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Abstract

We present a general necessary condition for separation of the reachable set of a
Lipschitz control system from another given set of states, expressed in terms of an
“approximating multicone” to the set in a sense that contains as special cases the
Clarke and Mordukhovich cones. We then show how this separation result implies
a strengthened form of the usual sufficient condition for local controllability along
the reference curve and the necessary condition for optimality.
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1 Introduction

Since the discovery of the Pontryagin Maximum Principle (PMP) in the 1950s
(cf. [18]), various versions of this result have been established, under different
technical assumptions and with different proofs. For the finite-dimensional
PMP, every proof falls, roughly, into one of two categories, that will be referred
to here as “Type T” and “Type L.” Type T proofs are based on a topological
argument about set separation, involving the Brouwer fixed point theorem or
some other closely related result. Type L proofs, on the other hand, use a
limiting argument, in which a sequence πππ = {πj}j∈N of approximate terminal
adjoint vectors πj—normalized so that ‖πj‖ = 1—is constructed, and then
an exact adjoint vector is obtained by taking the limit of some convergent
subsequence of πππ. (Finite-dimensionality plays a crucial role in both types of
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proofs but, remarkably, it does so in two totally different ways: for the Type T
proofs, the key point is that the Brouwer fixed point theorem is only valid in
finite-dimensional spaces, whereas in the Type L proofs the decisive step occurs
when one has to guarantee that the limit exists and does not vanish, and this
cannot be done in infinite dimensions because in any topology weak enough
to imply existence of a convergent subsequence the limit of this subsequence
may vanish.)

Type T proofs have appeared in many books and articles (cf. Pontryagin et
al. [18], Berkovitz [1]), and have been particularly successful in being able
to incorporate high-order conditions (cf. Bianchini [3], Bianchini-Stefani [2],
Hermes [11], Knobloch [14], Krener [15], Stefani [19]). Sussmann [20]). Type
L proofs (cf. Clarke [6,7,9], Clarke et al. [8], de Pinho [10], Ioffe [12], Ioffe-
Rockafellar [13], Mordukhovich [17], Vinter [29]) have successfully dealt with
nonsmooth Lipschitz dynamical laws. In Type T proofs, the transversality
condition usually involves a Boltyanskii tangent cone to the terminal set,
whereas in Type L proofs a Clarke tangent cone or a Mordukhovich normal
cone is used instead.

In 1993, S.  Lojasiewicz Jr. ([16]) discovered a powerful new technique that
made it possible to deal with nonsmoothness using the Type T approach.
Subsequently, in a series of papers (cf. [21,23–26,28]), we pursued this idea
and developed Type T methods for the nonsmooth PMP, based on generalized
differentials, flows, and general variations. These methods, however, resisted
all attempts to deal with transversality conditions involving the Clarke tangent
cone or the Mordukhovich normal cone. Recently, A. Bressan (cf. [5]) found
an explanation for this fact by proving, by means of a counterexample, that
the usual necessary conditions for set separation that can be derived for a
pair of sets and corresponding Boltyanskii approximating cones, as well as for
a pair of sets and corresponding Clarke or Mordukhovich normal cones, can
fail to be true if a Boltyanskii approximating cone is specified for one of the
sets and the Clarke or Mordukhovich normal cone is used for the other one.
This shows that versions of the PMP with “mixed” technical conditions—some
corresponding to the Type T approach and others to the Type L method—are
likely to be false in general, and that there probably does not exist a single
unified version of the PMP that contains both types of results.

Since a single commmon generalization of both approaches appears not to
exist, the second-best alternative is that it may at least be possible to deal with
both kinds of results by means of set-separation techniques, using different but
parallel separation theorems for Type T and Type L results. As a first step in
this direction, we proposed in [27] a notion of “approximating multicone” to a
set at a point that extends the concepts of Clarke and Mordukhovich cones and
has the property that “strong transversality of the approximating cones implies
nontrivial intersection of the sets.” (In our setting, “convex multicones” have
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polars that can fail to be convex. Furthermore, any closed cone of covectors—
even if it is not convex—is, trivially, the polar of some convex multicone.
In particular, the usual Mordukhovich normal cone is the polar of a convex
multicone that we call the “Mordukhovich tangent multicone.”)

In this note we apply this approach to nonsmooth control problems with
a Lipschitz right-hand side. We derive a general necessary condition for a
reachable set R of a Lipschitz control system to be separated from another
given set S at the terminal point ξ∗(b∗) of the reference trajectory—in the sense
thatR∩S = {ξ∗(b∗)}—expressed in terms of an approximating multicone to S
in the sense of our theory. We then show how this result can be used to derive
the usual nonsmooth sufficient condition for a system to be locally controllable
along a curve, and a slightly stronger form of the usual necessary condition
for optimal control.

In addition, we also pursue the idea, proposed in [22], of formulating the PMP
directly on manifolds, by expressing the “adjoint equation” as an equation
of parallel translation with respect to a covariant differentiation along the
reference curve. This second aspect is, essentially, independent of the first,
and those readers who so wish may read the paper throughout as if the state
space of the systems was always an open subset Rm, in which case the single-
valued selections L of the Clarke generalized Jacobian map t 7→ ∂ft(ξ∗(t))
(where f is the reference vector field, ft is the map x 7→ f(x, t), and ξ∗
is the reference trajectory) become matrix-valued functions, and the adjoint
equation ∇Lπ = 0 just becomes the usual adjoint equation π̇ = −π · L. We
feel, however, that the manifold formulation is more elegant, and also slightly
more general, in the sense that the PMP on manifolds is not an immediate
corollary of the PMP on open subsets of Rm. (Although it is not too hard to
derive the former from the latter, this requires some extra work, and cannot
be done by just covering the reference trajectory by coordinate patches.)

2 Preliminaries and background

Some abbreviations and basic notations. We use the abbreviations
“ppd”, “tvvf”, ”fdrls”, for “possibly partially defined”, “time-varying vector
field”, and “finite-dimensional real linear space”, respectively.

If ϕ is a function, we use domϕ, imϕ to denote, respectively, the domain
and image of ϕ. (So imϕ = {ϕ(x) : x ∈ domϕ}.) We write ϕ : A ↪→ B, to
indicate that ϕ is a ppd map from A to B, i.e., a function ϕ such that
domϕ ⊆ A and imϕ ⊆ B. We write ϕ : A 7→ B to indicate that ϕ : A ↪→ B
and domϕ = A.
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If A is a set, then IA denotes the identity map of A.

If ϕ is a function, A is a set, and {Ba}a∈A is a family of sets depending
on a ∈ A, we will often use the expression “A 3 a ↪→ ϕ(a) ∈ B” (resp.
“A 3 a 7→ ϕ(a) ∈ B”) as an alternative name for any function ϕ such that2
domϕ ⊆ A (resp. domϕ = A) and ϕ(a) ∈ Ba for every a ∈ domϕ.

We use Z, R to denote, respectively, the set of all integers and the set of all real

numbers, and write N
def
={n ∈ Z : n > 0}, Z+

def
=N∪{0}, R+

def
={x ∈ R : x ≥ 0}.

We use square-bracket notations for intervals: ]a, b[ is the open interval from
a to b, and then ]a, b] = ]a, b[∪{b}, [a, b[= ]a, b[∪{a}, and [a, b] = [a, b[∪{b}.

Linear spaces. If X, Y are real linear spaces, then Lin(X,Y ) will denote the
space of all linear maps from X to Y . If X is a fdrls, then dimX, X† denote,
respectively, the dimension and the dual of X (so that X† = Lin(X,R)). We
identify the double dual X†† with X in the usual way.

If X, Y are fdrlss, and L ∈ Lin(X, Y ), then the adjoint (or transpose) of L
is the map L† : Y † 7→ X† such that L†(y) = y ◦ L for y ∈ Y †.

If X is a fdrls, an affine basis of X is a sequence (e1, . . . , en) of minimal
length consisting of members of X that affinely span X, that is, are such that
every x ∈ X is a linear combination

∑n
i=1 riei with

∑n
i=1 ri = 1.

