LIMITS OF THE WONG-ZAKAI TYPE WITH A MODIFIED
DRIFT TERM

HECTOR J. SUSSMANN*

Abstract. We study Stratonovich stochastic differential equations driven by an
m-dimensional Wiener process W, with m > 2. If W is approximated by processes W¥
with more regular sample paths, then it is known that the solutions of the equations
driven by the W7 will converge to the solution of the equation driven by W, provided
that the approximations satisfy the conditions of the Wong-Zakai theorem. McShane
gave an example showing that, if those conditions are not satisfied, then a different
limiting equation can arise. Here we describe a large class of equations, obtained from
the original one by suitably modifying the drift term, that can arise as limiting equations
by some choice of the sequence {W"}.

1. Introduction. Consider a stochastic differential equation
(1.1) de = fo(z)dt+ Y fi(z)dW;
i=1

where z is n-dimensional, W = (W1, ..., W,,) is a standard m-dimensional
Brownian motion, the vector fields f; satisfy appropriate smoothness and
growth conditions, and the solutions are always understood to be in the
Stratonovich sense.[5]

If we approximate W by a sequence of processes W¥ with more regular
(e.g. Lipschitz) sample paths, then the well known Wong-Zakai Approx-
imation Theorem (cf. [9], [10]) says that the solutions ¢ — X¥(t) of the
corresponding approximating equation

(1.2) de = fo(z)dt+ Y fi(z)dW}
i=1

with some given initial condition X*(0) = X, converge to the solution X of
(1.1) with the same initial condition, provided that the approzimations W¥
satisfy some extra conditions, which always hold if m = 1, but may fail if
m > 1. McShane gave an example in [4] showing that, for m = 2, the X¥
may indeed fail to converge to X. In this note we investigate the possible
limits that can be obtained by taking more general sequences of approxi-
mating processes and show that, by a suitable choice of the approximation,
it is possible to make the X* converge to the solution of an equation

(1.3) dz = (fo(z) + g(x))dt + Zf,»(m)dW,» ,
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with a different drift term. We will show that g can be chosen to be an
arbitrary element of A, where A is the linear span of all the Lie brackets
of the f; for ¢« = 1,...,m that contain at least two factors. The precise
statement is given below in Theorem 6.1. Our result is a generalization of
Theorem 7.2 of [3], Chapter 6, where it is shown that, by a suitable choice
of the approximating sequence, one can produce a drift term which is an
arbitrary linear combination of brackets [f;, f;], 4,7 > 0.

We remark that we only prove almost sure convergence for a fixed
T and a fixed initial condition. With a more careful analysis, one can
prove a.s. convergence uniformly in ¢ for ¢ in any bounded interval, and
convergence of the stochastic flows.

2. Differential Equations with Inputs. We let Cp°(IR",IR") de-

note the class of all rfrlags f i IR® — IR” of class C*™ such that all the
Ho1+Fan

xi’laxiz

on R”. (In particular, every f € Cp°(R*,IR") is globally bounded and

globally Lipschitz.)

We assume that fo,..., fm € C°(R",IR"). We let U™ denote the
space of all locally absolutely continuous functions U : [0,00) — R™
such that U(0) = 0. If U € U™, then we write u = U = L so
u € L, (0, 50), R™).

Let U € U™, and write w = U. Write Uop(t) =t,i.e. ug(t) = 1. Then
the ordinary differential equation

partial derivatives of all orders (including order 0) are bounded

(2.1) &= fo(z)+ Y ui(t)fi(z)

i=1

can also be written in the form
dz = fo(z)dt + Y fi(z)dU;
i=1

or

It is clear that (2.1) satisfies the conditions of the Carathéodory existence
and uniqueness theorem. Moreover, since the f; are bounded, trajectories
do not escape in finite time. So, given any a € [0,00), Z € R", there exists
a unique solution ¢t — z(¢) of (2.1) such that z(a) = . For fixed b € [0, o),
we will use @ga to denote the map that assigns to each z the value z(b) of
the corresponding solution. That is, t — @ga(:v) is the solution of (2.1) that
goes through z when ¢t = a. Each map @ga is a C*° diffeomorphism from
IR” onto IR™. Moreover, these diffeomorphisms satisfy @ga — identity, and
@Zb@i{a = @ga for all a,b, ¢ € [0, 00).
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We now define the iterated integrals fab ur, where I = (41,...,%,) 18
an arbitrary member of Z(m), the space of all finite sequences of indices
1 € {0,...,m}. (We will write |I| for the length of I, i.e. the number r.

