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Abstract

We present a general necessary condition for separation of the reachable set of a
Lipschitz control system from another given set of states, expressed in terms of an
“approximating multicone” to the set in a sense that contains as special cases the
Clarke and Mordukhovich cones. We then show how this separation result implies
a strengthened form of the usual sufficient condition for local controllability along
the reference curve and the necessary condition for optimality.
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1 Introduction

Since the discovery of the Pontryagin Maximum Principle (PMP) in the 1950s
(cf. [18]), various versions of this result have been established, under different
technical assumptions and with different proofs. For the finite-dimensional
PMP, every proof falls, roughly, into one of two categories, that will be referred
to here as “Type T” and “Type L.” Type T proofs are based on a topological
argument about set separation, involving the Brouwer fixed point theorem or
some other closely related result. Type L proofs, on the other hand, use a
limiting argument, in which a sequence ™ = {7;};en of approximate terminal
adjoint vectors m;—mnormalized so that [/7;|| = 1—is constructed, and then
an exact adjoint vector is obtained by taking the limit of some convergent
subsequence of 7. (Finite-dimensionality plays a crucial role in both types of
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proofs but, remarkably, it does so in two totally different ways: for the Type T
proofs, the key point is that the Brouwer fixed point theorem is only valid in
finite-dimensional spaces, whereas in the Type L proofs the decisive step occurs
when one has to guarantee that the limit exists and does not vanish, and this
cannot be done in infinite dimensions because in any topology weak enough
to imply existence of a convergent subsequence the limit of this subsequence
may vanish.)

Type T proofs have appeared in many books and articles (cf. Pontryagin et
al. [18], Berkovitz [1]), and have been particularly successful in being able
to incorporate high-order conditions (cf. Bianchini [3], Bianchini-Stefani [2],
Hermes [11], Knobloch [14], Krener [15], Stefani [19]). Sussmann [20]). Type
L proofs (cf. Clarke [6,7,9], Clarke et al. [8], de Pinho [10], loffe [12], Ioffe-
Rockafellar [13], Mordukhovich [17], Vinter [29]) have successfully dealt with
nonsmooth Lipschitz dynamical laws. In Type T proofs, the transversality
condition usually involves a Boltyanskii tangent cone to the terminal set,
whereas in Type L proofs a Clarke tangent cone or a Mordukhovich normal
cone is used instead.

In 1993, S. Lojasiewicz Jr. ([16]) discovered a powerful new technique that
made it possible to deal with nonsmoothness using the Type T approach.
Subsequently, in a series of papers (cf. [21,23-26,28]), we pursued this idea
and developed Type T methods for the nonsmooth PMP, based on generalized
differentials, flows, and general variations. These methods, however, resisted
all attempts to deal with transversality conditions involving the Clarke tangent
cone or the Mordukhovich normal cone. Recently, A. Bressan (cf. [5]) found
an explanation for this fact by proving, by means of a counterexample, that
the usual necessary conditions for set separation that can be derived for a
pair of sets and corresponding Boltyanskii approximating cones, as well as for
a pair of sets and corresponding Clarke or Mordukhovich normal cones, can
fail to be true if a Boltyanskii approximating cone is specified for one of the
sets and the Clarke or Mordukhovich normal cone is used for the other one.
This shows that versions of the PMP with “mixed” technical conditions—some
corresponding to the Type T approach and others to the Type L method—are
likely to be false in general, and that there probably does not exist a single
unified version of the PMP that contains both types of results.

Since a single commmon generalization of both approaches appears not to
exist, the second-best alternative is that it may at least be possible to deal with
both kinds of results by means of set-separation techniques, using different but
parallel separation theorems for Type T and Type L results. As a first step in
this direction, we proposed in [27] a notion of “approximating multicone” to a
set at a point that extends the concepts of Clarke and Mordukhovich cones and
has the property that “strong transversality of the approximating cones implies
nontrivial intersection of the sets.” (In our setting, “convex multicones” have



polars that can fail to be convex. Furthermore, any closed cone of covectors—
even if it is not convex—is, trivially, the polar of some convex multicone.
In particular, the usual Mordukhovich normal cone is the polar of a convex
multicone that we call the “Mordukhovich tangent multicone.”)

In this note we apply this approach to nonsmooth control problems with
a Lipschitz right-hand side. We derive a general necessary condition for a
reachable set R of a Lipschitz control system to be separated from another
given set S at the terminal point &, (b, ) of the reference trajectory—in the sense
that RNS = {&.(b,) }—expressed in terms of an approximating multicone to S
in the sense of our theory. We then show how this result can be used to derive
the usual nonsmooth sufficient condition for a system to be locally controllable
along a curve, and a slightly stronger form of the usual necessary condition
for optimal control.

In addition, we also pursue the idea, proposed in [22], of formulating the PMP
directly on manifolds, by expressing the “adjoint equation” as an equation
of parallel translation with respect to a covariant differentiation along the
reference curve. This second aspect is, essentially, independent of the first,
and those readers who so wish may read the paper throughout as if the state
space of the systems was always an open subset R, in which case the single-
valued selections L of the Clarke generalized Jacobian map t +— 9f;(&.(%))
(where f is the reference vector field, f; is the map = — f(z,t), and &,
is the reference trajectory) become matrix-valued functions, and the adjoint
equation Vym = 0 just becomes the usual adjoint equation # = —m - L. We
feel, however, that the manifold formulation is more elegant, and also slightly
more general, in the sense that the PMP on manifolds is not an immediate
corollary of the PMP on open subsets of R™. (Although it is not too hard to
derive the former from the latter, this requires some extra work, and cannot
be done by just covering the reference trajectory by coordinate patches.)

2 Preliminaries and background

Some abbreviations and basic motations. We use the abbreviations
“ppd”, “tvvt”, 7fdrls”, for “possibly partially defined”, “time-varying vector
field”, and “finite-dimensional real linear space”, respectively.

If ¢ is a function, we use dom ¢, imy to denote, respectively, the domain
and image of ¢. (So imy¢ = {p(z) : € domy}.) We write ¢ : A — B, to
indicate that ¢ is a ppd map from A to B, i.e., a function ¢ such that
domy C A and imp C B. We write ¢ : A +— B to indicate that ¢ : A — B
and dom ¢ = A.



If A is a set, then I4 denotes the identity map of A.

If ¢ is a function, A is a set, and {By}.eca is a family of sets depending
on a € A, we will often use the expression “A 3 a — p(a) € B” (resp.
“A3a— ¢(a) € B”) as an alternative name for any function ¢ such that2
dom ¢ C A (resp. domy = A) and ¢(a) € B, for every a € dom ¢.

We use Z, R to denote, respectively, the set of all integers and the set of all real
numbers, and write N&{n € Z : n > 0}, Z,¥NU{0}, R, {z e R: 2 > 0}.
We use square-bracket notations for intervals: |a,b| is the open interval from
a to b, and then |a,b] =]a,b]U{b}, [a, b[=]a,b[U{a}, and [a,b] = [a, b]U{b}.

Linear spaces. If XY are real linear spaces, then Lin(X,Y’) will denote the
space of all linear maps from X to Y. If X is a fdrls, then dim X, X denote,
respectively, the dimension and the dual of X (so that XT = Lin(X,R)). We
identify the double dual X" with X in the usual way.

If X,Y are fdrlss, and L € Lin(X,Y), then the adjoint (or transpose) of L
is the map L' : YT~ X' such that LT(y) =yo L fory € YT.

If X is a fdrls, an affine basis of X is a sequence (eq,...,e,) of minimal
length consisting of members of X that affinely span X, that is, are such that
every x € X is a linear combination »;" | r;e; with >, r; = 1.

FEuclidean spaces, matrices, balls. We use R"*™ to denote the space
of all real matrices with m rows and n columns. If A € R™ ™, then A' is
the transpose of A, so AT € R™". We write R™ = R™*! R,, = R'*™ so
R™ R,, are, respectively, the spaces of all real m-dimensional column vectors
r = (2%,...,2™)" and of all real m-dimensional row vectors p = (py,...,p,).

Then R,, is canonically identified with (R™) via the pairing
R, xR" > (y,z) —y-z R,
that is, by assigning to a y € R,, the linear functional R™ 3> x +— y-x € R.

The matrix space R™*" is canonically identified with Lin(R™ R™) by means of
the map that assigns to each matrix L € R"™*" the linear map My, : R" — R™
such that My (z) = L-x whenever x € R™. If M € Lin(R",R™), and M = M/,
L € R™*" then the map Mz goes from R,, to R,,, and is given by Mz(y) =y-L
for y € R,,. Alternatively, we may identify each R; with R* in the obvious
way, and then regard Mz as linear map from R to R", in which case the
matrix that corresponds to the adjoint map Mz is the transpose L.

The spaces R™, R,,, are endowed with the Euclidean norm defined by

lol =VaT -z ifzeR™,  |p|=yp-pl ifpeR™.



The matrix spaces R™*" are endowed with the operator norm || - ||,,, given
by [|Allop = max{[|A- x| - & € R, [[z]| = 1}.

If m € Zy, 2 € R", r € R, and r > 0, then B"(z,7), B™(x,r) denote,
respectively, the closed and open balls in R™ with center x and radius r.
We write B™(r), B™(r) for B™(0,r), B™(0,7), and B™, B™ for B™(1), B™(1).
Also, we will use S™ to denote the m-dimensional unit sphere, so that
S ={zx e R"": ||z| = 1}.

We will use throughout the standard terminology of point-set topology. In
particular, a neighborhood of a point x in a topological space T' is any subset
S of T that contains an open set U such that x € U. We write S, or Clos S,
to denote the closure of a set S, if there is no ambiguity as to the ambient
topological space T'. (Otherwise, we write Closy S for the closure of S in T.)
If AC B C X, then IntgA will denote the interior of A relative to B, i.e., the
set of all a € A such that AN U C B for some neighborhood U of a in X.

In the special case of a metric space X, with distance function d, we use
Bx(x,r), Bx(z,r), to denote, respectively, the open ball and the closed ball
with center x and radius r.

If M, N are topological spaces, then C°(M, N) will denote the space of all
continuous maps from M to N. If M is a topological space, then an arc in M

is a continuous M-valued map defined on some nonempty compact subinterval
I of R. The expression ARC(M) will denote the set of all arcs in M, so

ARC(M) = |J (0B, M),

—oo<alf<+o0

Manifolds, tangent spaces, charts. Let us assume that yymeZ,, M is a
manifold of class C*, and dim M = m. A cubic coordinate chart of class
C* on M is a diffeomorphism domx>z—x(z)=(z(z),...,2™(z)) € imx
of class C* from an open subset domx of M onto an open subset imx of
R™, such that imx is the open cube |—¢,¢[™ for some positive real number
c. (Recall that the members of R™ are column vectors.) Once it has been
stipulated that a manifold M is of class C*, we will simply use the word
“chart” for “cubic coordinate chart of class C*.” If x € M, a chart near
x is a chart x such that € domx, and a chart centered at x is a chart
x such that x(x) = 0. Given a chart x on M, every point x € domx has a
coordinate representation x* € R™, given by 2* = x(z).

Now assume in addition that p > 1. We then use TM, T*M to denote,
respectively, the tangent and cotangent bundles of M, so TM and T*M are
manifolds of class C*~1, and are vector bundles over M of class C*~! with fiber
dimension m. For each x € M, T, M and Ty M are, respectively, the tangent



and cotangent spaces of M at z, i.e. the fibers over x of TM and T*M. If N
is another manifold of class C*, x € M, F'is an N-valued map defined on a
neighborhood U of z in M, and F is classically differentiable at x, then DF(x)
will denote the differential of F" at x, so DF(x) € Lin(T, M, Tp@)N).

If x is a chart of M, we let afdéf gx“ so the 9% are vector fields of class C*~!
on domx, and (95(z),...,0%(x)) is a basis of T, M for each z € domx.
Also, the differentials dz?, ..., dax™ are 1-forms of class C*~! on domx, and
(dz'(x),...,dz™(x)) is a basis of T M for each z € dom x, dual to the basis
(0¥ (x),...,0% (x)) of T, M.

It follows that every tangent vector v at a point x € dom x has a coordinate
representation v* € R™, given by

where the v** are such that
m .
v=">Y vV (x).
i=1

Similarly, every covector w at x can be represented by a row vector w* € R,,,
given

w* = (Wi wy, ..., wk),

where w¥ = (w, 9¥(z)), so that w = Y7, wr¥dz'(z).

Then every vector field f on dom x has a coordinate representation f*, which
is a vector field on imx, i.e., a map imx 3 z — f*(x) € R™, given by the
formula f*(z) = (f*Y(x), f**(x),..., f™(x))", where the functions f**
are defined by f*'(x(z)) = (dz'(z), f(x)) for x € domx. (Equivalently,
flx) =", f24(2*)0(x) for every x € domx, i.e., f = 37 (f*"ox)d* on
domx.)

Sections. Whenever A is a set equipped with a “bundle structure” over a
set B (meaning, for our purposes, no more than a surjective map p: A — B,
called the “projection”), a section of A is amap B 5 b+ o(b) € A such that
p(o(b)) = b for all b € B. If P is any property of sections, then I'p(A) will
denote the set of all sections of A that have Property P. In particular, if M is
a manifold of class C*, ¢ € Z, and £ < u—1, then I'ce(T M), Uce(T*M), will
be, respectively, the space of all vector fields of class C* on M and the space
of all 1-forms of class C* on M.

Generalized Jacobians of locally Lipschitz maps. We assume

(A1) myn,pu € Zy, M, N are manifolds of class C*, p > 1, m = dim M,
and n = dim N.



If 0 < k < pu, then C*(M, N) will denote the set of all maps of class C* from
M to N. We let Jiy(M, N) be, for each point (z,y) € M x N, the space
Lin(T,M,T,N) of all linear maps from T, M to T, N. We then let

JHMN)= | {a} x{y} x J,,(M,N),

rzeM,yeN

so the members of J'(M,N) are the triples (z,y,L) such that z € M,
y € N, L € Lin(T,M,T,N). Then J'(M,N) is a vector bundle of class
Cr=1 over M x N (with projection map (x,y,L) — (x,y)), whose fiber
over each point (z,y) € M x N is the set {z} x {y} x J} (M, N) (canonically
identified with .J}, (M, N)), so J'(M,N) has fiber dimension mn. We will
also regard J'(M, N) as a bundle over M, in such a way that the fiber over
cach x € M is J;(M, N)—where J(M,N) = Uyen{y} x J; ,(M, N)—so the
fiber dimension is n + mn. If a map ¢ belongs to C*(M, N) then the pair
jto(z) = (¢(z), Dp(x))—which is a member of J!(M, N)—is called the 1-
jet of ¢ at x. It is then clear that J} (M, N) = {jl¢(z) : ¢ € C*(M, N)}, so
JY(M, N) is the space of all 1-jets at v of maps of class C' from M
to N, and J'(M, N) is the space of all 1-jets of maps of class C' from
M to N. The map M > z — jlo(z) € JY(M,N) is the 1-jet map of .
Clearly, if 1 < k < p and ¢ € C¥(M, N), then jly is a section of class C*~*
of J}(M, N), regarded as a bundle over M.

The concept of a locally Lipschitz map from M to N makes sense. (For
example, we can define a map ¢ : M — N to be locally Lipschitzif popo)
is locally Lipschitz whenever p € C'(N,R), p € Z,, and ¥ € C'(RP, M).)
We use CL?(M, N) to denote the set of all locally Lipschitz maps from M
to N. We let diff(¢) be the set of points of differentiability of ¢. It follows
from the well known Rademacher theorem that if ¢ € CL?(M, N) then ¢
is differentiable almost everywhere, that is, M\diff(yp) is a null subset of
M. (The concept of a “null subset of M” clearly makes sense intrinsically,
since M is of class C'.) Then for every point x € diff(p) the map ¢ has
a well defined differential Dp(x) € Lin(T, M, T,y N). This implies that the
1-jet map diff(p) 3 x — jlp(z) = (p(x), Dp(x)) € JL(M, N) is well defined.
In addition, this map has the property that for every compact subset K of
M the closure jlo(K Ndiff(p)) is a compact. subset of J'(M, N). It follows
that, if x is a point of M, and we let jAlg/p(x) be the set of all limits as k — oo
(in the space J'(M, N)) of sequences {j'¢(zx)}52; such that zj € diff(y),
limy .o 7% = z, and the limit limy, .., j'¢(7) exists, then ijo(x) is a nonempty
compact subset of J;vw(x)(M, N). Since J;M(x)(M, N) is a linear space, the

convex hull of jly(z) is well defined. We use d¢(x) to denote this convex hull,
and refer to it as the Clarke generalized Jacobian of ¢ at x.

Relative to charts x, y of M, N, such that x € domx, ¥y € domy, and

p(domx) C domy, the map ¢ is represented by the map gpyvxdéfy opox 1,



from im x to R™. Then the 1-jet j'¢(z’) at any point 2’ € diff(p) close to z is
represented by the pair 6(z') = (y(go(m’)),Dgpy’x(x(x’))) € R" x R™™. The
limit of a sequence {j*p(x;)}52, as above will then be represented by the limit
limy o 0(x), which is equal to the pair (y(gp(a:)),limk_)oo Dcpy’x(x(xk))). It
follows that

(CGJ.1) If o € CYP(M,N) and © € M, then dp(x) is a nonempty
compact conver subset of Jjw(x)(M, N).

(CGJ.2) The coordinate representation Op(x)¥™> of Op(x) (which is a
subset of R"*™ ) is exactly the usual Clarke generalized Jacobian

0pY*(x*) of the coordinate representation @Y™ of ¢ at x*.

Warga derivate containers. We assume (Al), as above. “Warga derivate
containers” are defined as follows.

Definition 2.1 Assume that F' € CY'"(M, N), and let A be a compact subset
of Jj’F(x)(M, N). We say that A is a Warga derivate container of F at
x if for every open subset Q of JY(M, N) such that A C Q there exist (a) an
open subset U of M such that x € U, and (b) a sequence {Fy}?, of members
of CY(U, N), such that (z', Fy(z"), DFy(2")) € Q for all 2’ € U and all k € N,

and Fy, — F' uniformly on compact subsets of U. O

Remark 2.2 In Definition 2.1, “pp — ¢ uniformly on compact subsets of U”
means: “if {z;}72, is a sequence of points of U that converges to an x € U,
then g (xy) — p(r) as k — 00.” O

It will be convenient to extend the above definition to some multivalued maps
in a fairly trivial way.

Definition 2.3 Let M > x +— F(xz) C N be a multivalued map from M to N.
Let (z,y) € M x N, and let A be a compact subset of J; (M, N). We say that
A is a Warga derivate container of F at (x,y) if for every open subset
Q of JH(M, N) such that A C Q there exist (a) an open subset U of M such
that x € U, (b) an f € CYP(U,N) such that f(x) =y and f(2') € F(z') for
allx’ € U, and (c) a subset A" of Q such that A’ is a Warga derivate container
of f at x in the sense of Definition 2.1. O

We will write “A € WDC(F;z,y)” to indicate that A is a Warga derivate
container of F' at (x,y). If F' is single-valued, we just write “A € WDC(F; x)”
instead of “A € WDC(F;x, F(x)).”

It follows easily from Definitions 2.1 and 2.3 that

(WDC.1) If A € WDC(F;z,y) then A # (.
(WDC.2) If A is a compact subset of J, ,(M,N), then A € WDC(F;x,y)

if and only if the coordinate representation AY* of A, (which is



a subset of R"*™ ) is a Warga derivate container at (z*,y¥) of
the coordinate representation FY* of F'.

These observations imply that many well known facts about Warga derivate
containers of single-valued maps and their relationship with Clarke generalized
Jacobians extend trivially to manifolds. In particular,

(WDC.3) If F € C*P(M,N) and x € M, then
(WDC.3.a) 0F(x) € WDC(F;z);
(WDC.3.b) if A € WDC(F;x) and A is convez, then OF (x) C A.

In addition, Warga derivate containers satisfy the following chain rule, in
which we define Ay o Aldéf{Lz olLy:Ly€ Ay, Ly €A}

(WDC.4) Assume that (a) My, My, M3 are manifolds of class C*, (b) Fy is
a set-valued map from My to My, (¢) Fy is a set-valued map from
My to M3, (¢) x1 € My, x9 € My, and x3 € Ms, (d) Ay belongs to
WDC(Fy;x1,x3), and (e) Ay belongs to WDC' (Fy; xa, x3). Then
Ay o Ay belongs to WDC(Fy o Fy;xq,x3).

Furthermore, they have the monotonicity property:

(WDC.5) If A € WDC(F;x,y) and A is a compact subset of Jr (M, N)
such that A C A, then A € WDC(F; x,y).

Remark 2.4 Definition 2.3 easily implies that

(WDC.6) If A is a nonempty subset of WDC(F;x,y) which is totally
ordered by inclusion, then N, A A € WDC(F;z,y).

