivation for this paper arises from a theorem of F. Galvin (see Theo-
rem 2.1), first published in [1], which states that whenever k<* = i, F is a normal
filter over «, and (A4; : i < k*) is a sequence of sets in F, there is some I of
size k such that (),c; A; € F. For example, Galvin’s theorem applies if F is the
club filter on ¥ and GCH holds, or F is a normal measure over a measurable cardi-
nal x. Parameterizing the combinatorial property from Galvin’s theorem yields the
following definition:

Definition. [The Galvin Property] Let X be a set and F a filter on X and k < A
cardinals. We say Gal(F, k, A) holds iff whenever (A; : i < A) is a sequence of
sets in F of length 4, there is some I € [4]* such that ﬂiel A eF.

This is a regularity-like property in the sense of Keisler [13] that has been consid-
ered in other contexts as well. Kanamori [24] called it cohesiveness, while Tukey
and Isbell [32, 19] and more recently in work of Todorcevic, Dobrinen, Milovich,
and the first author [31, 15, 27, 4] used it in connection to the Tukey order.

Interest in the Galvin property has had a recent resurgence due to its relevance to
Prikry-type forcing theory [20, 6, 7]. Gitik [20] used the Galvin property to prove
the following:
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Theorem (Gitik, [20]). Suppose 25 = k* and U is a normal ultrafilter on k. Then
in a generic extension by Prikry forcing with U, every subset of k* such that con-
tains a ground model subset of the size k.

In [7] it was then proven that the Galvin property of a general x-complete ul-
trafilter over « is equivalent to the density of ground model sets of the tree-Prikry
forcing analogous to the one described in Gitik’s theorem. The first author and Gi-
tik further extend this analysis in [7] to study ultrafilters U such that Prikry forcing
with U adds a generic for the Cohen forcing at .

In [9] the first author and Goldberg use a ¢-like principle, which also inspired
the one introduced in [11], to show that under the Ultrapower Axiom (UA) if U is
a o-complete ultrafilter on x* then Gal(U, k*, k**) must fail. In the same paper,
they ask the following question:

Question. ([9, Question 7.4]) Suppose U is a normal, fine ultrafilter on P (k).
Must Gal(U, «, (2)™) hold?

Here we answer this question negatively. In fact, not only does the Galvin prop-
erty need not hold, it never holds in this case:

Theorem 2.6. Let U be a normal, fine ultrafilter on P.(A). Suppose that 2<* = A
and cf(A) # k. Then ~ Gal(U, k, 2%).

The situation when cf(1) = k is more subtle. In this case, the proof of Galvin’s
original theorem generalizes using tools of Goldberg’s book [22].

Theorem 2.16. Let U be a normal, fine ultrafilter on P (). Suppose that 2<* =
and cf(4) = k. Then Gal(U, k,2%).

We then investigate the extent to which this theorem can be improved, and show
the following:

Theorem 2.18. Let U be a normal, fine ultrafilter on P.(1). Suppose that 2<* =
and cf(1) = k. = Gal(U, (25)*,2%).

This leaves (at least) one case open, namely Gal(U, 2%, 2*) (see Question 2.19).

Our results have several applications to the theory of ultrafilters. First, the failure
of Galvin’s property for cf(4) # x shows that normal, fine ultrafilters on P (1) are
k-Tukey-top, namely Tukey-maximal among x-complete ultrafilters U over P,(4),
whereas Galvin’s theorem says that normal ultrafilters on cardinals are necessarily
non-x-Tukey-top.

Secondly, we can improve the Theorem from [9] regarding ultrafilter on succes-
sor cardinals under UA:

Corollary 3.3. (UA) Let U be a c-complete ultrafilter on k. If 2¥ = k™ then
= Gal(U, k,2%").

Then, using our theorem, we generalize Gitik’s result on the density of old sets in
generic extensions by Prikry forcing to the case of the supercompact Prikry forcing:
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Theorem 3.6. Suppose U is a normal P_.(A) ultrafilter where cf(A) # k and 2<4 =
A. Let G be generic for the supercompact Prikry forcing with respectto U. InV[G],
there is a set S C 2* that contains no ground model set of size k.

Finally, we use these results to study generating sets of P,.(4)-measure and con-
clude the following:

Corollary 3.11. If U is a o-complete (k, A)-regular ultrafilter over A, k being a
strong limit and 2<* = A, then y(U) = 2%

In the last section of this paper, we consider the revised Galvin property defined
using inclusion modulo the fine filter which is the filter generated by cones, i.e.
sets of the form & = {x € P.(4) : a € x}. In Theorem 4.10 prove a variation of
Galvin’s theorem using inclusion modulo this filter. We then use the inclusion mod-
ulo the fine filter to study variation of the filter games introduced in [28] by Nielsen
and Welch, which were used to characterize small large cardinals. Foreman, Magi-
dor, and Zeman in [17] call these games Welch games and use their determinacy to
construct interesting ideals. In particular, they prove:

Theorem ([17], Theorem 1.4). Assume 2¥ = k™ and k does not carry a saturated
ideal. Let y be an infinite regular cardinal below x*. If player Il has a winning
strategy in the Welch game of length y, then there is a uniform normal ideal I on k
with a dense set D C I such that:

(1) (D, C*) is a downwards-growing tree of height y

(2) D is closed under C;-decreasing sequences of length y

(3) Disdensein P(x)/I.

From the ideal I, a precipitous ideal can be constructed, given that y > w, show-
ing the equiconsistency of a winning strategy for Player II in the game of length
 + 1 and the existence of a measurable cardinal.

This result was generalized to some extent by the second author and Gitman in
[8] to filter games in the two-cardinal settings. Also, it was noticed in [8] that an ad-
ditional property of the constructed ideal, named y-measuring' could be extracted,
with which Theorem could be reversed. However, the generalization was not fully
satisfactory as the dense tree did not consist of positive sets from the constructed
ideal. In an attempt to find a direct generalization to Theorem , it was then asked:

Question ([8, Question 9.8]). Is there an equivalent version of the two-cardinal
games where sets are played instead of ultrafilters?

In the last part of the paper, we answer this question and generalize Theorem to
the setting of ideals on P_(4), using two-cardinals filter games where sets are played
in analogy to the Welch games. This enables us to construct dense trees consisting
of sets.

Theorem 4.19. Suppose that 24 = At there is no saturated ideal on P.(4), and
that the Judge has a winning strategy for the game G’z/ for some regular w <y < A.
Then there is an ideal I on P_(A) such that:

Iwe say that an ideal I is p-measuring if given any collection A = {A; | i < u} € P(k), and a
positive set B € I*, thereis B’ C B, B’ € I" such that forevery i < u, B’ C; A,or B’ C, k \ A,.
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(1) I is normal.

(2) I is precipitous.

(3) I has a dense subtree (ordered by D) T which is y-closed.

(4) I is A-measuring. That is, for any (A, | « < A) C P.(A) and any S € I
there is 8" C S, S' € I't such that for any « < 4, 8’ Cp A, or S8’ Cp
P.(A)\ A,

The paper is organized as follows:

(1) Section § 1: We begin with some preliminary definitions related to the
Galvin property. We introduce other combinatorial properties of ultrafil-
ters and show some basic relations between these properties, the Galvin
property, and the Rudin-Keisler order.

(2) Section § 2: Here we prove the main result of the paper and other results on
the Galvin property on fine two-cardinal ultrafilters. We also prove some
results about the Galvin property on ultrafilters on successor cardinals un-
der the Ultrapower Axiom.

(3) Section § 3: We show some applications of our results on Galvin’s prop-
erty from the previous section: We consider the Galvin property under the
Ultrapower Axiom, density of ground model sets after the supercompact
Prikry forcing, and generating sets of P,.(4) measures.