When |I| = 1, so I = (i) for some %, we will just write fab u; instead of
fab u(;). The empty sequence () is a member of Z(mn).) The definition is
recursive: we let fb ur = 1if I = 0, and for a general I we write I = (3,1'),
and define f ur to be equal to f ,(t)(fat uge)dt.

We will also write Uz (b, a) for fa ur. Notice that the identity Us(b, a) =
U;(b) — Ui(a) holds when [I| = 1, I = (i), but no similar formula is true
when |I| # 1, since in that case the additivity property Us(c,a) = Ur(e, b)+
Uz(b,a) does not hold in general.

We are interested in the derivatives of Ur(t, s) with respect to both
variables ¢ and s. Define

and

Then f ur = fb + “(t)dt = fab u;’b(s) ds . The functions u;'“(t), uy b(s)
are equal, respectlvely, to

t t1 tr—2
(22) uil(t)/ / / Uz’2(t1)---Uz’k(tk—l)dtk—l---dtl

and

b b b
(23) uik(s)/ / / uil(tl)...uik_l(tk_l) dtk_l...dtl .
s tr—1 to

if I =(41,...,9) € I(m).

Now suppose that ¢ is a scalar- or vector-valued function of class C*.
Write f; ¢ to denote the result of applying f; to ¢ as a first-order differential
operator, i.e. (fip)(z) = limp_o %((p(:c + hfi(z)) — p(z)). More generally,
if I = (41,...,4,) € I(m), we write fr = fi, fi, ... fi,. Then (2.1) implies

the equation

(2.4) P(®Y 4 (z)) = +Z/ ui(8)(fip) (@7 (2)) ds
which is the k = 0 case of the general formula

(2.5) (2, (2 Z Ur(t,a)(free)(@) + i t,0,0,0,4(2)
[Z]<k
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where, for any multiindex I = (i1, ..., 4, ), we use I# to denote the reversed
multiindex, i.e. I# = (i,,...,41), and the remainder R 4,0,U,0,¢(2) is given
by

20 Ruvavose)= Y [ i) o@ala))ds

|I|=k+1

It is easy to see that (2.5) is actually true for all k. (The proof is by
induction, using repeated integrations by parts.) A particularly important
choice of ¢ is ¢ = E™ |, where E” : R® — IR" is the identity map. In that
case, (2.5) becomes

(2.7) o, (z) = Y Ur(t,a)E{(z) + Ret.00,8m ()
1<k

where E_f = fr#E™, and

29 Musawes@= Y [ ©B@%E) .

[I]=k+1

We remark that all the vector-valued functions E_f belong to Cg°(R", IR™).

3. Stochastic Ordinary Inputs. Now assume that (Q,F, P) is a
probability space, and {F;} is an increasing family of sub-o-fields of F. An
m-dimensional ordinary input process (OIP) on (Q,F, P) is a stochastic
process U = {U(t) : t > 0} such that all the sample paths t — U(t)(w),
w € Q, belong to U™. In that case, the derivative U, the iterated integrals,
the solutions of (2.1), and all the other U-dependent objects introduced
above are well defined for each w € €.

As usual, we call a process U adapted if U(t) is F;-measurable for each
t. However, it is also useful to define a weaker concept, namely, that of
a m-adapted process, where 7 is a partition of [0, 00). Precisely, we define
a partition of [0,00) to be an infinite sequence m = {t;}32, such that
0=ty < t1 <ty <...andlimj_ot; = co. The mesh || of a partition
m is the number sup{t; —t;_1: j = 1,2,...}. If 7 is a partition, then we
call U m-adapted to {F;} if, for every j, U(t) is Fy;-measurable whenever
t <tj.

Now suppose that 7 = {t;}22, is a partition of [0,00) and U is a
m-adapted m-dimensional OIP. Let k > 0 be an integer, and let C' € IR,
C > 0. We will say that U belongs to the class OIP(m, k, C,w) if U satisfies
the following three bounds

(3.1) E(Ur(t),tj-1))/Fe;_ | < C(t; — tj-1) ,

(3'2) ]E(Uf(tjvtj—l)z/}-tj—J < C(tj - tj—l) )
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and
(3.3) [E(U1(t,t5-1))/Fe;_, | < C

for all choices of I € T(m) such that |I| < k, all j € {1,2,3,...}, and all
t € [tj_1,t;], as well as the bound

(3-4) lur*(s)| < €

for all I € Z('m) such that |I| = k+1 and all 5,¢ such that t;_; < s <t <¢;
for some j.

