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13 More on the course

13.1 Reading for the period from the beginning of the
semester until March 29

I. The book, Chapter 1 (all of it) and Chapter 2 (up to and including
2.5). NOTE: on induction, all you need to know is the Well-Ordering
Principle. As far as I am concerned, you are free to use well-ordering
any time the book wants you to use induction or complete induction.

II. The instructor’s notes, up to page 88.

In particular,

a. Please read carefully the chapter of the notes on definitions (pages 56
to 67). You are going to be asked (in the second midterm, and in the
final exam) to write definitions.

b. Please pay special attention to

i. the statement and proof of “Euclid’s algorithm,” in the book,
pages 62, 63,

ii. the statement and proof of the division algorithm for IN, on page
115.

NOTE: I will post be a set of notes on these two theorems and their con-
sequences. (They will be ready, I hope, by Monday March 13.) Please
read them carefully, because these theorems and their proofs
are very important.

13.2 Homework assignment No. 6, due on Wednesday,
March 8

This is a short assignment, consisting of just one problem:

Prove (using well-ordering, or induction, as you wish) that

n
∑

k=1

k3 =
(n(n + 1)

2

)2

for every natural number n .
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13.3 Homework assignment No. 7, due on Wednesday,
March 22

This is a long assignment, because I have included some challenging problems,
so that you will not be bored. If you cannot do all the problems, do as many
as you can.

I. The following problems all depend on induction or well-ordering. You
can do each one of them by whichever method you prefer: induction, or
complete induction, or well-ordering, even when the book tells you
to use a specific method. (My own preference is well-ordering. This
method always works whenever one of the other two methods works,
so it is quite safe, besides being simple. In a few cases, a proof by
induction might be a little bit easier or shorter, so you may be slightly
better off using induction.)

1. Pages 106-107, Problem 8, Parts (b), (c), (d), (f), (g), (h), (i), (j),
(l), (m), (n), (p), (q), (t),

2. Pages 107-108, Problem 9, Parts (b), (d), (f).

3. Page 109, Problem 14.

II. (This is a truly challenging problem!) On pages 96, 97, the book gives
us a list of “axioms” for the natural numbers, and says that “these
axioms are sufficient to derive all the familiar properties of the natural
numbers.” I am asking you to prove that the book is wrong18, by
proving the following: using the axioms in the book, it is im-
possible to prove that 1.1 = 1. Here is a hint: suppose you take
“natural number” to mean “even natural number,” rather than “ordi-
nary natural number.” (This is sort of similar to things we did in the
course, where we discussed what would happen if “giraffe” meant “rab-
bit”, “cow” meant “unicorn”, and “sheep” meant “elephant”.) Also,
take “1” to mean “2”. (Then, of course, the “successor” x + 1 of a
number is now x + 2.) With this new interpretation of the meaning of
“natural number” and “1”, prove that all the 18 axioms listed in the
book, pages 96, 97, hold. And yet the assertion that 1 ·1 = 1 is not true,

18Naturally, whether or not the argument I am proposing truly establishes that the
book is wrong depends very much on whether you believe that “‘1 · 1 = 1” is a “familiar
property of the natural numbers.” In my opinion, it is. What do you think?
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because it says, under our new interpretation, that 2 · 2 = 2, which of
course is false.

The following two problems have already been assigned before, as “optional.”
Very few people did them, and nobody did them right. Now I am asking you
to do them again. Remember our discussion of the problems in class: any
argument you give that would also prove that “every year must
have a Friday the 13th” even in a situation where this conclusion
can fail to be true (for example, if all the months had 28 days)
is necessarily wrong.

III. Prove that every year must have a Friday the 13th.

IV. Prove that the statement of Problem III remains true even if we change
the order of the months (without changing the names of the months or
the number of days of each month) in an arbitrary way.

13.4 Solutions to the problems of the first midterm

Problem 1. Prove each of the following. (You will need the definitions of
“even” and “odd”, so write them down and make sure you use them. You
are allowed to use all the basic facts you know about arithmetic, except that
you are not allowed to use anything about “even” and “odd” other than the
definitions.)