This implies that

(WDC.7) Every A € WDC(F;x,y) contains a Apin € WDC(F;2,y)
which is minimal, in the sense that if A € WDC(F;x,y) and

On the other hand, these minimal derivate containers are usually not unique.
For example, if f is the map R 3 z +— (0,0) € R?, a > 0, and f,, is the map
from R to R? given by fox(z) = ¥(cos kz,sin kx) then the sequence { for}52,
converges uniformly to f, and the derivatives f;, ; satisfy f/, ;. (z) € aSt, where
aS' = {(u,v) € R? : u? + v? = o?}. This implies that aS' € WDC(f;0) for
every . Clearly, the sets aS?, for different values of «, are not comparable by
inclusion. O

Clarke generalized Jacobians of locally Lipschitz vector fields. In
this subsection, we assume that



(A2) m,u € Zy, M is a manifold of class C*, p > 2, and m = dim M.

Since p > 2, the manifolds M and T'M are both of class C*, so the spaces
CYM,TM) and C*P(M,TM) are well defined. We write

Lo (TM) % CH M, TM)NT(TM), Teww(TM) < CVP(M, TM)NT(TM),

so I'ci(TM), T (T'M) are the spaces of all vector fields on M that are,
respectively, of class C! and locally Lipschitz.

Of all maps f from M to T'M, those that are vector fields—that is, sections
of T'M—are characterized by the fact that mryar o f = Iy, where mpar s is
the canonical projection from T'M to M. Hence the 1-jets of vector fields at a
point z € M are those 1-jets o € JL(M, T M) that are of the form (v, L), where
veT,M,and L € Lin(T, M, T,TM) is such that drppar(v) o L = Ip, 0. We
use JIT(T'M) to denote the set of all these jets, so JIT'(T'M) is a real linear
space of dimension m + m?. Also, we let J'T(TM) = Uyer JiT(TM), so
J'T(TM) is the set of all 1-jets of vector fields on M. Then J'T'(TM) is a
vector bundle over M of class C*~2 and fiber dimension m + m?.

A convenient alternative description of the 1-jets of vector fields is as follows.
For each x € M, define an equivalence relation ~%* on I'ci (T M) by letting
[~ g—if f,g € Ten (TM)—if [f—g, h|(z) = 0 for all h € Tci (M). (Here [+, ]
is the Lie bracket.) It is then easy to see that two vector fields f, g € I'c1 (T'M)
have the same 1-jet at x if and only if f ~'* g. Therefore the 1-jet j!f(x)
of an f € Tci(T'M) can be identified with the equivalence class [f; ~'?] of f
modulo ~12,

It follows from the above identification that “the vector [f, g](x) only depends
on the 1-jets j' f(x), j'g(x).” That is, there exists a canonical bilinear map
Lie'(z) : JIT(TM) x JIT(TM) — T, M such that

Lie'(z)(j' f(x),5'9(x)) = [f.g)(x)  whenever f,g € Tei(TM). (1)

There is a canonical projection 7 ipqar ry from J'T'(TM) onto TM, which
sends a jet j'f(z) € JIT(TM) to the vector f(x). For any vector v € T, M,
we use J, ,I'(T'M) to denote the set lelr(TM)?TM(v). Then J; I(TM) is an
m?2-dimensional affine subspace of JIT'(T'M), because it is the inverse image
of v under the surjective linear map J;I'(TM) 5 w — 7 pperan,rm(w) € T M.
Therefore J'T'(T'M) is an affine bundle over TM of class C*~? and fiber

dimension m?2.

Relative to a chart x such that z € domx, if f*, ¢* are the coordinate
representations of two vector fields f, g, so that f* and ¢g* are maps of class C
from imx to R™, it is clear that f ~'% g if and only if f*(2*) = ¢*(2*) and
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D f*(x*) = Dg*(«*). This implies that that there exists a canonical bijective
correspondence  JIT'(TM) 2 o +— o* € R™ x R™ ™  under which each jet
o=j'f(z) € JIT(TM) is mapped to its coordinate representation o*,
given by o* = (fx(xx),Dfx(xx)). Also, if we fix a vector v € T, M, then
there is a bijection J%,UF(TM) > 0 — g% € R™™ that assigns to each jet
o=j'f(x) € J} ,L(TM) the square matrix 0" = D f*(2*), known as the
reduced coordinate representation of o.

If f €lorin(T'M), then f is a locally Lipschitz map from M to T'M, so f has
a well defined Clarke generalized Jacobian df(z) at any = € M. Using the
identification of the 1-jets of vector fields with equivalence classes modulo the
relations ~"*, we can regard 9f(z) as a subset of J; ;. T'(T'M).

If x is a chart of M near z, then every 1-jet o € J;Vf(i)F(TM) has a reduced
representation o € R™* ™. Hence every subset A of J} t@ (M) has a
reduced representation A*"?, which is a subset of R™*™. Therefore

(CGJurr) If f € Torin(TM), and x € M, then the reduced representation
Of (x)*red of Of(x) relative to a chart x is ezactly the usual
Clarke generalized Jacobian at ™ of the map f*:imx +— R™.

3 Cones, multicones, transversality, and set separation

Cones, multicones, polars. A cone in a fdrls X is a nonempty subset C' of
X such that r-¢ € C whenever ¢ € C,r € Rand r > 0. If C'is a cone in X, the

polar of C is the convex cone C+ = {\ € XT: \(c) <0 for all ¢ € C}. Then
C* is a closed convex cone in X, and C*++ is the smallest closed convex cone
containing C'. In particular, C*+ = C if and only if C' is closed and convex.

A multicone in X is a nonempty set of cones in X. A multicone C is convex
if every member C of C is convex, and closed if every C' € C is closed. The
polar of C is the set C* = CIOS(U{CJ‘ :C € C}), so Ct is a (not necessarily

Convex_) closed cone in XT. The closure of C is the multicone C defined by
C={C:Cec}.
Transversality of cones. We say that two convex cones C, Cy in a fdrls

X are transversal, and write C’lfﬁC’z, if C; — Cy = X, ie., if for every z € X
there exist ¢; € C4, co € Cy, such that x = ¢; — co. We say that ¢ and

Cy are strongly transversal, and write C’lﬁﬁC’g, if leﬁ (5 and in addition

Cy N Cy # {0}. Then “~ C1MCy”, “~ C1MC,” will stand for “Cy and C are
not transversal,” and “C} and C, are not strongly transversal,” respectively.
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Lemma 3.1 Assume that X is a fdrls and Cy, Cy are convex cones in X.
Then the following conditions are equivalent:

(1) CyMC,.

(2) Ciih .

(3) Either (i) CyCy, or (ii) Cy and Cy are linear subspaces and Cy®Cy =

(4) Ci N (=Cy) = {0},

Proof. The equivalence (1)<(2) follows from the obvious chain of inclusions
C, -0y, C 01 Cy C Oy — Cy. If (1) holds, then C; — Cy = X, so a fortiori

C; — Cy = X, so (2) holds. Conversely, if (2) holds, then C; — Cy = X, so
Ci—Cy =X, s0 the convex cone (7 — (Cyis dense in X, so C7 — (Cy =X

To prove that (1)=(3), it suffices to assume that C;hCy and ~ CyMCy, and
show that (ii) holds. Let us prove that Cy is a linear subspace. Pick ¢ € C4.
Using the transversality of € and Cy write —c=c¢; —co, ¢; € C;. Then
c1+c=cy. Butei+c € Crand ¢y € (. So ¢1+c € CiNCYy, and then ¢;4+c¢ = 0,

since ~ ClﬂﬁCg. Therefore —c € C;. This shows that ¢ € C;, = —c € C;. So C;
is a linear subspace. A similar argument shows that C, is a linear subspace.
Then the transversality of C'; and C5 implies that C} + Cy = X, and the

fact that ~ CMC, implies that C; N Cy = {0}. Hence C; & Cy = X. This
proves that (1)=-(3). The implication (3)=-(1) is trivial, so we have shown
that (1)<(2)<(3).

To prove that (1)< (4), we observe again that, since C; — Cy is a convex cone,
the equality C; — Cy, = X holds if and only if O} — Cy = X. If 0} — C5 # X,
then the Hahn-Banach theorem implies that Ci- N (=Cy ) # {0}. Conversely,
it is clear that if C{- N (—=C5) # {0} then C; — Cy # X. So C; — Cy = X if
and only if Ci- N (=Cy) = {0}, completing the proof that (1)<(4). O

If C'is a convex cone in a fdrls X, then span(C) will denote the linear span
of C. It is then clear that span(C) = span(C'). It is then easy to see that

Lemma 3.2 Assume that X s a fdrls and C is a convex cone in X. Then
IntSPan(C) (C) = Intspan(C)(C) # 0 and Intspan(c) (C) =C.

Proof. Endow the space X with a norm. Let S = span(C) = span(C). Let
v =dim S. Let (by,...,b,) be an affinely independent sequence of members
of C' of maximum length. Then n = v, and (by,...,b,) is an affine basis of
S. Let X be the set of all convex combinations of the b; with strictly positive
coefficients. Then ¥ is a nonempty subset of C, and ¥ is relatively open in S.
Hence Y C Intg(C), so Ints(C) # 0.

Fix an 2 € Intg(C). Then we can pick a small positive number r such that
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x +rby,...,x + rb, belong to C. Let v; = x + 7b;. Then (v, ...,v,) is also
an affine basis of S, consisting of members of C'. Then for each positive e

we can find members v{ of C such that ||vf — v;|| < e. Then (v§,...,v) is
an affine basis of S if ¢ is small enough. Since z = #1(“0 + -+ 0,), we
can conclude that, for small €, x is a convex combination of vj, ..., v;. Since

the v$ belong to C, we conclude that z € C as well. So Intg(C) C C, and

then Intg(C) C Intg(C). Since Intg(C') C Intg(C) trivially, we conclude that

IntS(C’) = Ints(C).

Next, fix an z € C. Pick a y € ¥. Then x + ry € Intg(C) for every positive

r € R. Letting r | 0, we see that .x € Ints(C). So C' C Intg(C). Therefore
C C Intg(C). Since Intg(C') C C trivially, we conclude that Intg(C) = C. O

Lemma 3.3 Assume that X is a fdrls, C, Cy are convex cones in X, and
ChhCs. Then Cy N Cy = Cy N T and (C1 N Cy)* = CF + C5-.

Proof. We let S; = span(C;) for i =1, 2.

The inclusion C; N Cy C C; Ny is trivial. To prove the opposite inclusion, we
pick z € C1NCy. Let (eq, ..., e,) be abasis of X, and let eg = —(ey+- - +¢,),
so (eg, €1, ..., e,) is an affine basis of X such that eg+e;+---+e, = 0. Using
the transversality of C; and Cj, write e; = f; — ¢;, fi € C1, g; € C5. Using
the inclusions C; C Intg, (C;), which follow from Lemma 3.2, we find, for each
positive g, ff € Intg, (C1) and g; € Intg,(Cs) such that || ff — fi]] < ¢ and
g — gil| < €. Let € = ff — g;. Then (€f,...,¢€5) is an affine basis of X if
¢ is small enough. Since 0 = n}rl(eo + -+ +e,), we can conclude that, for
small €, we can write 0 = Y1 joce; with of > 0 and > ja; = 1. Then
Yo fi = Yiasgs. Fix e, and write z, = x +r Y1 os f7, for r > 0, so
T, =241 a5g;. Then x, — x as r | 0. Furthermore, since the f; belong
to Intg, (C}), the a; are > 0, and = € C}, it follows that x, € Intg, (C) (using
the trivial fact that C' 4 Intgpan(c)(C) C Intepan(c)(C) for any convex cone C').
So Lemma 3.2 implies that z, € C;. A similar argument shows that =, € Cs.
Hence z, € C;, N Cy, so z € C; N Cy. This shows that C; N Cy C C; N Cy. The
inclusion C; N Cy € C; N Cy is trivial. Hence C; N Cy = C, N Cs,.

To prove that (C; N Cy)*t = Cf + Cy, we first show that Ci + Cy- is closed.
Suppose p € C + C5 . Then p = lim;_., p; for a sequence {p;} jen of members
of Cf + Cy. Write p; = ¢; + 15, ¢; € Cf, r; € Cy. Let us show that the
sequence r = {r; } ey is bounded. Suppose that r is unbounded. Then we may
find an infinite subset J' of N such that the sequence {||7;||};es converges to
+00, and then an infinite subset J of J' such that the limit r = lim; ., 7;

exists, where 7; = L. Let ¢; = 2. It is then clear that ¢; = 22— =
, _ [l75]I (751l ll751]

i = o S0 limje @ = —r. Hence —r € Ci,r e Cy, and ||r|| = 1. So
J J

—r € Ct N (=C3F) and —r # 0. So Cf N (—=Cy) # {0}, and then Lemma
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3.1 implies that ~ ClﬁC’Q, contradicting our hypotheses. So r is bounded.
Then we may find an infinite subset J of N such that the sequence {r;};c;

converges to a limit r. Since ¢; = p; — r;, and p; — p, we can conclude that

lim; o0 jesq; = p — rd:efq. Since the cones Ci- and Cy are closed, it follows

that ¢ € Cf and r € Cy. But p = ¢ + 7, so p € Ci- + C5. This proves that
Ci + Cf- is closed.

We are now ready to prove that (C; N Cy)t = Ci- + Cy. Since the inclusion
CL+Cf C(CyNCy)*t is trivial, it suffices to show that (C;NCy)*+ CC+Cy-.
Pick a p € (C1NCy)*. Suppose that p ¢ Ci-+Cy-. Since Cf- +Cy is closed, the
Hahn-Banach theorem implies that there exists x € X such that (p,z) > 0
and z € (C{ + Cy)*. But then z belongs to C; N Cy, so (p,x) < 0, since
p e (Ci N CQ)L. So we have reached a contradiction, proving the desired
conclusion that (C; N Cy)+ = Cit + Cy. O

Lemma 3.4 Assume that X is a fdrls and Cy, Cy are convex cones in X.
Then OlHﬁCQ if and only if aﬁﬁ@

Proof. We use Lemma 3.1. Assume that C’lﬁHC’g. Then, to begin with, C’JHC’%

SO ?ﬁ@ are transversal. Then Lemma 3.1 tells us that either E&H@, or C;
and C5 are linear subspaces such that C; ©C5 = X. In the latter case, it would

follow that C; @& Cy = X, contradicting the fact that leﬂﬁ Cy. So aﬁﬁ@

Conversely, assume that @ﬁﬁ@ Then EH:I@, so Lemma 3.1 tells us that

C’lfﬁ Cs, and also that either ClﬁHC’g or ' and Cy are linear s@spaces_such
that C; @ Cy, = X. In the latter case, C; = C, and Cy, = (O, so C; and C, are

linear subspaces such that C; @ Cy = X, contradicting the fact that CyMCs.
So CyMCy. O

Transversality of multicones. Two convex multicones Cy, Cs in a fdrls X

are transversal if C’lﬁCg whenever C; € C;, Cy € Cy. A linear functional
u € X1 is intersection positive on (Ci,Cy) if

(V Cl S Cl)(VCQ S CQ)(HLL’ c Cl N CQ)(,U(JI) > 0) . (2)
The convex multicones Cy, Cy are strongly transversalif they are transversal
and in addition there exists a u € XT which is intersection positive on (Cy, Cs).

We will use for transversality of multicones the same notations as for cones:
the expression “cﬁcz” (resp. “~ leﬁcz”) means that C; and C, are (resp. are
not) transversal, and “Clﬁﬁcg” (resp. “~ ClﬁHCz”) means that C; and Cy are
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(resp. are not) strongly transversal.

Lemma 3.5 Assume that X is a fdrls and Cy, Co are convex multicones in
X. Then the following conditions are equivalent:

(i) Ci and Cy are not strongly transversal;
(ii) C1 and Cy are not strongly transversal:
(iii) for everyv € XT\{0} there exist Cy € Cy, Cy € Cq, wy € CF, wpy€Cy,
wo ER Y, such that (wo,wr,ws)#(0,0,0) and w;+ws=wyr.

Proof. The implication C;MCy = CiMC; follows trivially from the definition of
strong transversality. The reverse implication C;MCy = CiMC, is true as well,
because if C;MCy then (a) CiMC,, so Lemma 3.1 implies that C;MCs, and (b) if
p € XM\ {0} is such that (VCy € C1)(VCy € Co)(3z € CLNCy)(u(x) > 0), and
Ch1 € Cq, Cy € Cy, then C € C; and Cs € Cy, so there exists x € C; N Cy such
that p(z) > 0. Since C; N Cy = C; N Cy by Lemma 3.3, we can conclude that
x € C1 N Oy, so we can approximate z by z; € C; N Cy, and then p(x;) > 0 if

j is large enough. Hence C;MC; < CiMCy, and this implies that (i) < (7).

Now assume that (i) holds, i.e., that ~ C;fiC,. Fix a v € XT\{0}. Then either
~ Cﬁcg, or leﬁcg but there does not exist a functional 1 € X' which is

intersection positive on (Cy, Cy). If ~ ClaCQ, then there exist C; € Cy, Cy € Cy
such that C; — Cy # X. Then Lemma 3.1 implies that Ci- N (=C3) # {0},
so we can find a nonzero member w; of C- N (—Cy). Let wy = —w;. Then
wy € Ct and wy € Cf. Let wy = 0. Then it is clear that w; + ws = wor and

(wo,w1,ws) # (0,0,0). Next assume that Clﬁ Cy. Then v cannot be intersection
positive on (Cy,Cs), so there exist C; € Cy, Cy € Cy such that v(x) < 0 for all

x € O1 N Cy. This says that v € (C; N Cy)*. Since C’lan, Lemma 3.3 implies
that v € C{- + C4. Then we can write v = w; + wy, w; € O, wy € C5-. If we
take wg = 1, then (wg,wy,ws) # (0,0,0), wy € Ry, and w; + we = wor. This
shows that (éi7) holds. Hence (i) = (i77).

We now prove that (iii) = (i), by showing that the negation of (i) implies the
negation of (iii). Assume that () is false, i.c., that C;MCy. We want to find a
v for which the conclusion of (iii) is false. The fact that C;MC, implies that
MG, and we may pick a ;1 € XT which is intersection positive on (Ci,Cy). We
then take v = u. To show that the conclusion of (iii) is false with this choice
of v, let us assume that there exist C; € C; and Cy € Co, wy € CF, wy € Cy,
wo > 0, for which the conditions (wg, wy,ws) # (0,0,0) and w; +ws = wer hold.
If wy = 0, then w; +wy = 0, 50 wy = —w;. Then wy # 0, and wy € CN(=Cy)*t.
So C{ N (—=Cy)* # {0}, and then C} and Cy are not transversal, contradicting
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the assumption that e, So wp > 0, and then we may assume that wy = 1.
Then g = v = w; +wy, w; € Cf, and wy € Cy. It follows that u € (C1NCy)* .
But then there cannot exist an z € Cy N Cy for which p(z) > 0, and we have
reached a contradiction. So (iii) = (7). O

Mordukhovich tangent multicones. Let M be a manifold of class C!,
let S be a subset of M, and let 5 € S. The Bouligand tangent cone to
S at 5 is the set of all vectors v € T5M such that there exist a sequence
{s;}jen of points of S converging to s, and a sequence {h;};en of positive
real numbers converging to 0, such that v = lim;_ th—f (This means that
vp = lim;_, %;“0(5) for every ¢ € C*(M,R).) We use T2S to denote the
Bouligand tangent cone to S at 5. It is clear, and well known, that T2S is
a closed cone. The Bouligand normal cone of S at 5 is the polar cone
(TBS)+ of TBS, that is, the set of all covectors p € T M such that (p,v) <0
for all v € T2S. The limiting normal cone, or Mordukhovich normal
cone of S at 5 is the set of all covectors p € T: M such that p = lim;_. p,
for some sequence {s;};ey of members of S that converges to 5 and some
sequence {p;},en of members of T*M such that p; € (Tsjf, S)t (so in particular
p;j € T; M) for each j.

We use NM°S to denote the Mordukhovich normal cone of S at 5. For each
p € T'M, we let p- = {v € TuM : (p,v) < 0}, so pt is a half space if
p # 0, and p* is the whole space TxM if p = 0. The Mordukhovich tangent
maulticone to S at § is the set TMS < {pL . p € NMSY so TMS is a
set all whose members are closed half-spaces in T5M, except for one “trivial
member,” namely, the whole space T5M.

Lemma 3.6 Let M be a manifold of class C*, let S be a closed subset of M,
and let 5 € S, p e Ty M. Then the following conditions are equivalent:

(*.1) pe NS,
(*.2) liminf, s (max{(p,v) : v € TES, [lv]] < 1}) =0,
(*.8) iminf, 5, ; (max{(p, v) v e TBS |v|| < 1}) =0.

