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Shimura operators
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Main Results and Ideas

Super ingredients (supersymmetric Shimura operators, Sergeev–Veselov
polynomials)
Three Theorems
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Background

1 X = G/K: rank n symmetric space. D = D(X): space of invariant
differential operators on X.

2 (g, k): corresponding Lie algebras. g = k⊕ a⊕ n: Iwasawa decomposition.

3 γ0 : D(X) → Λ ⊆ P(a∗): the Harish-Chandra isomorphism. Λ is a
certain ring of symmetric polynomials.

4 Shimura [Shi90]: multivariate generalization of nearly holomorphic forms.
Studied certain differential operators on Hermitian X.

g = p− ⊕ k⊕ p+(= k⊕ p)

Short grading, k acts on p± (abelian).

5 Sahi–Zhang described the spectrum of these Shimura operators in terms
of specialization of BC -symmetric interpolation polynomials by
Okounkov. [Realized as the images under γ0.]
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Schmid Decomposition and Shimura Operators

Let H (n) consist of partitions of length n, H d(n) := {λ ∈ H (n) : |λ| = d}.
Denote U(g) as U, and the k centralizer in U as Uk. Then D = Uk/(Uk)k where
(Uk)k = Uk ∩ Uk. A result of Schmid ([Sch70, FK90]) gives the following
multiplicity free k-module decompositions:

Sd(p+) =
⊕

λ∈H d(n)

Wλ, S
d(p−) =

⊕
λ∈H d(n)

W ∗
λ .

Shimura Operators

Endk (Wλ) ∼= (W ∗
λ ⊗Wλ)

k
↪→

(
S
(
p−

)
⊗S

(
p+

))k →Uk → D

1 7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Dλ 7→ Dλ

Call Dλ the Shimura operator associated with λ.
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Okounkov Polynomials

Λ := C[x1, . . . , xn]
Sn⋉Zn

2 (ring of even symmetric polynomials)
ρ := (ρ1, . . . , ρn), ρi := τ(n− i) + α. τ, α: parameters.

Theorem-Definition [Oko98, OO06], c.f. [SZ19]

The Okounkov polynomial Pµ(x; τ, α) is the unique polynomial in Λ satisfying

1 degPµ = 2|µ|;
2 Pµ(λ+ ρ) = 0 for λ ⊉ µ [the vanishing properties];

3 Some normalization condition.

ρ can be specialized to the half sum of positive roots for a restricted root system of
Type BC. [The case for Hermitian X]

For the “usual” Type A symmetry, there are Knop–Sahi polynomials [KS96].
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Punch Line

Let W0 be the Weyl group of the restricted root system. For Hermitian G/K,
W0

∼= Sn ⋉ Zn
2 . Then Λ = P(a∗)W0 and γ0 : D → P(a∗)W0 .

Endk (Wλ) → D
γ0

−→ P(a∗)W0

1 7−−−−−−−−−→ γ0(Dλ)

Theorem (Sahi & Zhang [SZ19])

We have γ0(Dλ) = kλPλ for some kλ ̸= 0.

Let Vµ be the irreducible g-module of highest weight
∑

µiγi. Then Vµ has a
spherical vector vk, i.e. k.vk = 0. This is guaranteed by the classic
Cartan–Helgason Theorem. Dλ ∈ Uk (Dλ ∈ D) acts on vk as γ0(Dλ)(µ+ ρ),
hence the word spectrum/eigenvalue!
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Big Picture

We solved the Type A super analog:

Shimura Operators
on Hermitian sym. sp.

Supersymmetric Shimura Operators
of Hermitian sym. superpairs

Okounkov Polynomials Sergeev–Veselov Polynomials

superization

[SZ19]

superization

[SZ23]
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Set up

Fix g = gl(2p|2q) and k = gl(p|q)⊕ gl(p|q). Embed k into g:

((
Ap×p Bp×q

Cq×p Dq×q

)
,

(
A′

p×p B′
p×q

C′
q×p D′

q×q

))
7→

 Ap×p 0p×p Bp×q 0p×q

0p×p A′
p×p 0p×q B′

p×q

Cq×p 0q×p Dq×q 0q×q

0q×p C′
q×p 0q×q D′

q×q


Here p+ (resp. p−) consists of matrices with non-zero entries only in the
upper right (resp. bottom left) sub-blocks in each of the four blocks.
Let J := 1