(i) The number 7 is odd.

Proof. The definition of “odd” says that an integer n is odd if
(∃k ∈ Z)n = 2 · k + 1. Now, 7 = 2 · 3 + 1, so (∃k ∈ Z)7 = 2 · k + 1, so
7 is odd.

(ii) The sum of two odd numbers is even.

Proof. The definition of “odd” was given in Part (i). The definition
of “even” says that an integer n is even if (∃k ∈ Z)n = 2 · k.

Let a, b be arbitrary integers. Suppose that a and b are odd. Then
(∃k ∈ Z)a = 2·k+1, since a is odd. Pick a k ∈ Z such that a = 2·k+1,
and call it k1, so k1 ∈ Z and a = 2 · k1 + 1. Also, (∃k ∈ Z)b = 2 · k + 1,
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since b is odd. Pick a k ∈ Z such that b = 2 · k + 1, and call it k2, so
k2 ∈ Z and b = 2 · k2 + 1. Then

a + b = (2k1 + 1) + (2k2 + 1) = 2k1 + 2k2 + 2 = 2(k1 + k2 + 1) .

Since k1 + k2 + 1 ∈ Z, it follows that (∃k ∈ Z)a + b = 2 · k. Hence a + b
is even.

(iii) If the product of two integers is odd, then both integers have to be odd.

Proof. First, we need to show that

(A) Every integer is even or odd. That is, in symbolic notation,

(&) (∀n ∈ Z)(n is even∨n is odd)

or, if you do not want to use the predicates “is even” and “is odd”:

(∀n ∈ Z)((∃k ∈ Z)n = 2k ∨ (∃k ∈ Z)n = 2k + 1) .

Here is the proof. Suppose that (&) was not true. Then there
would exist an integer n which is neither even nor odd. Then
n 6= 0, because 0 is even. Since n is neither even nor odd, it
follows that −n is neither even nor odd, because if −n was even
then n would be even, and if −n was odd then n would be odd.
And one of the two, n or −n, is a natural number. So there exists
a natural number which is neither even nor odd. By the well-
ordering principle, we may pick ν such that ν ∈ IN, ν is neither
even nor odd, and no number µ ∈ IN such that µ is < ν can be
neither even nor odd. Then ν cannot be 1, because 1 is odd. So
ν > 1. Then ν − 1 ∈ IN. It follows that ν − 1 is either even or
odd. If ν − 1 is even, then ν is odd, so ν is even∨ν is odd. If ν − 1
is odd, then ν is even, so ν is even∨ν is odd. So in both cases ν
is even∨ν is odd, contradicting the fact that ν is neither even nor
odd. END OF THE PROOF OF (&).

Next we show that

(B) An integer cannot be both even and odd. That is, in symbolic
notation,

(#) (∀n ∈ Z) ∼ (n is even∧n is odd)
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or, if you do not want to use the predicates “is even” and “is
odd”:

(∀n ∈ Z) ∼ ((∃k ∈ Z)n = 2k ∧ (∃k ∈ Z)n = 2k + 1) .

Here is the proof. Suppose that (#) was not true. Then there
would exist an integer n which is both even and odd. Pick one
and call it ν, so ν ∈ Z, ν is even, and ν is odd. Since ν is even
(∃k ∈ Z)ν = 2k. Pick one such k and call it k1. Then k1 ∈ Z,
and ν = 2k1. Since ν is odd, (∃k ∈ Z)n = 2k + 1). Pick one
such k and call it k2. Then k2 ∈ Z, and ν = 2k2 +1. It follows
that 2k2 + 1 = 2k1, so 1 = 2(k1 − k2). Hence 1

2
= k1 − k2,

so 1
2
∈ Z. But it is also true that ∼ 1

2
∈ Z, because 0 < 1

2
,

1
2

< 1, and ∼ (∃n ∈ Z)(0 < n ∧ n < 1). So 1
2
∈ Z∧ ∼ 1

2
∈ Z,

which is a contradiction. Hence (#) is true. END OF THE
PROOF OF (#).