Remark 3.7 Conditions (%.2) and (*.3) clearly make sense relative to any
fixed coordinate chart x near §. (A chart is required to assign a meaning
to (p,v) when v € TPS, since s need not be equal to 5—so v € TM while
p € T¥M—and also to assign a meaning to ||v]|.) However, it is easy to see
that the truth values of (%.2) and (*.3) are independent of the choice of x.0

Proof of Lemma 3.6. In view of Remark 3.7, we assume that M = R™ and
5 = 0. We identify all the tangent spaces T; M with R™ and all the cotangent
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spaces 17 M with R, in the obvious way. For s € S, p € R,,, let

©%(p, s) = max{(p,v) : v € TES, ||v| < 1}. (3)

Then ©°(p, s) > 0, because 0 € T2S.

If (+.1) holds, then we can find a sequence {s;}jen of members of S and a
sequence {p;};en of members of R,, such that lim; . s; = 0, lim; .. p; = p,
and p; € (Tij)l for each j. Then, ©°(p;, s;) = 0 for each j, so (*.3) holds.

We now prove that (%.3)=-(*.2)=-(*.1). The implication (*.3)=-(x.2) is trivial,
because if (*.3) holds then there exists a sequence {(s;,p;)};en of members of
S x R, such that lim; ., s; = 0, lim; .., p; = p, and lim;_, ©°(p;, s;) = 0.
Since ©%(p, s;) < ©°(p;, s;) + ||p — p;ll, it follows that lim; ., ©°(p,s;) = 0,
and then (*.2) holds.

We now assume that (x.2) holds, and prove (*.1). If p =0 then p € NS,
so (x.1) is true. So we may assume that p # 0 and then, without loss of
generality, we may also assume that ||p|| = 1. It follows from (*.2) that we
can find a sequence {s;},eny of members of S such that lim; . ¢; = 0, where
e; = ©%(p, sj). For a >0, j € N, define 8;(a) to be the minimum of all the
nonnegative real numbers [ such that the closed ball I@m(sj +ap, 3) intersects
S. (The minimum exists because S is closed.) Then §;(a) < a, because s;
belongs to B™(s; + ap, ).

We are going to construct, for each j, a covector p; € R,,, which is close to p
and such that p; is a Bouligand normal to .S at a point 5; close to s;.

Fix a j. If B;(a) = a for some a, then the open ball B™(s; + ap, a) does not
intersect S, and this clearly implies that p € (T 5 S)+. So in this case we take
p; = p and §; = s;. Next assume that §;(a) < a for all positive . Then for
each a we may pick a member o(a) of the set B™(s; + ap, 3j(a)) N S. Let

v(a) =0(a) —s;, w(a)=ap—v(a).

Then v(a) # 0, and in addition

(v(a),p) = (v(a) —ap,p) + o = a — (n(a), ),
since ||p|| = 1. Furthermore,
7 ()l = llap = v(@)l| = [I(s; + ap) = o(@)]| = B;(a),

so (m(a),p) < Bj(a), and then (v(a),p) > a — B;(a), so Bj(a) > a — (v(a), p).
On the other hand,

lim sup [o(@)[| 7 (v(a), p) <&
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(Indeed, suppose this is not true. Then there exist a positive real number ¢§
and a sequence {ay }ren of positive numbers that converges to 0 and is such
that ||v(a)|| " (v(ak), D) > &, + 0. If we define wy, = [|v(ay)|| " tv(ax), then we
may assume, after passing to a subsequence, that the limit w = limy_, o wy
exists. Since s; +v(ay) € S, the vector w belongs to T;?S. But (w,p) > ¢+,
and this contradicts the fact that ©%(p, s;) = ¢;.)

Let o* be such that
[v(a)]| " Hv(a),p) < ej + 277 whenever 0 <a <a”.

Given any «, it is clear that ||v(a)|| < 2a. Then 0 < (v(a),p) < aé; whenever
0 < a < a*, where &, = 2(g; +277). Let

a(a) = (v(e),p)p,  bla) =v(a) —a(e),
so b(a) L a(a), and then
lo(@)]I* = lla(@)]* + [b(a)]*.
On the other hand,
m(a) = ap —v(a) = ap — a(a) — b()

m(a) = (a — (v(a),p))p — bla)
and then

o® = Bi(a)* = [[m(@)]|* = | = (v(a), p)I* + [Ib(a)]* -

Since (v(a),p) < aé;, we can conclude that a — (v(«a),p) > a(1 — &), from
which it clearly follows that

o’ > a*(1=&)" +[[b(e)||”.

Then
[b(@)]? <a®(1—(1-§;)%) <a®(2&;—¢]) <2a%¢;,
SO
[b(@)]] < ay/2e;.
Therefore

Im(c) — apl| = [[{v(a), ) + bla)|| < aéj,
where &; = &; 4+ /2¢;. Hence, if we pick any « such that 0 < o < o* and

a < 27971 and let p; = @, 5; = s; + v(a), we see that ||p; — p| < €,
15, — s;]| <277, and p; is a Bouligand normal to S at §;. This shows that p
is a limiting normal of S at 5, concluding our proof. O
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The Clarke tangent and normal cones. If M is a manifold of class C!, S
is a closed subset of M, and s € M, then the Clarke tangent cone to S at
§ is the set of all vectors v € T5M such that, whenever {s;};en is a sequence
of points of S converging to s, it follows that there exist Bouligand tangent
vectors v; € T£S such that lim;_ v; = v. We use T<'S to denote the Clarke
tangent cone to S at 5. It is well known that TS is a closed convex cone.
The Clarke normal cone NE'S of S at 5 is the polar (TE'S)! of the Clarke
tangent cone. Therefore NS is closed and convex. It is well-known that N&'S
is the smallest closed convex cone in 77 M containing the Mordukhovich cone

NMeS. Therefore TELS = N{C : C € TM S},

WDC approximating multicones. If C, D are convex multicones, then we
say that C is a full submulticone of D, and write C <y, D, if for every
D € D there exists a C' € C such that C C D.

If X, Y are fdrlss, C is a multicone in X, and A C Lin(X,Y"), then we define
A-C¥{L.-C:LeA Cec).

Definition 3.8 If M is a manifold of class C', 5 € S C M, and C is a conver
multicone in Ts M, we say that C is a WDC approximating multicone of
S at s if there exist (i) a nonnegative integer n, (ii) a compact subset K of R"
such that 0 € K, (i11) an open neighborhood U of K in R", (iv) a set-valued
map U 3 u— F(u) C M, (v) a compact subset A of Lin(R", TsM), and (vi) a
conver multicone D in R™, such that (I) F(K) C S, (II) A € WDC(F;0,5),
(II) D <puy T K, and, finally (IV) C = A -D. O

We will use WDCAM (S, 5) to denote the set of all WDC approximating
multicones of S at s, so “C € WDCAM (S, 5)” is an alternative way of saying
that “C is a WDC approximating multicone of S at s5.”

Example 3.9 If M is a manifold of class C*, S is a closed subset of M,
s€ S, and C is any conver multicone in TsM such that C < TM°S, then
C € WDCAM(S,s). To prove this, it clearly suffices to assume that M = R™
and 5§ = 0. Welet U, V be, respectively, an open subset of R" containing 0, and
a compact ball centered at 0 and contained in U. We then take K =V NS, so
K is compact and T{* K = T3 S. We then let F : U — R™ be the inclusion
map, and take A = {Igm}. Then C = A -C, and C < TPK. O

Example 3.10 As a corollary of Example 3.9, if S is a closed subset of a
manifold M of class Ct, and 5 € S, then the Mordukhovich multicone TMS
and the “Clarke multicone” {TE'S} are WDC' approzimating multicones of S
at s. O

Example 3.11 It follows trivially from the definition that, if (a) fori = 1,2,
M; is a manifold of class C', S; C M;, and 5, € S; (b) F is a set-valued
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map from My to My such that F(Sy) C S, (¢) A € WDC(F;s1,55), and
(d) C < WDOAM(Sl, 51), then A . C € WDCAM(SQ, 52). O

The following example uses the Cartesian product of two multicones Cy, Co
in linear spaces X, X,. We define C; ><C2d§f{01 xCy: C € Cy, Cy € Ca}, s0
Cy xCy is a multicone in X; x X5, which is convex if C; and Cy are convex.

Example 3.12 (The Cartesian product rule.) If (a) My, My are manifolds
Of class Cl, (b) 51 €85, C M, and 59 € Sy C M, (C) C, € WDCAM(Sl,gl)
and Co € WDCAM (Ss, 53), (d) S=51%5,, §=(51,52), and C=Cy XCy, then
CeWDCAM(S,s). To see this find, for i = 1,2, an n; € Z,, a compact subset
K; of R™ containing 0™ (where 0¥ is the origin of R”), an open neighborhood
U; of K; in R"™ | a set-valued map F; from U; to M; such that F;(K;) C S;, a
derivate container A; € WDC(F;;0™,3s;), and a convex multicone D; in R™
such that D; < T(%;’Ki and C; = A, - D;. Define

n=mny+ Ny,

U=U; x Uy CR™ x R"™ ~R",
K=K x Ky,

M =M, x My,

D=D; x D,

A=A x Ay,

F=F xXFy,

where

Al X Agdéf{Ll X L2 . L1 € Al, LQ € AQ},
Ly X Ly is the map that sends a pair (uj,uz) € R™ x R™ to the pair
(L1 -uy, Lo - ug) € Tey My X Tey My ~ T5M), and Fy x F is the set-valued map
that sends each (u1,us) € U to the subset Fj(uq) X Fy(ug) of M.

Then A € WDC(F;0™,5), and A-D = C. So the desired conclusion will follow
if we show that D < Tg® K. But this is trivial, because, if p € N} K, then
p = lim;_ p; for some sequence {(u’,p’)};ey such that v/ — 0", u; € K,
and p; € (TEK)*. Write v/ = (u},u3), p/ = (p],p3), u! € R™, p! € R,,. Then
TEK, x {0m}u{0m} x TEK, CTEK. Since p/ € (TE5K)*, it follows that
! . Y2
pl € (TBK))* and p) € (TEK,)*. Hence py € NMOK,, py € NMK,. Since
uy Uy
D; = TYPK; for i = 1,2, we may pick D; € D; such that D; C pi-. Then
Dy x Dy C pt and D; x Dy € D. This shows that D < T§# K and concludes
our proof. O

Remark 3.13 In the previous example, it is important to notice that the
product T¢P K, x T Ky of the Mordukhovich tangent multicones T3 K,
T Ky does not in general coincide with the Mordukhovich tangent multicone
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Ta¥ K of the product. (For example, if M; = My = R, and K; = K = [0, 1],
then TM K, = TM K, = {R, [0, +00[}, and T Ky x Ti¥° Ky is the four-member
set {RxR, Rx [0, 4o00[, [0, +oo[ xR, [0, +00[Xx [0, +-00[}. However, the multicone
T (%{%)K is an infinite set, consisting of R? as well as all the half-planes

Ha,b:{<x7y) €R2:a‘r+by20}7

for all the pairs (a,b) such that a < 0 and b < 0.) On the other hand, all that
is needed for the proof in Example 3.12 is the fact that T{ K, x T K, <
T(](\){%)K, which is true. O

The directional open mapping property. Given a subset A of R”, and a
positive number r, we use I'(A, ) to denote the set of all maps v :[0,1] — A
such that y(0) = 0 and ||v(t) — v(s)|| < 7|t — s| whenever s,t € [0,1]. (So,
naturally, I'(A, r) is empty if 0 ¢ A.) It is then clear that if A is closed then
['(A,r) is a compact subset of C°(]0, 1], R).

If D is a closed convex cone in R, and « > 0, we use D(«) to denote the set
{ye D:|y| <a} If y € R, we use g, to denote the set {ty : 0 <t < 1}.
If v:[0,1] — A is an arc, then || will denote the set {v(t) : t € [0,1]}. Also,
we use 0¥ to denote the origin of R”.

Theorem 3.14 Assume that m,n € Z., S is a closed subset of R", U is an
open subset of R™, 0" € SNU, F is a set-valued map from U to R™, and A is
a Warga derivate container of F at (0™,0™). Let y € R™ be such that ||y|| = 1
and j € Int L - p* for every L € A and every p € NM°S. Then there erist a
closed convex cone D in R™ such that y € Int D, positive numbers «, k such
that B"(0,ax) C U, and a single-valued Lipschitz map F : B*(0, ar) — R™
such that F(z) € F(x) for every x € B"(0, ak), having the property that

(Vy € D(@))(3y € I'(S, ar))(oy = |[F or]). (4)

Proof. We assume, as we clearly may without loss of generality (after making
an orthogonal change of coordinates, if necessary) that g = (0#,1), where
iw=m — 1. We then let R = R, and identify R™ with R x R.

Let ©° be the function defined in Equation (3) above. We show that

(#) There exists a real number & €]0,1[ such that, whenever q € R™,
LeR™" s €S are such that ||q|| = 1, {q,y) > =4, dist(L,A) < 6,
s€ S, and ||s|| <6, it follows that ©5(LT(q),s) > 6.

We prove (#) by contradiction. Assume that 6 does not exist. Then there are

sequences {d; }jen, {4;}jen, {L;}jen, {Sj}jen, such that lim;_,. 0; = 0 and, for
each j, the following are true:
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qj & R™ , Sj - 57 dlSt(Lj,A) S (Sj s
gl =1, 1511 <65, ©%(Li(g)), 57) < ;.

Pick L; € A such that ||Ej_— L;|| < ;. Then we may pass to a subsequence and

assume that the limit (g, L) = lim; . (g;, L;) exists. Then [|¢]| = 1, (¢,9) > 0,
and L € A. In addition, lim; . s; = 0 and lim; .o, L; = L. Let

p; = Llg;, p=1L"q,
so lim;_ ., p; = p. Since ©%(p;, 5;) < §;, it is clear that

liminf ©%(p,s) =0,

s—0,p—p
So Lemma 3.6 implies that p € N2MeS. Hence 3 is an interior point of L-pt.
On the other hand, if y € L - p* then we can write y = L -z, € p*, so that

<LT ’ 67‘1') = <pa £L'>,

and (p,z) <0, since x € p*. So (g,y) <0 forall y € L-p*. Since j € L - p*
and (q,y) > 0, we conclude that (g,y) = 0. But then, if we take y = y + &g,
where ¢ is positive and small enough, we have (g,y) =& > 0, while on the
other hand y € L - p*. So we have reached a contradiction, proving (#).

—
il
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—
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~——
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We now fix a 0 having the properties of (#), choose K = 671, and then let
A={L e R™" :dist(L,A) < d}. We then use the definition of the Warga

derivate container, and obtain

e an R € R such that R >0, B*(0,R) CU and R < J,

e a single-valued Lipschitz map F : B"(0, R) — R™ such that F(0) = 0 and
F(z) € F(z) for every x € B*(0, R),

e a sequence {F}};en of functions of class C! from B"(0, R) to R™ such that
- F; — F uniformly on B"(0, R) as j — oo,
. DFj(x) € A for all z € B"(0, R), j € N.

After replacing F; by F; — F;(0) we may assume, in addition, that F;(0) =0
for every j € N.

We now let )
D={yeR™: (y,5) = (1-0)lyl},
where § = %, so that 0 = \/;5 . Then D is a closed convex cone, and 4y € Int D.

We choose a = 0R, and define S = B"(0,R)N S, so S is compact and 0 € S.
We will prove (4). It clearly suffices to show that

(Vj€N)(Vye D())(FyeL(S, ra) (o, =F; 0 7)) . ()
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(Indeed, if (5) holds, and y € D(a), then for each j we can find 7, € T'(S, k)
such that |F; o v;| = ,. Since T'(S, ka) is compact, there exists an infinite
subset J of N such that v = lim;, ~ 7; exists and belongs to F(S, ko). But
then lim; ., (Fjo~;) = Fo~,so|Foq[=o0, and vy € ['(5,ra).)

We now prove (5). We fix an index j, and write G = Fj. Then G(0) = 0,
G € CYB"(0, R),R™), and DG(z) € Afor all z € B"(0, R). We want to prove
that (Vy € D(a))(3y € I'(S, ko)) (o, = |G o 7]).

Let Dy(a) = Int D(e). Then, thanks to the compactness of T'(S, kev), it suffices
to show that

(Vy € Do(a))(3y € T(S, k) (0, = |G 07]) - (6)

To prove (6), we pick a point y, € Dy(ar) and construct a v € I'(S, ka) such
that o,, = |G o |. We will do this by finding, for small positive ¢, arcs
Ve € F(g, ra) such that the sets |Goy, | converge to o, in the Hausdorff metric.
Pick a positive e such that B™(y,, ) C Dy(«). (This implies, in particular, that
|ly«]| + & < a.) Then let

Q.={veR™: (v,y)=0A]v| <el,

SO QE is the p-dimensional disc orthogonal to y., centered at 0, and having
radius €. Define

Qsz{y*+U3U€Qs}7
so Q. C I@m(y*,g).

Next, we let § = ”y* (Recall that y, # 0, because y, € Do(«), and 0 ¢ Dg(«v),

Yl

because if 0 € Dy(«) it would follow—since ¢ < 1—that (y,y) > 0 for all y
near 0, so g = 0.) We then define a function A, : R™ — R by letting

he(w) = (2,9) = Aellz — (2, 9)3]*,

where \. = £7?||y.||. Then h.(0) = 0, and in addition h.(x) also vanishes at
all points z belonging to the frontier

0Q. ={y. +tv:veR™ v Ly, |v|=¢}

of Q.. We then let H, = h. oG, so H., is a function of class C' on U. We then
define

Q. = {z € R™: Acflz — (2. 9)9l1* < (2. 9) < |y} (7)

Then Q. is obviously closed, and Q. # (), because 0 € Q.. Furthermore, the
Hausdorff distance dp,(Q.,0,.) is exactly . (Indeed, fix an = € Q.. Then
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x=wv+ry, with r = (z,9) and v =z —rg, so v L g. The fact that z € Q.
implies that A |v]|> <7 <|y.||, so r > 0, and then ry, belongs to o,, and
|z — rg||> < €% so ||z — rg|| < e. Since this is true for every x € Q., while
|z —ry|| = e if v € 0Q., we see that max{dist(z,0,.) : © € Q.} = €. Since
oy, € Q., it follows that dp,(Q.,0,.) = ¢.) In particular, Q. is bounded, so
Q. is compact.

We then define a set-valued function ¥, from the ball B"(0, R) to R™ by letting
U (s) ={w e R": ||lw|]| <1and (VH.(s),w) > d}. It is then clear that the
map V. is upper semicontinuous with compact convex values.

Let S =G 1(Q.)NS, Sy, ={seS.:|s| <R and (G(s),9) < ||y«|} . Then
S! is a compact subset of S, Sp,c is a relatively open subset of S, and 0 € 57 ...
We will show that

Uo(s)NTESL# 0 whenever s, €S, . (8)

To see this, pick a point s, € ) _, and write

T

Il

e = G(84), e = Vhe(z,), o =

It follows that =, € Q., so x, = 1.y + v,, with v, L g, r. = (z,,7), and
|v.]| < e. The fact that s, € S, then implies the inequalities [|v.|| < ¢ and
0 <7, < |ly«|l- Also,

A~

s = Z) - 2)\5(1’* - <.CL'*, y>@) - g — 2).04 )

[l = 1+ 4AZ[|o ],

since v, L . Also, (m.,9) = (9,7) — 2X(v, ). Since § € D, and ||g[| = 1, we
have (g,y) > 1— 4, so

15 = glI* = I911° + 171> — 29, 9) = 2(1 = (5,7)) < 26,

and then

and then ||§ — 7| < V20 = 4, so that
20 (Us, ) =22 (0s, T—9) <22 ||va| |17 —3] <2Ac|e|6
(using the fact that v, L g), and then
(T, §) > 1= 6 = 20 J[va |6 > =2Ac[[0u]|6 > —2).26

from which it follows that (#,,§) > ——2d=ld__ > _5

VI[P =

Let L. = DG(s.). Then dist(L,,A) < 4. Since ||| = 1 and (7,,75) > —0,
(#) implies that ©%(LI(#.),s) > 6. We can therefore find a w € TZS such
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that ||w|| = 1 and (LI(#.),w) > 6. It follows that (Li(m.),w) > §||m.||. Since
||| > 1, we can conclude that (LI (7,),w) > 6. But the chain rule implies that
Li(r,) = VH_(z.), so we have shown that (VH_(x),w) > . This establishes
that w € ¥_(s).