If U € OIP(m,k,C,w) and 1 < |I|, |J| < k, then it follows from the
Schwartz inequality for conditional expectations that

(3.5) E(Ur(t,t-1)Us(t:t-1))/ Fe; | S Ct; —tj—1) -

We now define Dy(f) = sup{||z — y||" || Ef(z) — B} (v)]] : 2,y € R, z #
y}, and let D = D(k, f) = max{Dr(f): 1 < |I| <k +1}.

LEMMA 3.1. For every k,m, f,C there exist constants K, i, depend-
ing only on k,m, D and C, but not on the particular choice of U, X, Y, f
or m, with the property that, whenever m = {t;}32, is a partition of [0, cc),
and U is a process in OIP(m,k,C, ), then the bound

128, (X) = @7, (V)llz, < (14 K™ (8 — t_1)||1X = Y|z

titi-1 diti—1
holds whenever X,Y : @ — R"™ are Fy,_, -measurable and square-integrable.
PROOF. Throughout this proof, we will use the notation £(X,Y) to
denote £(X) — £(Y), whenever £ is some expression that depends on X.

Write a = ¢;_1, b = t;, and use IE, to denote conditional expectation with
respect to Fy. Let @ < ¢ <b. Using (2.7), we get

o/ (X,Y)=X-Y+ Y Uit,a)E{(X,Y)
1<|1|<k
(36) +Rk t,a,U,E™ f (Xa Y) .

2ty

Using the bound ||E{($,y)|| < D||z — y||, we get

E(Uz(t,a)*|| B (X,Y)|P) = E(|E{(X, Y)||” - Ea(Us(t,0)")
< C’D*E(||X - Y|,

so that
(37) Us(t,0) - BY(X,Y)llz2 < CD|IX Y|l
if 1 < |I| < k. Similarly, if [I| = k + 1, we have

(3.8) lluz(s) - B (2{4(X, Y))I| < CD||Y (X, )]
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polntwise, so

(3.9) lluz*(s) - BY (87o(X,Y))|[z2 < CD||@Y (X, Y)||1= -

Since Rit,0,0,877(X,Y) = Xy rjzpsr Ju ur (5)- B (874(X,Y)) ds, we find

[A%]

t
(3.10) || Rr t,0,0,B7,4 (X, Y )22 < u/ |87 (X, Y)]||ds

where 1 = (m + 1)¥*1CD. Combining (3.6), (3.7) and (3.10), we get

t
(3.18 (X, Y)[[z2 < (1+vCD)[|X V|| +M/ 1954(X, Y )2 ds

_ (m+1)_m-1
=

where v =m+ 1+ (m+1)2+ ...+ (m+ 1)k
Gronwall’s inequality then yields

(3.12) [187a(X, Y)||z2 < (1+vCD) ™| X — Y12 .
If we now use (3.10) again, with ¢t = b, together with (3.12), we get
(3.13)| Bapa,0,20, (X, V)2 < i1+ vC D) (b — ) | X — ¥

Using (3.6) with ¢ = b, we can write @ga(X, Y) = A+ B, where 4 =
X =Y + Yiqn<x Ur(b,a)(BH(X,Y)) and B = Ry pav,807(X,Y). We
have already estimated ||B||zz in (3.13). To get a bound for ||A||p> write

AP = |IX -Y|?+2 Y Ui(b,a)(X -V, E}(X,Y))
1<|I|<k

(3.14) +2 Y Ur(b,a)Us(b,a)(E{(X,Y), E}(X,Y)).
1<), 7| <k

Then
E([AP) = IX -YIF+2 Y EJ(Ur(ba)(X - Y, B{(X.Y))
<<k
(315) +2 Z IEG(UI(ba a)UJ(bv a))(‘Ef(XaY)aE;(XaY)) )
1<), TI<k
so that
(3.16) B (|[4I°) < (1+(20CD +v2CD)(b - a)|[X ~ Y1
Taking expectations, we get

(3.17) E(||A]]*) < (14 (2vCD+v*CD*)(b - a))E(|X - Y]*)
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so that
1
(3.18) [|4]|zz < (14 (vCD + EVZCDz)(b —a))||X —=Y|g= -

Combining (3.18) with the bound for B, we get
(3.19) [|2F4(X) = @ 4(Y)llz. < (14 K™ (b= a))[|X =Y ||zz

with K = vCD+ 1v2CD? + u(1 +vCD). |

4. The Chen-Fliess Series. It is clear from the preceding consider-
ations that it is important to be able to analyze sums of the form

Y Ur(ba)(frep)(2).