Euclidean spaces, matrices, balls. We use Rm×n to denote the space
of all real matrices with m rows and n columns. If A ∈ Rm×n, then A† is
the transpose of A, so A† ∈ Rm×n. We write Rm = R

m×1, Rm = R
1×m, so

R
m, Rm are, respectively, the spaces of all real m-dimensional column vectors

x = (x1, . . . , xn)† and of all real m-dimensional row vectors p = (p1, . . . , pn).
Then Rm is canonically identified with (Rm)† via the pairing

Rm × Rm 3 (y, x) 7→ y · x ∈ R ,

that is, by assigning to a y ∈ Rm the linear functional Rm 3 x 7→ y · x ∈ R.

The matrix space Rm×n is canonically identified with Lin(Rn,Rm) by means of
the map that assigns to each matrix L ∈ Rm×n the linear map ML : Rn 7→ R

m

such that ML(x) = L·x whenever x ∈ Rm. If M ∈ Lin(Rn,Rm), and M = ML,
L ∈ Rm×n, then the map M †

L goes from Rm to Rn, and is given by M †
L(y) = y·L

for y ∈ Rm. Alternatively, we may identify each Rk with Rk in the obvious
way, and then regard M †

L as linear map from R
m to Rn, in which case the

matrix that corresponds to the adjoint map M †
L is the transpose L†.

The spaces Rm, Rm are endowed with the Euclidean norm defined by

‖x‖ =
√
x† · x if x ∈ Rm, ‖p‖ =

√
p · p† if p ∈ Rm .
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The matrix spaces Rm×n are endowed with the operator norm ‖ · ‖op, given
by ‖A‖op = max{‖A · x‖ : x ∈ Rn, ‖x‖ = 1}.

If m ∈ Z+, x ∈ Rm, r ∈ R, and r > 0, then B̄m(x, r), Bm(x, r) denote,
respectively, the closed and open balls in Rm with center x and radius r.
We write B̄m(r), Bm(r) for B̄m(0, r), Bm(0, r), and B̄m, Bm for B̄m(1), Bm(1).
Also, we will use S

m to denote the m-dimensional unit sphere, so that
S
m = {x ∈ Rm+1 : ‖x‖ = 1}.

We will use throughout the standard terminology of point-set topology. In
particular, a neighborhood of a point x in a topological space T is any subset
S of T that contains an open set U such that x ∈ U . We write S̄, or ClosS,
to denote the closure of a set S, if there is no ambiguity as to the ambient
topological space T . (Otherwise, we write ClosT S for the closure of S in T .)
If A ⊆ B ⊆ X, then IntBA will denote the interior of A relative to B, i.e., the
set of all a ∈ A such that A ∩ U ⊆ B for some neighborhood U of a in X.

In the special case of a metric space X, with distance function d, we use
BX(x, r), B̄X(x, r), to denote, respectively, the open ball and the closed ball
with center x and radius r.

If M , N are topological spaces, then C0(M,N) will denote the space of all
continuous maps from M to N . If M is a topological space, then an arc in M
is a continuous M -valued map defined on some nonempty compact subinterval
I of R. The expression ARC(M) will denote the set of all arcs in M , so

ARC(M) =
⋃

−∞<α≤β<+∞
C0([α, β],M) .

Manifolds, tangent spaces, charts. Let us assume that µ,m∈Z+, M is a
manifold of class Cµ, and dimM = m. A cubic coordinate chart of class
Cµ on M is a diffeomorphism dom x3x 7→x(x)=(x1(x), . . . , xm(x))†∈ im x
of class Cµ from an open subset dom x of M onto an open subset im x of
R
m, such that im x is the open cube ]−c, c [m for some positive real number

c. (Recall that the members of Rm are column vectors.) Once it has been
stipulated that a manifold M is of class Cµ, we will simply use the word
“chart” for “cubic coordinate chart of class Cµ.” If x ∈ M , a chart near
x is a chart x such that x ∈ dom x, and a chart centered at x is a chart
x such that x(x) = 0. Given a chart x on M , every point x ∈ dom x has a
coordinate representation xx ∈ Rm, given by xx = x(x).

Now assume in addition that µ ≥ 1. We then use TM , T ∗M to denote,
respectively, the tangent and cotangent bundles of M , so TM and T ∗M are
manifolds of class Cµ−1, and are vector bundles over M of class Cµ−1 with fiber
dimension m. For each x ∈ M , TxM and T ∗xM are, respectively, the tangent
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and cotangent spaces of M at x, i.e. the fibers over x of TM and T ∗M . If N
is another manifold of class Cµ, x ∈ M , F is an N -valued map defined on a
neighborhood U of x in M , and F is classically differentiable at x, then DF (x)
will denote the differential of F at x, so DF (x) ∈ Lin(TxM,TF (x)N).

If x is a chart of M , we let ∂x
i

def
= ∂

∂xi
, so the ∂x

i are vector fields of class Cµ−1

on dom x, and (∂x
1 (x), . . . , ∂x

m(x)) is a basis of TxM for each x ∈ dom x.
Also, the differentials dx1, . . . , dxm are 1-forms of class Cµ−1 on dom x, and
(dx1(x), . . . , dxm(x)) is a basis of T ∗xM for each x ∈ dom x, dual to the basis
(∂x

1 (x), . . . , ∂x
m(x)) of TxM .

It follows that every tangent vector v at a point x ∈ dom x has a coordinate
representation vx ∈ Rm, given by

vx = (vx,1, vx,2, . . . , vx,m)† ,

where the vx,i are such that

v =
m∑
i=1

vx,i∂x
i (x) .

Similarly, every covector w at x can be represented by a row vector wx ∈ Rm,
given

wx = (wx
1 , w

x
2 , . . . , w

x
m) ,

where wx
i = 〈w, ∂x

i (x)〉, so that w =
∑m
i=1 w

x
i dx

i(x).

Then every vector field f on dom x has a coordinate representation fx, which
is a vector field on im x, i.e., a map im x 3 x 7→ fx(x) ∈ Rm, given by the
formula fx(x) = (fx,1(x), fx,2(x), . . . , fx,m(x))† , where the functions fx,i

are defined by fx,i(x(x)) = 〈dxi(x), f(x)〉 for x ∈ dom x. (Equivalently,
f(x) =

∑m
i=1 f

x,i(xx)∂x
i (x) for every x ∈ dom x, i.e., f =

∑m
i=1(fx,i◦x)∂x

i on
dom x.)

Sections. Whenever A is a set equipped with a “bundle structure” over a
set B (meaning, for our purposes, no more than a surjective map p : A 7→ B,
called the “projection”), a section of A is a map B 3 b 7→ σ(b) ∈ A such that
p(σ(b)) = b for all b ∈ B. If P is any property of sections, then ΓP (A) will
denote the set of all sections of A that have Property P . In particular, if M is
a manifold of class Cµ, ` ∈ Z+, and ` ≤ µ−1, then ΓC`(TM), ΓC`(T

∗M), will
be, respectively, the space of all vector fields of class C` on M and the space
of all 1-forms of class C` on M .

