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T A set AM in a vector space is called a convex cone with vertex at the point
o if (1) it is a cone, i.e., together with every point a distinet from o, it also con-
tains the entire ray oa; (2) it is convex, i.e., together with each pair of points, it
contuins the entire segment joining them. WNote that if the convex cone M
does not fill out the entire vector space X to which it belongs, there exists a
hyperplane in X, pasgsing through the vertex o of M, such that M lies i.n one of
the (closed) half -spaces detined by this hyperplane. The point € X is called
an interior point of M C X if some neighborhood of z (in X) 18 entirely con-
tained in M. The set of all interior points of M — X is called the interiar of M.

Furthermore, let M, and M. be two convex cones in X with a common
vertex 0. We shall suy that M; and M, are separaled 1n X if there exists a
hyperplane which separates them; i.e., a hyvperplane such that M; is entirely
contained in one (closed) half-space defined by this hyperplane, and A7, is
entircly contained in the other. In order that M, and M. be separated, 1t is
necessary and sufficient that one of the following two conditions be satisfied:
(1) there exists a2 hyperplane containing both M; and M:; (2) there is no point
which is a relative interior point of both A, and M. {(where relative refers to
the relative topology in the respective carrier plane defined as the smallest
dimensional plane containing the respective cone). Thus, if the cones M, and
M (with common vertex o) arc not separated in X, the linear span of their
carrier planes coincides with the entire space X, and in addivion, there exisis
a point @ which is a relative interior point of both M, and M. . Inthiscase,itis
possible to pass a plane € through a (which plane is orthogonal to the line oa
and intersects M, only at a) such that all the points of C which are sufficiently
close to a belong to M, , and in addition, such that the linear span of €’ and the
carrier plane of M. ceincides with X. In other words, the intersection of C
with a sphere of small radius centered at a is a ‘‘complimentary area’’ to the
carrier plane of M, . This area is orthogonal to the line oa, and is entirely con-
tained in M, . The dimension of this ‘‘complimentary area’’ is equal to the
difference of the dimensions of X and M. .



I. What the footnote says

Two convex cones (1, C> are separated iff there exists a hyper-
plane H such that ;7 is contained in one of the closed halfspaces
determined by H and (5 is contained in the other one.

Equivalently, (1, C> are separated if there exists a nontrivial linear
functional A such that A(e1) < 0 and A(es) > 0 whenever ¢; € C7 and

co € O).

From now on, we use linearly separated to mean ‘'separated in the
sense of the footnote.”

THEOREM: 1 and C5 are not linearly separated if and only if the
following two conditions hold:

— (C1 U CC5 linearly spans the whole space.

— The relative interiors of ;7 and C5 intersect.



FIXED TIME INTERVAL OPTIMAL CONTROL PROBLEM:

minimize [;* fo(£(¢), n(t),t) di

subject to £(t) = f(&(t),n(t),t) for a.e. t € [ax, byl
(£(-) absolutely continuous map from [ax,b«] to R™)
{(ax) =2
§bs) €5

TCP: trajectory-control pair

The Pontryagin Maximum Principle (PMP) is a necessary condition
for a reference TCP (&4,1m«) to be a solution.



Actually, the PMP is a necessary condition for R and S to be
separated , in the sense that RN S = {&«(b«)}, where

— M is the state space,
— &« [ax, bx] — M is the reference trajectory,
— R is the reachable set from T = &x(ax) over [ax, b«],

— S is a given set, such that &(bs) € S.

(The reduction of the optimal control problem to this separation
problem is done in the book by Pontryagin et al. Basically, we add the
cost as a new state variable, and considering the “augmented reachable set”

R* = {(c,x) : = is reachable from z over [a4, bi] with cost ¢}. The “forbidden zone”
is F = {(c,z) : x € S,c < ¢}, where ¢, = cost of the reference trajectory. Let

S = F U {q«}, where q. = (c«,&(bs)). Then If the reference trajectory is optimal
then RN S = {q«}. )



The proof of the PMP roughly works as follows: one constructs a
“tangent cone” (1 to the reachable set R and selects a "tangent
cone” C5> to the set S of forbidden terminal states.