Problem 2. Prove the following statement: If a, b, c are integers, and both
a, b are divisible by c, then a+b is divisible by c. (You will need the definition
of “divisible,” so write it down and make sure you use it. You are allowed
to use all the basic facts you know about arithmetic, except that you are
not allowed to use anything about the predicate “divisible” other than the
definition.)

Proof. The definition of “divisible” says that, if x, y are integers, then x is
divisible by y if (∃k ∈ Z)x = y · k.

Let a, b, c be arbitrary integers. Suppose a is divisible by c and b is
divisible by c. Since a is divisible by c, (∃k ∈ Z)a = c · k. Pick a k ∈ Z such
that a = c · k, and call it k1. Then k1 ∈ Z and a = c · k1. Since b is divisible
by c, (∃k ∈ Z)b = c · k. Pick a k ∈ Z such that b = c · k, and call it k2.
Then k2 ∈ Z and b = c · k2. So a + b = c · k1 + c · k2 = c · (k1 + k2). Then
(∃k ∈ Z)a + b = c · k. So a + b is divisible by c.

Problem 3. For each of the following three statements:

(∀ε ∈ IR)(ε > 0 ⇒ (∃δ ∈ IR)(δ > 0 ∧ δ < ε)) ,

(∀ε ∈ IR)(ε < 0 ⇒ (∃δ ∈ IR)(δ > 0 ∧ δ < ε)) ,

(∀ε ∈ IR)(ε > 0 ∧ (∃δ ∈ IR)(δ > 0 ∧ δ < ε)) ,
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(i) translate the statement into plain English, without using letter vari-
ables or mathematical symbols,

(ii) indicate whether the statement is true,

(iii) if the statement is true, prove it, and if it is false, prove that it is false.

Answer. First look at (∀ε ∈ IR)(ε > 0 ⇒ (∃δ ∈ IR)(δ > 0 ∧ δ < ε)) .
An English translation is “given any positive real number, there exists a

smaller positive real number”. This is true. Here is a proof: let ε̄ be an
arbitrary real number. Assume that ε̄ > 0. Let δ̄ = ε̄

2
. Then δ̄ > 0 ∧ δ̄ < ε̄.

So (∃δ ∈ IR)(δ > 0 ∧ δ < ε̄). So ε̄ > 0 ⇒ (∃δ ∈ IR)(δ > 0 ∧ δ < ε̄). Since ε̄
was an arbitrary real number, we have proved that (∀ε ∈ IR)(ε > 0 ⇒ (∃δ ∈
IR)(δ > 0 ∧ δ < ε)) .

Next, consider (∀ε ∈ IR)(ε < 0 ⇒ (∃δ ∈ IR)(δ > 0 ∧ δ < ε)) .
An English translation is “given any negative real number, there exists a

smaller positive real number”. This is false. Here is a proof: Take ε = −1.
Then there cannot exist a δ ∈ IR such that δ > 0∧ δ < ε, because if any such
δ existed it would follow that ε > 0, but ε = −1.

Finally, let us look at (∀ε ∈ IR)(ε > 0 ∧ (∃δ ∈ IR)(δ > 0 ∧ δ < ε)) .
An English translation is “given any real number, the number is positive,

and there exists a smaller positive real number”. This is false. Here is a
proof: Just take ε = −1. Then “ε > 0 ∧ (∃δ ∈ IR)(δ > 0 ∧ δ < ε) ” is false,
because “ε > 0” is false.

Problem 4. In this problem, the universe of discourse (i.e., the range
of values of the variables) is fixed but unknown to us, and the meaning of
the one-variable predicates “is a borogove” and “is mimsy” is also fixed but
unknown to us. (In other words, the universe of discourse and the meanings of
the two predicates are fixed, and known by our “creator of arbitrary things”,
but they are unknown to us, and could be anything, as far as we know.)

Prove each of the following. (Informal proofs O.K., but make sure you
indicate which logical rules you are using.)