To complete the proof of (8), we have to show that w € T2S’. Since w € T2 S
and ||w|| = 1, we can find a sequence {s; }en of points of S\{s.} that converges

to s, and is such that limy_ ., w, = w, where wy, = Hzi’i*” )
: S
If we let
Wi = ||sk — 8./, W = W, — W,
we find
Sk = Sy + WpW + Wiy, , lim w, =0, lim w;, = 0.
k—o0 k—o0

Let ¢ be a function from |0, oo to [0, oo] that satisfies lim, o ¢ (r) = 0 as well
as the conditions

IG(s) = G(s2) = Luls = s ) <(lls = sulDlls — s (9)
|he(2) = he(a.) = (T, & — 2)| SY([lo — 2|4 — .| (10)

for all s € U and all x € R™, respectively. Let z;, = G(s;). Then (9) implies
the inequality

|2 — 2 — Wi L (w + W) || < (wp)wr
from which it follows that

|21 — 24 — Wi L (w)]| < vy,
where vy = ¥(wg) + || L« (wWg)]|, so that limy . v = 0. It then follows that
e = | < wil| L () || + vrews -

Then
[(zn — 2x — wiLu(w), m)| < || [vews -

Therefore

(X — T, ) = (T — Ty —wi Ly (W), ) Fwip (Lu (W), 7y )
> —wivg|| | + wilw, L)) > wi(8 — viellm]))

Now write v;, = 1(||zr — x.||), so that limy_, . v, = 0. It then follows that
e () = he(@s) = (T 2 — 2)| < Villw — 2]
from which we can conclude that

helw) = hele.) = (moyy — ) — vl — ..
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Using of the facts that

25 — .|| <wrl| La(w)]] + viws
<7T*,J,’k — Jf*> Z‘Ws(é - VkHW*H) )

we find that
he(r) — he(w4) > wi(0 — || mal[vn — Vil Lu(w)]| — viv) -

So we can pick a k € N such that
1 _
he(zg) — he(xy) > §||wk||5 whenever k> k.

It follows from (7) that x € Q. if and only if h.(z) > 0 and (z,9) < [|y.]|.
Since z, € Q., the inequality h.(z,) > 0 is true, and then h.(x;) > 0if k > k.
Furthermore, the fact that s, € Sj_ implies that (G(s.),9) < [ly«|, i.e., that
(e, 7) < |ly«l|, and this implies that (g, 9) < |lys] if k is large enough In
addition, using once again the fact that s, € S _, we find that ||s.|| < R, so
sl < R if k is large enough. It follows that we can find a &’ € N such that
k' >k and (x4, 9) < ||y«|| whenever k > k’. Then, if k > K, the the following
hold:

(1) Sk € 57
(11) hg(xk) > 0,
(iii§ (xr, §) < |yl

(iv) |Iskll < R.

It follows from (ii) and (iii) that z; € Qc, so s, € G~'(Q.), while on the other
hand (i) and (iv) imply that s, € S. Therefore s, € S.. Hence w € TES.,
completing the proof of (8).

Now, using standard existence results from viability theory, we pick a solution
£ 1 I — S; . of the differential inclusion £(t) € W.(£(t)) such that

(1) &(0) =0,

(2) & is defined on a subinterval I. of R such that 0 = min I,
(3) & is not extendable to a solution € : I — Sp.. such that 0 = min I,

I. C I, and IE%I.
Then & satisfies H.(£.(t)) > 6t for all t € I.. On the other hand,
He(s) = he(G(s)) < |l for all se€ S,

so I. C 0,07 Yy.ll]- Tt follows that I. = [0,7.[ or I. = [0,7.] for some 7.
or such that 0 < 7. <6 '|y.|. If I. = [0,7], then & would be extendable,
contradicting the choice of (&, 1.). So I. = [0, 7. [. Since & is Lipschitz with
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constant 1, the limit 5. = limy,, &(s) exists and belongs to S.. If 5. € S
then & would be extendable. So 5. ¢ Sj_. But then either ||5.|| = R or
(G(5¢),9) = ||ly«||- The possibility that ||S.|| = R is easily excluded, because
15.]] <7 <67 Yyl < 6 'a = R. Hence (G(5.),9) = |ly«||. If welet z. = G(5.),
then this shows that z, € Q..

We now define 4. : [0,1] — S’ by letting .(t) = & (7:t) for ¢ € [0,1]. Then
7. € T(S,ka) (since 7. <5 'a = ka), and 7.(0) = 0. Furthermore, the set
|G o 7,| is entirely contained in Q., and G(7.(1)) € Q.. We can then pick
a sequence {ey}ren of positive numbers such that limy ... e, = 0 and the
arcs ., converge uniformly to an arc v € I'(S, k). This arc clearly satisfies
|G ov| C o,,. Furthermore, y, = limy_. 2., so y. € |G o 7|, and then
|G o ~y| = g,. This concludes the proof. O

The transversal intersection property. If X is a topological space, and
S1, Sy are subsets of X, we say that S; and Ss are locally separated at a point
p € X if there exists a neighborhood U of p in X such that S1NSeNU C {p}.

Theorem 3.15 Let M be a manifold of class C!, let Sy, Sy be subsets of M,
and let x € S1NSy. Let Cy, Co, be WDC' approximating multicones of Sy, S
at x. Assume that Cy and Cy are strongly transversal. Then S, and Sy are not
locally separated at T. (That is, there exists a sequence {x;}jen of points of
(S1NSe)\{Z} such thatlim; .., x; = Z.) Furthermore, there exists a Lipschitz
arc vy : [0,1] — M such that v(0) = &, v(t) does not identically equal T, and
v(t) € S1 NSy for all t €0, 1].

Proof. We will use Theorem 3.14. Without loss of generality, we assume that
M=R"and z=0. Welet X =R", X =X x X, Y =X xR. We fix a linear
functional p : X — R which is intersection positive on (C1,Cs), and define a
map G : X = X x X — ) by letting

G(Zl'fl, ZL'Q) = (l‘l - x27ﬂ(x1)) :
Then G is a linear map, so the differential DG(0) is just G.

Let

8251X52, C:C1XCQ, D=G-C.
Since Example 3.12 tells us that C is a WDC approximating multicone of S at
(0,0), it follows that D is a WDC approximating multicone of G(S) at G(0,0).

Let y = (0,1) € ¥ = X x R. Then a straightforward calculation shows that
y € Int D for every D € D. (Proof. Let D € D, and write D = G(C x Cy),
Cy € Cy, Cy € Cy. Then C1—C5y = X. Since p is intersection positive on (Cy, Ca),
we can pick ¢ € C1NCy such that p(¢) = 1. Then G(¢, ¢) = y. Givenany v € X,
we can use the transversality of C'; and C5 to write v = ¢y — ¢, with ¢; € Cf,
¢y € Cy. So there exists r € R such that (v,r) € G(Cy x Cy). If (eq,...,€,)
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is a basis of X, and eg = —(e; + ...+ e,), then there are real numbers r;
such that (e;,r;) € G(Cy x Cy) for i = 0,...,n. Since § € G(Cy x Cy), it
follows that (e;,7) € G(Cy x Cy), for every i, if ¥ = max(1,ro,71,...,7,).
Hence (¢;,1) € G(C} x Cy) for every i, if ¢; = 7 'e;. This clearly implies our
conclusion.)

We have therefore verified the hypotheses of Theorem 3.14. It then follows
from the theorem that, for some positive number «, there exists a Lipschitz arc
€:]0,1]— S that satisfies £(0) =0 and is such that the sets {G(&(t)) : ¢ € [0,1]},
{(0,7) : 0 <r < a} coincide. Write &(t) = (&1(t),&2(t)), so & (t) € S; and
&(t)) € Sy. Let y(t) = & (t). Then, if ¢ € [0,1], G(&(t)) = (0,r) for some
r, 50 & (t) = &(t), and then y(¢) € S; N S;, Furthermore, v does not vanish
identically because, for some ¢ € [0, 1], G(£(t)) = (0, @), so u(y(t)) =a. O

4 Covariant differentiation and adjoint covectors

Ppd vector fields, trajectories, flow maps. We assume that
(A3) m,pu € Zy, M is a manifold of class C*, u > 1, and m = dim M.

A ppd tvuf on M is a ppd map M x R 3 (z,t) — f(x,t) € TM such that
f(z,t) € T,M whenever (z,t) € dom f. A trajectory, or integral curve, of
a ppd tvvf f on M is a locally absolutely continuous map & : I — M, defined
on a nonempty real interval I, such that for almost all ¢ € I the following two
conditions hold: (i) (&(t),t) € dom(f), and (ii) £(t) = f(£(t),t). An integral
arc of f is an integral curve £ : I — X such that the interval [ is compact.
If fis a ppd tvvf on M, then Traj(f) (resp. Traj.(f)) will denote the set of
all integral curves (resp. arcs) of f. For given ¢, s € R, the time ¢ to time s
flow map of f is the set-valued map @f;t from M to M that assigns to each

2 €R xR x X the set ®f,(2){e(s) : € € Traj (f), £(t) = x}.
Vector fields and covector fields along an arc. We assume (A3)

If £ € ARC(M), then we can consider the pullback bundles £*T'M, £&*T*M.
If dom¢ = [a,b] then, by definition, £*T'M, £*T*M are the bundles over
[a, b] whose fibers (£*T'M);, (£T*M), at a t € [a,b] are the spaces Tew M.
T M. We use I'(E*TM), I'(§T*M) to denote, respectively, the set of all
sections [a,b] 3 t +— v(t) € TegyM, [a,b] 3 t — w(t) € T{,M, of &'TM,
&*T*M. The members of I'(E*T'M), I'(£*T* M) are called, respectively, vector
fields along ¢ and covector fields along &. If the arc & is such that
&([a,b]) € domx for some chart x of M, then £ has a coordinate representation
& e C%[a,b],imx), given by £X(t) = £(t)* = x(£(t)) for t € [a, b]. Also, vector
fields v € I'(¢*(T'M)) and covector fields w € I'(§*(7*M)) have coordinate rep-
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resentations v*, w*, which are, respectively, maps from [a,b] to R™ and from
la,b] to R,,, given by

v (t) = (da' (1)), v(t)),  wi(t) = (w(t), 05 (£(1))) -

Since M is, in particular, a manifold of class C!, it makes sense to talk
about an arc £ € C%[a,b], M) being absolutely continuous, and we will
use Whl([a,b], M) to denote the space of all absolutely continuous maps
¢:la,b] — M. (Precisely, the members of W ([a,b], M) are the arcs
¢ € C%a,b], M) with the property that, for every chart x of M and every
compact subinterval [«, 5] of [a, b] with the property that {([o, 5]) C domx,
the restriction £ = £ [ [a, 8] of £ to the interval [, 3] is such that the coordinate
representation £*: [a, 3] —R™, given by £ = x 1o, is absolutely continuous.)
We write
WhHY (M) = U Whi([a,b], M) .
—oo<a<b<+oo

If ¢ € ARC(M), then it makes sense to talk about vector fields and covector
fields along ¢ being measurable, or continuous, since T'M and T*M are
topological spaces. Furthermore, if 1 < p < oo, it also makes sense to talk
about vector fields and covector fields along £ belonging to LP, since T'M and
T*M are vector bundles. (Precisely, a vector field v € I'(§*(T'M)) belongs
to L? if, for every chart x of M and every compact subinterval [, §] of [a, D]
such that &([a, 5]) € domx, the restriction © = v [ [, ] of v to [a, 3] is
such that the coordinate representation o : [a, ] — R™, given by the for-
mula 0*(t) = Dx(&"(t))(v(t)) for t € [a, (], belongs to LP([a, 8], R™). Observe
that, if x, x" are charts of M and {([o, 5]) € dom x N dom X', then the vectors
7 (t), 9%(t) and related by % (t) = D(x’ o x 1) (&X(t)) - 0*(t) for t € [a, 3], and
this implies that if 7 belongs to L? then ¢* is in L? as well, since the matrix-
valued function [, 3] 2 ¢ — D(x' o x~1)(£*(t)) is continuous, because u > 1.
A similar observation applies to covector fields, for which the transformation
law is @*(t) = @ (t) - D(x" o x~1)(€X(t)).) We use Tpreas (ST M), Teo (E¥T M),
Cre(E*TM), to denote the spaces of all v € T'(§*T'M) that are, respectively,
measurable, continuous, members of LP. The three spaces [I'jeqs(E¥T*M),
Lo (§¥T*M), and I'p(£*T* M) are defined in a similar way.

Remark 4.1 The concept of an absolutely continuous vector or covector field
along a £ € ARC(M) is not intrinsically defined if M is only of class C*,
even if £ € WH(M). Indeed, if x, X' are charts whose domains contain im &,
then the coordinate representations v*, v*, of a v € [(&*TM) are related by
v (t) = J(€4(t)) - v*(t), where J(q) = D(x' ox')(q) for ¢ € imx. Since the
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map J is only known to be continuous, there is no reason why v* should be
absolutely continuous if v* is, even if £* is absolutely continuous. A similar
fact is true of covector fields.

On the other hand, it is clear that, the absolute continuity of v* follows from
that of v* if the map J is of class C! and & € W' (M). Hence the concept
of absolute continuity makes sense for members of I'(¢*T'M) and T'(£*T* M) if
£ e WH(M) and p > 2. (Alternatively, a member of T'(£*T'M) or of T'(*T* M)
is just a map from dom¢& to T'M or to T*M which is a lift of &, i.e. is such
that its composite with the projection from T'M or T*M to M is £. If p > 2,
then TM and T*M are manifolds of class C', so the spaces WY (T M) and
WHL(T*M) are intrinsically defined.) O

Integrably Lipschitz ppd vector fields near an arc. We assume that

(Ad) m,u € Z,, M is a manifold of class C*, u > 2, m = dim M,
and £ € ARC(M) .

A chart covering of ¢ is a finite set K such that (a) all the members of K
are ordered pairs (I,x) consisting of a compact subinterval I of dom¢ and a

chart x of M such that £(I) C domx, and (b) U{/ : (3x)({,x) € K} = dom¢.

If MxR>(z,t)— f(x,t)€T, M is a ppd tvvf on M, K is a chart covering of
¢, and k : dom& — [0, +00] is an integrable function, then a system of IL
constants for &, f, k, K is an ordered pair ({51,,(}(1,,{)6,@{C’[,X}(LX)E,C)
of families of positive constants such that the following three conditions are
satisfied for every (I,x) €/ and every t € I :

(IL.1) The ball B™(£(t)%, 8rx) is contained in imX.
(IL.2) f(x,t) is defined whenever x € x* (Bm(é(t)x, 511,()).

(IL.3) [[f*(q,t)|| < Crxk(t) and [[f*(q,t) — (¢, )| < Crxk(t) - [lg — 4'll
for all q,q" € B™(£(1)*, 01.x)-

It f, k, K are as above, then f is said to be integrably Lipschitz near &
with bound k (abbreviated “IL-k mear £”) relative to K if there exists
a system of IL constants for &, f, k, K.

The following observation will be important later:

(IL.*) Suppose that f is a ppd tvuf on M, k : dom & — [0, +00] is integrable,
and K is chart covering of & such that f is IL-k near & relative to IC.
Then f is IL-k near & relative to every chart covering of &.

To prove (IL.*), we start by fixing a system ({07x}rx)ex: {Crx}(1xex) of IL

constants for &, f, k, K. Let K, be another chart covering of §. We will show
that f is IL-k near £ relative to K.
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Construct a new pair of chart coverings K#, K# of the arc & by letting
K#=U{Z1x: (I,x) €K} and K# = U{Z,y : (J,y) € K}, where ¥4 is
the set of all pairs (L, x), for all intervals L such that ) # L and L =1NJ
for some (J,y) € K, and ¥, is the set of all pairs (L,y), for all intervals L
such that () # L and L = I N J for some (/,x) € K.

It is then clear that f is IL-k near ¢ relative to K#. Indeed, if o € K#, then
a € Y for some (I,x) € K, so a = (L,x) for some nonempty compact
interval L such that L C I. Then, if we let 5#7,( = d7x and C’ﬁx = Crx, it

follows ;hat ({5#7,(}@’,{)%#, {Cﬁx}(Lx)eK#) is a system of IL constants for &,
f7 k? IC *

It is also clear that f will be IL-£ near ¢ relative to K as long as it is IL-k near
¢ relative to K#. (Indeed, let ({5§,y}(H7y)€,5#, {C§7y}(H’y)€ﬁ#) be a system of
IL constants for &, f, k, KC#. Then, for each member (J,y) of IC, we define

S‘Ly:min{gﬁy (H,y) e K* HCJ},
C’Ly:max{éﬁy :(H,y) e K*, HC J}.

It is then easy to verify that ({5J7y}(J7y)€,€, {C’ly}uy)e,a) is a system of IL
constants for &, f, k, K.)

So all we need is to verify that f is IL-k near & relative to K#. For this
purpose, we fix a system ({6§7x}(1{,x)€,¢#, {C’ﬁx}(ﬂx)e,c#) of IL constants for
&, f, k, K#. We then pick a member (H,y) of K#, and observe that we may
pick a chart x of M such that (H,x) € K#. This implies, in particular, that
¢(H) CdomxNdomy.

We then pick a positive number § such that the inclusions

B(&(1),6) Cimy,  y '(BE(),6)) S x T BEN 5x)

hold whenever t € H. (The existence of ¢ is proved as follows. Suppose
first that there are arbitrarily small positive § having the property that the
inclusion B™(£(t)Y, 6) C imy is false for some t € H. Then we can pick positive
§j, tj € H, and q; € B™(£(t;)Y,6;), such that §; — 0 and ¢; ¢ imy. By
passing to a subsequence, we may assume that ¢; — ¢ for some ¢t € H. But
then £(t;) — &(t), so &(t;)Y — &(t)Y. Since |lg; — £(t;)Y]] < ¢;, it follows
that ¢; — &(t)Y. But £(¢)Y € imy, and imy is open in R™, so ¢; € imy is
open in R™ for large enough j, contradicting our choice of the ¢;. We now
know that there exists a positive § such that B™(£(¢)Y,8) C imy for every
t € H. Suppose that there are arbitrarily small values of § €]0,0] for which
the inclusion y~'(B™(£(¢)Y,4)) € x '(B™(£()%, 6};,)) fails for some ¢ € H.
Then we can pick §; €]0,6], t; € H , and x; € y H(B™(£(t;)Y,0;)) such that
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§; — 0 and z; ¢ x 1(B™(&(t5)%, fl )). By passing to a subsequence, we may
assume that ¢; — t for some ¢ € H. But then £(t;) — &(t), so £(t;)Y — &(t)Y
= )

and {(t;)* — £(1)*. Let ¢; = 7. Then ||g; —S( DI < 65, 50 g5 — ().
Therefore x; — £(t), and then z¥ — £(¢)*. Since {(t;)* — £(t)%, it follows

that ||z — &(t;)*|| — 0. Hence xz‘ € Em(f(tj)xﬁﬁx) if j is large enough, so
z; € x HB™(E(t), 5}?3{)) if 7 is large enough, contradicting our choice of the
;)

We take Sﬁy to be the number ¢ chosen above. Then, if t € H and ¢ belongs

to Bm(g(t)Y,Sﬁ,y), it follows that ¢ € imy, so we may pick z € domy for

which 29 = ¢. Then € y(B™(£(t)Y,dny)), so z € x LB (E(H)*, 67))-

Then f(z,t) is defined. Furthermore, || f*(z*,t)| < C’ﬁxk(t). Therefore
1F¥ (@ )]l = 1Dy o x 1) (@) - (@) < AnyCFk(1),

where Apy is defined by letting

Ay =sup{[[D(y ox)(2)] : 2 € x(Zny)} .

and the set Zp y is given by

Zny =U{y "B, 0f,) t € HY,

so that Zpy is a compact subset of domx N domy.

Also, if t € H and q1, g € B™(£(2), Sﬁy), it follows that ¢1, g, € imy, so we
may pick x1, 25 € domy for which ¢; = 27 and ¢ = 3. Then, if we let

O(z1,29) = lza— 21| M ID(y 0 x ™) (22) = D(y o x™) (21|,
By =sup{0O(21, 22) : 21,22 € X(Zpny), 21 # 22},

W (ur, ug) = [[ur —usa || 7Hl(x 0 y ) (ug) = (x 0y ) ()|,
Eyy=sup {\I/(ul,UQ) tup, U2 €Y(Zay ), ur # u2} ,

CHy (AHy + BHy)EHyCny

we find
1Y (g2, t) = f¥ (@1, 1)
=||D(y ox~")(a3) - f*(a3,t) — D(y ox7')(aY) - f*(27,1)
<|[D(y ox7")(a3) - f*(a3,t) — D(y ox')(a%) - f* (a7, 1)

HD(y o x71)(@F) - £, 1) — Dy ox1)(@Y) - £, 1)
<Dy ox)(@3) - (£*(a3.) — @) |
+|(D(y o x)(@%) = Dy ox)(aY)) - f*(a%, 1)



< Ay Cfr k()05 — 2¥(| + Brry O <k (t)|23 — 27|

= (Amy + By Ck ()3 — a7

= (Amy + Buy)Clr k() (x 0 y™)(a2) — (x oy (@)
< (AHJ + BH,y>EH,yC§,xk(t>||Q2 —ql

=Chk()la: — -

It follows that ({Sﬁx}( o) el {C‘ﬁjx}( i) 18 a system of IL constants for

& f, k, K#. Hence f is IL-K near £ for K# and, as explained before, this
completes the proof of (IL.*).

