Supersymmetric Shimura operators and interpolation polynomials
 Joint work with Siddhartha Sahi

Songhao Zhu
Rutgers University
sz446@math.rutgers.edu

Superalgebra Theory And Representations Seminar
December 20, 2023
arxiv.org/abs/2312.08661

Structure

- Background (S. Sahi and G. Zhang [SZ19])
- Shimura operators
- Okounkov Polynomials
- Main Results and Ideas
- Super ingredients (supersymmetric Shimura operators, Sergeev-Veselov polynomials)
- Three Theorems
- Future Directions

Background

（1）$X=G / K$ ：rank n symmetric space． $\mathfrak{D}=\mathfrak{D}(X)$ ：space of invariant differential operators on X ．
（2）$(\mathfrak{g}, \mathfrak{k})$ ：corresponding Lie algebras． $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$ ：Iwasawa decomposition．
（3）$\gamma^{0}: \mathfrak{D}(X) \rightarrow \Lambda \subseteq \mathfrak{P}\left(\mathfrak{a}^{*}\right)$ ：the Harish－Chandra isomorphism．Λ is a certain ring of symmetric polynomials．
（1）Shimura［Shi90］：multivariate generalization of nearly holomorphic forms． Studied certain differential operators on Hermitian X．

$$
\mathfrak{g}=\mathfrak{p}^{-} \oplus \mathfrak{k} \oplus \mathfrak{p}^{+}(=\mathfrak{k} \oplus \mathfrak{p})
$$

Short grading， \mathfrak{k} acts on $\mathfrak{p}^{ \pm}$（abelian）．
（6）Sahi－Zhang described the spectrum of these Shimura operators in terms of specialization of $B C$－symmetric interpolation polynomials by Okounkov．［Realized as the images under γ^{0} ．］

Schmid Decomposition and Shimura Operators

Let $\mathscr{H}(n)$ consist of partitions of length $n, \mathscr{H}^{d}(n):=\{\lambda \in \mathscr{H}(n):|\lambda|=d\}$. Denote $\mathfrak{U}(\mathfrak{g})$ as \mathfrak{U}, and the \mathfrak{k} centralizer in \mathfrak{U} as $\mathfrak{U}^{\mathfrak{k}}$. Then $\mathfrak{D}=\mathfrak{U}^{\mathfrak{k}} /(\mathfrak{U} \mathfrak{k})^{\mathfrak{k}}$ where $(\mathfrak{U} \mathfrak{K})^{\mathfrak{k}}=\mathfrak{U} \mathfrak{U} \cap \mathfrak{U}^{\mathfrak{k}}$. A result of Schmid ([Sch70, FK90]) gives the following multiplicity free \mathfrak{k}-module decompositions:

$$
\mathfrak{S}^{d}\left(\mathfrak{p}^{+}\right)=\bigoplus_{\lambda \in \mathscr{H}^{d}(n)} W_{\lambda}, \mathfrak{S}^{d}\left(\mathfrak{p}^{-}\right)=\bigoplus_{\lambda \in \mathscr{H}^{d}(n)} W_{\lambda}^{*}
$$

Shimura Operators

$$
\left.\begin{array}{rl}
\operatorname{End}_{\mathfrak{k}}\left(W_{\lambda}\right) \cong\left(W_{\lambda}^{*} \otimes W_{\lambda}\right)^{\mathfrak{k}} \hookrightarrow\left(\mathfrak{S}\left(\mathfrak{p}^{-}\right) \otimes \mathfrak{S}\left(\mathfrak{p}^{+}\right)\right)^{\mathfrak{k}} & \rightarrow \mathfrak{U}^{\mathfrak{k}}
\end{array} \rightarrow \mathfrak{D}\right)
$$

Call \mathscr{D}_{λ} the Shimura operator associated with λ.