1<|T|<k

To compute such expressions, we use the formalism of the Chen-Fliess
series (ctf. [2], [6], [7], [8])-

If X is a nonempty set, we use A(X) to denote the algebra of non-
commautative formal power series in X, i.e. the set of all infinite linear
combinations EMeM(X sy M, where M(X) is the set of all monomials in
X, that is, the set of alf finite sequences of elements of X. The length of
a monomial is its degree. Monomials are multiplied by just concatenating
them, and then the product of two elements of A(X) is well defined. The
empty sequence is a monomial of degree 0, and is denoted by 1. Then
1.§ = 81 = S forall § € A(X) A linear combination of monomi-
als of degree k is said to be homogeneous of degree k, and the set of all
such combinations is denoted by A¥(X). Clearly, every S € A(X) has a
unique decomposition S = Y77, Hx(S) as a sum of homogeneous com-
ponents. If we regard A(X) as a Lie algebra, with the bracket defined
by [S,T] = ST — TS, then the Lie subalgebra of A(X) generated by X
is denoted by L(X) and its elements are known as Lie polynomials in X.
Those S € A(X) all whose homogeneous components Hy(S) are in L(X)
are known as Lie series in X, and the set of all such series is denoted by
L(X). The order w(S) of a series § € A(X) is the smallest k such that the
k-th homogeneous component of S is # 0. (If S = 0 then w(S) is defined
to be +00.) An infinite sum S; + Sz + S5 + ... of series in A(X) such that
w(S;) — oo as j — oo is convergent in an obvious way since, for each k,
Hi(S;) = 0 for all but finitely many j’s. In particular, the exponential
e, and the logarithm log(1 + S) are well defined by the usual power series
if w(§) > 1. If S is a Lie series then w(S) > 1, so e and log(1 + §)
are defined. The elements of the form e°, with S € ]’:\J(X), are known as
exponential Lie seriesin X.

Given an input U € U™, we can consider the differential equation

(4.1) S(t) = S(t)(Xo + ur () X1 + + .. + U () Xm)
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where u; = U, and Xg, ..., X, are formal noncommutative indeterminates.
We can regard S as evolving in the algebra A(Xo, ..., Xm) of noncommu-
tative formal power series in the m + 1 indeterminates Xo, ..., X,,. (That
is, A(Xo, ..., Xm) is the set of all formal infinite sums § = EIEI(m) sr X1,
where, if I = (41,...,4,), r > 0, we define X7 = X;, X, ... X; , and we let
Xg = 1.) If we solve (4.1) with initial condition S(a) = 1, then the solution
is given by

(4.2) St)= Y Ur(t,a)Xrs .

I€Z(m)

We can also consider (4.1) as evolving in A (Xo, ..., Xm), the free nilpotent
assoclative algebra of order k in Xo,..., X,,, i.e. the set of all sums § =
EIeI(m'), \T|<k s1 X1, where monomials are multiplied in the usual way, and
every monomial of degree > k is set equal to zero. In this case, the solution
is given by

(4.3) Sty= Y. Urlt,a)Xs .
IeZ(m), |I|<k

The value at b of this solution will be denoted by Sk q,s(U), or Sk qs(u),
and referred to as the Chen-Fliess series of U from a to b, truncated at
order k. Formula (4.3) shows that Sy .5(U) is just a way of coding all the
iterated integrals Uz (b, a), |I| <k, into one algebraic expression.

It is clear that, if a function ¢ — S(¢) is a solution of (4.2), and
Q € Ax(Xo,...,Xm), then ¢ — @QS(t) is also a solution. In particular,
ifa < b < e thent — Sp o (U) and t — Sg,q,5(U)Sk,p,+(U) are both
solutions, whose values at ¢ = b coincide. Hence the identity

(4.4) Sk,a,e(U) = St,a,5(U) Sk p,c(U)

holds in Ay(Xo,...,Xm). Notice that, when k = 1, Formula (4.4) just
amounts to the statement that Ur(c, a) = Ur(e, b))+ Ur(b, ) whenever |I| =
1, i.e. to the property that the integral is additive with respect to the
interval. So (4.4) can be viewed as a generalization to high-order iterated
integrals of the additivity property.