Generalized Jacobians of locally Lipschitz maps. We assume

(A1) m,n, µ ∈ Z+, M , N are manifolds of class Cµ, µ ≥ 1, m = dim M ,
and n = dim N .
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If 0 ≤ k ≤ µ, then Ck(M,N) will denote the set of all maps of class Ck from
M to N . We let J1

x,y(M,N) be, for each point (x, y) ∈ M × N , the space
Lin(TxM,TyN) of all linear maps from TxM to TyN . We then let

J1(M,N) =
⋃

x∈M,y∈N
{x} × {y} × J1

x,y(M,N) ,

so the members of J1(M,N) are the triples (x, y, L) such that x ∈ M ,
y ∈ N , L ∈ Lin(TxM,TyN). Then J1(M,N) is a vector bundle of class
Cµ−1 over M × N (with projection map (x, y, L) 7→ (x, y)), whose fiber
over each point (x, y) ∈M ×N is the set {x} × {y} × J1

x,y(M,N) (canonically
identified with J1

x,y(M,N)), so J1(M,N) has fiber dimension mn. We will
also regard J1(M,N) as a bundle over M , in such a way that the fiber over
each x ∈ M is J1

x(M,N)—where J1
x(M,N) =

⋃
y∈N{y} × J1

x,y(M,N)—so the
fiber dimension is n + mn. If a map ϕ belongs to C1(M,N) then the pair
j1ϕ(x) = (ϕ(x), Dϕ(x))—which is a member of J1

x(M,N)—is called the 1-
jet of ϕ at x. It is then clear that J1

x(M,N) = {j1ϕ(x) : ϕ ∈ C1(M,N)}, so
J1
x(M,N) is the space of all 1-jets at x of maps of class C1 from M

to N , and J1(M,N) is the space of all 1-jets of maps of class C1 from
M to N . The map M 3 x 7→ j1ϕ(x) ∈ J1(M,N) is the 1-jet map of ϕ.
Clearly, if 1 ≤ k ≤ µ and ϕ ∈ Ck(M,N), then j1ϕ is a section of class Ck−1

of J1(M,N), regarded as a bundle over M .

The concept of a locally Lipschitz map from M to N makes sense. (For
example, we can define a map ϕ : M 7→ N to be locally Lipschitz if ρ◦ϕ◦ψ
is locally Lipschitz whenever ρ ∈ C1(N,R), p ∈ Z+, and ψ ∈ C1(Rp,M).)
We use CLip(M,N) to denote the set of all locally Lipschitz maps from M
to N . We let diff(ϕ) be the set of points of differentiability of ϕ. It follows
from the well known Rademacher theorem that if ϕ ∈ CLip(M,N) then ϕ
is differentiable almost everywhere, that is, M\diff(ϕ) is a null subset of
M . (The concept of a “null subset of M” clearly makes sense intrinsically,
since M is of class C1.) Then for every point x ∈ diff(ϕ) the map ϕ has
a well defined differential Dϕ(x) ∈ Lin(TxM,Tϕ(x)N). This implies that the
1-jet map diff(ϕ) 3 x 7→ j1ϕ(x) = (ϕ(x), Dϕ(x)) ∈ J1

x(M,N) is well defined.
In addition, this map has the property that for every compact subset K of
M the closure j1ϕ(K ∩ diff(ϕ)) is a compact. subset of J1(M,N). It follows

that, if x is a point of M , and we let j̃1ϕ(x) be the set of all limits as k →∞
(in the space J1(M,N)) of sequences {j1ϕ(xk)}∞k=1 such that xk ∈ diff(ϕ),

limk→∞ xk = x, and the limit limk→∞ j
1ϕ(xk) exists, then j̃1ϕ(x) is a nonempty

compact subset of J1
x,ϕ(x)(M,N). Since J1

x,ϕ(x)(M,N) is a linear space, the

convex hull of j̃1ϕ(x) is well defined. We use ∂ϕ(x) to denote this convex hull,
and refer to it as the Clarke generalized Jacobian of ϕ at x.

Relative to charts x, y of M , N , such that x ∈ dom x, y ∈ dom y, and

ϕ(dom x) ⊆ dom y, the map ϕ is represented by the map ϕy,xdef
=y ◦ ϕ ◦ x−1,
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from im x to Rn. Then the 1-jet j1ϕ(x′) at any point x′ ∈ diff(ϕ) close to x is

represented by the pair θ(x′) =
(
y(ϕ(x′)), Dϕy,x(x(x′))

)
∈ Rn × Rn×m. The

limit of a sequence {j1ϕ(xk)}∞k=1 as above will then be represented by the limit

limk→∞ θ(xk), which is equal to the pair
(
y(ϕ(x)), limk→∞Dϕ

y,x(x(xk))
)
. It

follows that

(CGJ.1) If ϕ ∈ CLip(M,N) and x ∈ M , then ∂ϕ(x) is a nonempty
compact convex subset of J1

x,ϕ(x)(M,N).
(CGJ.2) The coordinate representation ∂ϕ(x)y,x of ∂ϕ(x) (which is a

subset of Rn×m), is exactly the usual Clarke generalized Jacobian
∂ϕy,x(xx) of the coordinate representation ϕy,x of ϕ at xx.

Warga derivate containers. We assume (A1), as above. “Warga derivate
containers” are defined as follows.

Definition 2.1 Assume that F ∈ CLip(M,N), and let Λ be a compact subset
of J1

x,F (x)(M,N). We say that Λ is a Warga derivate container of F at

x if for every open subset Ω of J1(M,N) such that Λ ⊆ Ω there exist (a) an
open subset U of M such that x ∈ U , and (b) a sequence {Fk}∞k=1 of members
of C1(U,N), such that (x′, Fk(x

′), DFk(x
′)) ∈ Ω for all x′ ∈ U and all k ∈ N,

and Fk → F uniformly on compact subsets of U . 2

Remark 2.2 In Definition 2.1, “ϕk → ϕ uniformly on compact subsets of U”
means: “if {xk}∞k=1 is a sequence of points of U that converges to an x ∈ U ,
then ϕk(xk)→ ϕ(x) as k →∞.” 2

It will be convenient to extend the above definition to some multivalued maps
in a fairly trivial way.

Definition 2.3 Let M 3 x 7→ F (x) ⊆ N be a multivalued map from M to N .
Let (x, y) ∈M ×N , and let Λ be a compact subset of J1

x,y(M,N). We say that
Λ is a Warga derivate container of F at (x, y) if for every open subset
Ω of J1(M,N) such that Λ ⊆ Ω there exist (a) an open subset U of M such
that x ∈ U , (b) an f ∈ CLip(U,N) such that f(x) = y and f(x′) ∈ F (x′) for
all x′ ∈ U , and (c) a subset Λ′ of Ω such that Λ′ is a Warga derivate container
of f at x in the sense of Definition 2.1. 2

We will write “Λ ∈ WDC(F ;x, y)” to indicate that Λ is a Warga derivate
container of F at (x, y). If F is single-valued, we just write “Λ ∈ WDC(F ;x)”
instead of “Λ ∈ WDC(F ;x, F (x)).”

It follows easily from Definitions 2.1 and 2.3 that

(WDC.1) If Λ ∈ WDC(F ;x, y) then Λ 6= ∅.
(WDC.2) If Λ is a compact subset of J1

x,y(M,N), then Λ ∈ WDC(F ;x, y)
if and only if the coordinate representation Λy,x of Λ, (which is
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a subset of Rn×m), is a Warga derivate container at (xx, yy) of
the coordinate representation F y,x of F .

These observations imply that many well known facts about Warga derivate
containers of single-valued maps and their relationship with Clarke generalized
Jacobians extend trivially to manifolds. In particular,

(WDC.3) If F ∈ CLip(M,N) and x ∈M , then
(WDC.3.a) ∂F (x) ∈ WDC(F ;x) ;
(WDC.3.b) if Λ ∈ WDC(F ;x) and Λ is convex, then ∂F (x) ⊆ Λ.

In addition, Warga derivate containers satisfy the following chain rule, in

which we define Λ2 ◦ Λ1
def
={L2 ◦ L1 : L2 ∈ Λ2 , L1 ∈ Λ1}.

(WDC.4) Assume that (a) M1, M2, M3 are manifolds of class C1, (b) F1 is
a set-valued map from M1 to M2, (c) F2 is a set-valued map from
M2 to M3, (c) x1 ∈M1, x2 ∈M2, and x3 ∈M3, (d) Λ1 belongs to
WDC(F1;x1, x2), and (e) Λ2 belongs to WDC(F2;x2, x3). Then
Λ2 ◦ Λ1 belongs to WDC(F2 ◦ F1;x1, x3).

Furthermore, they have the monotonicity property :

(WDC.5) If Λ ∈ WDC(F ;x, y) and Λ̃ is a compact subset of J1
x,y(M,N)

such that Λ ⊆ Λ̃, then Λ̃ ∈ WDC(F ;x, y).