(1)
(

(∃x)x is a borogove ∧ (∃x)x is mimsy
)

=⇒ (∃x)(x is a borogove ∧ x is mimsy) ;

(2)
(

(∀x)x is a borogove =⇒ (∀x)x is mimsy
)

=⇒
(∀x)(x is a borogove =⇒ x is mimsy) ;

(3)
(

(∀x)(x is a borogove =⇒ x is mimsy)
)

=⇒
(

(∃x)x is a borogove =⇒ (∃x)x is mimsy
)

.
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Answer. Statement (1) cannot be proved, because it is not logically valid.
To see this, take “is a borogove” to mean “is a cow”, and “is mimsy” to mean
“is an elephant”, and let the universe of discourse be the set of all animals.
Then “(∃x)x is a borogove” says that “there are cows”, which is true, and

“(∃x)x is mimsy
)

” says that “there are elephants”, which is also true. So

the conjunction “(∃x)x is a borogove ∧ (∃x)x is mimsy” is true. On the
other hand, “(∃x)(x is a borogove ∧ x is mimsy)” says that there exists an
animal that is both a cow and an elephant, and this is clearly false. So (1)
is false.

Statement (2) cannot be proved, because it is not logically valid. To see
this, we can actually use the same example as for (1). “(∀x)x is a borogove”
says that “all animals are cows”, which is false. Hence the implication
“(∀x)x is a borogove =⇒ (∀x)x is mimsy” is true. On the other hand,
“(∀x)(x is a borogove =⇒ x is mimsy)” says that “every cow is an elephant”,
which is false. Therefore (2) is false.

Statement (3) is logically valid, and we can prove it. Here is a proof.

1. Assume (∀x)(x is a borogove =⇒ x is mimsy) [Assumption]
2. Assume (∃x)x is a borogove [Assumption]
3. Pick a such that a is a borogove. [Rule ∃use, from 2]
4. a is a borogove =⇒ a is mimsy [Rule ∀use, from 1]
5. a is mimsy [Rule ⇒use, from 3 & 4]
6. (∃x)x is mimsy [Rule ∃get, from 5]
7. (∃x)x is mimsy [Rule ∃use, from 3 & 6]
8. (∃x)x is a borogove =⇒ (∃x)x is mimsy [Rule ⇒get, from 2 & 7]
9. (∀x)(x is a borogove =⇒ x is mimsy) =⇒

(

(∃x)x is a borogove =⇒ (∃x)x is mimsy
)

[Rule ⇒get, from 1 & 8]

END

Problem 5. For each of the following claims and purported proofs (a) indi-
cate if the claim is true, (b) grade the purported proof (using grades A, C,
F), (c) if the statement is true but the proof is wrong, give a correct proof. If
your grade is not “A”, explain why. Please do not use fuzzy, vague, verbose
sentences. Be precise. In particular, when a step violates one of the logical
rules, indicate which rule is being misapplied or violated, and explain why.
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I. Claim: The sum of two even integers is divisible by 4. Proof: Let x, y be
even integers. Then x = 2k and y = 2k, so x + y = 2k + 2k = 4k, showing
that x + y is divisible by 4.

Answer: The grade is F. The claim is false. (For example, 2 and 4 are
even, but the sum 2 + 4 is not divisible by 4. The mistake in the proof is the
violation of Rule ∃use. The author of the proof is implicitly trying to use this
rule, together with the facts that (∃k ∈ Z)x = 2k and (∃k ∈ Z)y = 2k to
pick a k in each case. However, the rule states that each time we pick such
a k we have to give it a different name, so it is not allowed to pick a k for x
and another one for y and call them both k.

II. Claim: The product of two even integers is divisible by 4. Proof: Let x, y
be even integers. Then x = 2k and y = 2k, so x · y = 4k2, showing that x · y
is divisible by 4.

Answer: The grade is C. The conclusion is true, but the proof is worng,
because of the same mistake in the application of Rule ∃use as in the previous
question. Correct proof: Let x, y be even integers. Then (∃k ∈ Z)x = 2k
and (∃k ∈ Z)y = 2k. Pick a k ∈ Z such that x = 2k and call it k1. Pick
a k ∈ Z such that y = 2k and call it k2. Then x · y = 4k1k2, showing that
(∃k ∈ Z)x · y = 2k, so x · y is divisible by 4. END

III. Claim: For real numbers x and y, if x ·y = 0 then x = 0 or y = 0. Proof:
We do a proof by cases. Case 1: If x = 0 then x · y = 0 · y = 0. Case 2: If
y = 0 then x · y = x · 0 = 0. In either case, x · y = 0.