We will need the Campbell-Hausdorff formula (CHF), cf. [1]. To state
the CHF, let A, B be indeterminates. The CHF then says that

(4.5) eAeB — (A+BHIABIHC(4,B)

where C € I:(A, B) is a Lie series in 4, B of order 3. Naturally, if
ST € f;(Xo,...,Xm), we can plug them into (4.5) and get eS¢l =
eS+T+%[5’T]+C(S’T), so in particular the set of Lie series is closed un-
der multiplication. A similar formula holds in Lg(Xo,..., X, ) (where
Li(Xo,...,Xm) is the truncated version of f;(Xo,...,Xm), i.e. the Lie
subalgebra of Ay (X, ..., Xm) generated by the X;), and in this case the

series C(S,T) is actually a finite sum.
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5. Construction of Approximating Processes. We now fix m and
define, for each k, each formal bracket B = [X;,[...,[X:,_,, X:i.] -],
i; € {1,...,m} for j =1,...,7, each interval [a,b] C [0, o), and each real
number 7 > 0, two controls u(B, a,b, &, 7) : [a,b] — IR™, such that

(51) Sk,a,b(U(Baaq b,:l:,T)) — e(b—a)Xu:l:-r"B-}-Z(B,a,b,:l:,r) ,

where Z(B,a,b,+,7) = PBi((b —a)Xo,7X1,...,7Xy), and PBi are Lie
polynomials of order > 2 in indeterminates Yq, ..., Y,,, that do not contain
monomials in ¥7,...,Yy, of degree < r (i.e. PBi are such that w(PBi) > 2
and w(PBi(O, Yi,...,Yn)) > 7).

The w(B,a,b,+,7) : [a,b] = R™ are constructed inductively as fol-
lows. Assume first that » = 1, so B = X; for some i € {1,...,m}. Then
(writing (%, a, b, £, 7) instead of w(X;,a,b,+, 7)) we define u(4,a,b,+,7)
to be the control whose i-th component is constant and equal to £,
while all the other components are zero. Now assume that u(B’, a,b, +, 1)
has been defined whenever B’ has degree » — 1. Pick B of degree 7,
and write B = [X;, B']. Divide the interval I = [a,b] into four equal
subintervals I; = [tj_1,¢;], § = 1,...,4, where we let t; = a + jé, for
j=0,...,4, with § = %(b — a). Then define u(B,a,b, +,T) to be equal to
u(%, to, t1,+,7) on Iy, to w(B',t1,t2,+,7) on Iz, to u(s, t2,t3,—, 7) on I,
and to u(B’',t3,ts, —, 7) on I4. Having defined u(B,a, b, +, T), we construct
u(B,a,b,—,T) by “changing sign and reversing time,” that is, by letting
u(B,a,b,—, 7)(t) = —u(B,a,b,+,7)(a+ b—1) for a <t < b.

With this definition of the w(B, a, b, +, 7), we now show by induction
on r that the Chen-Fliess series of (B, a, b, £, 7) satisfies the desired prop-
erties. Consider first the case 7 = 1. In this case, it is obvious that

(5.2) Sk.ap(u(iya,b, £, 7)) = el XotrXi

Now assume that the desired property holds for » — 1. Let B be of
degree r, and write B = [X;, B]. In view of (4.4), we have

(53) Sk’mb(u(B, a, b, =+, ’7')) = 5152535, s

where Sj = Sk7tj_17tj(u(Bj,tj_1,tj,9]',7')), Bl = B3 = X,’, Bz = B4 = BI,
61 =605 =+, 03 =0y = —. Then Sy = e5¥o+7X:i and S5 = ¥ Xo—7Xi where
6= bTT“. By the inductive hypothesis, we have

r—1pt + _or—1lpt -
Sz — eéXD+r B'+R 54 _ eéXD T B'+R

and ,

where R* = PL,(§Xo,7X1,...,7X,n), and the PZ, are Lie polynomials in
Yo, ..., ¥,y such that w(PZ) > 2 and w(PZ,(0,Y3,...,Y)) > r.

We now repeatedly apply the CHF. (In our case, all the Lie series
occurring in the computation are actually Lie polynomials, because we are
working in a nilpotent algebra.) We get 515, = eZ+, S35, = eZ ", where

1
(5.4) 7t =2Xo+7X; £ 7B + 57" [X;, Bl + Q% ,
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(5.5)  Sk.ap(u(B,a,b,4,7)) = 5152538 = et~ Xo+T" X0, Bl+Q
+ £+, 10,9 ol o, L +
QF = R* £ J67" " [Xo, B') £ S67[X;, Xg] + 6[Xo, R¥]
1
(5.6) +57" X, R4+ C(6Xo £ 7Xi,6X0 £ 7" 1B + RY) ,

(5.7) Q=Q"+Q +5[7, 271407+, 7).