(4) Section § 4: We analyze filter combinatorics modulo the filter Fine, ;:
We consider a revised Galvin property with respect to this ideal, define a
version of P-point filters, define a modification of the diagonal intersection,
and we construct a two-cardinal analog of the ideal constructed in section
5 of [17].

1. PRELIMINARIES

1.1. Ultrafilters and Ultrapowers. Here we collect some definitions and basic
facts about ultrafilters. Let U be an ultrafilter over a set X. We let M; denote the
class of equivalence classes of functions f with domain X and let j;; denote the
usual ultrapower construction of the set-theoretic universe V. Namely, j; : V —
M, is defined by j, (x) = [c, ]y, where ¢, is the constant function with value x.
We denote by id the identity function and we use id;; as shorthand for the class
of the identity function id;;. When My, is well-founded, we identify My, with its
Mostowski collapse, and do the same with id,.

Definition 1.1. Let U, W be ultrafilters over X, Y respectively. We say U is Rudin-
Keisler below W, written U <gx W ,ifthereis f : Y — X suchthatU = f (W),
where

Wy ={AcX|f'Xew).
We say U is Rudin-Keisler equivalent to W, written U =g W if U <px W and
W <z U.

It is well known (see for example [14]) that U =~px W if and only if there is
f 1Y — X which is one-to-one and f,(W) = U. The following facts about the
Rudin-Keisler order are standard, see for example [22].
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Proposition 1.2. Let U and W be ultrafilters. Then U <gpx W if and only if there
is an elementary k. My — My, such that koj; = jy,. If k is also a surjection,
then also U =pp W.

Let x and A be cardinals. We set
P(A)={xCAi:|x| <k}
The ultrafilters in this paper all have P,(1) as an underlying set.
Definition 1.3. Let U be an ultrafilter on P,.(1). We say U is fine if forall @ < A
we have {x € P.(A) : « € x} € U. We say U is normal if whenever X, € U for
a < A then the diagonal intersection /\,; X, € U where
Ny, Xy ={x€P(}) :Va€EX, (x€X,)}
Proposition 1.4. [22, p. 185] Let U be an ultrafilter over P_(A).
(1) U is fine if and only if My; F j[A] Cidy,.
(2) U is normal if and only if My; F idy C jy[4]. 2
Note that every fine ultrafilter U on P,.(4) is uniform, namely, every set X € U
has cardinality A. Otherwise |X| < A, and ||J X| < |X| -k < A. Take any
a € A\ UX. If U is fine, there is some x, € {y € P.(4) : « € y} N X # @ but
then @ € x, C |J X, contradicting our choice of a.

We say an ultrafilter U is k-complete if whenever X, € U for all @ < k then
Na<x Xo € U. We say that U is o-complete if it is @-complete.

Definition 1.5. A cardinal « is strongly compact if for all A > « there is a k-
complete fine ultrafilter on P_(4). « is supercompact is for all A > « there is a
normal , fine ultrafilter on P_(4).

Note that any normal, fine ultrafilter on P_(4) is automatically x-complete [25].

Definition 1.6. An ultrafilter U is (k, A)-regular if there is a sequence of sets (X, :
a < A) € U such that whenever I C Aand |[I]| =k, () ,c; X, = 9.

Regularity of ultrafilters can be viewed as a strengthening of the failure of Galvin’s
property, since any witness for (k, A)-regularity of an ultrafilter U is also a witness
for = Gal(U, «, A). Regularity admits a useful characterization in terms of the ul-
trapower:

Proposition 1.7. Let U be an ultrafilter. The following are equivalent:
(1) U is (x, A)-regular.
(2) There is a set X € My such that My F jylAl € X and My F | X| <
jU(K ).
Hence, regular and fine ultrafilters are connected in the following way:

Corollary 1.8. The following are equivalent:
(1) U is (x, A)-regular.
(2) there is a fine ultrafilter on P_(A) such that U <gx W

2Although Ju[A] might not be in My;, we abuse notation by writing My; F j;[4] € X to mean
that for every @ < A, My F j,(a) € X.
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2. THE GALVIN PROPERTY

Given afilter F, recall that the Galvin propery (see Definition ) Gal(F, k, A) says
that for all (A; : i < A) C F, thereis I C A with |I| = k such that (,.; A; € F.
We will present the proof of Galvin’s theorem, not only for completeness but also
because our proof of Theorems 2.16 and 4.10 mirrors this one.

Theorem 2.1 (Galvin’s Theorem). Suppose that 2<¥ = k and let F be a normal
filter over k. Then Gal(F, k, k). Namely, letting (X, | i < k™) be a sequence of
sets such that for every i < k%, X; € F, there is Y C k% of cardinality k, such that

Niey Xi € F.

Proof. Forevery a < k™ and & < k, let
Hye={i<x"|X;né=X,NE}

Claim 2.2. There is a* < k™ such that for every & < k, |Hys ¢| = k*

Proof of claim. Otherwise, for every a < k™ there is £, < k such that | H, mful <
k. By the pigeonhole principle,, there is X C «* and £* < k, such that | X| = «*
and for each ¢ € X, £, = &*. Since « is strong limit and £* < «, there are less
than x many possibilities for X, N &*. Hence we can shrink X to X’ C X such that
| X'| = k* and find a single set E* C &* such that for every « € X', X, N&* = E*.
It follows that for every a € X':

a a.

Hence the set H, . does not depend on a, which means it is the same for every

a € X'. Denote this set by H*. To see the contradiction, note that for every
«€ X',a € H,; = H*, thus X' C H*, hence

k*=|X'|<|H*| <k

contradiction.[Jejpim

Let a* be as in the claim. Let us choose Y C k™ that witnesses the lemma. By
recursion, define §; for i < k. At each step we pick ; € Hy- iy \ {B; | j < i}
(at the first step pick any index in H . ;). It is possible to find such g;, since the
cardinality of Hey oy is k*t, and {B; | j < i} is of size less than k. Let us prove
that Y = {p; | i < k} is as wanted. Indeed, by definition, it is clear that |Y| = «.
Next, we need to prove that () ¢y X, =, X € F. By normality of F,

X* ::Xa* nAi<KXﬂ[_ GF.

Thus it suffices to prove that X* C (), X,. Let { € X, then for every i < ¢,
feX 5, by the definition of the diagonal intersection. Fori > ¢, { € i + 1, and
thus { < i+ 1. Recall that ; € H,.;,; which means that

Xy NG+ 1) =X, NG+ 1),

and since { € X,-nNn@+1),¢{ € Xﬂ[_. We conclude that { € ﬂiq Xﬁ[_, thus
X* c ﬂi<1( Xﬂ,-‘ U
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The Galvin property is an invariant of the Rudin-Keisler order (or more general-
ity the Tukey order, see [4]).

Lemma 2.3 ([12, Lemma 2.1]). Suppose W <gpx U are ultrafilters and k < A are
cardinals. If ~Gal(W, k, A) then = Gal(U, «, 7).

The main question inspiring this paper concerns the Galvin property on ultra-
filters on P .(x"), but we shall answer the question more generally for ultrafilters
on P.(A) for any A > x*. We shall split this section to three subsections, each
addressing this general question depending on the cofinality of A.

2.1. The case cf(4) > k. We begin with a lemma that we shall use repeatedly.

Lemma 2.4. Let k < A be cardinals and let U be an ultrafilter on P,(A) such that
U does not concentrate on P () for any { < A. Suppose that [X — Ax]ly = A €
My and 6 < cf(A). If My F | Al < jy(6). Then for any B € U there is 8 < 6 such
that {sup(X) : X € Band |Ay| < 0} is unbounded in A.