Answer: The grade is F. The statement is correct, but the proof is com-
pletely wrong, because it begins by assuming the conclusion, that x = 0
or y = 0, and then proves the hypothesis. Correct proof: Let x, y be real
numbers such that x · y = 0. Assume that ∼ x = 0. Then y = x · y

x
. But

x · y

x
= x·y

x
= 0

x
= 0. So y = 0. Hence we have proved that ∼ x = 0 ⇒ y = 0,

which is equivalent to x = 0 ∨ y = 0. END

IV. Claim: For real numbers x and y, if x · y ≥ 0 then
√

x2 + y2 ≤ x + y.

Proof: Squaring both sides of
√

x2 + y2 ≤ x + y we get x2 + y2 ≤ (x + y)2.
But (x + y)2 = x2 + y2 + 2 · x · y, so we got x2 + y2 ≤ x2 + y2 + 2xy, which is
true because x · y ≥ 0.

Answer: The grade is F. The statement is false (for example, take x = −1,
y = −1), and the proof is completely wrong, because it begins by assuming
the conclusion, that

√

x2 + y2 ≤ x + y.
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Problem 6.

(i) For each of the following four statements: (a) rewrite the statement
in plain English, without letter symbols or any mathematical symbol;
(b) indicate whether the statement is true or false (no proof necessary).

1. (∀x ∈ Z)(∃y ∈ Z)(y < x)

Translation. For every integer there exists a strictly smaller
integer. TRUE.

2. (∃y ∈ Z)(∀x ∈ Z)(y ≤ x)

Translation. There exists a smallest integer. FALSE.

3. (∃y ∈ IN)(∀x ∈ IN)(y ≤ x)

Translation. There exists a smallest natural number. TRUE.

4. (∀x ∈ Z)(∀y ∈ Z)(∀z ∈ Z)(x · z = y · z =⇒ x = y)

Translation. If the results of multiplying two integers by a third
integer are equal, then the two integers are equal. FALSE. (Take
x = 3, y = 21, z = 0.)

(ii) For each of the following four statements: (a) rewrite the statement
in formal language, using the basic vocabulary of arithmetic (that is,
the parentheses “(“ and “)”, the logical connectives “∨”, “∧”, “∼”,
“⇒′”, “⇔′”, “∃”, and “∀”, letter variables such as n, p, q, x, y, z, a, b,,
etc., the predicates “∈ IN”, “∈ Z” and “∈ IR”, the symbols 0, 1, +, −,
·, =, <, >, ≤, ≥), plus the predicate “is prime”, and nothing else.
(b) indicate whether the statement is true or false (no proof necessary).

5. Every real number has a square root.

Translation: (∀x ∈ IR)(∃y ∈ IR)(y · y = x). FALSE.

6. There exists a smallest nonnegative real number.

Translation: (∃x ∈ IR)(x ≥ 0 ∧ (∀y ∈ IR)(y ≥ 0 ⇒ y ≥ x)).
TRUE

7. Every positive integer is the sum of the squares of three integers.

Translation:

(∀n ∈ Z)(n > 0 ⇒ (∃p ∈ Z)(∃q ∈ Z)(∃r ∈ Z)(p · p + q · q + r · r = n)).

FALSE. (Take n = 7.)
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8. The product of two prime numbers is not prime.

Translation:

(∀p ∈ Z)(∀q ∈ Z)((p is prime ∧ q is prime) ⇒∼ p · q is prime).
TRUE.

Problem 7. Prove the following:

For every natural number n,
∑n

k=1(2k − 1) = n2.

(You may use well-ordering or induction, or even give a direct proof that uses
neither, if you remember what was said in class about C. F. Gauss.)