Okounkov Polynomials

$\Lambda:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n} \ltimes \mathbb{Z}_{2}^{n}}$（ring of even symmetric polynomials）
$\rho:=\left(\rho_{1}, \ldots, \rho_{n}\right), \rho_{i}:=\tau(n-i)+\alpha . \tau, \alpha:$ parameters．

Theorem－Definition［Oko98，OO06］，c．f．［SZ19］

The Okounkov polynomial $P_{\mu}(x ; \tau, \alpha)$ is the unique polynomial in Λ satisfying
（1） $\operatorname{deg} P_{\mu}=2|\mu|$ ；
（2）$P_{\mu}(\lambda+\rho)=0$ for $\lambda \nsupseteq \mu$［the vanishing properties］；
（3）Some normalization condition．
ρ can be specialized to the half sum of positive roots for a restricted root system of Type BC．［The case for Hermitian X ］
For the＂usual＂Type A symmetry，there are Knop－Sahi polynomials［KS96］．

Punch Line

Let W_{0} be the Weyl group of the restricted root system. For Hermitian G / K, $W_{0} \cong S_{n} \ltimes \mathbb{Z}_{2}^{n}$. Then $\Lambda=\mathfrak{P}\left(\mathfrak{a}^{*}\right)^{W_{0}}$ and $\gamma^{0}: \mathfrak{D} \rightarrow \mathfrak{P}\left(\mathfrak{a}^{*}\right)^{W_{0}}$.

$$
\begin{gathered}
\operatorname{End}_{\mathfrak{k}}\left(W_{\lambda}\right) \rightarrow \mathfrak{D} \xrightarrow{\gamma^{0}} \mathfrak{P}\left(\mathfrak{a}^{*}\right)^{W_{0}} \\
1 \longmapsto \gamma^{0}\left(\mathscr{D}_{\lambda}\right)
\end{gathered}
$$

Theorem (Sahi \& Zhang [SZ19])

We have $\gamma^{0}\left(\mathscr{D}_{\lambda}\right)=k_{\lambda} P_{\lambda}$ for some $k_{\lambda} \neq 0$.
Let V_{μ} be the irreducible \mathfrak{g}-module of highest weight $\sum \mu_{i} \gamma_{i}$. Then V_{μ} has a spherical vector $v^{\mathfrak{k}}$, i.e. $\mathfrak{k} . v^{\mathfrak{k}}=0$. This is guaranteed by the classic Cartan-Helgason Theorem. $D_{\lambda} \in \mathfrak{U}^{\mathfrak{k}}\left(\mathscr{D}_{\lambda} \in \mathfrak{D}\right)$ acts on $v^{\mathfrak{k}}$ as $\gamma^{0}\left(\mathscr{D}_{\lambda}\right)(\mu+\rho)$, hence the word spectrum/eigenvalue!

Big Picture

We solved the Type A super analog:
Shimura Operators $\xrightarrow{\text { superization }}$ Supersymmetric Shimura Operators on Hermitian sym. sp.
of Hermitian sym. superpairs

Okounkov Polynomials $\xrightarrow{\text { superization }}$ Sergeev-Veselov Polynomials

Set up

Fix $\mathfrak{g}=\mathfrak{g l}(2 p \mid 2 q)$ and $\mathfrak{k}=\mathfrak{g l}(p \mid q) \oplus \mathfrak{g l}(p \mid q)$. Embed \mathfrak{k} into $\mathfrak{g}:$

$$
\left(\left(\begin{array}{c|c|c}
A_{p \times p} & B_{p \times q} \\
\hline C_{q \times p} & D_{q \times q}
\end{array}\right),\left(\begin{array}{c|c|cc}
A_{p \times p}^{\prime} & B_{p \times q}^{\prime} \\
\hline C_{q \times p}^{\prime} & D_{q \times q}^{\prime}
\end{array}\right)\right) \mapsto\left(\begin{array}{ccc}
A_{p \times p} & 0_{p \times p} & B_{p \times q} \\
0_{p \times q} \\
0_{p \times p} & A_{p \times p}^{\prime} & 0_{p \times q} \\
B_{p \times q} \\
\hline C_{q \times p} & 0_{q \times p} & D_{q \times q} \\
0_{q \times q} \\
0_{q \times p} & C_{q \times p}^{\prime} & 0_{q \times q} \\
D_{q \times q}^{\prime}
\end{array}\right)
$$

Here \mathfrak{p}^{+}(resp. \mathfrak{p}^{-}) consists of matrices with non-zero entries only in the upper right (resp. bottom left) sub-blocks in each of the four blocks.
Let $J:=\frac{1}{2} \operatorname{diag}\left(I_{p \times p},-I_{p \times p}, I_{q \times q},-I_{q \times q}\right)$, and $\theta:=\operatorname{Ad} \exp (i \pi J)$. Then θ has fixed point subalgebra \mathfrak{k}.
Fix a θ-stable, maximally split Cartan \mathfrak{h} containing \mathfrak{a}, a maximal toral subalgebra in $\mathfrak{p}_{\overline{0}}$. The standard diagonal Cartan is denoted as \mathfrak{t} (in both \mathfrak{g} and \mathfrak{k}, "max. compact")