It follows from (IL.*) that we can simply talk about a ppd tvvf f being “IL-k
near ¢”, and that the validity of this condition can be verified relative to
any particular chart covering, in which case the condition will be valid for all
chart coverings. We say that a ppd tvvf f is integrably Lipschitz near ¢
(abbreviated “IL near £”), if it is IL-k for some nonnegative integrable function
k defined on dom¢&.

Lebesgue times. We recall that if N € Z,, a,b€R, a<b, and ¢ : [a, b] —RY
is an integrable function, a Lebesgue point of ¢ is a point T €]a, b[ that has
the property that limyo & I o) = (1) dt = 0.

This concept can be generalized trivially to ppd IL vector fields near an arc.
Assuming that (A4) holds, dom¢ = [a, b], and the ppd tvvf f is IL near &, a
T € [a,b] is said to be a Lebesgue time of f along ¢ if (a) a < 7 < b, and,
(b) 7 is a Lebesgue point of the function ¢t — f*(£(t)*,t) € R™ for some chart
x of M such that £(7) € domx. It is easy to verify that if the conclusion of
(b) holds for some chart x such that £(7) € domx, then it holds for every
such chart.

Covariant differentiations along an absolutely continuous arc. In
this subsection, we assume that

(A5) m,u € Zy, M is a manifold of class C*, p > 2, m = dim M,
EeWh (M), a,b € R, a < b, domé& = [a,b], and Z : [a,b] — TM
is the map, defined almost everywhere, given by Z(t) = (£(t),£(t)) for
a.e. t € a,b.

The facts that 1 > 2 and £ € WH(M) imply that the concepts of “absolutely
continuous vector field” and “absolutely continuous covector field” along &
are well defined. We write Ty (§¥T M) (resp. Ty (§¥T*M)), to denote the
space of all absolutely continuous vector (resp. covector) fields along &.

Naturally, if [a,b] > t — v(t) € T¢yM is absolutely continuous, the “time
derivative” of v should be a vector field Vv € I'p1(£*T'M). To make sense of
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this in an intrinsic fashion, we define the notion of “covariant differentiation
along £.”

Definition 4.2 A covariant differentiation along & is an R-linear map
V Ty (& TM) — T (E5TM) such that, whenever v € Uy (E¥TM) and
r € Whi([a,b],R), it follows that V(rv) = rv +rVuv. O

We will use Cov(§) to denote the set of all covariant differentiations along the
arc €. It is clear that any linear combination Y7 ; s;V; of members of Cov(§)
with coefficients s; € R such that 37 | s; = 1 is again in Cov(§), so Cov(§) is
an affine space over R.

We now show that C'ov(§) is canonically identified with a certain space of sec-
tions of the pullback &*(J'T(T'M)). Recall that J'T'(T'M) is a vector bundle
over M of class C*~2 and fiber dimension m+m?. Tt follows from this that the
concepts of “measurable” and “integrable” sections of £*(J'T'(T'M)) are well
defined. (For example, a section [a,b] 3 t + o(t) € J{,T'(T'M) is integrable
if its coordinate representation [, 5] 3 t +— o(t)* € R™ x R™*™ is an inte-
grable function of ¢t whenever x is a chart and [«, ] is a subinterval of [a, b]
such that ¢([a, A]) € domx.) Also, if [a,b] >t + S(t) C Ji, [(TM) is a set-
valued map, it makes sense to talk about S being “measurable” or “integrably
bounded.” (For example, S is measurable if the set {t € [a,b[: QNS(t) # 0}
is measurable for every open subset Q of J'T'(T'M). Also, S is integrably
bounded if, whenever x is a chart and [, ] is a subinterval of [a, b] such that
&([o, B]) € domx, there exists an integrable function & : [, 3] — [0, +oc]
such that ||o*|| < k(t) whenever ¢ € [, 5] and o € S(t).)

We use T'(&*(J'T(TM))), Tineas(E(J'T(TM))), Tpi (5 (JT(TM))), to denote,
respectively, the set of all sections [a,0] > t — o(t) € Ji,yT(T'M) of the
pullback bundle £*(J'T(T'M)), the set of all ¢ € T(£*(J'T(T'M))) that are
measurable, and the set of all ¢ € T'(¢*(J'T'(T'M))) that are integrable.

We will be particularly interested in those sections ¢ that are actually lifts
of the a.e. defined map Z : [a,b] — TM. We will use T'(¢*(J'T(TM)); =),
Cineas(EX(J'T(TM)); Z), T (E(J'T(TM)); E), to denote the corresponding
spaces of sections. (Naturally, these are really quotient spaces, in which two
sections that coincide almost everywhere are regarded as equal.) So, for
example, a section [a,b] 3 t = o(t) € Ji, [(T M) belongs '(§*(J'T(TM)); E)
if and only if 7iprary i (0(t)) = £(t) for ae. t € [a,b].

If 0 € Tpi(E(JT(TM)); Z), then o gives rise to a covariant differentiation
V., €Cov(§) as follows. We pick, for each t € [a, b], a vector field f, €Tca (T M)
such that j'f,(£(t)) = o(t). (This implies, in particular, that f,(£(t)) = &(t).)
Furthermore, we require the ppd tvvf M x [a,b]  (z,t) — fi(zx) € T,M to
be integrably Lipschitz near £. (It is easy to see that this can be done, for

34



example by taking local coordinates.) Clearly, every v € I'y11(£*(T'M)) can
be written as a finite sum v(t) = S8, r(t) X (£(¢)), where the X}, are vector
fields of class C' on M, and the 7, are integrable functions. We then define

= 3 A (OX0(E) + X (O Xal (€(1)). (11)

To show that this is well defined, we must prove that if S5, 7 (t) Xx(£(t)) = 0
then S0, 74 (£) X (E(1)) + Sh, ru(H)[f1, X&](£(t)) = 0. This can be done, for
example, by using coordinates. If x is a chart and «, § € [a, b] are such that
a < and &([a, f]) € dom x, then, for ¢ € [a, f],

_ érk@ +i Dl X< E()
_ i ()X i (0)(DXE - f = Df- XE)(€(0))
_kﬁ’;l (P(OXEED) + r O DXEED) - (1)
- Y (O (Df X7 Ew
:i PO XHE) + (O DXEER) - £(6)%)
D€)X (X))
_ % (é rk(t)Xk(ﬁ(t))>x = DfF(E@)) - (ém(ﬂXk(f <t>>)x )

which vanishes identically if & | 74(t) Xx(£(t)) = 0. This proves that V, is
well defined. The identity then V,(rv) = 7v + rV,v follows trivially from the
definition of V,. So V, € Cov(§).
It is clear that if V = V., then V satisfies

Xela(TM) = V(X 0&)(t)=Lie*(£(t))(a(t), 71 X (£(t))) for a.e t,(12)

where X o ¢ is the map [a,b] 3t — X (§(t)) € TeyM, and Lie'(z) is the map
from JIT(TM) x JI'T(TM) to T, M defined in (1).
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Finally, Condition (12) uniquely determines the covariant differentiation V,,
in view of the identity V(rv) = 7v + rVo.

We now write a coordinate expression for V,. Assume that x is a chart and
a, 3 € [a,b] are such that o < 3 and £([a, §]) C domx. Let v € T'yy1a (§¥TM).
Then, for t € [a, §], v(t) = X0, v5(t)(9F 0 €)(1), so

V,o(t) = iox’%t)(a;‘ o)1) + ﬁlvww (Ifi 00 €) 1),

Since [f;, O¥]* is the column vector — 2% we find that

ozt
]
[ftﬁ] £ = le ot aﬂ 3
SO a X,J
S vt ([fe 00 8) = =D > vi(h) 5;1- Jjog,
P i=1j=1
and then
(o) (1 02 0 ) (g(t)))x: =D X)) vty =—o (@)L u(t)*.
=1
So

(Vou(t))< = o*(t) — oty - vX(1). (13)

Formula (13) implies, in particular, that the map o — V, is injective, because
the matrices o(t)*™? can be recovered from V,, and then o(t) must be the
1-jet whose representation is (£(t)%, o (t)*"4).

In addition, it is easy to see that every V € Cov(§) arises in this way, as
Vo, for some o € Tpi((J'T(TM)); Z). Indeed, given V € Cov(§), we can
partition the interval [a,b] into subintervals I, = [ty_1,%], k=1,...,N, in
such a way that each I is contained in the domain dom x;, of some chart x.
Then the identity V(rv) = 7v + rVou implies (V(rv))** = 7ok + r(Vo)*k.
On the other hand, if A denotes ordinary differentiation with respect to t,
then A((rv)**) = A(rv*k) = 70®F + rAv**. Tt then follows from these two
identities that (V** — A)(rv**) = r(V** — A)v**, showing that, for ¢ € I,
the vector ((ka - A)vx’“>(t) only depends on the vector v*#(t). Therefore
the maps R™ 3 v (t) — ((V** — V)v**r)(t) € R™ are well defined. Since these
maps are obviously linear, there exists, for each ¢, a matrix p;*(t) € R™*™
such that ((ka — V)v"k)(t) = gt (t) - v**(t). If we let o be the member of
Ui (€5(J'T(TM)); ) such that o™ (t) = (£(£)%*, X (t)) for t € I, we see that
V=V,.
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So we have proved

Proposition 4.3 For every o € T (EX(J'T(TM));Z) there exists a unique
covariant differentiation V along & that satisfies (12). Using V, to denote this
covariant differentiation, then V, is given by (11), if {fi}icy s any family
of vector fields f; € Tea(TM) such that j' f(£(t)) = o(t) and the ppd map
M x[a,b] 5 (x,t) — fi(x) € T, M is integrably Lipschitz near &. Furthermore,
the map i (& (J'T(TM));2) 3 0 — V, € Cov(€) is a bijection. O

If t = (to,t1,...,ty) is a partition of [a,b] (i.e., t is an N + 1-tuple such
that a =ty <t; <--- <ty =0), and xq,...,xy are charts of M such that
£([tj—1,t;]) € domx; for each j, then we can identify the space Cov(§) with
L'([a, b],R™*™] by assigning to each o € T':i(£*(J'T(TM)); Z) the matrix-
valued function y : [a, b] — R™ ™ such that u(t) = o(t)**"° for t € I}, where
I, = [ti—1,tx]. The resulting bijection is an affine map, which depends on t and
the x;. A simple calculation shows, however, that, if By, B, are the bijections
that correspond to two different choices of t and the x;, and d;, dy are the
distance functions on C'ov(§) obtained by transporting to C'ov(§) by means of
Bi, By the distance functions arising from the L' norm on L'([a,b], R™*™),
then d; and d, are equivalent, in the sense that there are positive constants
(4, Cy such that the inequalities C1d(V, V') < do(V, V') < Codi(V, V') hold
for all V, V' € Cov(). Therefore Cov(§) is, canonically, a complete normable
real affine topological space. This implies, in particular, that the class
Affco(Cov(€),R) of all continuous affine real-valued functionals on Cov(€) is
intrinsically defined. So Cov(§) has an intrinsically defined weak topology
Twear, characterized as the weakest topology on Cov(§) that makes all the
maps ¢ € Affco(Cov(§),R) continuous.

Given a V € Cou(§), a vector field v € T'y1.1(§¥T'M) is parallel tranported
along V if Vv = 0. It follows from (13) that the parallel translation equation
Vu = 0, written in coordinates, if V.=V, forac € I (§*(J'T'(TM)); E), is a
linear time-varying system with an integrable coefficient matrix. This implies
existence and uniqueness of the solutions. Therefore, given any t € [a,b] and
any vector vy € TepM, there exists a unique v € I'y1.1(*TM) which is
parallel translate along V and such that v(t) = vo. We write v(s) = PY,(vo).
It is then clear that the parallel translation maps, or propagators,
Psz : TeyM +— TeyM are invertible linear maps, and satisfy the following
flow identities: PY o Py, =Py, (PY,)"" = PY,,and PY =TIz, -

The following observation follows from Gronwall’s inequality and the Ascoli-
Arzela theorem.

Proposition 4.4 Let [a,0] > t +— S(t) C JL,(T(TM)) be an integrably

bounded set-valued map. Let T'(S) be the set of all measurable selections

la,b] 5t — o(t) € S(t) of S, and let X(T'(S)) = {V, : 0 € T'(S)}, so that
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Y(I'(S)) C Cov(€). Let X(I'(S))wear be X(I'(S)) endowed with the topology
induced by the weak topology of Cov(§). Then, for every s,t € |a,b], the map
S(T(S))weak 2 V = PY, € Lin(TeuyM, Tesy M) is continuous.

Proof. We must show that if {V?}4ce is a net of members of %(I'(S)) that
converges weakly to V# € X(I'(S)), then the net {PSY: (v)}geo converges to
Pgt# (v) in TeyM for every v € TeyM. In view of the flow identities, it
suffices to prove this if s and ¢ both belong to an interval [a, 3] such that
&([er, B]) € domx for some chart x.

For § € © U {#}, let o4 € I'(S) be such that V,, = V’ and let
Vo € Tyra(E5(TM)) be such that V,,Vyp = 0 and Vp(t) = v. Then all we
have to do is show that the net {Vjy(s)}geo converges to V(s).

Let Ag(t) = o3 (t), be(t) = Va(t)*, © = v*. Then we have to show that the
net {by(s)}gco converges to by (s). Since S is integrably bounded, we may pick
an integrable function & : [o, 3] — [0, +00] such that ||Ag(u)|| < k(u) for every
u € |a, 8] and every 6 € © U {#},

For 7 € [a, ], 0 € O, we have by(7) = 0+ [, Ag(u)-bp(u) du . Hence Gronwall’s
inequality implies that ||by(7)|| < C, where C' = eJu k) “5||. Then the equal-
ity by(T) = Ag(T) - by(7) implies that ||bg(7)|| < Ck(t). So the vector functions
by are uniformly bounded and equicontinuous. By the Ascoli-Arzela theorem,
applied to an arbitrary subnet {by(,)},cr of the net {bg}gce, we conclude that
this subnet has a subnet {bg(,(c))}ccz that converges uniformly to a limit b. By
well know arguments, if we show that b= by, it will follow that every subnet
of our original net has a subnet that converges to by, so the net {bg}gceo itself
converges unformly to by, implying our desired result.

Write K¢ = Ag(pc))s he = booc))- Then he(m) = 0+ [ Kc(u) - he(u) du. Since
h¢ — b uniformly, we can conclude that

b() —v+/A# )du+hm/K< Yho(u) — Ay(u)b(u))du,  (14)

and it suffices to show that the limit in the above expression vanishes. Now,
K(u)he(u) = Ag(u)b(u) = K¢(u)(he(u) — b(u)) + (Kc(u) — Ay (u))b(u) . The
integral of (K (u) — Ayu(u ))b( ) converges to zero because the functions K¢
converge to A# weakly, and b is a fixed function. In addition, the integral of

Kc(u)(he(u) — b(u)) converges to zero because he — b uniformly and the K,
are uniformly dominated by a fixed integrable function. Hence the limit in
(14) does vanish, as desired, and this completes our proof. O

Finally, we point out that the covariant differentiation operators V, extend,
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in the usual way, to fields of contravariant and covariant tensors of any type.
Here we will only need to consider fields of covectors. The operator V, acts
on Iy (€T*M) in such a way that

(w(t),v(t)) = (Vow(t),v(t)) + (w(t), Vou(t))

whenever w € Iy1a (8T M) and v € [y (€T M). This immediately yields
the coordinate expression for the action of V, on covector fields, which turns
out to be given by

dt

(Vow(t))* = i™(t) + w(t) - o(t)red. (15)

In particular, the parallel translation equation for covector fields is the familiar
“adjoint equation” w*(t) = —w*(t) o (t)*", ie., w*(t) = —w*(t)- D fX(E(1)).

The variational inclusion and Warga’s differentiation theorem. In
this subsection, we assume that

(A6) m,u € Zy, M is a manifold of class C*, p > 2, m = dim M, £ belongs
to WHH(M) , dom&=(a,b], f is a ppd time-varying vector field on M,
f 1s integrably Lipschitz near &, and &(t) = f(£(t),t) for almost all t.

Assume for a moment that the vector fields f; given by f,(z) = f(z,t) were
of class C'. Then their 1-jets j' f;(£(t)) would obviously give rise to a section
[a,0] >t — o(t) =5 fi(§(t)) € iy [ (T M), which would in turn give rise to a
parallel translation equation V,v = 0. In that case, it is well known that the
map PIX;’ D Te@@yM — TewyM is the differential of the time-a-to-time-b flow
map of [ at £(a).

For the more general case when f is integrably Lipschitz but not necessarily
of class C!, the corresponding theorem on differentiation of the flow maps was
proved by J. Warga for vector fields in R™, and yields a set-valued differential,
in the sense of Warga’s own theory of derivate containers. We now state the
intrinsic version of Warga'’s result.

Since f; is a locally Lipschitz vector field on some neighborhood of £(t) for
almost every t, it follows that f; has a well defined Clarke generalized Jacobian
df:(£(t)), which is a nonempty compact convex subset of the m?-dimensional
affine space ‘]gl(t) o) F(TM) We use df o £ to denote the set-valued map
la,b] 5 t— Of(&(t)) C Jg(t e ))F(TM). It is then easy to see that Of o &

is measurable and integrably bounded.
The expression I['(Of o £) will denote the set of all measurable selections

[a,b] >t — o(t) € (Of 0&)(t) of Of o &, and we use Vppsee) to denote the

corresponding set of covariant differentiations. Since df o £ is an integrably
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bounded measurable set-valued map with compact, convex, nonempty values,
the set Varog) is weakly compact.

It then follows from Proposition 4.4 that, if we define
Viosee) det PY.vVeV — (pYo . ING)
t,s - { s,t * S F(afog)} - { st S ( f o 5)}7

then P,Z 10728 is a compact subset of Lin (T M, TesyM), all whose members
are invertible maps, whenever s,t € [a,b]. Furthermore, it is clear that the

sets PX 10729 gsatisfy the flow identities

Pzr(afof) o Pzr(afoé) :er(afoﬁ) 1f a S r S s S t S b7 (16)
(PXF<3f°§>)—1=P¥F<"’f°@ if s,t € la,b], (17)
PX N0 = {lg o} if t € [a,b], (18)

where, if X7, Xy, X3 are linear spaces, and A; C Lin(X;, X;11) for i = 1,2,
then Ay o Ay is defined to be the subset of Lin(X7, X3) given by the formula
AyoAy={LyoLi:Li €Ay, Ly € Ao}, and AT'E{L L e Ay} if Ay is a

set of invertible maps.

Remark 4.5 It is easy to see that the first flow identity is also trueif r > s > ¢,
but can fail to be true if s > max(t,7) or s < min(¢,r). For example, if

s>t =r, then Pgrw@ = {1, }, while on the other hand

'Ptvl“(afoﬁ) o PSVF(afOO — (Pvf(af%))fl o IPVF(GfOQ

,S )T st s,t )

which is never equal to the set {Ir,, a}, as long as szafog) has more than

one member. O

We are now, finally, in a position to state and prove Warga’s differentiation
theorem (cf. [30-33]). (Recall that the time t to time s flow map @gt of f was
defined on Page 28.)

Theorem 4.6 Under Assumption (AG), there ezists a neighborhood U of &(a)
such that the map q){ﬂ 15 defined, single-valued, and Lipschitz on U. Then the
compact set PIZF(af(’Q C Lin(TeyM, TewyM) is a Warga derivate container of
(I)bf’a at &(a).

Proof. In view of the chain rule for Warga derivate containers (cf. (WDC.4),
Page 9), and the flow identity (16), it suffices to prove our conclusion if the
interval [a, b] is such that £([a, b]) is entirely contained the domain domx of a
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chart x. But then we may assume that M is an open subset of R™ and, for
some positive number § and some integrable function f : [a,b] — [0, +o0]],
the tvvf f is defined on the tube 7,5 (where, for each positive J, we let
Ts={(z,t) :a <t <b, ||r—£@)| <0}), and satisfies, for almost all ¢ € [a, b],
the bounds || f(z,t)|| < k(t) and || f(z,t) — f(a',t)]| < k(t)||z — ||, whenever
z,x" € R™ are such that (x,t) € To5 and (2/,t) € Ty;.