It is clear that @ is a Lie polynomial in 6Xo,7X1,...,7X;y, le. Q =
P} (6Xo,7X1,...,7Xm) for some Lie polynomial in Yy, ..., Y,,. Moreover,
P} clearly has order > 2. We must now show that w(P2 (0,Y1,...,Y,,)) >
r. That is, we must show that, if we plug in § = 0 in @, then the resulting
expression is divisible by 77t!. It is easy to see that, in the right-hand
side of (5.7), the only possible terms of degree < r in 7 must come from
the sum Q% + Q. Using (5.6), we conclude immediately that such terms
can only arise from the sum P, (0, 7X1,...,7Xm)+P5. (0, 7X1,...,7Xm).
So our conclusion will follow if we show that this sum vanishes, i.e. that
Pg,(O, Yi,...,Ym)+ Pz (0,Y1,...,Yy) = 0. This in turn follows from the
equality S$284 = 1, where the S’j are the series obtained from the S; by set-
ting Xo = 0. These series can be computed by setting Xo = 0 in (4.1) and
then solving on the intervals [t;_1,¢;] with input (B, a, b, &, 7). If we let 5}
denote the corresponding solutions with initial condition ,§j (tj—1) = 1, then
,SN’]' = S’j(tj). By translation invariance, we have Sy = S4(6),, Si=S_ (6),
where Sy is the solution of (4.1) on [0, é], with input «(B’, 0,4, £, 7) and
initial condition S4(0) = 1. Since, as explained above, u(B’,a,b, —, 7) is
obtained from w(B’,a,b, +, 7) by changing sign and reversing time, it fol-
lows easily that S_(8) = S4(6)~1, completing the proof of our conclusion.
We record for future use the trivial fact that

r—lT

b—a

(58) |u(B,a, baiaT)il <

We now let ¢ € A, so we can write g = Eﬁ:l guBu(f), where the B,
are Lie brackets of the form

[Xz"l‘v [ (RX) [Xi”

rwy=1? i)

1..0], & ed{l,...,m},

r(p) > 2, and B,(f) is the vector field obtained by plugging in f; for X;
for each 1. We assume, without loss of generality, that all the numbers g,
are nongzero.

We now let (2, F, P) be a probability space and {F:} be a filtration
as above. Let W = (Wy,...,W,,) be an m-dimensional standard Wiener
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process on (2, F, P) that has continuous sample paths and is adapted to
{F:}, in the sense that W; is Fy-measurable and W; — W, is independent
from F, whenever s < t. For each integer v = 1,2,... we let 7, be the
partition {t¥}52,, where t] = j27". We write AW;(j,v) = Wi(j27") —
Wil(j — 1)27).

Using the u(B,a,b,+,7) defined above, we will construct for each v
a my-adapted input process U”Y. We define U” by specifying its deriva-
tive w¥ = U”. Divide the interval I} = [(j — 1)27%,j27"] into two equal

subintervals I]'»/’_, I]'»/’+. On I]'»/’_, we let the component u? be equal to

VHLAW, (G, v) if |AW;(5,v)| < 2-% and to zero otherwise. (It then fol-

lows, in particular, that |uY(¢)| < 21+$Ty.) On I]'»/’+ we proceed as follows.
Let

|g,u|
Q= —"—
ol 4 gl

so that 0 < oy and @3 + ...+, = 1. Divide I]'»/’+ into intervals I]'»/’+’”,
p=1,...,p, of length ¢, 277~ 1 If I]'»/’+’” = [a(4,v, 1), b(4, v, u)], then we
let w” be equal to u(By,a(j,v, 1), b(j, v, 1), £, Ty 1), where the sign is + or
— depending on whether g, is > 0 or < 0, and the number 7, , is chosen
so that Tﬁfﬂ) = |gn|27".

Then, if we apply (5.8) to the controls 4 on an interval

I;v‘*‘v/—t’ we

get |uf(t)] < a;12”+14T(”)_1|gu|ﬁ2_$. We now pick k > 3 such that
r(p) < k for all . We then have the pointwise inequality

(5.9) [t ()] < 2o,
where & = 2max(1,max{a;14r(“:)‘1|gﬂ|7175 cp=1,...,p}) and p = EL.
(This has just been shown to be true on I]'»/’+, but it clearly holds on I]'»/’_

as well, since (a) K > 2 and (b) p > %, because k > 3.)
We let I]'»/’_ = [a(j,v,0),b(j,v,0)]. Then it is easy to see that