Super Ingredients

Let $\mathscr{H}=\mathscr{H}(p, q):=\left\{\lambda: \lambda_{p+1} \leq q\right\}$ (hook partitions), and let $\mathscr{H}^{d}:=\{\lambda \in \mathscr{H}:|\lambda|=d\}$. For $\mathfrak{g l}(p \mid q) \oplus \mathfrak{g l}(p \mid q)$, Cheng-Wang decomposition ([CW01, SSS20]) says

$$
\mathfrak{S}^{d}\left(\mathfrak{p}^{+}\right)=\bigoplus_{\lambda \in \mathscr{H}^{d}} W_{\lambda}, \mathfrak{S}^{d}\left(\mathfrak{p}^{-}\right)=\bigoplus_{\lambda \in \mathscr{H}^{d}} W_{\lambda}^{*}
$$

Highest weight $\left(\lambda^{\natural}\right)$ on \mathfrak{t}, expressed in Harish-Chandra strongly orthogonal roots. Note W_{λ} are of Type M, and $\operatorname{dim} \operatorname{End}_{\mathfrak{k}}\left(W_{\lambda}\right)=1$. Set $\mathfrak{D}=\mathfrak{U}^{\mathfrak{k}} /(\mathfrak{L} \mathfrak{U})^{\mathfrak{k}}$.

Supersymmetric Shimura Operators

$$
\begin{aligned}
& \operatorname{End}_{\mathfrak{k}}\left(W_{\lambda}\right) \cong\left(W_{\lambda}^{*} \otimes W_{\lambda}\right)^{\mathfrak{k}} \hookrightarrow\left(\mathfrak{S}\left(\mathfrak{p}^{-}\right) \otimes \mathfrak{S}\left(\mathfrak{p}^{+}\right)\right)^{\mathfrak{k}} \rightarrow \mathfrak{U}^{\mathfrak{k}} \rightarrow \mathfrak{D} \\
& 1 \longmapsto D_{\lambda} \mapsto \mathscr{D}_{\lambda}
\end{aligned}
$$

Call \mathscr{D}_{λ} the supersymmetric Shimura operator associated with λ.

Super Ingredients

Iwasawa decomposition (for recent developments see [She22]) $\mathfrak{g}=\mathfrak{n} \oplus \mathfrak{a} \oplus \mathfrak{k}$ gives

$$
\mathfrak{U}=(\mathfrak{U} \mathfrak{k}+\mathfrak{n} \mathfrak{U}) \oplus \mathfrak{S}(\mathfrak{a})
$$

Then the homomorphism Γ (Harish-Chandra homomorphism) is defined as the ρ-shifted projection w.r.t. the above decomposition. The quotient isomorphism $\gamma^{0}: \mathfrak{U}^{\mathfrak{k}} / \operatorname{ker} \Gamma \rightarrow \operatorname{Im} \Gamma$ is the Harish-Chandra isomorphism.
(1) Independent from Alldridge's results on Harish-Chandra homomorphism [All12], we proved $\operatorname{ker} \Gamma=(\mathfrak{U k})^{\mathfrak{k}}:=\mathfrak{U k} \cap \mathfrak{U}^{\mathfrak{k}}$.
(2) We also proved that $\operatorname{Im} \gamma^{0}$ is exactly $\Lambda^{0}\left(\mathfrak{a}^{*}\right)$, the ring of even supersymmetric polynomials on \mathfrak{a}^{*}, previously proved in [Zhu22]. Even supersymmetric: invariant under permutations of $\left\{x_{i}\right\}$ and of $\left\{y_{j}\right\}$ separately; invariant under sign changes of $\left\{x_{i}, y_{j}\right\}$; and $f\left(x_{1}=t, y_{1}=-t\right)$ is independent of t.