Remark 2.4 Definition 2.3 easily implies that

(WDC.6) If ΛΛΛ is a nonempty subset of WDC(F ;x, y) which is totally
ordered by inclusion, then

⋂
Λ∈ΛΛΛ Λ ∈ WDC(F ;x, y).

This implies that

(WDC.7) Every Λ ∈ WDC(F ;x, y) contains a Λmin ∈ WDC(F ;x, y)
which is minimal, in the sense that if Λ̃ ∈ WDC(F ;x, y) and
Λ̃ ⊆ Λmin then Λ̃ = Λmin..

On the other hand, these minimal derivate containers are usually not unique.
For example, if f is the map R 3 x 7→ (0, 0) ∈ R2, α ≥ 0, and fα,k is the map
from R to R2 given by fα,k(x) = α

k
(cos kx, sin kx) then the sequence {fα,k}∞k=1

converges uniformly to f , and the derivatives f ′α,k satisfy f ′α,k(x) ∈ αS1, where
αS1 = {(u, v) ∈ R2 : u2 + v2 = α2}. This implies that αS1 ∈ WDC(f ; 0) for
every α. Clearly, the sets αS1, for different values of α, are not comparable by
inclusion. 2

Clarke generalized Jacobians of locally Lipschitz vector fields. In
this subsection, we assume that
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(A2) m,µ ∈ Z+, M is a manifold of class Cµ, µ ≥ 2, and m = dim M .

Since µ ≥ 2, the manifolds M and TM are both of class C1, so the spaces
C1(M,TM) and CLip(M,TM) are well defined. We write

ΓC1(TM)
def
= C1(M,TM)∩Γ(TM) , ΓCLip(TM)

def
= CLip(M,TM)∩Γ(TM) ,

so ΓC1(TM), ΓCLip(TM) are the spaces of all vector fields on M that are,
respectively, of class C1 and locally Lipschitz.

Of all maps f from M to TM , those that are vector fields—that is, sections
of TM—are characterized by the fact that πTM,M ◦ f = IM , where πTM,M is
the canonical projection from TM to M . Hence the 1-jets of vector fields at a
point x ∈M are those 1-jets σ ∈ J1

x(M,TM) that are of the form (v, L), where
v ∈ TxM , and L ∈ Lin(TxM,TvTM) is such that dπTM,M(v) ◦ L = ITxM . We
use J1

xΓ(TM) to denote the set of all these jets, so J1
xΓ(TM) is a real linear

space of dimension m + m2. Also, we let J1Γ(TM) =
⋃
x∈M J1

xΓ(TM), so
J1Γ(TM) is the set of all 1-jets of vector fields on M . Then J1Γ(TM) is a
vector bundle over M of class Cµ−2 and fiber dimension m+m2.

A convenient alternative description of the 1-jets of vector fields is as follows.
For each x ∈ M , define an equivalence relation ∼1,x on ΓC1(TM) by letting
f ∼1,x g—if f, g ∈ ΓC1(TM)—if [f−g, h](x) = 0 for all h ∈ ΓC1(M). (Here [·, ·]
is the Lie bracket.) It is then easy to see that two vector fields f, g ∈ ΓC1(TM)
have the same 1-jet at x if and only if f ∼1,x g. Therefore the 1-jet j1f(x)
of an f ∈ ΓC1(TM) can be identified with the equivalence class [f ;∼1,x] of f
modulo ∼1,x.

It follows from the above identification that “the vector [f, g](x) only depends
on the 1-jets j1f(x), j1g(x).” That is, there exists a canonical bilinear map
Lie1(x) : J1

xΓ(TM)× J1
xΓ(TM) 7→ TxM such that

Lie1(x)
(
j1f(x), j1g(x)

)
= [f, g](x) whenever f, g ∈ ΓC1(TM) . (1)

There is a canonical projection πJ1Γ(TM),TM from J1Γ(TM) onto TM , which
sends a jet j1f(x) ∈ J1

xΓ(TM) to the vector f(x). For any vector v ∈ TxM ,
we use J1

x,vΓ(TM) to denote the set π−1
J1Γ(TM),TM(v). Then J1

x,vΓ(TM) is an

m2-dimensional affine subspace of J1
xΓ(TM), because it is the inverse image

of v under the surjective linear map J1
xΓ(TM) 3 w 7→ πJ1Γ(TM),TM(w) ∈ TxM .

Therefore J1Γ(TM) is an affine bundle over TM of class Cµ−2 and fiber
dimension m2.

Relative to a chart x such that x ∈ dom x, if fx, gx are the coordinate
representations of two vector fields f , g, so that fx and gx are maps of class C1

from im x to Rm, it is clear that f ∼1,x g if and only if fx(xx) = gx(xx) and
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Dfx(xx) = Dgx(xx). This implies that that there exists a canonical bijective
correspondence J1

xΓ(TM) 3 σ 7→ σx ∈ Rm × Rm×m , under which each jet
σ = j1f(x) ∈ J1

xΓ(TM) is mapped to its coordinate representation σx,

given by σx =
(
fx(xx), Dfx(xx)

)
. Also, if we fix a vector v ∈ TxM , then

there is a bijection J1
x,vΓ(TM) 3 σ 7→ σx,red ∈ Rm×m that assigns to each jet

σ = j1f(x) ∈ J1
x,vΓ(TM) the square matrix σx,red = Dfx(xx), known as the

reduced coordinate representation of σ.

If f ∈ ΓCLip(TM), then f is a locally Lipschitz map from M to TM , so f has
a well defined Clarke generalized Jacobian ∂f(x) at any x ∈ M . Using the
identification of the 1-jets of vector fields with equivalence classes modulo the
relations ∼1,x, we can regard ∂f(x) as a subset of J1

x,f(x)Γ(TM).

If x is a chart of M near x, then every 1-jet σ ∈ J1
x,f(x)Γ(TM) has a reduced

representation σx,red ∈ Rm×m. Hence every subset Λ of J1
x,f(x)Γ(TM) has a

reduced representation Λx,red, which is a subset of Rm×m. Therefore

(CGJ.rr) If f ∈ ΓCLip(TM), and x ∈ M , then the reduced representation
∂f(x)x,red of ∂f(x) relative to a chart x is exactly the usual
Clarke generalized Jacobian at xx of the map fx : im x 7→ R

m.

3 Cones, multicones, transversality, and set separation

Cones, multicones, polars. A cone in a fdrls X is a nonempty subset C of
X such that r ·c ∈ C whenever c ∈ C, r ∈ R and r ≥ 0. If C is a cone in X, the
polar of C is the convex cone C⊥ = {λ ∈ X† : λ(c) ≤ 0 for all c ∈ C}. Then
C⊥ is a closed convex cone in X†, and C⊥⊥ is the smallest closed convex cone
containing C. In particular, C⊥⊥ = C if and only if C is closed and convex.

A multicone in X is a nonempty set of cones in X. A multicone C is convex
if every member C of C is convex, and closed if every C ∈ C is closed. The
polar of C is the set C⊥ = Clos

(⋃{C⊥ : C ∈ C}
)
, so C⊥ is a (not necessarily

convex) closed cone in X†. The closure of C is the multicone C defined by
C = {C̄ : C ∈ C}.

Transversality of cones. We say that two convex cones C1, C2 in a fdrls

X are transversal, and write C1∩|
−
C2, if C1 − C2 = X, i.e., if for every x ∈ X

there exist c1 ∈ C1, c2 ∈ C2, such that x = c1 − c2. We say that C1 and

C2 are strongly transversal, and write C1∩|
−| C2, if C1∩|

−
C2 and in addition

C1 ∩ C2 6= {0}. Then “∼ C1∩|
−
C2”, “∼ C1∩|

−| C2” will stand for “C1 and C2 are
not transversal,” and “C1 and C2 are not strongly transversal,” respectively.
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Lemma 3.1 Assume that X is a fdrls and C1, C2 are convex cones in X.
Then the following conditions are equivalent:

(1) C1∩|
−
C2.

(2) C1∩|
−
C2.