If the sets R and S are ‘separated”, in the sense that RN S =
{€«(bs)}, then their “tangent cones” C;i and Cs should be linearly
separated.

This would give the separating linear functional A\, and then by trans-
porting A backwards via the differential of the reference flow, one
gets the “adjoint vector’” of the PMP.



The way one proves that the "tangent cones’” (7 and Cs must
be linearly separated is, roughly, as follows: assume they are not
linearly separated. Then there is a ray (i.e. half-line starting at 0) L
contained in the intersection. And then the intersection of the sets
themselves will contain points other than &«(b«) arbitrarily close to

& (bx).

But

1. this argument is not quite rigorous (or even clear),

2. if valid, the argument appears to vield something stronger,
namely, that the intersection R NS = {&«(b«)} contains a
nontrivial curve,

3. cone ‘“separation” in the sense of the footnote does not ex-
actly correspond to set separation.



II. CONES

A. Definition

A conein a real linear space X is a subset C' of X which is nonempty,
and closed under multiplication by nonnegative scalars. (In particular,
if C' is a cone then necessarily 0 € C.)

B. Definition

The polar of a cone C in a real linear normed space X is the
set C1 of all w € XT such that (w,c) < 0 for all ¢ € C. Clearly,
C+ is always a closed convex cone . If X is finite-dimensional (so X ~ X't canon-
ically), then C11 is the smallest closed convex cone containing C, from which it
follows in particular that Ct!t = C if and only if C is closed and convex .

REMARK: X' is the dual of X.
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C. Definition

Assume that S C R™ and p € S. The Bouligand tangent cone to S
at p is the set of all vectors v € R™ such that there exist

(i) a sequence {p;};cn Of points of S converging to p,

(ii) a sequence {hj}jeN of positive real numbers converging to O,

such that

. Pj—Pp
v= lim :
J—r00

hj
D. Notation

We use TZFS to denote the Bouligand tangent cone to S at p. (Itis

then clear that TpBS is always a closed cone. )
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E. Definition

Assume that S C R"™ and p € S. A Boltyanskii approximating cone
to S at p is a convex cone C in R"™ having the property that there
exist

(i) a nonnegative integer m,

(ii) a closed convex cone D in R™,
(iii) a neighborhood U of 0 in R™,
(iv) a continuous map F:UND — S,
(v) a linear map L : R™ — R",

such that

F(z)=p+ Lzx+o(||z]]) as z—0, z€D,
and LD = C.

12



F. Definition

Assume that S C R", Sisclosed, and p € S. The Clarke tangent cone
to S at p is the set of all vectors v € R™ such that, whenever {p;},cN
IS a sequence of points of S converging to p, it follows that there
exist Bouligand tangent vectors v; € T£.S such that lim,_,ovj = v.

G. Notation
We use TES to denote the Clarke tangent cone to S at p. Then

TpCS is a closed convex cone.
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III. TRANSVERSALITY

A. Definition

Two convex cones (1, C> in R™ are transversal if
C1—Cr=R",
i.e., if for every x € R" there exist ¢1 € (1, ¢» € C5, such that
r = c]— C>.
B. Remark

This is a very natural generalization to cones of the ordinary notion
of transversality of linear subspaces. For subspaces Si, So, it is
customary to require that S1 4+ S> = R", but it would make no
difference if we required S1 — S> = R" instead.

C. Intuition

The basic idea of transversality is that, if two objects O1, O> have
first-order approximations A1, A> near a point p, and A1 and A, are
transversal, then O1 N O5 looks, near p, like A1 N As.
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IV. NON-TRANSVERSALITY = LINEAR SEPARATION

Suppose C1, C> are convex cones in R™. Then the following condi-
tions are equivalent:

e (1 and (5 are not transversal,
o Ci N (—Cr)* # {0},

e there exists a nonzero linear functional p : R" — R such that

(p,c1) <0 for all ¢1 € Cq,
and

(p,cp) >0 for all c¢cp € Cyh.
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V. STRONG TRANSVERSALITY

A. Definition

Two convex cones (1, C5 in R"™ are strongly transversal if they are
transversal and in addition |C1 N Cy #= {0}

B. Intuition:

If two sets S1, So> have first-order approximations C1, C> near a point
p, and the cones (1, C5 are strongly transversal, it should follow that
S1 N Sy contains points p; converging to p and # p.