Sergeev-Veselov Polynomials

Proposition-Definition

For each $\mu \in \mathscr{H}$, there is a unique polynomial $J_{\mu} \in \Lambda^{0}$ of degree $2|\mu|$ s.t.

$$
J_{\mu}(\bar{\lambda}+\rho)=0, \quad \text { for all } \lambda \nsupseteq \mu, \lambda \in \mathscr{H}
$$

and that $J_{\mu}(\bar{\mu}+\rho)$ is certain explicit non-zero constant.
(1) A specialization of Sergeev-Veselov polynomials [SV09].
(2) Here $\bar{\lambda}$ is some choice of coordinates (Frobenius).
(3) ρ is the Weyl vector, the half sum of the positive restricted roots.
E.g. $p=q=1$, for the restricted root system, $\rho=(-1,1)$.
(1) $\mu=(1), \lambda=\varnothing$, and $\bar{\lambda}+\rho=(-1,1), J_{(1)} \propto x^{2}-y^{2}$.
(2) $\mu=(2), \lambda=\left(1^{n}\right)$, and $\bar{\lambda}+\rho=(1,2 n-1), J_{(2)} \propto\left(x^{2}-y^{2}\right)\left(x^{2}-1\right)$.

Main Results

Theorem A (Sahi \& Z. [SZ23])

We have $\gamma^{0}\left(\mathscr{D}_{\mu}\right)=k_{\mu} J_{\mu}$ where $k_{\mu}=(-1)^{|\mu|} \prod_{(i, j) \in \mu}\left(\mu_{i}-j+\mu_{j}^{\prime}-i+1\right)$.
The main thing is to show the vanishing properties. Need two other results.
Let the center of \mathfrak{U} be \mathfrak{Z}. Then $\mathfrak{Z} \subseteq \mathfrak{U}^{\mathfrak{k}}$ and we have $\pi: \mathfrak{Z} \hookrightarrow \mathfrak{U}^{\mathfrak{k}} \rightarrow \mathfrak{D}$.

Theorem B (Sahi \& Z. [SZ23])

The map π is surjective. In particular, there exist $Z_{\mu} \in \mathfrak{Z}$ such that $\pi\left(Z_{\mu}\right)=\mathscr{D}_{\mu}$. (So $\mathscr{D}_{\mu}=\pi\left(D_{\mu}\right)$ can be captured by some central element!)

Let $I_{\lambda}:=\mathfrak{U} \otimes_{\mathfrak{U}(\mathfrak{q})} W_{\lambda}$ be the generalized Verma module for $\mathfrak{q}=\mathfrak{k} \oplus \mathfrak{p}^{+}$.

Theorem C (Sahi \& Z. [SZ23])

The central element Z_{μ} acts on I_{λ} by 0 when $\lambda \nsupseteq \mu$.

Main Results

Why the fuss?
(1) No full generalization of Cartan-Helgason theorem in the super scenario. The only partial result is obtained by Alldridge and Schmittner [AS15]. Not enough V_{λ} are guaranteed to be spherical.
(2) Only know how $\mathfrak{U}^{\mathfrak{k}}$ (or \mathfrak{D}) acts on a spherical vector of an irreducible, finite dimensional, \mathfrak{h}-highest weight \mathfrak{g}-module V_{λ}. By [Zhu22,
Theorem 5.2], $D \in \mathfrak{U}^{\mathfrak{k}}(\pi(D) \in \mathfrak{D})$ acts on a spherical vector $v^{\mathfrak{k}}$ by the scalar $\Gamma(D)(\lambda+\rho)=\gamma^{0}(\pi(D))(\lambda+\rho)$.
(3) I_{λ} has the irreducible quotient isomorphic to V_{λ} ! We devise a workaround using this.

Main Results

Theorem B

The map π is surjective. In particular, there exist $Z_{\mu} \in \mathfrak{Z}$ such that $\pi\left(Z_{\mu}\right)=\mathscr{D}_{\mu}$.
$\mathfrak{h}:=\mathfrak{a} \oplus \mathfrak{t}_{+}$: Cartan subalgebra of \mathfrak{g} containing \mathfrak{a}
$\gamma: \mathfrak{Z} \rightarrow \mathfrak{P}\left(\mathfrak{h}^{*}\right):$ the usual Harish-Chandra isomorphism
Res: the restriction map induced from the decomposition $\mathfrak{h}=\mathfrak{a} \oplus \mathfrak{t}_{+}$.