(3) Either (i) C1∩|
−| C2, or (ii) C1 and C2 are linear subspaces and C1⊕C2 = X.

(4) C⊥1 ∩ (−C⊥2 ) = {0}.

Proof. The equivalence (1)⇔(2) follows from the obvious chain of inclusions
C1 − C2 ⊆ C1 − C2 ⊆ C1 − C2. If (1) holds, then C1 − C2 = X, so a fortiori
C1 − C2 = X, so (2) holds. Conversely, if (2) holds, then C1 − C2 = X, so
C1 − C2 = X, so the convex cone C1 − C2 is dense in X, so C1 − C2 = X.

To prove that (1)⇒(3), it suffices to assume that C1∩|
−
C2 and ∼ C1∩|

−| C2, and
show that (ii) holds. Let us prove that C1 is a linear subspace. Pick c ∈ C1.
Using the transversality of C1 and C2 write −c = c1 − c2, ci ∈ Ci. Then
c1 + c = c2. But c1+c ∈ C1 and c2 ∈ C2. So c1+c ∈ C1∩C2, and then c1+c = 0,

since ∼ C1∩|
−| C2. Therefore −c ∈ C1. This shows that c ∈ C1 ⇒ −c ∈ C1. So C1

is a linear subspace. A similar argument shows that C2 is a linear subspace.
Then the transversality of C1 and C2 implies that C1 + C2 = X, and the

fact that ∼ C1∩|
−| C2 implies that C1 ∩ C2 = {0}. Hence C1 ⊕ C2 = X. This

proves that (1)⇒(3). The implication (3)⇒(1) is trivial, so we have shown
that (1)⇔(2)⇔(3).

To prove that (1)⇔(4), we observe again that, since C1−C2 is a convex cone,
the equality C1 − C2 = X holds if and only if C1 − C2 = X. If C1 − C2 6= X,
then the Hahn-Banach theorem implies that C⊥1 ∩ (−C⊥2 ) 6= {0}. Conversely,
it is clear that if C⊥1 ∩ (−C⊥2 ) 6= {0} then C1 − C2 6= X. So C1 − C2 = X if
and only if C⊥1 ∩ (−C⊥2 ) = {0}, completing the proof that (1)⇔(4). 2

If C is a convex cone in a fdrls X, then span(C) will denote the linear span
of C. It is then clear that span(C) = span(C̄). It is then easy to see that

Lemma 3.2 Assume that X is a fdrls and C is a convex cone in X. Then
Intspan(C)(C̄) = Intspan(C)(C) 6= ∅ and Intspan(C)(C) = C̄.

Proof. Endow the space X with a norm. Let S = span(C) = span(C̄). Let
ν = dim S. Let (b0, . . . , bn) be an affinely independent sequence of members
of C of maximum length. Then n = ν, and (b0, . . . , bν) is an affine basis of
S. Let Σ be the set of all convex combinations of the bi with strictly positive
coefficients. Then Σ is a nonempty subset of C, and Σ is relatively open in S.
Hence Σ ⊆ IntS(C̄), so IntS(C̄) 6= ∅.

Fix an x ∈ IntS(C̄). Then we can pick a small positive number r such that
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x + rb0, . . . , x + rbν belong to C̄. Let vi = x + rbi. Then (v0, . . . , vν) is also
an affine basis of S, consisting of members of C̄. Then for each positive ε
we can find members vεi of C such that ‖vεi − vi‖ < ε. Then (vε0, . . . , v

ε
ν) is

an affine basis of S if ε is small enough. Since x = 1
ν+1

(v0 + · · · + vν), we
can conclude that, for small ε, x is a convex combination of vε0, . . . , v

ε
ν . Since

the vεi belong to C, we conclude that x ∈ C as well. So IntS(C̄) ⊆ C, and
then IntS(C̄) ⊆ IntS(C). Since IntS(C) ⊆ IntS(C̄) trivially, we conclude that
IntS(C̄) = IntS(C).

Next, fix an x ∈ C. Pick a y ∈ Σ. Then x + ry ∈ IntS(C) for every positive
r ∈ R. Letting r ↓ 0, we see that .x ∈ IntS(C). So C ⊆ IntS(C). Therefore
C̄ ⊆ IntS(C). Since IntS(C) ⊆ C̄ trivially, we conclude that IntS(C) = C̄. 2

Lemma 3.3 Assume that X is a fdrls, C1, C2 are convex cones in X, and

C1∩|
−
C2. Then C1 ∩ C2 = C1 ∩ C2 and (C1 ∩ C2)⊥ = C⊥1 + C⊥2 .

Proof. We let Si = span(Ci) for i = 1, 2.

The inclusion C1 ∩ C2 ⊆ C1∩C2 is trivial. To prove the opposite inclusion, we
pick x ∈ C1∩C2. Let (e1, . . . , en) be a basis of X, and let e0 = −(e1 + · · ·+en),
so (e0, e1, . . . , en) is an affine basis of X such that e0 + e1 + · · ·+ en = 0. Using
the transversality of C1 and C2, write ei = fi − gi, fi ∈ C1, gi ∈ C2. Using
the inclusions Ci ⊆ IntSi(Ci), which follow from Lemma 3.2, we find, for each
positive ε, f εi ∈ IntS1(C1) and gεi ∈ IntS2(C2) such that ‖f εi − fi‖ < ε and
‖gεi − gi‖ < ε. Let eεi = f εi − gεi . Then (eε0, . . . , e

ε
n) is an affine basis of X if

ε is small enough. Since 0 = 1
n+1

(e0 + · · · + en), we can conclude that, for
small ε, we can write 0 =

∑n
i=0 α

ε
ie
ε
i with αεi > 0 and

∑n
i=0 α

ε
i = 1. Then∑n

i=0 α
ε
if

ε
i =

∑n
i=0 α

ε
ig
ε
i . Fix ε, and write xr = x + r

∑n
i=0 α

ε
if

ε
i , for r > 0, so

xr = x+ r
∑n
i=0 α

ε
ig
ε
i . Then xr → x as r ↓ 0. Furthermore, since the f εi belong

to IntS1(C1), the αi are > 0, and x ∈ C1, it follows that xr ∈ IntS1(C1) (using
the trivial fact that C + Intspan(C)(C) ⊆ Intspan(C)(C) for any convex cone C).
So Lemma 3.2 implies that xr ∈ C1. A similar argument shows that xr ∈ C2.
Hence xr ∈ C1 ∩C2, so x ∈ C1 ∩ C2. This shows that C1 ∩C2 ⊆ C1 ∩ C2. The
inclusion C1 ∩ C2 ⊆ C1 ∩ C2 is trivial. Hence C1 ∩ C2 = C1 ∩ C2.

To prove that (C1 ∩ C2)⊥ = C⊥1 + C⊥2 , we first show that C⊥1 + C⊥2 is closed.

Suppose p ∈ C⊥1 + C⊥2 . Then p = limj→∞ pj for a sequence {pj}j∈N of members
of C⊥1 + C⊥2 . Write pj = qj + rj, qj ∈ C⊥1 , rj ∈ C⊥2 . Let us show that the
sequence r = {rj}j∈N is bounded. Suppose that r is unbounded. Then we may
find an infinite subset J ′ of N such that the sequence {‖rj‖}j∈J converges to
+∞, and then an infinite subset J of J ′ such that the limit r = limj→∞ r̃j
exists, where r̃j = rj

‖rj‖ . Let q̃j = qj
‖rj‖ . It is then clear that q̃j = pj−rj

‖rj‖ =
pj
‖rj‖ −

rj
‖rj‖ . So limj→∞ q̃j = −r. Hence −r ∈ C⊥1 , r ∈ C⊥2 , and ‖r‖ = 1. So

−r ∈ C⊥1 ∩ (−C⊥2 ) and −r 6= 0. So C⊥1 ∩ (−C⊥2 ) 6= {0}, and then Lemma

13



3.1 implies that ∼ C1∩|
−
C2, contradicting our hypotheses. So r is bounded.