Reason:

Near p, S1 NS> should look like C1 N C5, because C7 and C5 are
transversal.

Since C1 N C5 contains a full half-line through 0, S1 NS> should also
contains a nontrivial curve through p.
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C. An important caveat:

The above intuition is, of course, not a proof, and when one does
things carefully, it turns out that, for very reasonable notions of
“first-order approximation,” all one can prove is that S$1 NS> must
contain a nontrivial connected set through p, but this set could fail
to be path-connected. And for other reasonable notions one can
prove even less. (For example, that S1 NS> contains a sequence of
points p; # p that converges to p.)
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The following lemma says that transversality and strong transversality
are almost equivalent.

More precisely, the only gap between the two conditions occurs when
the cones C'1 and (5> are linear subspaces such that C1 & C> = R", in
which case C7 and (5 are transversal but not strongly transversal.

D. Lemma

If 1, C> are convex cones in R", then C7; and C5 are transversal if
and only if either

(i) C1 and C> are strongly transversal,
or

(ii) C1 and C5 are linear subspaces and C1 & Co, = R",
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PROOF.

It suffices to assume that C7 and C5 are transversal but not strongly
transversal and show that (ii) holds. (Recall that (ii) says: “C: and C» are
linear subspaces and C1 & Cy = R*.")

Let us prove that 5 is a linear subspace. Pick ce€ C1. Using the
transversality of C7 and C» write

—c=c1—c¢cp, c1€C1, coe (.

Thenci4+c=cy. Butci+ceCqy and co € Cr. SO c1+ce€ C1NCh,
and then ¢;1 4+ ¢ = 0, since C'{ and (5 are not strongly transversal.
Therefore —c = c¢q, SO —c € C1. This shows that ce€ C; = —c € (].
So (1 is a linear subspace. A similar argument shows that C5 is a
linear subspace. Then the transversality of C1 and C5 implies that
Ci1 + C> = R"”, and the fact that they are not strongly transversal
implies that C1NCy = {0}. Hence C1 & Cr =R". END OF PROOF.
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VI. Set separation

Two subsets 51, So of a Hausdorff topological
Space space T are locally separated at a point
p € T If there exists a neighborhood U of p in T
such that

S1NSonU C {p}.
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VII. The Transversal Intersection Property

If two subsets S1, S» of R™ have tangent cones
C'1, C> at a point p, and the cones (', C5 are

strongly transversal, then S; and S, are not
locally separated at p.

The statement that “S; and S, are not locally separated at p” means
the following:

S1 NS> contains a sequence of points p; converging to p and # p.
A. Remark. This is exactly the “intuition” discussed earlier.

B. Question. For what notions of “tangent cone to a set at a point”
is the TIP (Transversal Intersection Property) true?
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THEOREM: The TIP is true if “tangent cone”
IS taken to mean “Boltyanskii approximating

CONE." (The proof of this is Type T.)

Furthermore, when the cones are strongly transversal, not only do
the sets have a nontrivial intersection, but their intersection contains
a nontrivial connected set containing p.

THEOREM: The TIP is true if “tangent cone”

IS interpreted to mean "“Clarke tangent cone.”
(The proof of this is Type L.)

Furthermore, when the cones are strongly transversal, not only do
the sets have a nontrivial intersection, but their intersection contains
a nontrivial Lispchitz curve going through p.
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Both theorems extend to tangent multicones:
A multicone :is a nonempty set of cones.
A convex multicone :is a nonempty set of convex cones.

Two multicones Cq, C», are transversal if every C1 € C1 is transversal
to every C5 € C».

Two multicones Cq, Co, are strongly transversal if they are transver-
sal and, in addition, there is a nonzero linear functional x such that
CiNCon{v:u(v) >0} # 0 for every Cy € Cs.
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VIII. The Transversal Intersection
Property for Multicones

If two subsets 51, S» of R™ have tangent multicones
C1, Co at a point p, and the multicones Cq, Co

are strongly transversal, then §1 and 55 are not
locally separated at p.