(1) First show $\Lambda\left(\mathfrak{h}^{*}\right)$ surjects onto $\operatorname{Im} \gamma^{0}=\Lambda^{0}\left(\mathfrak{a}^{*}\right)$, via Res.
(2) Then show the diagram commutes.

Main Results

Sketch of proof of Theorem B.

(1) Choose explicit coordinates on \mathfrak{h}^{*} and \mathfrak{a}^{*}, and explicit generators of the algebra of supersymmetric polynomials ([Ste85]) to show the surjectivity of Res.
(2) Diagram chase. The set of the highest \mathfrak{h}-weights that guarantee to give a spherical irreducible \mathfrak{g}-module is Zariski dense (by [AS15], a partial generalization of the Cartan-Helgason Theorem).

Main Results

Theorem C

The central element Z_{μ} acts on I_{λ} by 0 when $\lambda \nsupseteq \mu$.

Sketch of the proof of Theorem C.

(1) $I_{\lambda}=\mathfrak{U} \otimes_{\mathfrak{U}(\mathfrak{q})} W_{\lambda} \cong \mathfrak{S}\left(\mathfrak{p}^{-}\right) \otimes W_{\lambda} \cong \bigoplus\left(W_{\mu}^{*} \otimes W_{\lambda}\right)$ (as \mathfrak{k}-modules).
(2) Spherical: $I_{\lambda}^{\mathfrak{k}} \subseteq W_{\lambda}^{*} \otimes W_{\lambda}$ with $\operatorname{dim} I_{\lambda}^{\mathfrak{k}}=1$.
(3) Rep map $W_{\mu} \otimes I_{\lambda}^{\mathfrak{k}} \rightarrow I_{\lambda}$ has image homomorphic to W_{μ}.
(9) $\operatorname{Hom}_{\mathfrak{k}}\left(W_{\mu}, I_{\lambda}\right)=\{0\}$ for $\lambda \nsupseteq \mu$.
(6) $D_{\mu}=\sum \xi_{i} \eta_{i}$ for $\xi_{i} \in W_{\mu}^{*}$ and $\eta_{i} \in W_{\mu}$. So $D_{\mu} \cdot I_{\lambda}^{\mathfrak{k}}=\{0\}=\mathscr{D}_{\mu} \cdot I_{\lambda}^{\mathfrak{k}}$.
(- Z_{μ} also acts by 0 . But $Z_{\mu} \in \mathfrak{Z}$ so it acts by 0 everywhere!

The main thing is that I_{λ} has \mathfrak{t}-highest weight and is infinite dimensional. We don't know by what "polynomial" \mathscr{D}_{μ} acts on $I_{\lambda}^{\mathfrak{k}}$ directly!

Main Results

Theorem A

We have $\gamma^{0}\left(\mathscr{D}_{\mu}\right)=k_{\mu} J_{\mu}$ where $k_{\mu}=(-1)^{|\mu|} \prod_{(i, j) \in \mu}\left(\mu_{i}-j+\mu_{j}^{\prime}-i+1\right)$.

Sketch of the proof of Theorem A.

(1) By the commutative diagram, we have $\gamma^{0}\left(\pi\left(Z_{\mu}\right)\right)=\operatorname{Res}\left(\gamma\left(Z_{\mu}\right)\right)$. The LHS is just $\gamma^{0}\left(\mathscr{D}_{\mu}\right)$.
(2) $\gamma^{0}\left(\mathscr{D}_{\mu}\right)(\bar{\lambda}+\rho)=\gamma\left(Z_{\mu}\right)(\lambda+\rho)$
(3) By Theorem C, Z_{μ} acts by 0 on I_{λ} for $\lambda \nsupseteq \mu$. But \mathfrak{Z} acts on a cyclic module exactly by γ. Thus

$$
\gamma^{0}\left(\mathscr{D}_{\mu}\right)(\bar{\lambda}+\rho)=0, \text { for all } \lambda \nsupseteq \mu, \lambda \in \mathscr{H} .
$$

(1) We use the theory of super Jack polynomials ([SV05]) to pin down k_{μ} by comparing leading terms.