Then we may find an infinite subset J of N such that the sequence {rj}j∈J
converges to a limit r. Since qj = pj − rj, and pj → p, we can conclude that

limj→∞,j∈J qj = p − r
def
=q. Since the cones C⊥1 and C⊥2 are closed, it follows

that q ∈ C⊥1 and r ∈ C⊥2 . But p = q + r, so p ∈ C⊥1 + C⊥2 . This proves that
C⊥1 + C⊥2 is closed.

We are now ready to prove that (C1 ∩ C2)⊥ = C⊥1 + C⊥2 . Since the inclusion
C⊥1 +C⊥2 ⊆ (C1∩C2)⊥ is trivial, it suffices to show that (C1∩C2)⊥⊆C⊥1 +C⊥2 .
Pick a p̄ ∈ (C1∩C2)⊥. Suppose that p̄ /∈ C⊥1 +C⊥2 . Since C⊥1 +C⊥2 is closed, the
Hahn-Banach theorem implies that there exists x ∈ X such that 〈p̄, x〉 > 0
and x ∈ (C⊥1 + C⊥2 )⊥. But then x belongs to C1 ∩ C2, so 〈p̄, x〉 ≤ 0, since
p̄ ∈ (C1 ∩ C2)⊥. So we have reached a contradiction, proving the desired
conclusion that (C1 ∩ C2)⊥ = C⊥1 + C⊥2 . 2

Lemma 3.4 Assume that X is a fdrls and C1, C2 are convex cones in X.

Then C1∩|
−| C2 if and only if C1∩|

−| C2.

Proof. We use Lemma 3.1. Assume that C1∩|
−| C2. Then, to begin with, C1∩|

−
C2,

so C1∩|
−
C2 are transversal. Then Lemma 3.1 tells us that either C1∩|

−| C2, or C1

and C2 are linear subspaces such that C1⊕C2 = X. In the latter case, it would

follow that C1 ⊕ C2 = X, contradicting the fact that C1∩|
−| C2. So C1∩|

−| C2.

Conversely, assume that C1∩|
−| C2. Then C1∩|

−
C2, so Lemma 3.1 tells us that

C1∩|
−
C2, and also that either C1∩|

−| C2 or C1 and C2 are linear subspaces such
that C1⊕C2 = X. In the latter case, C1 = C1 and C2 = C2, so C1 and C2 are

linear subspaces such that C1 ⊕ C2 = X, contradicting the fact that C1∩|
−| C2.

So C1∩|
−| C2. 2

Transversality of multicones. Two convex multicones C1, C2 in a fdrls X

are transversal if C1∩|
−
C2 whenever C1 ∈ C1, C2 ∈ C2. A linear functional

µ ∈ X† is intersection positive on (C1, C2) if

(∀C1 ∈ C1)(∀C2 ∈ C2)(∃x ∈ C1 ∩ C2)(µ(x) > 0) . (2)

The convex multicones C1, C2 are strongly transversal if they are transversal
and in addition there exists a µ ∈ X† which is intersection positive on (C1, C2).

We will use for transversality of multicones the same notations as for cones:

the expression “C1∩|
−
C2” (resp. “∼ C1∩|

−
C2”) means that C1 and C2 are (resp. are

not) transversal, and “C1∩|
−| C2” (resp. “∼ C1∩|

−| C2”) means that C1 and C2 are
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(resp. are not) strongly transversal.

Lemma 3.5 Assume that X is a fdrls and C1, C2 are convex multicones in
X. Then the following conditions are equivalent:

(i) C1 and C2 are not strongly transversal;
(ii) C1 and C2 are not strongly transversal:

(iii) for every ν ∈ X†\{0} there exist C1 ∈ C1, C2 ∈ C2, ω1 ∈ C⊥1 , ω2∈C⊥2 ,
ω0∈R+, such that (ω0, ω1, ω2) 6=(0, 0, 0) and ω1+ω2 =ω0ν.

Proof. The implication C1∩|
−| C2 ⇒ C1∩|

−| C2 follows trivially from the definition of

strong transversality. The reverse implication C1∩|
−| C2 ⇒ C1∩|

−| C2 is true as well,

because if C1∩|
−| C2 then (a) C1∩|

−
C2, so Lemma 3.1 implies that C1∩|

−
C2, and (b) if

µ ∈ X†\{0} is such that (∀C1 ∈ C1)(∀C2 ∈ C2)(∃x ∈ C1∩C2)(µ(x) > 0) , and
C1 ∈ C1, C2 ∈ C2, then C1 ∈ C1 and C2 ∈ C2, so there exists x ∈ C1 ∩ C2 such
that µ(x) > 0. Since C1 ∩ C2 = C1 ∩ C2 by Lemma 3.3, we can conclude that
x ∈ C1 ∩ C2, so we can approximate x by xj ∈ C1 ∩C2, and then µ(xj) > 0 if

j is large enough. Hence C1∩|
−| C2 ⇔ C1∩|

−| C2, and this implies that (i)⇔ (ii).

Now assume that (i) holds, i.e., that ∼ C1∩|
−| C2. Fix a ν ∈ X†\{0}. Then either

∼ C1∩|
−
C2, or C1∩|

−
C2 but there does not exist a functional µ ∈ X† which is

intersection positive on (C1, C2). If ∼ C1∩|
−
C2, then there exist C1 ∈ C1, C2 ∈ C2

such that C1 − C2 6= X. Then Lemma 3.1 implies that C⊥1 ∩ (−C⊥2 ) 6= {0},
so we can find a nonzero member ω1 of C⊥1 ∩ (−C⊥2 ). Let ω2 = −ω1. Then
ω1 ∈ C⊥1 and ω2 ∈ C⊥2 . Let ω0 = 0. Then it is clear that ω1 + ω2 = ω0ν and

(ω0, ω1, ω2) 6= (0, 0, 0). Next assume that C1∩|
−
C2. Then ν cannot be intersection

positive on (C1, C2), so there exist C1 ∈ C1, C2 ∈ C2 such that ν(x) ≤ 0 for all

x ∈ C1 ∩C2. This says that ν ∈ (C1 ∩C2)⊥. Since C1∩|
−
C2, Lemma 3.3 implies

that ν ∈ C⊥1 + C⊥2 . Then we can write ν = ω1 + ω2, ω1 ∈ C⊥1 , ω2 ∈ C⊥2 . If we
take ω0 = 1, then (ω0, ω1, ω2) 6= (0, 0, 0), ω0 ∈ R+, and ω1 + ω2 = ω0ν. This
shows that (iii) holds. Hence (i)⇒ (iii).

We now prove that (iii)⇒ (i), by showing that the negation of (i) implies the

negation of (iii). Assume that (i) is false, i.e., that C1∩|
−| C2. We want to find a

ν for which the conclusion of (iii) is false. The fact that C1∩|
−| C2 implies that

C1∩|
−
C2 and we may pick a µ ∈ X† which is intersection positive on (C1, C2). We

then take ν = µ. To show that the conclusion of (iii) is false with this choice
of ν, let us assume that there exist C1 ∈ C1 and C2 ∈ C2, ω1 ∈ C⊥1 , ω2 ∈ C⊥2 ,
ω0 ≥ 0, for which the conditions (ω0, ω1, ω2) 6= (0, 0, 0) and ω1+ω2 = ω0ν hold.
If ω0 = 0, then ω1 +ω2 = 0, so ω2 = −ω1. Then ω1 6= 0, and ω1 ∈ C⊥1 ∩(−C2)⊥.
So C⊥1 ∩ (−C2)⊥ 6= {0}, and then C1 and C2 are not transversal, contradicting
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the assumption that C1∩|
−| C2. So ω0 > 0, and then we may assume that ω0 = 1.