(5.10) Skra(iwgpGup(U”) = €2 Kot DIl AW ()X
if 4 = 0, where AVV,’(j,I/) = Xu,,iAW;(j,v), and x,.j,; is the indicator

function of the set l§,,7j7,' ={w € Q: |AW;(4,v)| < 2_%}. If o > 0, we
have

(5.11) Ska(iwan) by (U”) = €2 Xotg, 27 Bucees
where “...” denotes a Lie polynomial whose coefficients are bounded by a
fixed constant times 279, where § = kkil From this, using the Campbell-

Hausdorff formula, we conclude that

(5.12) Sk (jo1j2-v oo (UY) = @ HotEin AW Xk 2™ G
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where G = Y0_, gu
Notice that, since 2 7 AW;(j,v) is normalized Gaussian, we have

~ 2 v r_1
(5.13) P(B, :)>1— \/;2—@,—“

so that, for any fixed T > 0, if we let By v be the event that x, ;; = 1 for

all 4,7, v such that ¢ € {1,...,m}, j27¥ < T, and v > N, then we have
P(Brn)>1- \/;Z 2% e~ %_l,so that P(Br,ny) — 1 as N — oo.
We will need the followmg technical result:
LemMa 5.1.  The process UY is in OIP(m, k,C,m,), where C is a
fized constant, independent of v.
PROOF. The iterated integrals U7 (¢¥,tj_;) for 1 < |I| < k can be
obtained from the Chen-Fliess series (5.12) by computing the exponen-
tial. Since |AVV,(], v)| < 2-%, it is clear that all the coefficients of
Sk (j—1)2-v,j2-»(U”) — 1 (i.e. all the Uy (¢}, t%_ 1) with 1 < |I| £ k) are
pointwise bounded by a fixed constant times 2%, so that (3.3) holds.
Moreover, it follows from (5.12) that

Sk, (i—1)2-vj2-+(U") = 14+ Y AW;(j,v)X;

m
(5.14) + ) AW, v) AW (5, v) XX + ...

where “...” denotes a finite sum of terms that are bounded by a fixed

constant times 277, So the conditions of (3.1) and (3.2) will be trivially
verified if we show that, if we let A be any of the variables V; = AVV,(], v)
or V;; = AVV,(;, I/)AVV,'I(j, v), then [IE(4)| and IE(A?) are both bounded
by a constant times 27%. (Since A4 is independent from ft;{_l, we can
compute true expectations instead of conditional ones.) And these bounds
follow trivially from the fact that V; = 2_”/2Hi, where the H; are obtained
by symmetrically truncating normalized Gaussian random variables. This
completes the proof that the bounds (3.1), (3.2), (3.3) hold.

As for (3.4), recall that the components u (¢) satisfy (5.9). Since every
integration over an interval of length < 27% improves the bound by a factor
of 277, we conclude that a k-th order iterated integral of u” is bounded by
kF2p—DEY e by k¥277. So

(5.15) |(u”)7 " (s)] < wEF20O7DY

and (3.4) holds, since p < 1.
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It is clear from our construction that U¥(527%) = W(j2 ) on By y, if

7277 < T. In view of (5.9), we have ||U(t)—U”(527")|| < ¢27* pointwise,
where ¢ is a fixed constant. Since P(Brn) — 1 as N — oo, and W has
continuous sample paths, it follows that

(5.16)  P(lim (sup {|[W(t) ~ U ()] :0< t <T})=0) =1

for every T > 0, so the U” are indeed approximations of W.

6. Proof of Convergence. We now fix an Fp-measurable square-
integrable initial condition X : @ — R", and let ¢ — X(t) denote the
Stratonovich solution of (1.3) such that X(0) = X. Also, let W" denote
the ordinary input process such that W”(t7) = W(t}) for all j, and W" is
linear on the intervals [t¥_;,¢¥] of the partition m,. Let w” = W". Define
wY to be the result of truncating w” as before, i.e. let W} = wy on [t]_;, t;’]
if on that interval |w”| < 27%, and otherwise let WY = 0. We then let w>
be the integral of w”

It is clear that both WY and W* are m,-adapted OIP’s. Moreover, the
WY are in OIP(m,k,C,m,) for afixed C, independent of v, provided that
k > 2. (The proof is analogous to, but easier than that of Lemma 5.1.) It
is then easy to see that

(6.1) Sii—tys-rga-r(WY) = & XATIL AWGX:

We now want to consider the maps <I>U defined for an OIP U, using the
equatlon dz = (fo(z) +g(z))dt + > i, f,( )dU; instead of (2.1). We will
use &Y ap 1O denote these maps, so as to avoid any confusion with the <I>U
that are associated to (2.1).

