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My research interests are representation theory, algebraic combinatorics, Lie (super) al-
gebras and their connections. I look forward to exploring broader impacts of representation theory,
e.g. in geometry and number theory in the future.

Broadly speaking, representation theory studies abstract algebraic structures by representing their
elements as concrete linear maps. An important branch is Lie theory which studies Lie groups, Lie
algebras, and generalizations such as Lie superalgebras and Kac–Moody algebras. Algebraic com-
binatorics often employs representation theory to investigate objects of combinatorial nature, e.g.,
symmetric polynomials. For example, Schur polynomials emerge, surprisingly, as characters of sym-
metric groups, unitary groups, general linear groups and Lie algebras (“Type A” objects); other
symmetric polynomials are often parametrized by partitions, which are ubiquitous in representa-
tion theory. The symbiotic interplay of representation theory and algebraic combinatorics is often
reciprocal: advances in one field eventually shed light on the other.

In my research, I often rely on (1) observations as a result of explicit computations, and (2)
representation theoretic tools such as the highest weight theory. My thesis project [Zhu22, SZ23]
connects a family of symmetric polynomials with the super Shimura operators. These operators were
first studied by Shimura in [Shi90]. My work gives super analogs of results by Sahi and Zhang in
[SZ19]. In a different direction, I study root strings in the direction of imaginary roots in Kac–Moody
algebras [CCM+24]. We show the existence of infinite root strings in symmetrizable Kac–Moody
algebras, and find specific bounds for the growths of the root multiplicities along these root strings.
In this statement, I will review my work on the respective projects (Sections 1 and 2) and introduce
the main results (Subsections 1.2 and 2.2). I will also talk about future directions.

1. Super Shimura Operators and Interpolation Polynomials

1.1 Introduction In [Shi90], Shimura introduced a basis for the algebra of invariant differential
operators on a Hermitian symmetric space, and formulated the problem of determining their eigenval-
ues, or equivalently their images under the Harish-Chandra homomorphism. These operators are now
known as Shimura operators, and can be realized using the pair of Lie algebras (g, k) associated with
the symmetric space. In [SZ19], Sahi and Zhang proved that these images are given by Okounkov
interpolation polynomials of Type BC [Oko98] for appropriate choices of parameters. These were
generalized by Sergeev and Veselov’s work [SV09] in the setting of Type BC supersymmetry. Then it
is natural to ask what if (g, k) is a Hermitian superpair of Lie superalgebras. The following problems
are considered:

P1. Determine the eigenvalues of super Shimura operators using Sergeev and Veselov polynomials.
P2. Characterize the spherical representations for Hermitian symmetric superpairs.

P1 is the ultimate goal. It degenerates to the question originally posted by Shimura in the non-
super setting. In [Zhu22], P2 is used as one of the main tools to answer P1. A complete answer to
P2 would naturally extend the classical Cartan–Helgason Theorem on spherical representations. But
P2 remains an open conjecture. In [SZ23], a work-around is proposed to fully answer P1 in Type A.
The vertical arrows in the following diagram represent P1 in both super and non-super scenarios.
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Okounkov Polynomials Sergeev–Veselov Polynomials

Shimura Operators Super Shimura Operators

[SZ19]

Superization

Superization

[Zhu22, SZ23]

Let (g, k) be a Hermitian symmetric superpair with the Harish-Chandra decomposition g = p−⊕k⊕p+

[Zhu22, SZ23]. The super Shimura operators Dµ are defined in D = Uk/(Uk)k, where Uk the k-
centralizer in the universal enveloping algebra U = U(g). These Dµ are the super Shimura operators,
whose definition involves the Cartan decomposition g = k⊕ p = k⊕ p+ ⊕ p− and the multiplicity-free
k-decompositions of S(p+),S(p−), naturally indexed by µ ∈ H (p, q) [CW01].

Using Iwasawa decomposition g = k⊕ a⊕n, we define the Harish-Chandra isomorphism associated
with (g, k) on D, denoted as γ0. It captures the supersymmetry of the restricted root system Σ(g, a),
and maps to the polynomial algebra on a∗, P(a∗).

Another ingredient in our recipe is the Type BC supersymmetric interpolation polynomials first
introduced by Sergeev and Veselov in [SV09]. Essentially, they are special even supersymmetric
polynomials with prescribed zeros. Let Λ0(a∗) be the ring of even supersymmetric polynomials on a∗.
In Λ0(a∗) for each µ ∈ H (p, q), there exists a unique degree 2|µ| polynomial Pµ, properly normalized,
satisfying the vanishing conditions

(1) Pµ(2λ♮ + ρ) = 0, for any λ ∈ H (p, q) such that |λ| ≤ |µ|, λ ̸= µ.

Here ρ is the Weyl vector of Σ(g, a), and the notation 2λ♮ refers to some specific coordinates associated
with λ. The choice of coordinates is not essential.

1.2 Results My papers [Zhu22, SZ23] solve P1 for g = gl(2p|2q) and k = gl(p|q)⊕gl(p|q). [Zhu22]
also gives a partial answer to P2.