Then µ = ν = ω1 +ω2, ω1 ∈ C⊥1 , and ω2 ∈ C⊥2 . It follows that µ ∈ (C1∩C2)⊥.
But then there cannot exist an x ∈ C1 ∩ C2 for which µ(x) > 0, and we have
reached a contradiction. So (iii)⇒ (i). 2

Mordukhovich tangent multicones. Let M be a manifold of class C1,
let S be a subset of M , and let s̄ ∈ S. The Bouligand tangent cone to
S at s̄ is the set of all vectors v ∈ Ts̄M such that there exist a sequence
{sj}j∈N of points of S converging to s̄, and a sequence {hj}j∈N of positive
real numbers converging to 0, such that v = limj→∞

sj−s̄
hj

. (This means that

vϕ = limj→∞
ϕ(sj)−ϕ(s̄)

hj
for every ϕ ∈ C1(M,R).) We use TBs̄ S to denote the

Bouligand tangent cone to S at s̄. It is clear, and well known, that TBs̄ S is
a closed cone. The Bouligand normal cone of S at s̄ is the polar cone
(TBs̄ S)⊥ of TBs̄ S, that is, the set of all covectors p ∈ T ∗s̄M such that 〈p, v〉 ≤ 0
for all v ∈ TBs̄ S. The limiting normal cone, or Mordukhovich normal
cone of S at s̄ is the set of all covectors p ∈ T ∗s̄M such that p = limj→∞ pj
for some sequence {sj}j∈N of members of S that converges to s̄ and some
sequence {pj}j∈N of members of T ∗M such that pj ∈ (TBsjS)⊥ (so in particular
pj ∈ T ∗sjM) for each j.

We use NMo
s̄ S to denote the Mordukhovich normal cone of S at s̄. For each

p ∈ T ∗s̄M , we let p⊥ = {v ∈ Ts̄M : 〈p, v〉 ≤ 0}, so p⊥ is a half space if
p 6= 0, and p⊥ is the whole space Ts̄M if p = 0. The Mordukhovich tangent

multicone to S at s̄ is the set TMos̄ S
def
= {p⊥ : p ∈ NMo

s̄ S} , so TMos̄ S is a
set all whose members are closed half-spaces in Ts̄M , except for one “trivial
member,” namely, the whole space Ts̄M .

Lemma 3.6 Let M be a manifold of class C1, let S be a closed subset of M ,
and let s̄ ∈ S, p̄ ∈ T ∗s̄M . Then the following conditions are equivalent:

(*.1) p̄ ∈ NMo
s̄ S ,

(*.2) lim infs→s̄
(

max{〈p̄, v〉 : v ∈ TBs S, ‖v‖ ≤ 1}
)

= 0 ,

(*.3) lim infs→s̄,p→p̄
(

max{〈p, v〉 : v ∈ TBs S, ‖v‖ ≤ 1}
)

= 0 .

Remark 3.7 Conditions (∗.2) and (∗.3) clearly make sense relative to any
fixed coordinate chart x near s̄. (A chart is required to assign a meaning
to 〈p̄, v〉 when v ∈ TBs S, since s need not be equal to s̄—so v ∈ TMs while
p̄ ∈ T ∗s̄M—and also to assign a meaning to ‖v‖.) However, it is easy to see
that the truth values of (∗.2) and (∗.3) are independent of the choice of x.2

Proof of Lemma 3.6. In view of Remark 3.7, we assume that M = R
m and

s̄ = 0. We identify all the tangent spaces TsM with Rm and all the cotangent
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spaces T ∗sM with Rm in the obvious way. For s ∈ S, p ∈ Rm, let

ΘS(p, s) = max{〈p, v〉 : v ∈ TBs S, ‖v‖ ≤ 1} . (3)

Then ΘS(p, s) ≥ 0, because 0 ∈ TBs S.

If (∗.1) holds, then we can find a sequence {sj}j∈N of members of S and a
sequence {pj}j∈N of members of Rm such that limj→∞ sj = 0, limj→∞ pj = p̄,
and pj ∈ (TBsjS)⊥ for each j. Then, ΘS(pj, sj) = 0 for each j, so (*.3) holds.

We now prove that (∗.3)⇒(∗.2)⇒(∗.1). The implication (∗.3)⇒(∗.2) is trivial,
because if (*.3) holds then there exists a sequence {(sj, pj)}j∈N of members of
S × Rm such that limj→∞ sj = 0, limj→∞ pj = p̄, and limj→∞ΘS(pj, sj) = 0.
Since ΘS(p̄, sj) ≤ ΘS(pj, sj) + ‖p̄− pj‖, it follows that limj→∞ΘS(p̄, sj) = 0,
and then (∗.2) holds.

We now assume that (∗.2) holds, and prove (∗.1). If p̄ = 0 then p̄ ∈ NMo
0 S,

so (∗.1) is true. So we may assume that p̄ 6= 0 and then, without loss of
generality, we may also assume that ‖p̄‖ = 1. It follows from (∗.2) that we
can find a sequence {sj}j∈N of members of S such that limj→∞ εj = 0, where
εj = ΘS(p̄, sj). For α > 0, j ∈ N, define βj(α) to be the minimum of all the
nonnegative real numbers β such that the closed ball B̄m(sj +αp̄, β) intersects
S. (The minimum exists because S is closed.) Then βj(α) ≤ α, because sj
belongs to B̄m(sj + αp̄, α) .

We are going to construct, for each j, a covector pj ∈ Rm which is close to p̄
and such that pj is a Bouligand normal to S at a point ŝj close to sj.

Fix a j. If βj(α) = α for some α, then the open ball Bm(sj + αp̄, α) does not
intersect S, and this clearly implies that p̄ ∈ (TBsjS)⊥. So in this case we take
pj = p̄ and ŝj = sj. Next assume that βj(α) < α for all positive α. Then for
each α we may pick a member σ(α) of the set B̄m(sj + αp̄, βj(α)) ∩ S. Let

v(α) = σ(α)− sj , π(α) = αp̄− v(α) .

Then v(α) 6= 0, and in addition

〈v(α), p̄〉 = 〈v(α)− αp̄, p̄〉+ α = α− 〈π(α), p̄〉 ,

since ‖p̄‖ = 1. Furthermore,

‖π(α)‖ = ‖αp̄− v(α)‖ = ‖(sj + αp̄)− σ(α)‖ = βj(α) ,

so 〈π(α), p̄〉 ≤ βj(α), and then 〈v(α), p̄〉 ≥ α− βj(α), so βj(α) ≥ α− 〈v(α), p̄〉.
On the other hand,

lim sup
α↓0

‖v(α)‖−1〈v(α), p̄〉 ≤ εj .
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(Indeed, suppose this is not true. Then there exist a positive real number δ
and a sequence {αk}k∈N of positive numbers that converges to 0 and is such
that ‖v(αk)‖−1〈v(αk), p̄〉 ≥ εj + δ. If we define wk = ‖v(αk)‖−1v(αk), then we
may assume, after passing to a subsequence, that the limit w = limk→∞wk
exists. Since sj +v(αk) ∈ S, the vector w belongs to TBsjS. But 〈w, p̄〉 ≥ εj +δ,

and this contradicts the fact that ΘS(p̄, sj) = εj.)

Let α∗ be such that

‖v(α)‖−1〈v(α), p̄〉 ≤ εj + 2−j whenever 0 < α ≤ α∗ .

Given any α, it is clear that ‖v(α)‖ ≤ 2α. Then 0 ≤ 〈v(α), p̄〉 ≤ αε̃j whenever
0 < α ≤ α∗, where ε̃j = 2(εj + 2−j). Let

a(α) = 〈v(α), p̄〉p̄ , b(α) = v(α)− a(α) ,

so b(α) ⊥ a(α), and then

‖v(α)‖2 = ‖a(α)‖2 + ‖b(α)‖2 .

On the other hand,

π(α) = αp̄− v(α) = αp̄− a(α)− b(α) ,

so
π(α) = (α− 〈v(α), p̄〉)p̄− b(α) ,

and then

α2 ≥ βj(α)2 = ‖π(α)‖2 = |α− 〈v(α), p̄〉|2 + ‖b(α)‖2 .

Since 〈v(α), p̄〉 ≤ αε̃j, we can conclude that α − 〈v(α), p̄〉 ≥ α(1 − ε̃j), from
which it clearly follows that

α2 ≥ α2(1− ε̃j)2 + ‖b(α)‖2 .