Proof. Forevery 6 < 6 let Sy = {sup(X) : X € Band |Ay| < 6}. We want to
show that there is some € such that sup Sy = A. Since My; k | A| < j;(6), by Los
wehave Y :={X € B : |Ayx| <6} € U. Note that

Y:U{XGB | Ayl < 6}
0<6
Suppose now towards a contradiction that sup Sy < A for all § < cf(4). It follows
that

C=sup{sup(X) : X €Y} <4 (recall cf(4) > §).

But then U concentrates on P_({), contradicting our assumption that U is uniform.
O

Remark 2.5. Note that in the previous lemma, if we only assume My, F |A| <
Juy(6), then we still get that for any B € U {sup(X) : X € Band |Ay| < 6} is
unbounded in A. The reason is that for {X € B | |Ay| < 6} € U and for any set
in Z € U, {sup(X) | X € Z} is unbounded in A.

Now we answer [9, Question 6.4] of the first author and Goldberg.

Theorem 2.6. Let U be a normal, fine ultrafilter on P.(1). Suppose that 2<* = )
and cf(4) > k. Then ~Gal(U, k,2%).

Proof. Let A = {jy(Y) N (supjy[A]D) : Y € A}. By Theorem 4.3.4 in [22],
A € My. Let f: P.(4) — P(P(A)) represent A in My, so that j; (f)(jy[AD) =
A. Foreach X € P.(1) let Ay = f(X). We may assume that for every X,
f(X) C P(sup(X)). Forevery Y C 4, define

By :={X €P.(}): Ynsup(X) € Ay},

then By € U as jy[A] € ji(By) by definition of A. We claim that {By : Y C 1}
witnesses = Gal(U, k, 2%). Otherwise, there is a sequence of distinct (Y; C A : i <
k)sothat B=),_ By €U.

i<k
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Note that since 4 < ji;(x), and j (k) is measurable in My, M, E |A| = 24 <
Ju(x) so by Lemma 2.4, we can fix 6, < k such that S, is unbounded in A. For
i #j <67 let f;; be least such that Y; \ f;; # Y; \ ;. Since cf(4) > « > 6,
pF o= sup#jdg(ﬂi,j) < A, and by our choice of 6, there is an X* € B with
|Ay«| < 6y and sup(X*) > p*. Then the map i — Y; N sup(X™) is now a one-to-
one map from 9; into A y, a contradiction. ]

Corollary 2.7. If 2 = % and U is a normal, fine ultrafilter on P.(x™") then
= Gal(U, k,2%").

Notice that the assumption cf(4) > « is crucial for the argument to work, so that
the supremum of the §; j ’s is below A. The case when cf(1) < k will admit a much
easier argument.

Normality is crucial to show that the set A is in M{; to produce the counterex-
ample to the Galvin property. Without normality, we cannot guarantee this, but we
can effectively cover A in the ultrapower if U is fine. This yields the following
result:

Theorem 2.8. Let U be a fine, o-complete P .(A)-ultrafilter where k is strong limit,
cf(4) > k, and 2<* = . Then ~ Gal(U, k,2%).

Proof. For each @ with k < a < A, let f,: 4 — P(a) be a surjection (here we use
2<% = A. Since U is fine, idy 2 jylAl. It follows that j; (f )idy] 2 jy[P(a)].
Now let (f; @ a < jy(A) = jy((f, : @ < 4)), and set X, = f~[idy]. Notice
(X, : a < jy(d)isin My: X, € P(@Mv € My and id; € My, and the
sequence is definable from id;; and (f @ @ < ji;(4)). Again, since idy; 2 jy[4] it
follows that j; [P(@)] € X ()-
Let A* = sup jy[4]. In M, define the following set.

A={Y C A : Y nae€ X, for unboundedly many a € id;; NA*}
Work in My, we have that |idy; | < ji (k) and j;(x) is strong limit. Therefore,
lA| < | H X,| < |idy |lidy nA*| < jy ().
a€idy NA*
By definition of .4 and elementarity we have j,;(Y)NA* € AforallY C A. To see
this, we will prove that for all « € j;;[A] we have j;(Y) N A* na € X,,. Note that
if @ = j;(p) for some f < A then
JuY) N jyB) = jy(¥ N p) € jylP(P)] € X,.

Now let f: P.(4) - P(P(A*)) represent A in the ultrapower so that

Ju(fHdy) = A.
Foreach X € P_(4)let Ay = f(X). Let g represent 1* in My;, so j;(g)(id) = A*.
By the previous paragraph, j;(Y) N sup(idy) € A = jy(f)({d). Reflecting this we
have
VY CA By ={XePA):YngX)eAy}elU
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This is true as id;; € j;;(By) by elementarity and the definition of A. We claim
that { By : Y C A} witnesses = Gal(U, k, 2*). Otherwise there is (Y; C 1 : i < k)
sothat B= (), By €U.

By Lemma 2.4, fix 6, < « such that {sup(X) : X € Band|Ay| < 6,} is
unbounded in A. Now fori # j < 9(‘; let §; ; be least such that

Yi\Bi; #Y;\ B
Now take a* > SUP;2j<q (B; ;) below A such that there is an X* € B with [Ay.| <

0, and g(X™) = a*. Then the map i = Y; N g(X™) is a 1-1 map from 9(“; into Ay,
a contradiction. g

Together with Corollary 1.8 we get the following, improving a result of Taylor
[30, Theorem 2.4 (2)] in some cases.

Corollary 2.9. Let x be a strong limit cardinal. If U is a (x, A)-regular and o-
complete ultrafilter over A where cf(1) > k and 2<* = A then = Gal(U, k, 2%).

Proof. By Corollary 1.8, there is fine ultrafilter W on P_(4) such that W <p U.
Also, since U is o-complete sois W. By Theorem 2.8, = Gal(W, k., 24). By Lemma
2.3, also =~ Gal(U, «, 2%). |

This corollary is also interesting in the light of the conjecture from [10] that
non-Tukey-top ultrafilters (i.e. those which satisfy the Galvin property) must be
non-regular.

2.2. The case cf(4) < k. Here the situation trivializes due to a powerful result
of Goldberg, which generalizes a classic result of Solovay. We begin with some
definitions.

Definition 2.10. An ultrafilter U on a cardinal 4 is weakly normal if whenever A €
U and f: A — Aisregressive, then there isa B C A in U such that | f[A]| < 4.

Weakly normal ultrafilters admit a nice characterization in the ultrapower (see
[22, Proposition 4.4.23]).

Proposition 2.11. Let A be a cardinal. A countably complete, uniform ultrafilter U
on A is weakly normal if and only if id;; is the unique ordinal a > sup ji;[4] such
that o # jy(f)(P) forany f. A — Aand f < a (i.e. idy is the unique generator
of juy above jy[A]).

Definition 2.12. Let 0 be a cardinal. An ultrafilter U on 0 is isonormal if U is
weakly normal and M/, is closed under 8-sequences.

Goldberg gives an exact characterization of when an ultrafilter on a cardinal is
equivalent to a supercompactness measure. Using this characterization, we can
reduce the study of P.(A) ultrafilters to ultrafilters on cardinals when we are con-
sidering only Rudin-Keisler invariant properties, such as the Galvin property. We
shall use this deep fact again in the next section.