Theorem 1.1 ([SZ23]). The Harish-Chandra image γ0(Dµ) is equal to some non-zero multiple of Pµ.

We check two assertions: (A) Im γ0 ⊆ Λ0(a∗), and (B) γ0(Dµ) satisfies the vanishing condition (1).
(B) is considerably harder than (A). We discuss how we prove both claims.

On the center Z of U(g), we have the usual Harish-Chandra isomorphism γ and it captures the
supersymmetry of Σ(g, h), where h = a ⊕ t+ is a Cartan subalgebra of g. The projection h → a
induces a restriction map on the polynomial algebra on h∗. We denote its restriction to Λ(h∗) (the
ring of supersymmetric polynomials on h∗) as Res. Let π : Z ↪→ Uk → D be the quotient map. We
first show that the following diagram commutes.

(2)

Z D

Λ(h∗) Λ0(a∗)

π

γ γ0

Res

In particular, we show γ0 is an isomorphism and Im γ0 = Λ0(a∗), from which Assertion (A) follows.
Then we prove Res is surjective, from which we obtain the following theorem.

Theorem 1.2 ([SZ23]). The quotient map π is surjective onto D = Uk/(Uk)k.

By Theorem 1.2, there exists Zµ ∈ Z so that π(Zµ) = Dµ. By (2),

(3) γ0(Dµ) = Res(γ(Zµ)).

Thus to pin down (B), we study the action of Zµ on some k-spherical g-modules. To this end, we
construct the generalized Verma modules I(λ) := Indg

k+p+ W (λ♮), induced from W (λ♮), an irreducible

k-module appearing in the aforementioned multiplicity-free decomposition of S(p+). Here the action
of k on W (λ♮) is trivially extended to p+.
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Theorem 1.3 ([SZ23]). The central element Zµ acts on I(λ) by 0 whenever |λ| ≤ |µ| and λ ̸= µ.

Therefore, Zµ acts by 0 on I(λ) by Theorem 1.3. Moreover, the irreducible g-module of the same
highest weight is a quotient of I(λ), and thus Zµ inherits such vanishing conditions. By (3), we prove
Assertion (B) and hence Theorem 1.1.

The following result is used to prove Theorem 1.2, and was obtained in an earlier paper [Zhu22].
Let Γ be the Harish-Chandra homomorphism defined on Uk instead of Uk/(Uk)k = D. Let ρ be the
Weyl vector of the restricted root system Σ(g, a).

Theorem 1.4 ([Zhu22]). Suppose a g-module V is of highest weight λ ∈ h∗ and dimV k = 1. Let
D ∈ Uk. Then D acts on V k by the scalar Γ(D) (λ|a + ρ).

In [Zhu22], a different method is considered to prove (B). Specifically, (B) follows from Theorem 1.4
by assuming the sphericity of certain irreducible finite dimensional g-modules. In fact, this “superizes”
the original method used in [SZ19] to answer the non-super P1. Such method naturally leads to
P2. Let V (λ♮) be the irreducible g-module of the same highest weight as W (λ♮) (with respect to a
compatible Borel subalgebra).

Conjecture 1 (P2). Every irreducible g-module V (λ♮) is spherical for λ ∈ H (p, q).

When q is 0, this degenerates to the non-super scenario, and is fully answered by the Cartan–
Helgason Theorem. It characterizes k-spherical irreducible g-modules by giving a necessary and
sufficient condition on its highest weight restricted to a. In [Zhu22], I showed that Conjecture 1 is
true when p = q = 1:

Theorem 1.5 ([Zhu22]). For p = q = 1, all the irreducible g-modules V
(
λ♮
)
are spherical.

I introduced the concept of quasi-spherical vectors of a module. A non-zero vector v ∈ V is
called quasi-spherical if (1) k.v is contained in the maximal submodule, and (2) v generates V . Thus

v descends to a spherical vector in the irreducible quotient. Specifically, the Kac modules K(λ̆)

were considered. These K(λ̆) have V
(
λ♮
)
as their irreducible quotients. I showed K(λ̆) are indeed

quasi-spherical. The proof is computational.

Theorem 1.6 ([Zhu22]). Theorem 1.1 follows from Conjecture 1.

1.3 Future Directions I expect the theory to work for superpairs constructed using Jordan su-
peralgebras as in, e.g. [SSS20]. In this general setting, I would like to

(1) define super Shimura operators and study P1.
(2) prove Theorem 1.2 and 1.3.
(3) give a full answer to P2, which will

(a) completely generalize [AS15] in this case; and
(b) allow us to answer P1 differently.

(4) find the specific scalar in Theorem 1.1 in terms of supersymmetric polynomials as in [SZ19].

Let me point out that this project bears resemblance to other theories too, e.g. the super version of
the Capelli eigenvalue problem presented in [SSS20] which generalizes [KS93, Sah94] in the classical
picture.