A. Question. For what notions of "tangent multicone to a set at a
point” is the TIP true?
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Two multicones are weakly linearly separated if they are not strongly
transversal. (Recall that two multicones are linearly separated if
they are not transversal.)

THEOREM: Two convex multicones Cq, Co in R™ are weakly linearly
separated if and only if

(*) for every nonzero linear functional u on R™ there exist mg, 71,
mo, C1, Co, such that mg e R, mg > 0, C1 € C1, Cy € Cy, w1 € Cf‘,
T € C’é‘, and mou = w1 + mo.

REMARK. Cq, C> in R™ are linearly separated if and only if (*) can
be satisfied with mg = 0.



There are two natural notions of “tangent multicone to a set at a
point”, generalizing, respectively, the notion of Boltyanskii approxi-
mating cones and that of Clarke cone.

A GDQ approximating multicone to aset S at a point pis a set C of
convex cones which is the image A-D of a Boltyanskii approximating
cone D to a set A at 0 under a GDQ A at (0,p) of a set-valued map
F such that FF'(A) C S and p € F(0).

A WDC approximating multicone to aset S at a point pis aset C
of convex cones which is the image A-D of the Clarke tangent cone
D to a closed set A at O under a WDC A at 0 of a Lipschitz map F
such that F(A) C S and F(0) = p.

GDQ: Generalized Differential Quotient
WDC: Warga Derivate Container

GDQs and WDCs are ‘generalized differentials, such that that a
GDQ or WDC of a map F at a point p is a compact set of linear
maps.
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THEOREM: The TIP is true if “tangent
multicone” is taken to mean “"GDQ
approximating multicone.” (The proof of this is Type T.)

Furthermore, when the multicones are strongly transversal, not only
do the sets have a nontrivial intersection, but their intersection con-
tains a nontrivial connected set containing p.

THEOREM: The TIP is true if “tangent

multicone” iIs interpreted to mean “WDC
approximating Multicone” (The proof of this is Type L.)

Furthermore, when the multicones are strongly transversal, not only
do the sets have a nontrivial intersection, but their intersection con-
tains a nontrivial Lispchitz curve going through p.
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GDQ)s are studied in detail in my Cetraro lecture notes, to appear
iIn a Springer book, available in my Web papge.

WDC approximating multicones are studied in detail in my 2005
CDC paper, and in a much more detailed JDE paper to appear, and

to be made available in my Web page shortly.

The definition of “"WDC approximating multicone” considered in the
JDE paper is more general.
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IX. The Directional Open Mapping Property
(DOMP)

If a set § has an approximating multicone C at a point p,
and a vector v belongs to the interior of every C' € C, then
the set S contains a “conic sector’” at p in the direction of
v, that is, a set of the form {p+rw:0<r < a, |lw—v|| <

B}, for some positive «, .
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THEOREM: For any reasonable concept of “approximating multi-
cone”, the DOMP is equivalent to the TIP.

REASON: Suppose the DOMP holds. Let 51, S» be subsets of R"
having approximating multicones C1, C», at 0. Suppose C; and Co
are strongly transversal. Let pu be a nontrivial linear functional such
that C1 N Con{v: u(v) >0} =0 for every Cq1 € C1, Co € Co.

Let S = S1 x S>. Let F be the map (z1,z2) — (1 — zo, u(x1).
Let C =C1 xCr. Then DF(0) -C is an approximating multicone of
F(S) at (0,0), and the strong transversality hypothesis amounts to
the assertion that the vector (0,1) belongs to the interior of every
member of DF(0)-C. So F(S) contains an arc {(0,r) : 0 <r < a}.
This means that there are points z(r) € S; such that z(r) € S» and

w(x(r)) =r, so z(r) #= 0.
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In the previous theorem, ‘reasonable” means ‘“such that the proof
given above is valid. All that is needed is the Cartesian product
property and the “image under a smooth map"” property.