2 diag(Ip×p,−Ip×p, Iq×q,−Iq×q), and θ := Ad exp(iπJ). Then θ has
fixed point subalgebra k.
Fix a θ-stable, maximally split Cartan h containing a, a maximal toral
subalgebra in p0. The standard diagonal Cartan is denoted as t (in both g
and k, “max. compact”)
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Super Ingredients

Let H = H (p, q) := {λ : λp+1 ≤ q} (hook partitions), and let
H d := {λ ∈ H : |λ| = d}. For gl(p|q)⊕ gl(p|q), Cheng–Wang decomposition
([CW01, SSS20]) says

Sd(p+) =
⊕

λ∈H d

Wλ, S
d(p−) =

⊕
λ∈H d

W ∗
λ .

Highest weight (λ♮) on t, expressed in Harish-Chandra strongly orthogonal
roots. Note Wλ are of Type M, and dimEndk(Wλ) = 1. Set D = Uk/(Uk)k.

Supersymmetric Shimura Operators

Endk (Wλ) ∼= (W ∗
λ ⊗Wλ)

k
↪→

(
S(p−)⊗S(p+)

)k →Uk → D

1 7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Dλ 7→ Dλ

Call Dλ the supersymmetric Shimura operator associated with λ.
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Super Ingredients

Iwasawa decomposition (for recent developments see [She22]) g = n⊕ a⊕ k gives

U = (Uk+ nU)⊕S(a).

Then the homomorphism Γ (Harish-Chandra homomorphism) is defined as
the ρ-shifted projection w.r.t. the above decomposition. The quotient
isomorphism γ0 : Uk/ ker Γ → ImΓ is the Harish-Chandra isomorphism.

1 Independent from Alldridge’s results on Harish-Chandra homomorphism
[All12], we proved ker Γ = (Uk)k := Uk ∩ Uk.

2 We also proved that Im γ0 is exactly Λ0(a∗), the ring of even
supersymmetric polynomials on a∗, previously proved in [Zhu22].
Even supersymmetric: invariant under permutations of {xi} and of {yj}
separately; invariant under sign changes of {xi, yj}; and
f(x1 = t, y1 = −t) is independent of t.
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Sergeev–Veselov Polynomials

Proposition-Definition

For each µ ∈ H , there is a unique polynomial Jµ ∈ Λ0 of degree 2|µ| s.t.

Jµ(λ+ ρ) = 0, for all λ ⊉ µ, λ ∈ H

and that Jµ(µ+ ρ) is certain explicit non-zero constant.

1 A specialization of Sergeev–Veselov polynomials [SV09].

2 Here λ is some choice of coordinates (Frobenius).

3 ρ is the Weyl vector, the half sum of the positive restricted roots.

E.g. p = q = 1, for the restricted root system, ρ = (−1, 1).

1 µ = (1), λ = ∅, and λ+ ρ = (−1, 1), J(1) ∝ x2 − y2.

2 µ = (2), λ = (1n), and λ+ ρ = (1, 2n− 1), J(2) ∝ (x2 − y2)(x2 − 1).
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Main Results

Theorem A (Sahi & Z. [SZ23])

We have γ0(Dµ) = kµJµ where kµ = (−1)|µ|
∏

(i,j)∈µ

(
µi − j + µ′

j − i+ 1
)
.

The main thing is to show the vanishing properties. Need two other results.
Let the center of U be Z. Then Z ⊆ Uk and we have π : Z ↪→ Uk ↠ D.

Theorem B (Sahi & Z. [SZ23])

The map π is surjective. In particular, there exist Zµ ∈ Z such that
π(Zµ) = Dµ. (So Dµ = π(Dµ) can be captured by some central element!)

Let Iλ := U⊗U(q) Wλ be the generalized Verma module for q = k⊕ p+.

Theorem C (Sahi & Z. [SZ23])

The central element Zµ acts on Iλ by 0 when λ ⊉ µ.
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Main Results

Why the fuss?

1 No full generalization of Cartan–Helgason theorem in the super scenario.
The only partial result is obtained by Alldridge and Schmittner [AS15].
Not enough Vλ are guaranteed to be spherical.