Theorem 2.13 (Goldberg [22, Theorem 4.4.37]). Every normal, fine ultrafilter is
Rudin-Keisler equivalent to a unique isonormal ultrafilter.
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Remark 2.14. The proof of the above theorem also shows the following fact that
we shall use in the next section: suppose U a normal, fine ultrafilter on P.(4) and
cf(A) > k. Let W is the unique isonormal ultrafilter isomorphic to U. Then there
is some ordinal 6 such that sup j;[4] <60 < jy(4) and X € W it 0 € j (X).

This yields an even stronger failure of Galvin’s property in this case.

Theorem 2.15. Let cf(1) < k¥ < Aand 2<* = A. If U is a normal, fine ultrafilter
on P_(A) then ~Gal(U, ., 2*").

Proof. Applying Theorem 2.13, U is Rudin-Keisler equivalent to an isonormal ul-
trafilter W on |0| > A, where 6 is as in the previous remark. Note that My, and
My, are in fact closed under A<*-sequences and in this case A<* > A*. Hence we
may derive a normal fine ultrafilter Z on P_(4") from jy, using jj [A*]. Now The-
orem 2.6 applies to Z and Z <px W =px U, so by Lemma 2.3 we may conclude
-~ Gal(U, k,2%"). O

2.3. The case cf(1) = k. Here the situation is more complicated, and the only one
yielding a positive result. First we will show that the proof of Galvin’s theorem for
normal filters on a cardinal actually generalizes:

Theorem 2.16. Suppose cf(A) = k and 2<* = A. Let U be a normal, fine ultrafilter
on P_(A). Then Gal(U, k, A™).

Proof. By Theorem 4.4.37 in [22], there is a unique weakly normal ultrafilter W
on A such that W =g U. Furthermore, My, is closed under A-sequences. We
will show Gal(W, k,2*) holds. Let (X, : i < A*) C W. For @ < A* and & < A let

Claim 2.17. There is an a* < A* such that |H,. ¢| = A™ for every & < A.

Proof of claim. Otherwise, for every a < A% there is £, < A such that |H, aéal < A
There must be X C At with |X| = At and a &* < 4 such that £, = &* for all
a € X. Since 2<* = ) and & < A there are fewer than 1 many possibilities for
X, N &*. Hence we may shrink X to X’ C X with |X’| = A" and find a E* C &*
such that X, N &* = E* for every a € X’. Then for every a € X', Hy: = Hge.
Denote this set by H*. We see that X’ C H*, but | X’| is strictly larger than | H*|,
a contradiction. —

Let a* be as in the claim. Fix f : 4 — « so that [f];;, = k. Note that we may
take f to be monotone. To see this, let g : ¥ — A be increasing, continuous, and
cofinal, and assume the range of g consists only of cardinals. For every f§ < 4 let
f(f) = a where a is least such that g(a) > f. Then f is clearly weakly monotone.
Now we check that [ f],;, = k. As mentioned in Remark 2.14, there is some ordinal
0 strictly between sup j;[A] and j(4) such that

XeW < 0¢ejyX)

So we shall show that jy, (f)([idly,) = jy(f)(0) = k. If @ < k then j;(g)(a) =
Jy(g(a)) < supjylA] < 6. Since g is continuous, sup j;[4] = jy(g)(k). Since
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g(a) is always a cardinal, 6 < | sup j,; [A]|*Mv < j(g)(x +1). Hence j, (f)(0) = x,
as desired.

Now for all i < x choose f; € H e oi)41 \ {ﬁj | j < i} fori < x. We define the
f-diagonal intersection:

D=A! X, = (n<A|Vi< fo)(n € X,))

Note that jW()?)i = jW(Xﬂ‘_) forall i < k and jy - (f)([id]y,) = &, so it follows that
W is closed under f-diagonal intersections. Now it suffices to show that
XenDC ()X,
i<k
Towards this end suppose { € X, N D. Fixi < k. Ifi < f({)then{ € Xﬁ; by
definition of D. If i > f({), since { € X,. then Xy N 4; +1 = X, N4 + 1,50
ceXg. O

We cannot use the strategy in the proof of Theorem 2.6 since the cofinality of A
is too small in this case to show the failure of Galvin’s property in the same way.
However we can use a simple counting argument to show some failure of Galvin’s
property. The following proof was shown to the second author by Goldberg.

Theorem 2.18. Suppose cf(A) = k and 2<* = A. Let U be a normal, fine ultrafilter
on P.(4). Then = Gal(U, (2°)*,2%).

Proof. Let W be the isonormal ultrafilter on A that is RK-equivalent to U. Let
A* == sup(jy[4]) and A = (jy(S)N A* | S C 1). By Theorem 2.13, A € My,
and let A = [ — Ayly,. We may assume that for every f < 4, |A] < k. Let
(X, | @ <2%) be a one-to-one enumeration of subsets of 4. For & < 4 let

B,={f<i:X,npe Az}

Suppose towards a contradiction that there is some I C 2* such that |I| = (25)*
and B := () ; B, € U. Let C C B be cofinal in A with 0#(C) = k. Now consider

peC
a— (X, NnplpeC)
Then f is a well-defined injection by the definition of B but [I| = (2¥)* and the
above product has size 2%, a contradiction. (]

ael

The above proof shows that the sets (B, | a < 2#) have the following property:
Forany I € [2’1](2K)+, N «c By must be bounded in A.

2.4. Possible strengthenings. Under the assumptions that 2<* = A, the Galvin
property for a normal fine ultrafilter on P_(4) is fully settled when cf(4) # k. For
cf(A) = k, there is still one last case:

Question 2.19. Let U be a normal fine ultrafilter on P.(4), where cf(4) = x. Must
Gal(U,2%,2%) hold? Must Gal(U, 2%, 2*) fail?
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We conjecture that the answer is independent. Another question we would like
to address is the necessity of the assumptions of Theorem 2.8 (or rather its corollary
2.9)regarding U being a (k, A4)-regular o-complete ultrafilter on P,(A). The cardinal
arithmetic assumptions of this theorem will be considered in Section 3.3.

Let us consider the fineness assumption. There is a simple counter example if
we take A to be much larger than «.

Example 2.20. Suppose k < 4 are measurable cardinals, and let U,, U; be normal
ultrafilters on kx and A respectively. Let W be an ultrafilter over A which is Rudin-
Keisler equivalent to the product ultrafilter U, - U, on k X A. So W is a k-complete
ultrafilter on 4 and 2<% = A but W satisfies Gal(U, A, A*). Indeed, if (A, | a <
A*) C U, then for each a we can find A, € Uy and A, | € U, such that A, x
Ayl € A,. We can now stabilize A, for many a’s, so we assume without loss of
generality that A, , = X, € U, for every a < A*. Now we apply Galvin’s theorem
for the normal measure U, on 4, to find I € [A*]* such that X| = (,c; A, € U;.
It follows that Xy X X C [ ,c; Aq» as wanted.

iel
acl

For ultrafilters over successor cardinals we need to work a bit harder. We can
use recent results [10] regarding the consistency of non-Tukey-top ultrafilters on
successor cardinals. For the convenience of the reader, we translate the results to
our settings.

Theorem 2.21 (Essentially [10, Thm. 5.4]). Let v<V = v. Suppose that 2" < v
and that there is a normal v*-dense ideal® on v*. Then there is a uniform ultrafilter
U on v* such that Gal(U, v*,2"").

Note that the ultrafilter produced by the above theorem is non-(v, vt)-regular.
The consistency of dense ideals on small cardinals was proven to be consistent by
Woodin [33], and recent results of Eskew and Hayut [16] made significant progress
in the study of such ideals.

Theorem 2.22 ([16]). It is consistent (relative to large cardinals) that GCH holds
and for every n < w there is a uniform, normal , |-dense ideal on w,_ ;.