Other Types

- Supersymmetric Shimura operators can be defined for other pairs (Jordan superalgebras+TKK construction) c.f. [SSS20].
- The main difficulty is perhaps the surjectivity of Res map and the commutative diagram which in the current setting are proved by some particular choice of coordinates. We believe this can be done in a better way.
- We would also like to generalize the Cartan-Helgason Theorem for the super setting. Appears to be difficult... [Zhu22]

Scope of the theory

${ }^{\bullet}$ ：usual Lie algebras． \mathbb{Z}_{2} ：Lie superalgebras．q ：quantum groups．

	Shimura	Capelli	quadratic Capelli
$\ddot{\because}$	$[$ SZ19	$[$ KS93，Sah94］	$[$ SS19 $]$
\mathbb{Z}_{2}	$[$ Zhu22，SZ23］	$[$ SSS20 $]$	$?$
q	$?$	$[$ LSS22］	$?$
\mathbb{Z}_{2}, q	$?$	$?$	$?$

Table：Scope

Thank you!

A. Alldridge, The Harish-Chandra isomorphism for reductive symmetric superpairs, Transform. Groups 17 (2012), no. 4, 889-919. MR 3000475

Alexander Alldridge and Sebastian Schmittner, Spherical representations of Lie supergroups, J. Funct. Anal. $\mathbf{2 6 8}$ (2015), no. 6, 1403-1453. MR 3306354

Shun-Jen Cheng and Weiqiang Wang, Howe duality for Lie superalgebras, Compositio Math. 128 (2001), no. 1, 55-94. MR 1847665
J. Faraut and A. Korányi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), no. 1, 64-89. MR 1033914

Bertram Kostant and Siddhartha Sahi, Jordan algebras and Capelli identities, Invent. Math. 112 (1993), no. 3, 657-664. MR 1218328

Friedrich Knop and Siddhartha Sahi, Difference equations and symmetric polynomials defined by their zeros, Internat. Math. Res. Notices (1996), no. 10, 473-486. MR 1399412

Gail Letzter, Siddhartha Sahi, and Hadi Salmasian, The Capelli eigenvalue problem for quantum groups, 2022, arXiv.
A. Okounkov, BC-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials, Transform. Groups 3 (1998), no. 2, 181-207. MR 1628453

Andrei Okounkov and Grigori Olshanski, Limits of BC-type orthogonal polynomials as the number of variables goes to infinity, Jack, Hall-Littlewood and Macdonald polynomials, Contemp. Math., vol. 417, Amer. Math. Soc., Providence, RI, 2006, pp. 281-318. MR 2284134

Siddhartha Sahi, The spectrum of certain invariant differential operators associated to a Hermitian symmetric space, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 569-576. MR 1327549

Wilfried Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969/70), 61-80. MR 259164

Alexander Sherman, Iwasawa decomposition for Lie superalgebras, J. Lie Theory 32 (2022), no. 4, 973-996. MR 4512155

Goro Shimura, Invariant differential operators on Hermitian symmetric spaces, Ann. of Math. (2) 132 (1990), no. 2, 237-272. MR 1070598

Siddhartha Sahi and Hadi Salmasian, Quadratic Capelli operators and Okounkov polynomials, Ann. Sci. Éc. Norm. Supér. (4) 52 (2019), no. 4, 867-890. MR 4038454

Siddhartha Sahi, Hadi Salmasian, and Vera Serganova, The Capelli eigenvalue problem for Lie superalgebras, Math. Z. 294 (2020), no. 1-2, 359-395. MR 4054814

John R. Stembridge, A characterization of supersymmetric polynomials, J. Algebra 95 (1985), no. 2, 439-444. MR 801279
A. N. Sergeev and A. P. Veselov, Generalised discriminants, deformed Calogero-Moser-Sutherland operators and super-Jack polynomials, Adv. Math. 192 (2005), no. 2, 341-375. MR 2128703

Alexander N. Sergeev and Alexander P. Veselov, BC C_{∞} Calogero-Moser operator and super Jacobi polynomials, Adv. Math. 222 (2009), no. 5, 1687-1726. MR 2555909

Siddhartha Sahi and Genkai Zhang, Positivity of Shimura operators, Math. Res. Lett. 26 (2019), no. 2, 587-626. MR 3999556

Siddhartha Sahi and Songhao Zhu, Supersymmetric Shimura operators and interpolation polynomials, 2023, https://arxiv.org/abs/2312.08661.

Songhao Zhu, Shimura operators for certain Hermitian symmetric superpairs, 2022, https://arxiv.org/abs/2212.09249.