2 Only know how Uk (or D) acts on a spherical vector of an irreducible,
finite dimensional, h-highest weight g-module Vλ. By [Zhu22,
Theorem 5.2], D ∈ Uk (π(D) ∈ D) acts on a spherical vector vk by the
scalar Γ(D)(λ+ ρ) = γ0(π(D))(λ+ ρ).

3 Iλ has the irreducible quotient isomorphic to Vλ! We devise a
workaround using this.



14/20

Background Main results Future Directions References

Main Results

Theorem B

The map π is surjective. In particular, there exist Zµ ∈ Z such that
π(Zµ) = Dµ.

h := a⊕ t+: Cartan subalgebra of g containing a
γ : Z → P(h∗): the usual Harish-Chandra isomorphism
Res: the restriction map induced from the decomposition h = a⊕ t+.

Z D

Λ(h∗) Λ0(a∗)

π

γ ≀ γ0≀

Res

1 First show Λ(h∗) surjects onto Im γ0 = Λ0(a∗), via Res.

2 Then show the diagram commutes.
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Main Results

Sketch of proof of Theorem B.

Z D

Λ(h∗) Λ0(a∗)

π

γ ≀ γ0≀

Res

1 Choose explicit coordinates on h∗ and a∗, and explicit generators of the
algebra of supersymmetric polynomials ([Ste85]) to show the surjectivity
of Res.

2 Diagram chase. The set of the highest h-weights that guarantee to give a
spherical irreducible g-module is Zariski dense (by [AS15], a partial
generalization of the Cartan–Helgason Theorem).
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Main Results

Theorem C

The central element Zµ acts on Iλ by 0 when λ ⊉ µ.

Sketch of the proof of Theorem C.

1 Iλ = U⊗U(q) Wλ
∼= S(p−)⊗Wλ

∼=
⊕(

W ∗
µ ⊗Wλ

)
(as k-modules).

2 Spherical: Ikλ ⊆ W ∗
λ ⊗Wλ with dim Ikλ = 1.

3 Rep map Wµ ⊗ Ikλ → Iλ has image homomorphic to Wµ.

4 Homk(Wµ, Iλ) = {0} for λ ⊉ µ.

5 Dµ =
∑

ξiηi for ξi ∈ W ∗
µ and ηi ∈ Wµ. So Dµ.I

k
λ = {0} = Dµ.I

k
λ.

6 Zµ also acts by 0. But Zµ ∈ Z so it acts by 0 everywhere!

The main thing is that Iλ has t-highest weight and is infinite dimensional. We
don’t know by what “polynomial” Dµ acts on Ikλ directly!
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Main Results

Theorem A

We have γ0(Dµ) = kµJµ where kµ = (−1)|µ|
∏

(i,j)∈µ

(
µi − j + µ′

j − i+ 1
)
.

Sketch of the proof of Theorem A.

1 By the commutative diagram, we have γ0(π(Zµ)) = Res(γ(Zµ)). The
LHS is just γ0(Dµ).

2 γ0(Dµ)(λ+ ρ) = γ(Zµ)(λ+ ρ)

3 By Theorem C, Zµ acts by 0 on Iλ for λ ⊉ µ. But Z acts on a cyclic
module exactly by γ. Thus

γ0(Dµ)(λ+ ρ) = 0, for all λ ⊉ µ, λ ∈ H .

4 We use the theory of super Jack polynomials ([SV05]) to pin down kµ by
comparing leading terms.
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Other Types

Supersymmetric Shimura operators can be defined for other pairs
(Jordan superalgebras+TKK construction) c.f. [SSS20].

The main difficulty is perhaps the surjectivity of Res map and the
commutative diagram which in the current setting are proved by some
particular choice of coordinates. We believe this can be done in a better
way.

We would also like to generalize the Cartan–Helgason Theorem for the
super setting. Appears to be difficult... [Zhu22]
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Scope of the theory

• •
⌣: usual Lie algebras. Z2: Lie superalgebras. q: quantum groups.

Shimura Capelli quadratic Capelli
• •
⌣ [SZ19] [KS93, Sah94] [SS19]
Z2 [Zhu22, SZ23] [SSS20] ?
q ? [LSS22] ?

Z2, q ? ? ?

Table: Scope
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Thank you!
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1327549

Wilfried Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9
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