THEOREM 6.1. Let (Q,F, P) be a probability space endowed with a
filtration {Fy}. Let W be an m-dimensional standard Wiener process with
respect to {Fy}. Let fo,..., fm € C;°(R*,IR™), let Ag be the Lie algebra of
vector fields generated by f1,..., fm, and let A = [Ag,Ao]. Let g € A. Let
X € L*((Q, Fo, P);R™), and let t — X(t) be the Stratonovich solution of
(1.8) with X(0) = X. Let {U"} be the ordinary input processes constructed
in §5. Then, for every T > 0,

(6.2) @‘TffO(X’) — X(T) a.s. as Vv —o00.

PROOF. Lemma 3.1 gives us estimates

(63) 11850, (X) 88 (V)llz, < (L+ K27)[|X — ¥ ]|z ,

(6.4) ||(I)t” e (X)) — (I)X“’/:” (M, <1+ K277)[|X = Y|z2

1
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valid for all v, j, and all square-integrable ft"j_l—measurable X,Y. (The
exponential factor that occurs in the formula of Lemma 3.1 is bounded
independently of v, since |m,[ < 1 for all v.)

) Write X7 = (I)fgﬁo(X), Yy = @%70()(), and Z = X7 -Y}. Then X} =
&%, (XY_,) and VP = &L, (Y7,), and therefore 7/ = AY — BY,
where

A; = (I)%’/,t;f_l(X]"/—l) - (I)%’/,t’f (ij—l)

(Y1) -

From (6.4) we get the bound [[A7|[zz < (1+ K27%)[|Z}_,||L=.

We now estimate BY. Let fo=fo+g f= (fo,fl, ooy fm). Write
a=17_1, b=17. We pick k > max(3,7(1),...,7(p)), and apply (2.7) for f

with U = U, and for f with U = W”, and let ¢t = b. We get

v AWY v _a&UY
Bj = (I)t;.’,t;.’_l(yj—l) (I)t;.’,t;.’_l

(6.5) o7 (2) = > UY(b,a)Bf () + Ripuuv,mn 5 (2) ,
|II<k

(6.6) &, ()= > Wi (b,a)Ef(2) + Ry, syre g f(2) -
II<k

In view of (5.15), plus the analogous bound for WY, and (2.8), the remain-
ders Ry p.a,uv,87, (%), Ry y v mn f(:c) are bounded by a fixed constant
times 27%. (Recall that § = 1 + %) Moreover, we have

(6.7) 3" UY(b,a) B (2) = (Skap(U")(HE" () ,
1T|<k

(6.8) 3" W (b, a)EL(2) = (Skap(W)(H)E")(2) ,
T|<k

where, for a noncommutative polynomial P in the X;, P(f) denotes the
partial differential operator obtained by plugging in the f; for the X;. Using
... to denote terms that are bounded by a fixed constant times 279, we
have

Skap(U”) =1+ (b—a)(Xo+G)+V +...,
Skap(W')=1+(b—a)Xo+V +...,

where V = E:';l AV[’Z(]? V)Xz + Ezlilzl AVVz(]a V)AVVil(j, V)XiXi’a 80
that

Y Ui (ba)Ef(z) = 2+ (b - a)(fo(z) + 9(2)) + V(f)() +...,

|Z|<k

3 Wb a) Bl (2) = 2+ (b— a) fola) + V(f)() + ...,
1T|<k
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Since fo = fo + g, we conclude that [1BY]| < 279 pointwise, where
v is a fixed constant.
Therefore || Z} |12 < (1+K2_V)||Z]'»/_1||L2—|—72_9V. From this it follows

easily by induction on j that |[Z}|[: < jeIK2T 9=0v o

(6.9) 1970 (X) — 27 o(X)||z= < yTeFT27%,

if T =¥ = j27". Actually, (6.9) holds for arbitrary T', with the factor 4T
replaced by (T + A) for some fixed A > 0. (To see this, let t]_; < T <t;,
and notice that (2.4) (for U = UY, ¢ = E™) together with (5.9) imply the
pointwise bound ||<I>[r_;f;j_1($) —z|| < constant -27%. A similar bound holds

for @g:j_l 2

It follows from (6.9) that @gg (X) — @le’”O(X’) — 0 almost surely.
On the set Br .y, @?S(X) = é;ﬁg(X) for sufficiently large v. Since
P(UnBr,n) = 1, we conclude that @?S (X) — @%‘fg (X') — 0 almost surely.

Finally, @%‘fg (X) converges a.s. to X(T) by the Wong-Zakai theorem. So
(6.2) holds.
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