This gives the consistency of an ultrafilter on a successor cardinal which satisfies
the Galvin property; however, it is unclear if this could be made the successor of a
supercompact cardinal:

Question 2.23. Is it consistent to have a normal x*-dense ideal on k™ where « is
kt-supercompact?
3. SOME APPLICATIONS

3.1. The Ultrapower Axiom. Here we present some results on the Galvin property
under the Ultrapower Axiom. First a concept that will be vital to the proof of the
next theorem.

3Anideal I on p is called u-dense if P(p)/I has a dense subset of size u.
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Definition 3.1. A nonprincipal o-complete ultrafilter U is irreducible if whenever
there is an ultrafilter W and W’ € My, such that (My,)Mw = M, either W is
principal or W <px U.

Theorem 3.2. (UA) Let U be a o-complete ultrafilter on k. Then there is a fine,
o-complete ultrafilter F on P.(k™") such that F <gg U.

Proof. Let U be a 6-complete ultrafilter on *. By Theorem 8.2.24 in [22] there is
an ordinal A < k% and an ultrafilter D on A with D <zg U such that j,(U) = W

is a jp(x*)-irreducible ultrafilter and j; = j%” ojp. By Theorem 8.2.22 in [22]

Jy'isaj p(kT) supercompactness embedding from the perspective of M ,. Hence

ji\VlD [jp(xT)] € M. Now define an ultrafilter F on P,.(x*) by
XeF = jy"Lipk"] € jy(X)

then F is o-complete. To see that F is fine, notice j (k) > k* we have j%” LipkH] 2
Julktl. Also jy (k) = ju (ip(k)) > jp(k™) since jy, (k) > k*. Hence

P LipNMY = e HIMe < jiy (k).

Since j%” [jp(x™)] covers j; [k*] and has size less than j; (k) we conclude that
F is fine. Furthermore F <y U since F was derived using ji;. ]

This yields an improvement of [9, Cor. 6.2].

Corollary 3.3. (UA) Let U be a c-complete ultrafilter on x*. If 2¥ = k™" then
= Gal(U, «,25").

3.2. Density of Old Sets. The failure of the Galvin property for supercompactness
measures allows us to generalize a result of Gitik [20] and Benhamou-Garti-Poveda
[5] on ground model sets after Prikry forcing over a measurable cardinal. First we
start by recalling the definition of the supercompact Prikry forcing (see [21]).

Definition 3.4. Let x,y € P_(4) we say x is strongly below y, written x < y, iff
x Cyand |x| < |k Ny

Definition 3.5. Let U be a normal ultrafilter on P,_(A). The supercompact Prikry
forcing consists of (X, A) where X is a finite <-increasing sequence of elements in
P.(4) and A € U is such that max_(X) < a for all a € A. We set (X, A) < (J, B)
if the following hold:

(1) X is an end-extension of y.

(2) ACB.

(3) Whenever |y| <i < |X|, x; € B\ A.

Theorem 3.6. Assume 2<* = A and cf(1) # k. Suppose U is a normal P.(A)
ultrafilter, and let P be the supercompact Prikry forcing with respectto U. In V[G],
there is a set S C 2* that contains no ground model set of size k.

Proof. By Theorem 2.6, in V thereis (A, : @ < 2*) C U such that no intersection
of k many A,’s lies in U. An easy density argument ensures that for every a < 24
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there is n, <  such that for every m > n,, X,, € A,. Since cf(2*) > w, there
is § € [241%, and n* < w such that for every « € S, n, = n*. This means
that {X,, | m < n*} C (),cs Ae- We will show S contains no ground model
set of size k. Otherwise T' € [S]* in V, then by the failure of Galvin’s property,
Nuer A« € U. On the other hand, {X,, | m > n*} C (),c; A,. However, since
k\(Nyer Ao) € U, the same density argument as before yield that for some n’ < w,

for every m > n’, X, & () ,er As this is a contradiction. O

We will give some example conclusions we may draw from this theorem. Let G
be generic for the supercompact Prikry forcing, and let X € V[G] \ V such that
X CVI[G]. Lety = | X|. Then:

() If C = J{x : (X,A) € G} is the Prikry sequence, then C contains no
infinite ground model set.

(2) If 0 is any cardinal of V'[G] of countable cofinality, then 8 has a subset of
size § with no ground model subset of the same cardinality.

3) fw<cf V(n) < k, then X contains a ground model set of size #.

(4) If k < cf(y) < 2% then X contains ground model subsets of every cardinal-
ity < k, but no ground model set of size k.

(5) If cf(n) > 2* then X contains a ground model set of the same size.

Remark 3.7. If U is a supercompactness measure on P,(A) then there is a Rudin-
Keisler projection from U to a normal measure on «, via x — |x N k|. This can be
lifted to a projection from the supercompact Prikry forcing with U to the classical
Prikry forcing with a normal measure on x¥. Hence any new sets with no large
ground model subsets added by the classical Prikry forcing will also persist into the
supercompact Prikry extension. Hence, Gitik’s analysis of the density of old sets in
a usual Prikry extension can be used. In fact, if U is 2¥-supercompact, then any -
complete ultrafilter on « is a Rudin-Keisler projection of U and the Rudin-Keisler
projection induces a projection of the corresponding forcings.

3.3. Generating Sets of P,_(1)-Measures. Recall that given an ultrafilter U on a
set X, and a filter F, we say that B C U is an Cp-base for U if for every A € U
there is B € B such that B C A (mod F), namely, there is C € F such that
BNC C A. When U is an ultrafilter over a cardinal u, we usually consider F = {k'}
or F being the co-bounded filter on «, in which case C (mod F) translates to C
and C* respectively. However, on P.(4)-measures, there is another natural ideal to
consider— the fine ideal. Let

xrp(U) =min{|B| | Bisa Cf -base for U}
The following is well-known (see for example [18, Claim 1.2]):

Lemma 3.8. No uniform ultrafilter over X has a C-base consisting of | X |-many
sets.

An immediate corollary is:

Corollary 3.9. Let U be a uniform ultrafilter on X and F a filter over X. Suppose
that F C U, and F is generated by | X |-many sets, then yp(U) = y(U).
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The way our results connect to the above is by using the following lemma:

Lemma 3.10 (Folklore). Let A be a regular cardinal and U an ultrafilter on A.
Suppose that U satisfy = Gal(U, A, A). Then y(U) > A.

Proof. Let (A, | « < A) C U witness that -~ Gal(U, A, A). Towards a contradiction,
if y(U) < A, let(X; | f < 0) C U be a C-base for U for some § < A. For
each @ < 4, we find B, < 6 such that X, C A,. By the regularity of 4, we can
find a single #* ans S € [A]* such that for every « € S, f, = f*. It follows that
X C ﬂaes A,, contradicting that (A, | @ < A) witnesses = Gal(U, A, A). O

Corollary 3.11. If U is a o-complete (k, A)-regular ultrafilter over A, k being a
strong limit and 2<* = A, then y(U) = 2%

Next, let us show that 2<* = A cannot be dropped from Theorem 2.8. Towards
that, we need the following theorem:

Theorem 3.12 (Raghavan-Shelah [29]). Suppose that k<* = k, and k < ¢ f(u) <
A < u, where u is a strong limit cardinal and suppose U is a cf (u)-indecomposable
ultrafilter over A. If G C Add(x, u) is a V -generic filter, any extension of U to a
V[G]l-ultrafilter U* is generated by u-many sets.

Corollary 3.13. Let k be a Laver-indestructible supercompact cardinal * and let
A > K be a regular cardinal such that there is A-complete fine ultrafilter U over
P,(A%). Then in V[G], there is a k-complete fine ultrafilter U* on P;(A") such that
Gal(U*,24",2%"). In particular Gal(U*, k., 2*").