The first assertion, that U exists, is trivial in view of the Lipschitz bound for
f and Gronwall’s inequality. To prove the second assertion, we regularize f
as follows: we fix a nonnegative function ¢ € C*°(R™,R) such that p(z) =0
for ||z|| > 1 and [gm @(x)dz = 1, and then for 0 < p < 6, (2,t) € T3, we
define f,(x,t) = Jgm @(h)f(x + ph,t)dh. Let (t) = [l k(s)ds, K(t) = e*®),
ke = K(b), K, = K(b) = e". Then

(*) If0 < p < 6, then the map B™(£(t),0) 2 z +— f,(z,t) € R™ is of class C*°
for almost all t € [a,b] and satisfies || f,(z,t)|| < k(t), [|Df,(z, )| < k(t),
and || f,(z,t) — f(z,t)|| < pk(t) whenever x € B™((t),6).

Now fix a positive J, such that K, (1+ 11*7)5* < 6. Then the flow maps @i’;, for
0 < p < 4., are defined on the set U, = B™({(a), d,) and satisfy

@7 (z) — ®fr,(a")|| < K (t)]|x — 2|,
0], () — DL (2)]| < K(t)w(1)p.

In particular, @,{”a(m) — @{;a(ac) as p | 0 uniformly for z € U,. Furthermore,

the maps <I>£”a, for p > 0, are of class C*.

It is clear that the set T'(Of o &) consists of all the measurable selections
la,b]2t— A(t) eR™™ of the set-valued map [a,b]>t+— df(£(t)) CR™ ™,
where fi(z) = f(z,t). For any such A, let M4 denote the fundamental matrix
solution of M = A(t)M, so M, belongs to C°([a,b] x [a,b], R™ ™), and M4
is characterized—using I"*™ to denote the m X m identity matrix—by the
integral equation

My(t,s) =Tm"™ + /A(T)MA(T‘, s)dr.

S

Then

val“(afoﬁ) — M’ Where M — {MA(b, CL) : A € F<af o 5)} .

,a

For each § such that 0 < ¢ < 4., and each t € [a,b], use D°(t) to denote
the closed convex hull of the set of all the derivatives D fi(x) at all points
x € B™(E(L),0) Ndiff(f;) (cf. Page 7). Then [a,b] >t~ DO(t) C R™™ is a
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measurable set-valued map with compact convex nonempty values, such that
|L]| < k(t) whenever L € D°(t). Let I'(D°) be the set of all measurable
selections [a, b] 2t A(t) €ER™ ™ of the map D’, and write

= {My(b,a): AcT(D)}.

Then the M? are compact subsets of R™*™ and NgsoM°® = M. (Reason:
Let L € Ns=oM?°. Let {e,}ren be a decreasing sequence of positive numbers
that converges to 0 and is such that £; < d,. Then for each £ € N we can find
Ay € I'(D*) such that L = M, (b, a). Since I'(D") yeqr is compact and metriz-
able, we may pass to a subsequence of the sequence { (&g, Ax) }ren and assume
that {A;}jen converges weakly to a limit A. Then the fact that L = My, (b, a)
for all k£ implies that L = Ma(b,a). We now show that A € I'(0f o £)}. For
k € N, let Ay be the the set {A; : j > k}, and let A be the strong closure
in L'([a, b], R™™) of the convex hull of Aj. Then A} is strongly closed and
convex, so it is weakly closed. Therefore A € Aj,. Hence we can find B;, € A,
such that ||By — A|[zr < 27%. Then the sequence {By(t)}ren converges to
A(t) for all ¢ in a subset E of [a,b] such that meas([a,b]\FE) = 0. If t € E,
Jj.k € N, and j > k, then B; is a convex combination of members of A;, so
B;(t) € D*(t). It follows that A(t) € D°*(t). Since this is true for all k, and
NkenD(t) = 0f:(&(t)), we conclude that A(t) € df(£(t)). So A e I'(0f o &)},
and then L € M.)

We now fix ¢ such that 0 < § <4, and compute the differential D@{”a( ), for
r € B™(&(a),d), 0 < p < d,. In view of (*), we can use the classical variational
equation, and conclude that

DOY (x) = Ma,,(b,a),  where A,,(t) = Df,,(®(z)),

and f,+(y) = f,(y,t). On the other hand,

Apalt) = [ @(W)DS(@F (@) + ph,t) .

Rm

Also, if we fix h such that ||h|| > 1, and let z =y + ph, y = Cb,fi'il(x), then z
satisfies
Iz =& < lly = €@ +p
< ly = Dfa(@)]| + |1 Bfa(z) — SLa(E(@)] + p
< K()w(t)p+ K(t)|lz — @) +p
< K(t)r(t)p + K(t)d +p
( ki +1)p+ 5)

= 606,0)-

I/\

lIg;
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It follows that A,.(t) is an average of members of DBEw) (t) (because ¢ > 0,
@o(h) =0if [[h]| > 1, and [ =1). So A,,(t) € DO,)(t). Hence A,, belongs
to [(DCP), so DY (x) € MPGP),

Given a neigborhood N of M in R™* ™ we can find a positive 3 such that
M?P C N, and then find positive 8, j such that 5(8, 5) < 5. Then D@Z{fa(x) eN
whenever 0 < p < p and || — £(a)|| < 4. Since the maps @l{fa are of class C!
on U(§) = B™(£(a), §), and converge uniformly to @,{,a on U(d), we conclude
that M € WDC(q)g,a;f(a)), as desired. O

5 The maximum principle

We now state and prove our basic version of the maximum principle, as a
necessary condition for a reachable set to be separated from some other given
set at the terminal point of the reference trajectory. We will then deduce
from this result the usual sufficient condition for local controllability along a
trajectory for Lipschitz systems, and a slightly stronger version of the usual
necessary condition for optimal control.

In all three results, the basic ingredient is a Lipschitz control system

S(t) = f(&(t),n(t),t) for ae. t € domé,
n(t)eU for all t € domn,

G ewtt (M), n(-)eUd, and domé =domy.

The system is specified by a system data 4-tuple D = (M, f,U,U) such that

) M (the state space) is a manifold of class C?;

) U (the control space) is a set;

) f (the dynamical law) is a family {f.}uev of ppd tvufs on M;

) U (the class of admissible controllers) is a set of U-valued maps whose
domain is a compact subinterval of R.

(H1
(H2
(H3
(H4

Given such a data 4-tuple D,
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e We let m = dim M.
o We use f(z,u,t) as an alternative notation for f,(x,t).
e A U-control is a U-valued function 7 such that domn is a nonempty
compact subinterval of R. (Then (H4) says that U is a set of U-controls.)
e If nis a U-control, then
- fy denotes the ppd tvwf M x R 3 (z,t) — f(x,n(t),1);
- if t € R, then f,; denotes the ppd vector field M > x — f(z,n(t),t);
- if £ is an arc in M, then fn,g(t)déff(f(t),n(t),t);
- a trajectory for 7 is a trajectory (cf. Page 28) of f,.

e A trajectory-control pair (abbr. TCP) is a pair (£, n) such that 7 is a
U-control and ¢ is a trajectory for 7.

o If v = (§,n) is a TCP, then the domain dom~ is the set dom 7, which,
by definition, is the same as dom&.

e An admaissible control is a member of U.

e A TCP (§,1n) is admissible if n € U.
e We write TCP(D), TCP,4m(D), to denote, respectively, the set of all
TCPs of D and the set of all admissible TCPs of D.

In addition, we specify z,, N, F and S such that

(H5) z. € M, N is a manifold of class C*, F is a ppd map from M to N
such that dom F' is open and F' is locally Lipschitz on dom F', and S
is a subset of N,

as well as a reference interval [a.,b,| and a reference trajectory-control pair
(&, 1) such that

(H6.a) a., b €R, a,<bi, (&, 1x) ETC Py (D), and dom n, =|ay, b.],
(H6.b) & (ay) = xy, &(bs) € dom F and F(&.(by)) € S.

In order to state precisely the technical hypotheses on the tvvfs of the system,
we first let L{[fw*] denote the set of all constant U-controls defined on [a., b,],
and define U", ; = U, U{n.}, so Uy, 1 consists of the reference control
N, and all the constant controls whose domain is [a., b,].

The key technical hypothesis on our control dynamical law is then
(H7) For each n € L{[fl’j’b*], the tvuf f, is integrably Lipschitz near &, .
In addition to the above data, we will also specify C, A such that

(H8.a) C is a WDC' approzimating multicone of S at F(&.(by)),
(H8.b) A is a Warga derivate container of F' at &.(by). .

Our last hypothesis will require the concept of an equal-time measurable-

44



variational neighborhood (abbr. ETMVN) of a controller n. We say that a
set V of controllers is an ETMVN of a controller 7 if

o for every N € N and every N-tuple u = (uy,...,uy) of members of U, there
exists a positive number € = (N,u) such that whenever 1 : [a,,by] — U is
a map obtained from n, by first selecting an N-tuple M = (M, ..., M)
of pairwise disjoint measurable subsets of [a.,b.] with the property that
Zj]‘il meas(M;) < e, and then substituting the constant value u; for the
value 1, (t) for every j =1,...,N and every t € I;, it follows that n € U.

We will then assume

(H9) The class U is an ETMVN of n..
5.1 The mazimum principle for set separation

For the set separation problem, we specify a data 14-tuple
D*P = (M, f,UU, ., N, F, S, ., bs, §4 14, C, A) (19)
We let D = (M, f,U,U), and we define the D-reachable set from x, over the

interval |a., b] to be the set Rop,[q, p,1(7+) given by

/R’D;[a*vb*](x*) = {f(b*) : (ga 77) € TCPadm(D)a g(a*) = IL’*} .

The local separation condition is then
(H*eP) there exists a neighborhood V' of F(&.(bs)) in N such that
F(Ropyfa.p.)(x:)) VSNV = {F(£(b))}-

It will also be convenient to single out the following strong form of the negation
of (H**P), that we will call the Lispchitz arc intersection property.

(HEim) There exists a Lipschitz arc :[0,1]— F(Rpya, p,](2+))NS such that
7(0) = F(&(bs)) and y(1) # ~(0).

We define the Hamiltonian of f to be the real-valued ppd function H/ on
T*M x U x R given by

HY (z,p,u,t) =p- f(z,u,t) for x€ M, pe T:M, uec U, tcR.

The following is then our version of the Lipschitz maximum principle for set
separation.

45



Theorem 5.1 Assume that the data D* satisfy Hypotheses (H1) to (H9).
Let L be the set of all pairs (u,T) such that u € U, 7 €la,,b.[ and T is a

Lebesgue time along &, of both time-varying vector fields f, and f, . Then
either (HEP ) holds, or

(*) for every covector u € T )y N such that p # 0 there exists a 4-tuple
(o, v, A, L) such that
Ty 1S a nonnegative real number,
v € Tre,o i,
AEA,
L is a map [a., b, 2t +— L(t) € ng*(t),é*(t)r(TM>’ which is a measurable
selection of the set-valued map [a.,b] 2 t — 0f,, +(&(2)),
5. if
a. ™ =vo\ (so that T € T¢ p M),
b. Vi € Cov(&,) is the covariant differentiation corresponding to L,
c. m(t) =n# oPIth for a, <t < b, (so that the field of covectors 7 is
the unique absolutely continuous solution of the “adjoint Cauchy
problem” Vim =0, m(b,) = 7 ),
then the following three conditions are satisfied:
I. The Hamiltonian inequalities: for every pair (u,7) € L, the
inequality H (&.(7), 7(7),n.(7),7) > H/ (&.(7), 7(7),u, T) holds.

oo =

II. Transversality: mou—v € C*-.

IIT. Nontriviality: v # 0 or my > 0.
In particular, if the local separation condition H*? is satisfied, then (*) holds.

Remark 5.2 The Hamiltonian inequality of the theorem obviously implies
the “weak Hamiltonian maximization condition”

(L.wk) For each u € U there is a Lebesque-null subset N'(u) of [ax,bs] such
that HY (&.(7), w(7),n.(7), 7) > HI (&.(7), 7(7), 0w, 7) if T & N (u).

Under some extra technical hypotheses, the following “strong Hamiltonian
maximization condition” can then be proved.

(Lst) There exists a Lebesgue-null subset N of [ax, b,] such that the equality
HI(6.(7), 7(7), (1), 7) = max{H' (&.(7), n(7),u,7) :u € U} holds
whenever 7 ¢ N.

For example, it is easy to prove

Proposition 5.3 Under the hypotheses of Theorem 5.1, if (H-P'™) does not
hold, 7 is as in the conclusion of the theorem, and in addition U is a separable
metric space and the function U 3 u — f(&.(t),u,t) is continuous for almost
every t € [ay,by], then (L.st) is satisfied.
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Proof. 1t suffices to pick for each u € U a subset N (u) as in condition (I.wk),
and a null set B such that the function U > u +— f(&.(t),u,t) is continuous
for all ¢ ¢ B. We then let D be a countable dense subset of U, and define
N = BUUuep N (u). Tt is then clear that the equality of (I.st) holds whenever
T¢N. O

Proof of Theorem 5.1. Using Hypothesis (H7), we pick, for each U-control n
such that 7 is constant or 7 = 7,, an integrable function k, : [a., b.] — [0, +-00]
such that f, is IL- k: near &, (cf. Page 33). We then let L be the set of all
(u,7) € L such that, in addition, 7 is a Lebesgue point of ku and kn*.

The key step of our proof will be the construction of a “needle variation” ¥*"
for each (u,7) € L. For this purpose, we fix a pair (u,7) € £ (so in particular
a, < 7 < b,). We then fix a 4-tuple (x, @, d,C) such that x is a chart of M,
a,9,C €]0,+oo[, [T — a, 7+ a] C [a., b, and & ([T — a, 7 + a]) is a subset of
dom x, having the property that, whenever ¢t € [T — «, 7 + ¢, it follows that

(1) B™(&(1),0) C imx,
(ii) fu(zx,t) and f,, (z,t) are defined for every z € x~ (Bm(f*(t x0)),
(iii) the following four inequalities hold for z, 7 € x 1 (B™ (&, (¢)*,0)):

[ ful, )| SC/%u(t% [ fula, t)* = fu(@, )| <C (t)llxx—IxH
1o ()X < Clig (8) || o (0, 8)* = Fi (%, 6| < Choy, (8|2 — 7]
We then let
ku(t) = Cl%ua) ) ff = ky ( ) ) Uy = fu,ﬁ* (T) )
kﬂ* (t) = Cl%n* (t) ) k k (7—) ) 17* = fn*,& (T) ’

and define L, ; to be the linear map from T¢, M x R to T¢, ;)M given by

L..(Az,Ac) = Az + Ao (v, — v,) for Az €T, )M, Ac e R.  (20)

The variation ¥*" is going to be a set-valued map, whose graph will be
the union U, 5 Graph(¥}7), where {W}7 }o< <, is a family of single-valued
maps, depending on a small positive parameter p. To construct the maps W7,
we first let

0(t) = [kn. (t) — kel + [ku(t) = kul + [ fug. @) = O3l + [ fon e () — 021,

and observe that the fact that (u,7) € £ implies that limy, o & Lo (t)dt=0.
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Next, we define measurable subsets E, of the interval [T — «a, 7] by letting
E,={te[r—a,7]:6(t) <p} if p> 0. Then, if 0 < h < «a, we have

T

1 1 1
 meas([r — h, 7]\E,) < — / o(t)dt < — / o(t) dt
h oh oh

[r—h,7\E, T—h

so limy,|o + meas([7 —h, 7]\ E,) = 0, and then limy, o + meas(E,N [T —h,7]) = 1.

Using the sets E,, we define controls n™* : [ay, b,] — U by letting n*™*(t) = u
if t € E, and n"™°(t) = n.(t) if t ¢ E,. We then let

Vi (z,2) = (@177 0 @l () (21)

for z near £.(7) and small positive . (In other words: we construct @Z’T(x, £)
by starting at = at time 7, and following a path [0,2¢] 3 s + 7,.(s) in such
a way that (i) we first let 7, .(s) = <I>£” s-(x) for s € [0, €], that is, we follow
the trajectory of the reference control 7, backwards in time up to time 7 — ¢,
and then (ii) we let v,.(s) = @f”u(;; P (ze(e)) for s € [e,2¢], that is, we
move forward in time up to time 7 using the control n*7.)

We make (21) precise as follows:

e For each positive p, we let Z(p) be the set of all positive numbers r that
satisfy the inequality 4r(1 + €")(k, + ks« + 2) < min(J, p), and observe that
Z(p) CZ(p') whenever 0 < p < p'. We then let 7(p) = sup Z(p), so that

47(p) (1 + ™) (ky + kv + 2) <min(é, p) whenever p >0, . (22)
0<7(p) <7(p) whenever 0 < p<p', (23)
hg)l 7(p)=0. (24)

P

e We then let B, = {x € domx : ||[2* — &(7)¥|| < r}, for 0 < r <.
e For each positive r, we let &(r) be the supremum of all the real numbers
such that 0 < e < min(a,r) and 2 []__(k,(t) + k,.(t)) dt <r. Then

0 < &(r) <min(a,r) whenever r >0, (25)

(26)

2 / (ku(t) + Ky, () dt <r whenever r >0, (27)
T—E&(r)

g(r) <&(r')whenever 0 <r <71’ (28)

11{(1)1 g(r)=0. (29)

o We write &[p] = £(7(p)), and define D, = {(z,) : @ € Br,),0 < & < &[p]}.
Then D, C D,, whenever 0 < p < p'.
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It follows from the above choices that

(A)

(B)

(C)

If we let ¢(p) = 2¢™P) (k,+k.+p), then 27(p)c(p) +47(p) (ky+k.+2p) < p
whenever 0 < p < 1. (This inequality will be used later.)

For every r €]0,0] the set B, is a compact neighborhood of £.(7), and
the map B, > z — 2™ is a bijection onto the compact ball B™(£.()*,r),
which is a subset of B™(£.(7),9).

Boryy C x H(B™(&(t)%,0)) for every p and every ¢ € [r — £[p],T].
(Indeed, suppose that ¢t € [r — &[p|,7] and = € Bys,). Then
x € domx, because 27(p) < 4§, and ||z* — &(7)¥|| < 27(p). On
the other hand, if s € [t,7] then of course s € [r — a,7], so
£.(s) € x HB™(£(s)%,6)), and then &,(s) € domx. Furthemore, for
almost all such s, [|€.(s)X|| = || £(€.(5),1.(5), 8)%|| < Ky, (s). Since this is
true for almost every s € [t, 7], it follows that

6O = &P < [ Ry ()ds < [ F(s)ds < ().

T—Elp]

Hence ||z* — &, (¢)%]] < 37(p) < 6, so z € x L(B™(&.(1)%,0)).)

The bounds
[ fulz, | <ku(®),  [[fulz, ) = ful@ O)*]] < ku(t)||2* — 2,
[ fo ()N < Ky (8) s o (2, 0) = [ (2, 0% < ke, () [ — 2|

hold, for every p, whenever z,7 € By, and t € [ — &[p],7]. (This
follows from the fact that By, C x 1(B™(£.(1)*,0).)

For every p, if x € By, then <I>£"T* (x) is defined and belongs to dom x

for every ¢ € [r — &lp], 7], and |7 (2)* — || < [T k. (5) ds < 7(p),

so in particular CID{}* (x) € Bar(y).

For every p, if (z,e) € f)p, then ®]""7" (<I>f”*

P T—E,T(aj)) is defined
and belongs to domx for every t € [ — ¢,7]. Furthermore,
18127 (0, () = 241 < 7y (2. () + hu(5)) ds < 7(p), 5o that,

in particular @ii”i;’p (@f’_*w(w)) € Bar(p).-

It follows from (E) and (F) that ifg”(x,a) is defined and belongs to Bag(y)
whenever (z,¢) belongs to ﬁp. Furthermore, all the “intermediate points of
the construction of W47 (x,e)”—that is, the points that lie on the path v, .
described above—Dbelong to Bar(,). Therefore, at all these points the bounds of
(D) hold. Hence all the calculations involving these points take place within
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Bar(,) and as long as we never leave By, we can do our calculations by
identifying the points x € M with their x-coordinate representations, that is,

WX

by just writing “x” when we really mean “x*”. We will use this notational
simplification, until we arrive at conclusions that are manifestly independent
of the chart.