2. Root Strings in Kac–Moody Algebras

2.1 Introduction Let g = g(A) be a Kac–Moody algebra where A is a generalized Cartan matrix.
It is well-known that any Kac–Moody algebra can be described by its root space decomposition
[Kac90]. Let ∆ denote its root system and set ∆̄ := ∆ ∪ {0}. When A is positive definite, g is a
finite dimensional semisimple Lie algebra. In such cases, the length of a root string is at most 4; in
fact, this happens in the rank 2 example of G2 [Hum78]. Also, the multiplicity of a root is always 1,
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which also makes the sl(2)-module structure of any root string straightforward. A natural question
to ask is what these root strings look like in general.

Dropping the condition that A is positive definite, g becomes infinite dimensional. Let ∆re and
∆im be the sets of real and imaginary roots respectively. Given two roots α, β ∈ ∆, we consider the
β-string through α, i.e. Rα(β) := {α + iβ : i ∈ Z} ∩ ∆̄. If Rα(β) contains at least 2 roots, then it is
called non-trivial. If Rα(β) is infinite in at least one direction, it is called infinite. If Rα(β) is infinite
in exactly one direction, we call it semi-infinite. If it extends infinitely in both directions, we call it
bi-infinite. By the growth of Rα(β), we mean the behavior of the function dim gα+iβ in i.

In parallel with the semisimple cases in [Hum78], any root string along the direction of a real root
is finite and the root multiplicity is always 1 for real roots [Kac90]. Morita showed [Mor88] that
Aij = −1 and Aji < −1 for some i, j if and only if |{α + kβ : k ∈ Z} ∩ ∆re| ∈ {3, 4} for some
(α, β) ∈ ∆×∆re. However, the questions about lengths, multiplicities, and structures of root strings
remained unanswered in general.

Now let us suppose that β is imaginary. We study the following questions:

Q1. How “long” can a β-string Rα(β) be?
Q2. What can we say about the growth along this string?

2.2 Results The symmetrizability of A guarantees the existence of a non-degenerate symmetric
form (·, ·) on h∗. Then β ∈ ∆im if and only if (β, β) ≤ 0. We say a root β is isotropic if (β, β) =
0. Otherwise it is non-isotropic. Depending on the conditions, there are three major cases, and
we employed different techniques to investigate each of these unique situations. Our results are
summarized in the following table.

Condition Cardinality (Q1) Growth (Q2)

β is non-isotropic Infinite At least exponential

β is isotropic
(α, β) = 0 Bi-infinite Bounded

(α, β) ̸= 0 Semi-infinite At least subexponential

Various cases of Rα(β)

We first study the case when β is non-isotropic. The following result is a direct application of
[Mar21, Corollary C].

Proposition 2.1 ([CCM+24]). Let β ∈ ∆im be non-isotropic, and let α ∈ ∆̄. If Rα(β) is non-trivial,
then at least one of α± Nβ is contained in Rα(β).

Then by a result of Kac [Kac90, Corollary 9.12], we show that there exists a free Lie subalgebra in⊕
k∈N gkβ. Free Lie algebras always possess exponential growth, and this fact leads to the following

theorem.

Theorem 2.2 ([CCM+24]). Let β ∈ ∆im be non-isotropic. Let α ∈ ∆̄ be such that α + Nβ ⊂ ∆̄.
Then Rα(β) has exponential growth in β.

When β is isotropic, [Mar21, Corollary C] and [Kac90, Corollary 9.12] no longer apply. However,
we observe that when (α, β) = 0, it is essentially a case of affine Kac–Moody algebras.

Theorem 2.3 ([CCM+24]). Let β ∈ ∆im be isotropic, and α ∈ ∆̄ be such that Rα(β) is non-trivial.
Suppose (α, β) = 0. Then Rα(β) is always bi-infinite, and

(1) If α is real, Rα(β) consists only of real roots which have multiplicity 1.
(2) If α is imaginary, Rα(β) consists of imaginary roots only, and the multiplicities take on at

most 3 values, at most 2 of which occur periodically.

In particular, part (2) is derived from a case by case study of untwisted and twisted affine Kac–
Moody algebras.
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If (α, β) ̸= 0, then the trick of reducing to the affine case no longer applies. Yet we can construct
a subalgebra in

⊕
k∈N gkβ that is isomorphic to the Heisenberg algebra. We denote it as H(β). Then

by applying the representation theory of H(β), we show that there exists a subspace in
⊕

k∈N gα+kβ

which is isomorphic to an irreducible induced module of H(β).

Theorem 2.4 ([CCM+24]). Let β ∈ ∆im be isotropic, and α ∈ ∆̄ be such that Rα(β) is non-trivial.
Suppose (α, β) ̸= 0. Then Rα(β) is semi-infinite, and has subexponential growth in β.

We also provide the following “local” property regarding the multiplicities.

Theorem 2.5. If α and β are distinct roots of g such that (α, β) < 0, then

dim gα+β ≥ dim gα + dim gβ − 1.

2.3 Future Directions We hope to answer the following questions:

(1) Are the lower bounds provided in the above table strict?
(2) For non-isotropic β, what is the structure of Sα(β) as an sl(2)-module? Here this sl(2) is

constructed using root vectors in g±β.
(3) What can we say about the structure of Sα(β) when β is isotropic?
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