Proof. Let U be the filter generated by U in V' [G]. Since Add(x, A**") is k-closed,
Uisa k-complete filter, and since x is indestructible, in V' [G], we can extend U
to a xk-complete ultrafilter U* on P;(4*). To see that U* remains fine, it suffices
to use the fineness of U and note that {A € P;(A*) | @ € A}V C {A € P,(AY) |
a € AYVIG] It remains to see that Gal(U*, 2’1+, 2’1+) holds, since U is A-complete,
itis in particular k*-complete, so we may apply Theorem 3.12, to conclude that the
extension U* of U is generated by A**"-many sets. Also note that in V[G], 24" =
AT+l By Lemma 3.10, we conclude that Gal(U*, 24", 24") holds, as desired. [

4. ON GENERATING SETS MODULO THE FINE FILTERS

In this section we discuss two results concerning generating sets of a fine filter
with respect to Cpipe(,. 1) Where Fine(x, 1) is the fine filter defined as follows:

Definition 4.1. The fine filter Fine(x, ) is the filter generated by sets for the form
{X € P(4) | i€ X} forsomei < A For X,Y € P.(4) we say X Cpjpe(rny Y if
there is some A € Fine(x, A) such that X N A C Y. When « and A are clear from
context, we will simply write X Cr Y.

Note that by Corollary 3.9, we have that ygipe(, 1)(U) = x(U).

4That is, after any x-directed forcing, k remains supercompact [26].
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4.1. The revised Galvin property. One may argue that the problem of gener-
alizing Galvin’s theorem to normal P_(A)-ultrafilters is that the wrong version of
Galvin’s property was used. In this section, we present two possible ways the the-
ory generalizes if one uses the inclusion modulo the fine ideal.

Definition 4.2. Let U be a fine ultrafilter on P,.(4). Gal*(U, u, ') is the statement
that from any y’-many sets in U there are y-many which have a lower bound in Cy..
In other words, given (A, : @ < ') C U there is some I C u' with |I| = p and
A* € U such that whenevera € I, A* Cr A,,.

Definition 4.3. Let F be a filter on a set D. Suppose A is a family of subsets of D
such that whenever A, ..., A,_; € A, [),., A; € F*. Then we denote by F[.A]
the minimal filter such that F U A C F[A].

There are limitations on the variation of Galvin’s property that can hold. The
following limitation is a slight modification of [3, Thm. 4.3]:

Corollary 4.4. Let U be a fine ultrafilter on P_(A) and let y = cf(y(U)). Then
= Gal*(U, u, p). In particular, if 2* = A* then = Gal*(U, A*, A™).

Proof. Let (X; : i < yp(U)) be a Cp-base for U. By Lemma 3.8, yr(U) =
x(U) > AT. By thinning out the C-base, we may assume that for any j < y(U),
X; & Fine(x, V[(X; : i < j)],namely X; €z X forany i < j. Now let (o, | i <
cf(y(U))) be increasing and cofinal in y(U). We claim that (Xa‘_ | i < cf(yU)))
witnesses that = Gal*(U, A, 1). Otherwise, there is I unbounded in cf(y(U)) such
that {Xa,- | i € I} has a Cr-lower bound X € U. Then there is j < cf(y(U)) such
that X; Cr X. Since (a; | i < cf(x(U))) is cofinal and I is unbounded, there is
i € I such that j < ;. But this is impossible since this would mean that X; Cp
X Cr X, , contradicting the choice that X, ¢ Fine(x, DUX; 1 < el ([l

Definition 4.5. We say that a fine ultrafilter U on P.(4) is a P,-point if every col-
lection (X, | i < p) C U such that p < p there is a set A € U such that for every
i <p, A\ X; € Fine(x, 4)*, where Fine(k, 1)* is the ideal dual to Fine(k, 4).

For successor cardinals, Ketonen [2] has another definition of a p-point which
differs from this one.

Proposition 4.6. [f U is a normal fine ultrafilter then U is a P,+-point.

Proof. Letp < A" andlet(X; : i < p) CU. Let(X; |v < 4)beare-enumeration
of order-type A. Let

A=A X, =(xe P :xe()X,}
vVEX
Then A € U by normality. Furthermore, for each i < p we find v < A such that
i =1i,. Then,

A\ X, :A\X,.v C{x :i, & x} € Fine(x, 1)*.

It is easy to see that the following holds:
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Proposition 4.7. If U is a P)+-point then Gal*(U, 4, 4).

Let us provide some analogies to the usual characterization of p-points using
partitions:

Proposition 4.8. Let U be a fine ultrafilter on P,.(4). The following are equivalent:
(1) U is a P;+-point.
(2) Whenever (X; : i < A) C P(P.(A)) either there is j < A such that X; € U
or else there is an X € U such that X N X; € Fine(x, A) for all i < A.

Proof. Assume U is a P;;-point and let (X; | i < 4) C P(P.(4) be such that for
every i < A, X; € U. Then (X{ | i < A) C U. By (1), there is X € U such that
X Cp X; for each i. This means that X n X; € Fine(x, 4) for every i < A. The
other direction is similar.

(]

The variation of Galvin’s theorem we obtain here is with respect to the following
special kind of intersection:

Definition 4.9. Let (A, | x € P.(4)) C P.(A). The cone intersection of the
sequence (A, | x € P.(4)) C P.(4), is the set

XiepnAx ={y € P(4) |[Vxe P.(A), (x<yVyCx)=>y€eEA,/]}

Clearly, the cone intersection satisfies:

ﬂ Ay € Xiep.(yAx € Axep () Ax
xEP.(A)

For example, if A, = {z € P.(4) | x C z}, then for every y € P.(A), there is
y G x, whichmeans that y & A, andinturn y € X, ep Ay 1.6. Xyep nAx = @.
If follows that normal measures on P_(4) are not in general closed under cone inter-
sections of their elements. Nonetheless, we have the following analogy of Galvin’s

theorem:

Theorem 4.10. Suppose that A<¥ = A and let U be a normal fine ultrafilter over
P_(A). Then for any (A, | @ < A*) C U there are sets H, € [A*]"" for x € P.(4)
such that for every choice (a, | x € P.(4)) € [ ep 1y Hy Xxep,Aa, €U.

Proof. For each x € P.(A) and a < A% let
H,, ={p<A"|AynP(x)=A, N P(x))}
Claim 4.11. There is a* < A* such that for every x € P.(4), |H, | = A*.

Since A<K = A, there is S € [A1]*" and x* € P_(A) such that for every @ € S,

x, = x*. Next, note that the value of A, N P(x*) has 22" '-many possibilities.
Since A<¥ = A, there is A* C P(x*) and S’ € [S]*" such that for every a € S,
A, N P(x*) = A*. But this is impossible, since if « € S’, then on one hand

|H, . | < 4, on the other hand, S’ C H,, , . O

Proof of Claim. Otherwise, for each @ < A* there is x, such that |Hy i | < A
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Fix a* as in the claim above and let H, = H,

ax- FOrevery x € P.(4),
choose a, € H,., and let A, = A, . To see that X . .p A, € U, we prove

that idy = jyl4l € ju(Reep,nAx) = (Rxep,, Gin A, where jy (A, |
x € P.(d)) = (A; | x € Pj(K)(j(ﬂ))MU). Towards this, following the defini-
tion of the cone intersection, let x < j;[4], then there is y € P.(4) such that
Jju(¥) = jylyl = x. In particular, A; = jU(Ay) and since A, eU, idy € jU(Ay).
For the second part of the definition of (XxePKM)A;)MU, lety € (I’j(K)(j(,l)))Mu
such that id; C y. By elementarity and the choice of the sequence (a, | x €
P.(A), My E jy(A,) N P(y) = Ay N P(y). Since id; € y we conclude that
idy € jy(A¥) N P(y) and therefore in A,. It follows that idy; € jy(Xyep_(1)Ax); as
wanted. U