Simple applications of Gronwall’s inequality then yield the inequalities

157 (z,6) = U7 (2, )| <"l — 2], (30)

157 (2,6) = U37(3,¢) — (2 — 2)|| < 7(p) ||z — 2| < pllw — 2|, (31)
if (z,¢) and (%,¢) belong to D,

We now estimate ||\iﬂp"7(:c, £1) — @g’T(x, g)||, for (z,¢,) € D, and (r,£,) € D,,.
Assume first that e, < 1. Let y = ®/™_ _(z), and write £(t) = @,ﬁ’figf (y) and

T—E1,T

£(t) = ‘I){,le(y) for 7 —e; <t < 7. Then

VLT (2,80) = (@157 o @, ) (x)
=0l (y)

T, T—€1

={(1),

Uy (,e0) = (87570 0 B, ) (1)
= (el ol odln, ()
= (e 0@l ) ()
=0l (y)
=¢&(7),

where 7 is any U-control such that 7(t) = n.(t) for 7 —e; <t <7 — g9 and
n(t) = n*7P(t) for 7 — ey <t < 7. Then, if we write k =k, + k., and let

S<t) = [T — &1, min<t77_ - 52)] N Ep ) a(s) = f(g(s)au’ S) - f(g(s)w 77*(3)7 S) ;

we find
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= [ (£ (), ) = FE(s) m"7(s). ) ds
+ (f(é(s>7u7 8) - f(g<5)77]*(5), S)) ds

[r—e1,min(t,7—e2)|NE,
t

= [ (57 €l )= 17 G ) s+ [ a()ds, (32)
S(t)

T—E1

le®) €D [ Rs)IE(s) ~ &)l ds + [ flals)| ds (33)

T—€1 S(t)

If 5 belongs to E,, then || /(E(s), u )|l < k(s) and [ FE(s), m.(5), 5)]| < k().
Furthermore, k(s) < k, + k. + p. It follows that [|a(s)| < 2(k, + k. + p), s0
that [g¢ lla(s)|lds < 2(k, + k. + p) meas(S(t)), from which we conclude that

/ la(s)| ds < 2(ky + ks + p) meas([r — 1,7 — 23] N E,).
S(t)

Let 6°(¢) = meas([T — &, 7] N E,). It then follows immediately that

meas([7 — 1,7 — &) NE,) = 651,52 ’

where 62 _ = 6”(e1) — 67(e2) . This in turn implies that

/ la(s)| ds < 2k, + k. + p) 67, .,
S(1)

This fact, together with (33) and Gronwall’s inequality, imply, if we write
e(p) = 2¢™P (k, + k. + p), that

nd - - i k(s)ds . _ ~
&) = E@I < 2(Fu + Fu + plel—= " %52, < e(p)or, .,
If we take t = 7, then £(7) = \iﬂ;”(a:,sl) and (1) = @g’T(x,EQ), so we have
proved that ||\IIZ’T (x,e1)— ﬁ/;”(x, g2)|| < &(p)o?, .,, under the assumption that
€1 > 9. A similar estimate is clearly valid when e; < €9, and we then get the

unrestricted estimate

157 (2, 210) =07 (2, 20) || €(p) |62, o, | for 2 € By, e1,e2€[0,E[p]]. (34)

P €1,€2

In addition, if s € E, we have
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1F(E(s),u, 8) = Tl < Hf(f(S)J u,8) = f(&(8), u, 8)[[ 4[| (€ (s), 1, 8) = 0|
<ku(s)[1€(s) = &)l + p < 47(p) (ku + p) + p.

Similarly, || £(£(s), 7(s), ) — T.|| < 47(p)(k. + p) + p. On the other hand,

la(s) = (u = )| < 1 F(E(5),u, 8) = Tull + 1F(E(5) 1e(5), 8) = Tl
and then ||a(s) — (0, — 0s)|| < 47(p)(ky + kv + 2p) + 2p.

Clearly, (32) implies, if we write E51°2 = [T — 1,7 — &3] N E,,, that

€)= En = [P €~ ) dst [ als)ds

T—E1 E;1’52

from which it follows, using (A), that if 0 < p < 1, then

[W5T (2, 61) — U7 (2, 20) — (6°(21) — 6°(22)) (B — 0. |
< 27(p)ep) |62, ., |+ (47(p) (Ru-+ kut 20)+20) |67, ., | < pl6?, _, | (35)

(This inequality has been proved assuming that £; > &9, and then it follows,
by interchanging ; and ey, that it is also true for &1 < &5.)

The function 67 : [0,£[p]] — R is nonnegative, monotonically nondecreasing,
and satisfies 67(0) = 0 and 6°(¢[p]) = a[p] > 0, where we define 7p)
by letting o[p] = meas([T — &[p], 7] N E,). The function need not be strictly
increasing, so ¢” need not be invertible as a map from [0, £[p]] to [0, a[p]]. On
the other hand, 67 is continuous, so ¢” maps [0, £[p]] onto [0, a[p]], and (34)
tells us that \ifg”(:c, £1) = \i’Z’T(QZ, g£9) if 6°(1) = 67(e3). It follows that we can
“change variables and use o € [0,5[p]] instead of ¢ € [0, £[p]].” Precisely, we
define D, = {(z,0) : © € By,),0 < 0 < d[p]} and, for (z,0) € D,, we let
\I/Z’T(x, o) = \I~/z’7(x, £).

Then (34) says that [|[W}7(z,01) — V)7 (x,02)|| < &(p) |01 — 02| whenever

(z,01) € D, and (z,0,) € D,. If we combine this with (30), we get the
Lipschitz estimate

W8T (21, 01) — W7 (22, 02)|| < €772y — 22| + E(p) |01 — 02, (36)

valid whenever (x1,01) and (22, 02) belong to D, and 0 < p < 1.

Also, if we combine (31) and (35), we get the estimate

U5 (21,01) — V)7 (29, 00) — (21 — 22) — (01 — 02) (Vs — V)|

<p(llzr = @2l + |or — 02f) - (37)
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The map W3 : D, — R™ satisfies U7 (x,0) = x. So we can extend W}'" to the
set f)pdéfB;(p) x [=alp], ap]], by requiring that the maps o — W37 (z,0) —
be odd, i.e., by defining V)" (z,0) = 22 — V" (z, —0) for (z,—0) € D,. We
use the same expression W)™ for the extended map. Then

(G) If0<p<1, then the bounds (36), (37) hold for (z;,0;) €D, , i =1,2.
(H) w7 (z,0) =z whenever x € By(,).
(I) If a <7 <7, then there exists a positive number p such that
(L*) If 0 < p < p, then @iﬁ’; (x) is defined for every x € By, and
VT (z,0) € RD;H,T](CDQ’; (x)) whenever (z,0) € D,.

(To prove (I), we first observe that (IDQ’; (x) is defined for z = £,(7), so there

is a neighborhood N of &,(7) such that @7{’7; (x) is defined for all z € N. Since
(24) and (29) imply that lim, | £[p] = 0, we may pick p such that £[p] < 7—7
and By € N. Since (23) and (28) imply that the functions p — 7(p) and
p — Elp|] are increasing, it follows that

glp) <7 —7 and By, C Brp €N whenever 0 < p < p.

This implies, in particular, that if 0 < p < / then ®I™ (x) is defined for

all © € By(,). Furthermore, if 0 < p < p and (z,0) € Dp; then x € By, so
<I>£t’ji (x) is defined, and, if we let z = <I>£t’; (x), and pick e such that 0 < e < &[p]
and o = 6,(¢), then

U (1,0) = WO (B2 (2), 0) = WU (B2 (2),6,(€)) = WLT (D)% (2), &)
= (@117 0 BT, ) (T (2)) = BT (@ (2)) = BT ()

T

showing that W37 (z, o) is reachable from z over the interval [7,7].)

The bound (36) tells us that the map W3™ is Lipschitz, and then (37) enables us
to determine, approximately, the Clarke generalized Jacobian W47 (€.(7),0).
Indeed, if W)™ is classically differentiable at a point (z,0), and the differential
DU (z,0) is the linear map L : R™ x R +— R™, then, if we write

Ag,x,0,Az,Ac) = V)T (z + eAx,0 +eAo) — V)" (2,0),

it follows that lim. ) tA(e, z,0, Az, Ao) = L(Az,Ac). On the other hand,
(37) implies, if L,, ; is the linear map defined in (20), that

HéA(a 7,0, Az, A) = Ly, (Az, Ao

= éHA(g, z,0,Az, Ao) — L, - (eAx, gAU)H
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Lie .
=~ H\IJ;‘J(x%—sAx, o+elAo) =V, (1,0)—cAr—cAo(v,—s)

< Z(ellaa] +elao])
= pll|A] + |As])
<2p(|Aall” + A0,

since ||[Az|| + |Ac| < 2(||Az|? + |Ac|?), and v/2 < 2. We may then let e
converge to 0, and find that ||(L — L, )(Az, Ao)|| < 2p(||Az|? + |Ac|?)Y/?,
so ||L — Ly.-|| < 2p.

Let A, -(p) be the set of all linear maps L : R™ x R +— R™ such that
|L — Lu-|| <2p. Then we have shown that all the derivatives of W47, at all
points (z,0) € diff(¥}7), belong to A, (p). Since A, ,(p) is compact and
convex, it follows that OV} (£.(7),0) € Ay - (p).

We now let ¥ be the set-valued map from MxR to M such that y € ¥*"(z, o)
if and only if y = W7 (z, o) for some p such that (z,0) € D,. Then

(#) The set {L,,} is a Warga derivate container of U at (£.(7),0).
(##) If (u,T) € L, then, given any 7 such that a, < 7 < 7, the set-valued
map W7 is such that "7 (0, :(2),0) C Rp,z.(2) whenever (z,0)
belongs to a sufficiently small neighborhood of (£.(7),0) in M x R
and o > 0.

We are now ready to combine the one-parameter needle variations ¥*" into
multiparameter variations. Suppose first that we are given a finite subset
F of ﬁ, such that the times 7 of the pairs (u,7) € F are all different.
We can then write F = {(uy,71),- .., (un,7n)}, where uy,...,uy € U and
Ay <71 < Ty < -+ < 7n < b,. Fix a family 7 = {%j}jyzl. of times 7; such that

A< T <TI<T<Ta< <IN 1 <TN_1 <TN<Tny <D].

We then let X; = T¢, ()M, Y; = Lin(X; x R, X;), and write o) _ g
Then there exist neighborhoods N'@ of £,(7;), and positive numbers ¢ such
that (@, ;. (2),0) C Rpus,»)(2) whenever z € N and o € [0,5).

Define 50 = [—5M 50] x -+ x [=5®,50], 5O+ = [0,50] x --- x [0,59)].
Then construct set-valued maps Y@ : £0 s 2M for 4 = 1,... N, by first
letting YM (gy) = W (&,(71),01), and then defining the Y@ recursively for
i>1 by letting TW(o;) = ¥ (@fi"}ifl(T(i_l)(ai_l)),J,») for ¢ > 1, where
we write 0; = (01,...,0;). It follows that YW (01) C Rpya..n)(&(ar)) if
o1 € [0,6W], because YW (ay) = ¥ (& (1), 01) = ¥ (@ﬁ}l(f*(ﬁ)),m),
so YW (gy) C RD;[fl,n](f*(%l)) C Ropifa.,m)(€(as)). It is then easy to prove
inductively that Y (a;) C Rpa. n)(&x(ax)) for every i and every o; € T
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(Indeed, assume that i > 1 and T0Y(e, 1) C Rop.a. . ,(&(as)) whenever
0,1 € X0=D+ Then, if 0; € F, we have

T(i)(ai):\p(i)(@fﬂ* (T(i_l)(ai—l))70i>>

=w (@l (@l (T (gi0))),0:),

SO
T(l) (02) g R'D,[’f‘l,n] (q)ij;_l_l (T(Z_l) (O',L_l)))

def % i—

EU{Ropni(v) sy € ®Lr (10D (0:0)) )
Since A |

@7{:7;}_71 (T(z_l) (o-i—l)) C RD;[Ti,l,ﬁ-](T(l_l)(ai_l)) s

and

TD(0,-1) € Royfanri)(u(an)
the desired conclusion that Y (a;) C Rp.a, (& (ax)) follows.)

Next, we define T(O-N):q)b*,ﬂr]v (T(N) (0'N>>. Then Y‘(O'N) QRD;[ahb*]({f*(a*)) if
on € St because YWV (on) C Rpfa..ry(é:(as)). Hence T maps S+
into the reachable set Rp.[a, 5.1(&«(ax)).

For each measurable selection L of the map ¢t — 0f,, 1(£«(t)), define linear
maps Q"% from R’ to Ty, ;)M by letting Q%*(01) = Ly, +,(0,01), and then,
recursively,

Q(0:) = Lu,r, (PYE_,(Q7 1 (0i-1)),04) -
Then define Q% (ay) = PV~ (QN?L(UN)), so QL is a linear map from RV to

b, TN
Te,b.yM. Finally, we let @ denote the set of all maps QL. for all measurable
selections L of the map ¢t — 0f,, +(£.(t)). Then Q is a compact subset of
Lin(RY, T¢, 5,y M). A simple calculation then shows that Q is a Warga derivate

container of T at (0,&,(b,)) € RN x M.

Since T maps the nonnegative orthant RY into Rp.ja. p.(Ex(as)), it follows

from Examples 3.10 and 3.11 that the set @ -RY = {Q -RY : Q € Q} is a
WDC approximating multicone of Rop. [, p.1(&4(ax)) at & (by), and then A-Q-RY
is a WDC approximating multicone of F(Rp,. p,1(€(ax))) at F(£.(bs)).

Now assume that (HX") does not hold. Then Theorem 3.15 tells us that the
multicones A - @ - RY and C are not strongly transversal.

Let p be an arbitrary nonzero member of Ty, ,,))/N. Then Lemma 3.5 tells us
that there exist a nonnegative number 7y, covectors v, € Tie, (b*))N , linear

maps A € A, Q € Q, and a cone C € C, such that mop = v + 10, 0 € C*,
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ve N Q- RV and (m,v,0) # (0,0,0). Then (m,v) # (0,0) (because
if (mo,v) = (0,0) then the identity mou = v + © would imply that 7 = 0 as
well, so (mg, v, ) = (0,0,0)). Since U = mopu — v, we have shown that my and v
satisfy Conditions IT and III of our conclusion.

We now let 7% = v o A\. Then 7% € (@ - RY)*. The map Q is of the form
OF, for a measurable selection L of ¢ — 9, ;(&,(t)). Define 7(t) = n# o P %,
Then, if oy € ]Rf,

<7T#7Q(0'N)>:<77# Zaz b i (Vusr — Vi)

- Z 0-74 UU'L Ti /l_J*aTi> )

where we have written vy, ,, = f(&(7),uisTi), Usr, = f(&(T),me(T), i)
Since (7%, Q(on)) < 0 for all oy € RY, we conclude that the inequalities
(m(73), Uy 7y — Vsery) < 0 hold for ¢ = 1,..., N. We have therefore shown that
HI (&), m(T), us, 7)) < Hf(ﬁ*(ﬂ),ﬂ(n),n*(n),TZ-) fori=1,...,N.

We have thus obtained 7, v, A, L that satisfy all our desired conditions, except
for the fact that the inequalities of the Hamiltonian maximization condition
have only been established for special sets F of pairs (u,7), namely, sets F
that satisfy three additional restrictions: (rl) F is finite, (r2) F C £, and
(r3) no two different members of F have the same time 7.

What we actually need is to have the inequalities for all pairs (u,7) € L.
This more general set of inequalities can be obtained from the inequalities
for our special sets F by a well known compactness argument. Fix a norm
in the space Ty ;,)) 4V, and (still keeping p fixed) consider the set K of all
4-tuples (mo, v, A, L) such that o € R, mo > 0, v € Ty ()N, mo + [[V]| = 1,
mopt — v € C*, and L is a measurable selection of [a., b.] 2 t +— Of,, +(£.(0)).
Then K is compact (using the weak topology for the Ls).

For every subset G of £, let K9 be the set of all (m, v, A\, L) € K such that
the inequalities H” (& (), 7(7), 77*( ),7) > HI(&(7),7(7),u,7) hold for all
(u,7) € G, where m(t) = % 0 P4 and 7# = vo A. Then each K9 is a compact
subset of I, and our proof will be complete if we show that KX # ().

Let F be any finite subset of £. Let F = {(ui,7),..., (un,7n)}. Then
we can construct sequences {7/};en of members of Ja.,b.[ in such a way
that (u;,77) € L, lim; o 7 =7, limy o f(E(T)), Us, T, ) = flé(m),ui, ),
lim; o f(&(77), 7]*( 1), f):f(é’ (1:),m(73), 1), and 77 # 7 whenever i#i'.
Let F/ = {(ul,Tl) ,(un,7%)}. Then the F7 satisfy all three restrictions
(rl), (r2), (r3). Therefore K7 # 0. Pick (n},17, M, L7) € K¥'. By passing to
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a subsequence, we may assume that { (7,29, M, L7)} ey converges to a limit
(7o, v, A\, L) € K. Then (7, v, A\, L) € K”. So K7 # 0. As F varies over all finite
subsets of £, the sets K7 are compact and nonempty. Furthermore, any finite
intersection A = K7'NK72N- - -NKTN is nonempty, because A = F1UF20UFN,
Therefore the intersection of all the sets K7 is nonempty. So K* is nonempty,
completing our proof. O

5.2 The mazimum principle for local controllability

Given a control system with data D = (M, f,U,U), and a TCP (&,,n.) of D
with domain [a., b, we say that D) is locally controllable along &, if the
reachable set Rop,a, 5,](€:(ax)) is a neighborhood of £(b.).

In the local controllability problem, the same type of data as in the separation
problem are specified, except that N, F', S, C and A are not needed. So we
are given a data 9-tuple D = (M, f,U,U, ., a., b., &, n.), consisting of a
system data 4-tuple D = (M, f,U,U), an initial state z,, endpoints a., b, of
the reference interval [a,, b.], and a reference TCP (&,,n.).

The following is then our version of the Lipschitz maximum principle for local
controllability.

Theorem 5.4 Assume that the data D' are such that Hypotheses (H1), (H2),
(H3), (H4), (H6.a), (H7) and (H9) hold, and x. € M. Let L be as in the
statement of Theorem 5.1. Then, if the system with data D = (M, f,U,U) is
not locally controllable along €., it follows that there exist

1. a monzero covector % € T¢ oM,
2. a measurable selection [a.,b,] 2t — L(t) € 0f,, (&(t)) of the set-valued
map [CL*, b*] Sl afn*,t@*(t)) - Jg*(t)’é*(t)F(TM),

having the property that, if Vi € Cov(&,) is the covariant differentiation
corresponding to L, and we define w(t) = 7 o PZth for t € [as, by, then
the following Hamailtonian maximization condition is satisfied:

(HM) H7(&.(7),7(7),n.(7),7) > H! (&.(7), 7(7), u, T) whenever (u,7) € L.

Proof. Fix a coordinate chart x near &, (b,), and identify all points z € dom x
with their coordinate representations x*.

Since our system is not locally controllable along &,, we may pick a sequence
o = {x;};en of points of dom x that do not belong to Rp,[q, 5.]({4(ax)) and are
such that lim; . z; = £,(b.). Then in particular z; # &.(b,) for all j. After
passing to a subsequence of o, if necessary, we may assume that the limit
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v =lim; ”xfg*(b*) exists. Clearly, v # 0. After passing to a subsequence

2Bl ,
again, we may also assume that the z; are all different, that ||z; —a;1|| < 2177
for all j, and lim;_, % = v. Define a Lipschitz curve ¢ : [0,1] — M by

letting ¢(0) = &,(b.) and
C(t) =2 ((21_j —t)xjp + (- 2_j)fljj) for 277 <t <2'77, jeN,
so that Q(QI*J') =z, and the map ( is linear on each interval [Z*j, 21*j].

Let S = {((t) : t € [0,1]}. Then S is a compact subset of M, and it is easy to
see that, if C'= {rv : r > 0}, then {C} is a WDC approximating cone to S
at &.(bs). (Actually, C' is the Clarke tangent cone of S at &.(b.).)

It is clear that the Lipschitz arc intersection property cannot hold with this
choice of the set S because, if there existed a nonconstant Lipschitz arc
v :[0,1] = Rpya, p.1(6c(ax)) NS such that v(0) = &.(bs), then there would
have to exist arbitrarily small ¢, such that v(¢x) belongs to the set {z; : j € N},
contradicting the fact that the z; do not belong to Ry, 5.](&(ax)).

It then follows from Theorem 5.4—taking N = M, letting the map F' be the
identity map, and choosing A = {lIr, , ,m} and C = {C}—that for every
€ T ) M\{0} there exists a 4-tuple (m, v, A, L) that satisfies Property (*)
of the statement of that theorem. We apply this to a p that does not belong to
Ct. (For example, we could take any p such that (u,v) =1.) Let 7% = v o \.
Then 7# = v, because A is the identity map of T¢, () M. The covector 7# and
the measurable selection L clearly satisfy our desired conditions, except only
for the fact that 7# might vanish. To exclude this possibility, we observe that
if 7 = 0 then v = 0, so my > 0 by the nontriviality condition of Theorem
5.4. But then the fact that mopu — v € Ct simply says that mou € C*, and
then p € Ct, since 9 > 0. So we have reached a contradiction, showing that
7% # 0, and concluding our proof. O

5.8  The mazimum principle for optimal control

We now consider a fixed time-interval Lagrangian optimal control problem

minimize  @(£(b)) + [; fo(E(t), (), t) dt

£(-) € WH([a, b, R™) and (1) = f(E(t),n(1),1) ace.,
subject to { £(a) = x, and F(£(b)) € S,

n(t) e U for all t € [a,b], and n(-) €U .
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We assume, as before, that we are given a reference trajectory-control pair
(&, 1), whose domain is the reference interval [a,, b,]. And, finally, we assume
that we are given a multicone C. So we are specifying a data 14-tuple D*% as
n (19), and we will assume that all the conditions (H1) to (H9) hold.