Proof using well-ordering. Call a natural number n “bad” if it is not
true that

∑n

k=1(2k−1) = n2. We want to prove that there are no bad natural
numbers. Suppose there is a bad natural number. Then the well-ordering
principle tells us that there exists a smallest bad natural number. Call this
number s. Then s ∈ IN and the equality

∑s

k=1(2k − 1) = s2 is not true.
Furthermore,

∑n

k=1(2k− 1) = n2 for every n ∈ IN such that n < s. Now, the
equality

∑n

k=1(2k− 1) = n2 is true for n = 1, because
∑1

k=1(2k− 1) = 1 and
12 = 1. So 1 is not bad, and then s 6= 1. Since s ∈ IN, we have s > 1, and
then s − 1 ∈ IN and s − 1 is not bad. Therefore

∑s−1
k=1(2k − 1) = (s − 1)2,

and then

s
∑

k=1

(2k−1) = 2s−1+
s−1
∑

k=1

(2k−1) = (s−1)2+2s−1 = s2−2s+1+2s−1 = s2 .

So
∑s

k=1(2k − 1) = s2, and then s is not bad. But s is bad. So s is not
bad and s is bad. This is a contradiction, and we have proved that no bad
numbers can exist. END

Problem 8.

a. Prove that the product of two rational numbers is rational.

Proof: Let x, y be arbitrary rational numbers. The definition of
“rational number” says that

(∀u ∈ IR)(u is rational ⇔ (∃m ∈ Z)(∃n ∈ Z)(∼ n = 0 ∧ u = m
n
)).

Since x and y are rational, we may pick integers a, b, c, d such that
∼ b = 0, ∼ d = 0, x = a

b
, and y = c

d
. Then xy = ac

bd
, so xy is rational.

END
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b. Prove that
√

2 is irrational.

Proof: Assume
√

2 was rational. Then we may pick integers a, b such
that ∼ b = 0 and

√
2 = a

b
. After “eliminating all common factors”

from a and b, we may assume that a and b have no common factors. In
particular, a and b cannot both be even. On the other hand, 2b2 = a2.
Hence a2 is even, so a is even, because if a was odd then a2 would be
odd. So we may pick an integer c such that a = 2c. Then a2 = 4c2. So
2b2 = 4c2, and then b2 = 2c2, so b2 is even and then b is even. So we
have shown that

a is even and b is even and a and b are not both even.

This is a contradiction, proving that
√

2 is irrational. END

c. Prove that the product of two irrational numbers is irrational.

Answer: This cannot be proved because it is false. (Proof that it is
false: let x =

√
2, y = 1√

2
. Then x and y are irrational, but the product

x · y is equal to 1, which is rational.

d. Prove that
√

12 is irrational.

Proof: Assume
√

12 was rational. Then we may pick integers a, b such
that ∼ b = 0 and

√
12 = a

b
. After “eliminating all common factors”

from a and b, we may assume that a and b have no common factors.
In particular, a and b cannot both be divisible by 3. On the other
hand, 12b2 = a2. Hence a2 = 3 × (4b2), so a2 is divisble by 3, so a is
divisble by 3, because if a was not divisible by 3 then a2 would be not
be divisble by 3 either. (The general fact we are using is this: if p is
prime and a product mn of integers is divisible by p, then m or n must
be divisible by p.) So we may pick an integer c such that a = 3c. Then
a2 = 9c2. So 12b2 = 9c2, and then 4b2 = 3c2, so 4b2 is divisible by 3.
Since 4 is not divisible by 3, it follows that b2 is divisible by 3, and then
b is divisible by 3. So we have shown that

a is divisible by 3, b is divisible by 3, and a and b are not both divisible
by 3.

This is a contradiction, proving that
√

12 is irrational. END
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Problem 9.
P =⇒ (Q =⇒ (R =⇒ (S =⇒ (P ∧ Q ∧ R ∧ S)))) is a tautology.
(P ∧ (∼ P )) =⇒ Q is a tautology.
P =⇒ (∼ P ) is a contingency.
P ∧ (∼ P ) is a contradiction.
P ∨ (∼ P ) is a tautology.
((∼ P ) ∧ (∼ Q)) ∧ (P ∨ Q) is a contradiction.