Remark 4.12. The above generalizes Galvin’s theorem in the following sense: a
normal ultrafilter U on a measurable cardinal k¥ can be identified as a normal fine
ultrafilter on P,(x) which concentrates on the set of ordinals ¥ C P (k). Now the
above theorem says that if we take (A4, | @ < k) C U, then there are H, € (k<"
such that for every (o, | x € Pc(k)) € [liep )0 Xxepr,()Aa, € U. Hence
Xyep.(0Aq, € U. We claim that Card. N Xyep ()Ay. S [Ny, Aq,» Where Card.
is the class of cardinals (here we view v as an element of P_(x)). Indeed, let p €
Card. N X cp ()Aq, and v < k. Then either v < p in which case v < p and thus
pE Aav. Otherwise, p < v in which case p C v and again p € Aav by definition of

X. We conclude that p € ), A, which recovers Galvin’s theorem.

4.2. An Ideal From Two-Cardinal Filter Games. Throughout this section we
assume that k¥ < A are cardinals and A<¥ = A. In this section, we would like to gen-
eralize Theorem of [17, Thm 1.2] connecting winning strategy in the filter games
and large cardinal ideals, to the two-cardinal filter games. These were interested in
[8]. To set up the game, we first need the following definition:

Definition 4.13. Fix some large regular cardinal 6. A set M < H, of size A is
called a (k, A)-model if

(1) M is transitive.

(2) M EZEC™. 3

B) M =<5 V.

4) A+1C Mand P.()M C M.

Given a (x, A)-model N we say that U is a normal N -ultrafilter on P,.(4) if
(N,&€,U) E U is a fine normal ultrafilter on P (A).

That is, U measures all the sets in P(P.(4)) N N, and whenever (A, | a < 1) € N
is a collection of A-many setsin U, A, ,;A, € U.

Let us turn to the definition of the games G| and G,. This is a game between
two players, the Challenger and the Judge, taking turns. Informally, the Challenger
presents the Judge with a challenge— a collection of sets they have to measure. The

SZFC- is the theory obtained from ZFC by removing the axiom of powerset, replacing the re-
placement schema with collection, and replacing the axiom of choice to the well-ordering principle
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Judge responds with a normal ultrafilter measuring this collection. In further steps
of the game, the Challenger can add more sets to the ones which they previously
presented, and the Judge has to extend the previous ultrafilter to the new collection.

The game G|, generalizing the game G from [17]. For that we need an internally
approachable sequence, that is, a sequece (N; : i < A*) of (k, A)-models which is
an increasing, continuous elementary chain such that (N; : i < @) € N, for all
a<a <At

Remark 4.14. If | P(P.(A))| = AT then in H, there is a wellorder of P;+(P(P.(4)))
in order type A*. Hence P(P.(4)) = |J,., N; n P(P.(4)), and every N,-ultrafilter
appears in N for some j > i.

i<u

Definition 4.15 (The game G,). Fix any ordinal y. The rules of Gq are as follows:

(1) The Challenger plays an increasing sequence of ordinals a; < A™.
(2) The Judge plays a sequence U; of N, ,-ultrafilters on P,(4) such that:
(@ (U; | j<i) €Ny
(b) Uj CU, foralli>j.
The Challenger goes first at limit stages. The game proceeds for some length 2 < y
determined by the play, for some fixed y < A*. The game continues until either the
Judge has no valid move or the play has reached length y. The Judge wins only if
the play reaches length y.

Definition 4.16 (The game G,). Fix an internally approachable sequence of (x, 4)-
models (N; : i < A™). The rules of Gg are as follows:

(1) The Challenger plays an increasing sequence of ordinals a; < A%.
(2) The Judge plays a sequence of sets Y; C P,(4) such that:
(@) Y; Cp Y foralli > jand (Y; | j <i) € Ny 4.
(®) U; ={X € P(P.(M)NN, 4 : Y; Sp X}isanormal N, ,,-ultrafilter
on P_(1)).

The rules and winning conditions of Gg are the same as those of G’l’.

Proposition 4.17. The following are equivalent:
(1) the Judge has a winning strategy in G}ll.
(2) the Judge has a winning strategy in Gg.

Proof. The direction (2) = (1) is trivial, since given the set produced by a strategy
for Gg the Judge can play the ultrafilter determined by that set in G’l/.

Given a G’l/—winning strategy o, we will define a Gg—winning strategy ¢’. For the
first move, the Challenger plays an ordinal «, and ¢ will yield a normal N, + 1
ultrafilter U,,. To determine the move Y, given by ¢’, choose f# large enough that
Uy € Ny and choose a minimal enumeration of Uy = {X,; : { < 4} is the well-
ordering of Hy. By elementarity, and since U, € N, this enumeration is in Ny.
Then set Yy = /\;.;X:. Note that any legal move a; of the challenger will have
to satisfy that ¥, € N, and also U, € N, . Again by elementarity, we will have
that the minimal enumeration Uy = { X, : £ < A} will also be in N, , so whenever
Uy € U, is anormal N, -ultrafilter, Y, € U,.
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Now suppose that ((«;,Y;) | j < i) is a run in the game according to ¢’ which
has already been defined. Also assume that we maintained an auxiliary G}l'—run
((a;,U;) | j < i), such that each Y; is the diagonal intersection of U; according to
the minimal enumeration of U; in the H, well-ordering.

Now suppose that the challenger in the game GZ plays a legal move a;. Note that
(W, Yyy)lij<i)e N, 41, and that for each j < i, the minimal enumeration of U;
is a member of N, ;. Next, we let the challenger in the game Gi play «;, and the
strategy ¢’ produces an N, o +1-Normal ultrafilter U; which extends all the U;’s for
J <i.Itfollows thatY; € U, foreach j < i. LetU; = {Xé | £ < A} be the minimal
enumeration of U;, we set Y; = /\ caaX é It is routine to check that ¢ is a winning

strategy in the game G?. O

Next, we shall define some properties of ideals that appear in the main theorem
of this section.

Definition 4.18. Let I be an ideal on P.(4).

(1) I is normal if I is closed under diagonal unions: whenever (X, : a <
A Cl,

VX, ={xeP():x€ UXa} el

a<i aex

(2) I is precipitous if whenever G C P(P.(A))/1 is generic over V, the generic
V -ultrapower Ult(V, G) is well-founded.

(3) D C I isdenseif Disadense subset of the partial order (P(P.(A4))/1, ;).

(4) I is A-measuring if for any (A, | « < A) C P.(4) and any S € I there is
S’ C S, 8" € Itsuchthatforany a < A, 8" Cp A, or S" Cp P(D)\ 4,.

Theorem 4.19. Suppose that 24 = A% there is no saturated ideal on P (1), and
that the Judge has a winning strategy for the game Gg for some regular w <y < A.
Then there is an ideal I on P_(A) such that:

(1) I is normal.

(2) I is precipitous.

(3) It has a dense subtree (T, 25) which is y-closed.
4) I is A-measuring.

Proof. Given a winning strategy o for the Judge, we define the hopeless ideal 1(c)
as the collection of all X C P,(A) such that no play of the game played according
to o ends with a Y Cr X. In other words, no ultrafilter generated in any play
according to ¢ assigns measure one to X.