X. A ROUGH CLASIFICATION OF VERSIONS OF THE
FDPMP (FINITE-DIMENSIONAL PONTRYAGIN
MAXIMUM PRINCIPLE)

Every known version of the FDPMP is of one of the following two
types:

— Type T. (The “T" stands for “topological.”)
— Type L. (The “L” stands for “limiting.”)
In the transversality condition:

— Type T versions involve some kind of Boltyanskii tangent cone
to the terminal set.

— Type L versions involve the Clarke tangent cone to the ter-
minal set, or the Mordukhovich normal cone
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The proofs of Type T versions typically use a topological separation
argument, based on the Brouwer fixed point theorem or some variant
thereof.

All versions of the finite-dimensional Pontryagin maximum princi-
ple with high-order conditions (Knobloch, Krener, Bianchini-Stefani,
Agrachev, Sarychev, Gamkrelidze, and many others) appear to be
Type T.

The finite dimensionality comes in where the Brouwer fixed-point
theorem is used, since that theorem depends esssentially on being
in a finite-dimensional space.
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The proofs of Type L versions usually produce a sequence {p}reN
of “approximate terminal adjoint covectors” (using, for example,
the Ekeland variational principle) and then extract a convergent (or
weakly convergent) subsequence whose limit p is the terminal value
of the adjoint covector.

The finite dimensionality comes in when one tries to establish that
Poo = 0. The p, can be normalized so that ||pg|| = 1, and the exis-
tence of a weak*-convergent subsequence (if, say, we are working on
a Hilbert space) follows from the weak*-compactness of the closed
unit ball, but in infinite dimensions one cannot prove in general that
Poo 7= 0, since the unit sphere is not weak*-compact.
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The first TIP result leads to a number of versions of the FDPMP
with a Boltyanskii or Boltyanskii-like tangent cones in the transver-
sality condition. In these versions, high-order conditions can easily
be included. (Classical work by Pontryagin et al., work by Knobloch,
Krener, Agrachev, Sarychev, Gamkrelidze, Bianchini, Stefani, HJS,
and lots of others.) These results are all proved using the TIP for
Boltyanskii cones or for some generalization of them, such as the
“approximating multicones” used by HJS.

The second TIP result leads to a number of versions of the FDPMP
with a Clarke or Mordukhovich normal cone in the transversality con-
dition. (Work by Clarke, Vinter, Rockafellar, Ioffe, Mordukhovich,
Loewen, da Pinho, Franskowska, and lots of others.) In these ver-
sions, it does not seem that high-order conditions can be incorpo-
rated. Most of these results are not proved by explicitly using the
TIP for Clarke cones or for some generalization thereof, but work is
now in progress by HJS which, it is hoped, will show that they can
be proved that way.
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It may seem natural to expect that a more general TIP might be
true, containing both results. I conjectured (and even briefly believed
I had proved) about 10 years ago that such a result was true.

The problem was solved in January, 2006, by Alberto Bressan, who
proved the following:

XI. Bressan’s Theorem

There exist two closed subsets S1, S> of R*, and two closed
convex cones C1, C» in R4, such that

e (1 iIs a Boltyanskii approximating cone to S; at O;

e (> Iis the Clarke tangent cone to S5 at O;

e (1, (o are strongly transversal,

e S1 NS> ={0}.
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Using Bressan's example, one can construct an example of a La-
grange optimal control problem in R® with a terminal state con-
straint, and an optimal trajectory-control pair (&£4,mx«), defined on an
interval [ax, b«], such that

e the dynamics and Lagrangian satisfy conditions that lend them-
selves to Type T arguments,

e the terminal set S has a Clarke tangent cone C at the
terminal point of &« (b),

e there does not exist a nontrivial multiplier («(-),mg) (consist-
ing of an adjoint covector w(-) and “abnormal multiplier” mg)
that satisfies the adjoint equation, the Hamiltonian maximiza-
tion condition, and the transversality condition —x(bs) € C+.

The actual construction is done in complete detail in my 2006 CDC paper, and
it’s sort of technical.

Remark: In this particular example, the usual nonsmooth “adjoint differential
inclusion” is actually a true "“adjoint differential equation.”
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