In addition to D*? we now need to specify a cost functional. For this purpose,
we give fo and ¢ such that

(H10) fo is a ppd function from M x U x R to R, and ¢ is a ppd function
from M to R which is defined and Lipschitz on some neighborhood of

& (by).

Furthermore, we need to be able to differentiate ¢ at &.(by). We could do
this by specifying a Warga derivate container © of ¢ at &.(by), but we will
allow the slightly more general possibility that, instead of separate derivate
containers A, © of F' and ¢, the map = — (p(z), F(x)) may have a joint
derivate container. For this purpose, we will substitute for Hypothesis (H8.b)
the following condition

(H8L') A is a nonempty compact subset of Lin(Te, 5 )M, R X Tpe..)N),
and is a Warga derivate container at the point &.(b.) of the ppd map
M3z — (o(x), F(z)) eRxN.

Then, if D = (M, f,U,U,x., N, F,S,a.,b.,&,n.,C, A, fo, ) is our data
16-tuple,

e A TCP (&,n) with domain [a.,b.] is endpoint-cost-admissible if it
satisfies the following five conditions: (i) (£,n) is admissible, (ii) {(a.) = .,
(iii) &(by) € dom F Ndome, (iv) F(&(b.)) € S, and, finally (v) the real-

valued function [ay, b.] 2t fo(£(t),n(t),t) is a. e. defined, measurable, and

such that [** min (O,fo(f( ), n(t), )) dt > —o0.
o We write TCPuim.e.(D?") to denote the set of all TCPs of D" that are
endpoint-cost-admissible.

It follows that if (&, n) belongs to T'C Pugm (D) then the number

Jem) = o(e)) + [ le®).n). 1) ar

—called the cost of (£, n)—is well defined and belongs to |—o0, 400].

For the data D, we define a ppd map f: M xU xR — Rx M, called the
augmented dynamics, by letting

dom(f) =dom(fy) Ndom(f),
f(2)=(fo(2), f(2)) for z = (z,u,t) € dom(f).
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If n is a U-control, we write fy,(x,t) = fo(z,n(t),t), £,(x,t)=1£f(z,n(t),t), so
fon is a ppd function from M x R to R, and f,, is a ppd map that sends each
(x,t) € domf, € M x R to a point f,(z,t) € R x T, M. If in addition £ is an
arc in M, we write

Jome(t) = fo(&(t),n(t), 1),
f,c(t) =F(E(t), n(t),t).

It will also be convenient, using the obvious identification of the product
R x T, M with the tangent space T{;, . (R x M), to regard the f, as ppd
maps R x M xR 3 (zg,z,t) — (fon(2,t), f(2,1) € Twyx) (R x M), that is,
as ppd time-varying vector fields on R x M that happen not to depend on .

The precise technical hypothesis on fj is

(H11) for every control n € Z/l[ IRE the time-varying function fo, 1s
integrably Lipschitz near &, ( cf. Remark 5.5 below).

Remark 5.5 The definition of the “integrably Lipschitz” property for ppd
time-varying functions is identical to that for ppd vector fields, with the
obvious trivial modifications. Alternatively, we can regard the augmented
dynamics as giving rise to ppd time-varying vector fields f, on R x M, as
explained above, and then the “integrably Lipschitz” condition for f, together
with Assumption (H7), just amounts to requiring that the f,, for n € Z/l[a L
be integrably Lipschitz near the arc [a., b, 2t — (0,&,) € R X M. O

We write &..(t) = [1 fo(€.(s),n.(s), 8) ds, so the function &, is the running
Lagrangian cost along (&,,1.), initialized so that & .(a.) = 0. We then let
E(t) = (Lox(t),&(t)), so Zx ¢ [as, b — R x M is the cost-augmented
reference trajectory. Clearly, =, is an integral curve of f,_, if we regard
f,. as a ppd tvvf on R x M, as explained above, and our assumptions imply
that f,, is integrably Lipschitz near Z,. This makes it possible to talk about
the Clarke generalized Jacobian 0f,, +(Z.(t)), for which we will also use the
notation Of,, ;(&.(t)), since f,, ; does not depend on the first component. Then
of,. 1(&.(t)) is a compact convex subset of the space J1 (t)F(T(R x M)).

We recall that J1 (t)F(]R x T M) is the set of all 1—Jets at u*( ) of sections ¢

of the bundle T(R X M) such that ((Z.(t)) = Z.(t). However, the value of f,, ,
at a point (r,z) € R x M does not depend on r. So the 1-jet j'f, ,(r, )
at a point (r,x) € diff(f,.:) is a 1-jet at x of sections ¢ of R x, TM
such that C(&.(t)) = Z.(t), where R x,; TM is the bundle over M whose
ﬁber at each point x € M is the product R x T, M. Hence we can regard

..t (&4(t)) as a compact convex subset of e ! e )F(R X pr M). Furthermore,

J1 sl R ><1\4T]\4):J§1*(t)50 " (R)XJ1 el (TM), so every member
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of ng ). (t)F(R x TM) can be regarded as a pair (Lo, L), where Ly is a

1-jet at &.(t) of real functions ¢ € C*(M,R) such that (&(t) = foz*(t),
and L is a 1-jet at & () of vector filelds W on M such that W(&,(t)) = &.(t).
Finally, J £1 (Do t)F(]R) can obviously be identified with the cotangent space
T¢ (M. Hence the set of,,, +(£.(t)) is a compact convex subset of the product
* 1

T (M x Js*(t),é*(t)F(TM)‘

It is then clear that Of,, ;(&.(t)) C Ofo..(&x(t)) X Of,. +(&(t)), from which
it follows immediately that every measurable selection of the set-valued map
la., b 2 t+— 0Of,. 1(£(t)) can be regarded as a pair (w, L), where

(i) w is an integrable field of covectors along &, which is a measurable
selection of [a, b.] 3t — 0fo. +(&(2)),

(i) L is an integrable function [a.,b.] 5t — L(t) € J, 0.6l (T'M), which
is a measurable selection of the map [a., b.] 3t — 0f,, 1(&(1)),

Then L gives rise to a covariant differentiation V along &,, and we can write
the “inhomogeneous adjoint equation” V7 = myw, for any my € R. The
corresponding Cauchy problem, with terminal condition 7 (b,) =, clearly has
a unique solution 7 for any given w, L, my, 7. A field 7 of covectors (or a pair
(7o, 7)) arising in this way is called an adjoint covector, or adjoint vector.

The hypothesis on the reference TCP (&, 7,) is that it is a local cost-
minimizer in TC P e.(D"). In other words,

(H?PY) (&4, mi) € TCPugmec(DP'), and there exists a neighborhood V  of
F(&(by)) in N having the property that J(&.,n.)<J(&,n) for all pairs
(§,n) € TCPogmec(DP") such that F(E(by)) € V.

It will also be convenient to consider the following strong form of the negation
of (H°"), that we will call the Lispchitz arc nonoptimality property.

(HEwPmonorty There exists a map [0,1]3 s+ (&, 1) € TC Pogm ee(DPY) such that
(1) the map [0,1]3 51— (J (&, ms), F(§s(b4))) ER X N s Lipschitz,
(”) (5077]0) - (5*777*)7
(111) J(&s,ms) < J (&, mi) for all s €]0,1].

We define the Hamiltonian of f to be the parametrized family of functions
Hf :T*M x U x R — R, (depending on the real parameter «), given by the
formula HE(z,p,u,t) = p- f(z,u,t) — afo(x,u,t) . Also, we recall that A is a
subset of Lin(Te, 5.y M, R X Tpe,5.y)N ), which can be naturally identified with
the product P = T¢ , \M x Lin(T¢, .M, Tp(g*(b*))]\/)—f\ is in fact a subset
of P, that is, a set of pairs (6, \), 6 € T¢ oM, A € Lin(Te, 4. M, Tre ) N).

The following is then our version of the maximum principle for optimal control.
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Theorem 5.6 Assume that the data 16-tuple D" satisfies Hypotheses (H1)
to (H11) (with (H8.b) replaced by (H8.b’)). Let L denote the set of all pairs
(u,T) such that w € U, T €]ay, by[, and 7 is a Lebesgue time along &, of both
augmented time-varying vector fields £, and f, . Then, if (H-PmomP!) js not
true, it follows that

(*) there exist
1. a covector ™" € Tg*(b*)M,
2. a pair (v,(0,\) € T¢ o, M x A,
3. a measurable selection [a.,b,] 2t — (w(t), L(t)) € Of,. +(&(t)) of the
set-valued map [a.,b.] 3t — 0, 1(§.(t)) C T ()M X J1 )F(TM),
4. a monnegative real number m,

such that, if Vi, € Cov(&,) is the covariant differentiation corresponding to
L, and we let ™ be the unique absolutely continuous solution of the “adjoint
Cauchy problem” V() = mow(t), m(b.) = 7% , then the following three
conditions are satisfied:

I. Hamiltonian maximization: HI (£.(7),n.(1),7) > HI (£.(7), u, T)
whenever (u,7) € L,
II. Transversality: —v € C*, and " = v -\ — b,
I[II. Nontriviality: v # 0 or my > 0.

In particular, if (H?') holds then (*) is true as well.

Remark 5.7 In most situations, N is just M, and F' is the identity map. In
that case, one can just take take A=06x {]ITé*(b*>M}, where O is a a Warga
derivate container of ¢ at &.(b.). Then the transversality condition takes the
more familiar form —7# € 1,0 + C*. O

Remark 5.8 The conclusion of Theorem 5.6 implies in particular the “weak
Hamiltonian maximization condition”: for every control value v € U there
exists a Lebesque-null subset N'(u) of the interval [a.,b.] with the property
that HE (&.(7),m(7),nu(7),7) > HE (&.(7), 7 (7),u,T) whenever T & N (u).

Under extra technical hypotheses, one can deduce the “strong Hamiltonian
maximization condition”: if (i) U is a separable metric space and (ii) the
function U > u — £(&(t),u,t) is continuous for a. e. t € |a.,b,], then the
equality HE (&.(7),7(7),nu(7),7) = max{H! (&(7), 7 (7),u,7):u € U} holds
for all T in the complement of a null subset N of [a., b.]. (The proof is exactly
like that of Proposition 5.3.) O

Proof of Theorem 5.6. We assume that Condition (HL®momort) is not true, and
apply Theorem 5.1 to a separation problem whose data 14-tuple Dsep, given by
Dser — (M f U U T, N F S (s, b*, 5*, T C A) is constructed in a suitable
way from our optimal control data D,
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We take U = U, L?:L{, and let M:RXM, so the state space of the new system
is that of the old one with the addition of a new variable z(, the Lagrangian
running cost. The new dynamics f is f, the augmented dynamics of the optimal
control problem, so that that the right-hand side of the dynamical equation
gt(xo, x) = f(xo,x,u,t) is given by f(:vo,x,u,t) = (fo(z,u,t), f(z,u,t)), and
the dynamical equation is equivalent to the pair of conditions &¢ = fo(x,u,t),
& = f(z,u,t). We take &, = (0,z,), so the initial state for our augmented
system is the same as for the original one, and the initial value of the running
cost is 0. We take a, = ax, 13* = by, s = 1s.

We let 5* be the trajectory of the augmented system for the control 7, and the
initial condition z,. (That is, &, is the curve introduced earlier and labelled

E.) S0 &u(t) = (Lo (1), (1)), where &, (t) = [, fo(6u(s),m.(s), 5) ds. We then
write ¢, = §o.(bs), and define ¢, = ¢, + (& (bs)), s0 ¢, are ¢, are, respectively,
the Lagrangian cost and the total cost of the reference TCP.

We take N = Rx N. The map F : M — ~]\7 is then defined by letting
F(xg,2) = (x¢ + ¢(x), F(x)). For each (8, ) € A, we let g, be the linear map
from R x T¢, )M (identified with T, ¢, (5.) M) to R x Tre, b)) N (identified
with T(@*,g*(b*))]v) given by S\A,Q(Axo, Am) = (Azg + 0 - Az, A - Az). We then
let A ={Agx: (6,)) € A}. It is then easy to verify that A is a Warga derivate
container of F at (c,,&(by)) (i. e., at &(b,)).

N

To construct the set S, we first fix a smooth function ¢ : N — R such that
Y(F(E(b))) = 0 and ¥(y) > 0 for all y € N\{F(£.(b.))}. We then define
S ={(yo,y) 1y €S and yg < & —P(y)}. It is then easy to see that

(#) The Lipschitz arc intersection property (HXP™) is not satisfied by the
new separation data.

Indeed, suppose that the condition was satisfied. Let R be the reachable set
for the new system from &, over [a.,b.]. Let 4 be a Lipschitz arc, defined
on [0, 1], having values in the set F(R)N S, and such that 5(0) = F(g*(b*))
ond (1) # FIE (). Write 3(5) = (0f6),7(5). 50 () € B, 7(5) € 8, and
20(5) < & — $(3(s)). Then 10(0) = ¢, 7(0) = F(E. (b)), %0(s) < & for all
s, and Yy(s) < ¢, whenever 7(s) # (0) Let A = {s € [0,1] : v(s) < ¢}
Then A is a relatively open subset of [0, 1], and 0 ¢ A. On the other hand,
1 € A, because 4(1) # F(&,(b)), 4(1) € S, and F(£,(b,)) is the only point
(yo,)GSsuchthatyo—ak Let]—{E] 1[: [s,1] € A}. Then [ is an
open interval of the form |a, 1[, such that yo(a) = ¢é, and 7o(s) < ¢, whenever
a < s < 1. It then follows that y(a) = F(&(b«)). Let 5(r) = §(a +r(1 — a))
for r € [0,1]. Then 7 is a Lipschitz map with values in F(R) NS, such that
3(0) = F(R) and 5(s) # F(R) whenever 0 < s < 1. Since 5(s) € F(R)
for each s, we can pick points (g, 2,) € R such that F(zgs,xs) = 7(s), s
F(s) = (0.5 +@(xs), F(xs)). Since (2o, ;) € R for each s, we can pick TCPs
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(€s;ms) = ((80,6585),ms) such that & (a.) = 0, &(an) = 2, §o,s(bs) = Tos,
and fs(b*) = x,. Then Lo,s = ff: fO(gs( ) (t)) dt, I08+S0(IS) = (53,775) and
F(xs) = F(&(by)), s03(s) = (J(&s,ms), ( s (b ))) It is then clear that we may
pick (&,m0) to be (&, n.) and that J(&,ns) < J(&,n.) whenever 0 < s < 1.
Hence (HL®Pmonort) s true, contradicting our assumption, and completing the

proof of (#).

Let C =] — 00,0] x C, i.e.,é:{]—ooO]XC'CGC} Then C is a WDC

approximating multicone to S at F'(€,(b,)). (To see this, let S =] — 00, &,] X S,
and observe that C is a WDC approximating multicone to S at F/(€,(b,)). Let
® be the map R x N 3 (yo,y) — (yo — ¥(y),y) € R x N. Then § = &(S),
O(F(£.(D)) = (f*( .)), and the differential of ® at F(f*( «))) is the identity
map. Therefore € is a WDC approximating multicone to S at F(£,(b,)).)

We now apply Theorem 5.1 to the separation problem that we have just
constructed, with data DSEP—(M f U L{ x*,N F S a*,b*,ﬁ*,n*,c A) and
the covector p € T*( Eh )N given by u = (—1,0) (SO that u(Ayo, Ay) = —Ayp

whenever (Ayg, Ay) belongs to Tp(é*(b*))N ~ R X Tpe,@.)N). We then get a
4-tuple (7o, 7, A, ﬁ) such that

(iv) #ou — 0 € CL,
(v) (%o, 2) # (0,0),
(vi) A € A,

such that, if we define ## = Do\ (so that 7% € T* M), then the inequality

€ (bs)

HI (&.(7),#(r),nu(7),7) > B (Eu(7), 2(7), u, 7)

holds whenever (u,7) € L, where 7 is the solution of the adjoint equation
V;# = 0 with terminal condition 7(b,) = 7%.

Write () = (po(t), 7(t)), using the identification Ti‘*(t)M ~ RXTg M. Also,

write L(t) = (w(t), L(t)), using the identification of the measurable selections
of the set-valued map [a., b,] 3 t — 0Of,, ;(&.(t)) with pairs (w, L), as described
above. Then w is a field of covectors along &,, and L is a selection of the
map |[a, b, 3t 0f,. +(&(t)), so in particular L gives rise to a covariant
differentiation V. It is then easy to see that the adjoint equation V;7 = 0
amounts to the pair of statements V7 4+ pow = 0, pp = 0. Hence, if we let
To = —po, We see that 7y is constant as a function of ¢, and V7 = mw. If
we then write 7% = 7(b,), it is clear that ## = (—m, 77), and the covector
field 7 is the solution of V7 = mow with endpoint condition 7(b,) = 7n#. It
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follows that the Hamiltonian maximization condition takes the desired form
HY (&(7), 7(7),nu(7),7) = HE (&(7), 7 (T), u,T).

Let U = (v,v), so that 0(Ayy, Ay) = oAy + v - Ay for every tangent
vector (Ayg, Ay) € TF(E*(b*))N' Also, let (A,\) € A be such that A= 5\97,\.
Then, since 7% = (—m, 7%), and 77 = Do\, we have, if vERXTe, 3, )M and
v = (Azg, Az), the equality 7#v = —myAxg + 7% Az, while on the other
hand ##v satisfies 7##v = D(\) = - (Azg 4+ 0 - Az, A - Az). Therefore
—moAzy + T Az = vy Axy + 190 - Az + v - X - Az for every v, and this implies
that —m9 = 1y and 7% = 1 + v -\, so " = —mel + v - \.

Then the condition 7ou — v € CL says that there exist cones C’j e C and

covectors ¢; € T;(é*(b*))]v such that ¢; — mou — v and ¢; € CA’f On the other

hand, each éj is a product | — o0, 0] x C; for some C; € C. Write ¢; = (o4, 4;),
q9,; €R, q; € T}(g*(b*))N. Then qp; — —my — 1p and ¢; — —v. Since ¢; € éf,
we have §;(Ayo, Ay) < 0 for all (Ayy, Ay) €] — 00, 0] x C;. Hence go; > 0 and
q; € C'jl. Since qp; — —my — vy, we conclude that —7p — 1y > 0, and then
vy < —p. Since we know that 1y > 0, we can conclude that vy < 0, so mg > 0.
Since ¢; — —v, the covector —v belongs to C*. Since 7% = —mof + v - A, we
have established the transversality condition.

We are now in a position to prove the nontriviality condition, which is our
only missing conclusion. Suppose that this condition is false. Then v = 0 and
mo = 0. But we know that —my = 149. So 1y = 0, and then 7 = 0. Furthermore,
we also know that vy < —7g. So g < 0. Since 79 > 0, we conclude that 7y = 0.
So (7o, ) = (0,0), contradicting the fact that (7o, 7) # (0,0). This completes
our proof. O

5.4  Theorem 5.6 easily implies Theorem 5.1

We have used Theorem 5.1 as our main tool to derive Theorem 5.6. For
completeness, we now prove that Theorem 5.1 is in turn a simple consequence
of Theorem 5.6.

Assume that Theorem 5.6 holds. Let a data 14-tuple D% as in (19) be
given, such that all the assumptions of Theorem 5.1 hold. Fix a covector
pe Ty (&.(v.n \10}. Then apply Theorem 5.6 to the optimal control problem
in which fy = 0 and ¢ = 9 o I, where ¢ : N — R is a function of class C*
such that dip(F(€,(b,))) = —p, taking as A the set {(—pX, \) : A € A}. It is
easy to see that the reference TCP (&,,n,) is optimal. Theorem 5.6 then gives
a 4-tuple (mo, 77, 0, (—uA, A)) such that —v € C1, 7% = DX + mouA, and, if 7
satisfies Vm = 0, 7(b,) = 7%, then the Hamiltonian maximization conditions
hold.
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Then, if we let v = mou + 7, we see that mou — v € C*, and 7% = v,
Furthermore, it is clear that the nontriviality condition (7, ) # (0, 0) implies
(mo,v) # (0,0). It is then clear that the 4-tuple (7, v, A\, L) satisfies all the
conclusions of Theorem 5.1. O
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