More precisely, for any £ < y we recursively define a play of Gg according to
o as a sequence P = ((@;,Y;) : o((P | i)"a;) = Y, fori < £). Now define the
hopeless ideal:

I(c) ={X C P_(4) : for any play P and any a, c(P"a) £r X}
We also define the conditional hopeless ideal given some play P of length £ < y:
I(o,P)={X C P.(4) : forany play Q J P and any a, 6(Q"a) £r X}
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Claim 4.20. (o) is k-complete and normal.

Proof of claim. First we check x-completeness. Suppose towards a contradiction
that I(c) is not k-complete, so there is some 7 < k and (A; : & <n) C I(c) such
that A = (J t<n Aq & 1(o). Then there must be some play P of length £ such that
Y; € A for some Y; appearing in P. Now we can choose some play QO such that
P1i=0 " liand(A; : & <n) C N, . Inparticular, Y;,; Cr ¥, S A and
forall & < n, Uj§i+1 A; Cp Ag. Hence Y, Cr A, by normality of U}, so there is
some A & I(0), a contradiction.

The same proof with \/,_; A, in place of J <y Ag shows that I (o) is normal.
The same proof also shows that I (o, P) is k-complete and normal for any P. -

To construct the desired ideal, we will first take an arbitrary winning strategy o
for Il in Gg and build the tree T'(o) together with a correspondence taking sets X in
T (o) to plays of the game R,. We will then use T'(¢) to construct a new strategy
o’ for which T'(c) will witness the required property (3) of I(c”).

The construction of T'(¢) and the assignment X — R, will go by induction on
the levels of T'(¢). We wish to maintain the following in our induction:

(1) Ry has successor length and ends with X as the last move played by the
Judge.

(2) The tree order is C restricted to the nodes of the tree.

(3) If X 27 Y are nodes in T'(¢) then Ry C Ry.

(4) If X,Y are on the same level of the tree then X NY &€ Fine(x, A)*.

For & limit we will take T'(¢) | 6 = | a<s(T'(0) I a) and Ry will be already be
defined for every X € T(c) | 6. The induction hypothesis is trivially maintained.
So we shall focus on the successor stage of the construction.

Let 6 < y and suppose we have constructed every level up to 6. Let b be a cofinal
branch of the tree constructed thus far. Let P, = |Jy, Rx. Then by (2), P, is a
play according to o. Since we assume there is no saturated ideal, we can choose
some antichain A, C I (o, P,)* with | A| = A*. Foreach A € A, let Q4 be a play
extending P, such that if Y, is the last move of the Judge then Y, Cr A. Such a
play exists by the definition of I (o, P,).

Now we construct notes at the 5"-level, which will all have b as their set of
predecessors in the tree. This is again by recursion. Suppose we have constructed
the successors (Y @ & < &), and let a(Y,) denote the index in Ry, played by the
Challenger to which Y, was the response to. Since each Ny has size 4 we may
choose the some A € A, which is not an element of any Na(Yg) +1 forany & < €.
Now let a be least such that A and every Y, is in N, . Then a is a legal move
following Q 4, so we may let Yz be the Judge’s response to O, () given by o.
Notice that Y, Cr A as A was given by a previous move of the Judge. Also, set
RYE =0, (a, YE)

Now we shall show that the three conditions of the inductive hypothesis are main-
tained. The first is easily seen to be satisfied, so towards verifying the second con-
dition, et X be any node in T'(¢) and Y, any node on the newly constructed 5™ level
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of the tree. If X is a predecessor of Y; is the tree order, then X lie on the branch b,
and therefore Y; Cr X as Y, was given by a move of the Judge to a run of the game
where X was played. In the other direction, if X is not in b, then either X = Y
in which case Y; €7 X, or the predecessors of X and Y, in the tree are different.
Applying (4) of the induction hypothesis to the level where X and Y split, together
with (2), we see that Y; ¢ X.

The third condition now follows from the second, since if let X C Y, then X
must be on the branch b leading to Y. But then, by definition,

where A € A, was the set used in the construction of Y.

Finally, we verify the fourth condition. Y, Z lie above distinct branches then
this follows from the inductive hypothesis. So suppose now that & < ¢ and Y, Y,
are above the same branch b. Let A;, A, be the corresponding members of A,
respectively. Then Y; Cr A, and similar for {. But A, N A, € Fine(k, A)* since
Ay is an antichain, so Y; N Y, € Fine(x, 4)*. Hence the induction hypothesis is
maintained and so the construction of 7'(¢) is completed.

Now given T'(c) we shall recursively define a new strategy ¢’. Suppose R =
((¢;,Y)) i < j)is aplay of the game according to o’ | j, and assume further that
every move given by ¢’ is in T(6). Let by be the corresponding branch through
T (o). For each legal move g for the Challenger, set

o’/(R™(p)) = the unique immediate successor Y of by in
T (o) such that a(Y) > f is minimal.

Since o is a winning strategy and T'(¢) has height y we see that ¢’ is also a winning
strategy. Also since T'(o) has height y and no terminal nodes we see that T'(c) is a
y-closed subset of I(c”)".

We have seen already that I(c”) is normal, so we show it is precipitous. Consider
the precipitousness game on an ideal J, which is played as follows: players I and
IT alternate picking sets S, € J* such that S, ; C .S, for all » € w. The game is
played for w steps. I wins iff () _. S, = @. A proof that I is precipitous iff I does

new n
not have a winning strategy can be found in [23, Lemma 22.21].

Claim 4.21. Player I does not have a winning strategy in the precipitousness game
G(I(c")), so I(c’) is precipitous.

Proof of claim. Assume that = is a winning strategy for I in the precipitousness
game G(I(c’)). We will show that there is a play of the game according to T where
IT wins. To do this, we shall use an auxiliary play of Gg.

First let S, be the first move for I given by 7. Let « be least such that S, € N,,.
Since S, € I(c¢’)", there is a run of the game R ending with Y, such that Y, C. .S,.
Note that by the definition of 6/, Ry = Ry, . Back in the precipitousness game, we
let IT play S| = ¥, N .Sy. In general, suppose that S, 2 S; 2 ... 2 S,,_; was
played according to 7 and let .S,, € I(c’)* be the move of Player I according to 7.
Again, note that there is a Run R, with last move Y, such that Y, C» §,,. Again,
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R, = Ry andnotethatY, Cr S,, Cr ¥,_;. By the properties of the tree, it follows
that R,_; = Ry E Ry =R,. LetSy,,; =Y,N.S,, by the move of II.
Then at the end of the game, [, S; = @, since 7 is a winning strategy. How-

ever, therun R = | J,_, R, is arunin the game Gi according to the winning strategy
o. We can pick a large enough so it is a legal move and (S, | n < w)nN,, ;. Then
o(R"a) = Y and Y determines a normal ultrafilter U on N, ; which includes
all the Y,’s and therefore all the S,’s. Also U is x-complete which implies that
Ny<w S» € U, producing a contradiction. -

i<

We remark that all we have really used in the above proof is that we have a
winning strategy in the game of length @ + 1-closed. Now we just have one claim
left to show.

Claim 4.22. I(¢') is A-measuring.

Proof of claim. Fix A € T(c) and a sequence (A, : a < A). Let & < A% be large
enough that (A, : @ < A) C N, and let A* C A, for all « with A* € T(c). Then
A* is a valid move for the Judge in response to the Challenger playing £. Since
1(c”) extends the fine ideal, A* C A and A* measures (A, : @ < 4). —

Hence I(c') is as desired. O

Remark 4.23. Similar to Theorem [8, Thm. 8.14], the existence of a normal A-
measuring ideal I on P_(4) with a 6-closed dense tree D. Implies that the Judge
has a winning strategy in the game G;.
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