Then
‖b(α)‖2≤α2(1−(1−ε̃j)2)≤α2(2ε̃j−ε2

j)≤2α2ε̃j ,

so
‖b(α)‖ ≤ α

√
2ε̃j .

Therefore
‖π(α)− αp̄‖ = ‖〈v(α), p̄〉)p̄+ b(α)‖ ≤ αε̂j ,

where ε̂j = ε̃j +
√

2ε̃j. Hence, if we pick any α such that 0 < α ≤ α∗ and

α ≤ 2−j−1, and let pj = π(α)
α

, ŝj = sj + v(α), we see that ‖pj − p̄‖ ≤ ε̂j,
‖ŝj − sj‖ ≤ 2−j, and pj is a Bouligand normal to S at ŝj. This shows that p̄
is a limiting normal of S at s̄, concluding our proof. 2
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The Clarke tangent and normal cones. If M is a manifold of class C1, S
is a closed subset of M , and s̄ ∈M , then the Clarke tangent cone to S at
s̄ is the set of all vectors v ∈ Ts̄M such that, whenever {sj}j∈N is a sequence
of points of S converging to s̄, it follows that there exist Bouligand tangent
vectors vj ∈ TBsjS such that limj→∞ vj = v. We use TCls̄ S to denote the Clarke

tangent cone to S at s̄. It is well known that TCls̄ S is a closed convex cone.
The Clarke normal cone NCl

s̄ S of S at s̄ is the polar (TCls̄ S)⊥ of the Clarke
tangent cone. Therefore NCl

s̄ S is closed and convex. It is well-known that NCl
s̄ S

is the smallest closed convex cone in T ∗s̄M containing the Mordukhovich cone
NMo
s̄ S. Therefore TCls̄ S =

⋂{C : C ∈ TMos̄ S}.

WDC approximating multicones. If C, D are convex multicones, then we
say that C is a full submulticone of D, and write C �full D, if for every
D ∈ D there exists a C ∈ C such that C ⊆ D.

If X, Y are fdrlss, C is a multicone in X, and Λ ⊆ Lin(X, Y ), then we define

Λ · C def
= {L · C : L ∈ Λ, C ∈ C}.

Definition 3.8 If M is a manifold of class C1, s̄ ∈ S ⊆M , and C is a convex
multicone in Ts̄M , we say that C is a WDC approximating multicone of
S at s̄ if there exist (i) a nonnegative integer n, (ii) a compact subset K of Rn

such that 0 ∈ K, (iii) an open neighborhood U of K in Rn, (iv) a set-valued
map U 3 u 7→ F (u) ⊆M , (v) a compact subset Λ of Lin(Rn, Ts̄M), and (vi) a
convex multicone D in Rn, such that (I) F (K) ⊆ S, (II) Λ ∈ WDC(F ; 0, s̄),
(III) D �full TMos̄ K, and, finally (IV) C = Λ · D. 2

We will use WDCAM(S, s̄) to denote the set of all WDC approximating
multicones of S at s̄, so “C ∈ WDCAM(S, s̄)” is an alternative way of saying
that “C is a WDC approximating multicone of S at s̄.”

Example 3.9 If M is a manifold of class C1, S is a closed subset of M ,
s̄ ∈ S, and C is any convex multicone in Ts̄M such that C � TMos̄ S, then
C ∈WDCAM(S, s̄). To prove this, it clearly suffices to assume that M = Rm

and s̄ = 0. We let U , V be, respectively, an open subset of Rn containing 0, and
a compact ball centered at 0 and contained in U . We then take K = V ∩S, so
K is compact and TMo0 K = TMo0 S. We then let F : U 7→ R

m be the inclusion
map, and take Λ = {IRm}. Then C = Λ · C, and C � TMo0 K. 2

Example 3.10 As a corollary of Example 3.9, if S is a closed subset of a
manifold M of class C1, and s̄ ∈ S, then the Mordukhovich multicone TMos̄ S
and the “Clarke multicone” {TCls̄ S} are WDC approximating multicones of S
at s̄. 2

Example 3.11 It follows trivially from the definition that, if (a) for i = 1, 2,
Mi is a manifold of class C1, Si ⊆ Mi, and s̄i ∈ Si (b) F is a set-valued
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map from M1 to M2 such that F (S1) ⊆ S2, (c) Λ ∈ WDC(F ; s̄1, s̄2), and
(d) C ∈WDCAM(S1, s̄1), then Λ · C ∈WDCAM(S2, s̄2). 2

The following example uses the Cartesian product of two multicones C1, C2

in linear spaces X1, X2. We define C1×C2
def
={C1×C2 : C1 ∈ C1, C2 ∈ C2}, so

C1×C2 is a multicone in X1 ×X2, which is convex if C1 and C2 are convex.

Example 3.12 (The Cartesian product rule.) If (a) M1, M2 are manifolds
of class C1, (b) s̄1 ∈ S1 ⊆M1 and s̄2 ∈ S2 ⊆M2, (c) C1 ∈ WDCAM(S1, s̄1)
and C2 ∈ WDCAM(S2, s̄2), (d) S=S1×S2, s̄= (s̄1, s̄2), and C= C1×C2, then
C∈WDCAM(S, s̄). To see this find, for i = 1, 2, an ni ∈ Z+, a compact subset
Ki of Rni containing 0ni (where 0ν is the origin of Rν), an open neighborhood
Ui of Ki in Rni , a set-valued map Fi from Ui to Mi such that Fi(Ki) ⊆ Si, a
derivate container Λi ∈ WDC(Fi; 0ni , s̄i), and a convex multicone Di in Rni

such that Di � TMo0niKi and Ci = Λi · Di. Define

n=n1 + n2 ,

U =U1 × U2 ⊆ Rn1 × Rn2 ∼ Rn ,
K =K1 ×K2 ,

M =M1 ×M2 ,

D=D1 ×D2 ,

Λ = Λ1 × Λ2 ,

F =F1 × F2 ,

where

Λ1 × Λ2
def
={L1 × L2 : L1 ∈ Λ1, L2 ∈ Λ2} ,

L1 × L2 is the map that sends a pair (u1, u2) ∈ R
n1 × Rn2 to the pair

(L1 · u1, L2 · u2) ∈ Ts̄1M1 × Ts̄2M2 ∼ Ts̄M), and F1 × F2 is the set-valued map
that sends each (u1, u2) ∈ U to the subset F1(u1)× F2(u2) of M .

Then Λ ∈ WDC(F ; 0n, s̄), and Λ ·D = C. So the desired conclusion will follow
if we show that D � TMo0n K. But this is trivial, because, if p ∈ NMo

0n K, then
p = limj→∞ pj for some sequence {(uj, pj)}j∈N such that uj → 0n, uj ∈ K,
and pj ∈ (TBujK)⊥. Write uj = (uj1, u

j
2), pj = (pj1, p

j
2), uji ∈ Rni , p

j
i ∈ Rni . Then

TB
uj1
K1 × {0n2} ∪ {0n1} × TB

uj2
K2 ⊆ TBujK. Since pj ∈ (TBujK)⊥, it follows that

pj1 ∈ (TB
uj1
K1)⊥ and pj2 ∈ (TB

uj2
K2)⊥. Hence p1 ∈ NMo

0n1K1, p2 ∈ NMo
0n2K2. Since

Di � TMo0niKi for i = 1, 2, we may pick Di ∈ Di such that Di ⊆ p⊥i . Then
D1 ×D2 ⊆ p⊥ and D1 ×D2 ∈ D. This shows that D � TMo0n K and concludes
our proof. 2

Remark 3.13 In the previous example, it is important to notice that the
product TMo0n1K1 × TMo0n2K2 of the Mordukhovich tangent multicones TMo0n1K1,
TMo0n2K2 does not in general coincide with the Mordukhovich tangent multicone
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TMo0n K of the product. (For example, if M1 = M2 = R, and K1 = K2 = [0, 1],
then TMo0 K1 = TMo0 K2 = {R, [0,+∞[}, and TMo0 K1×TMo0 K2 is the four-member
set {R×R,R×[0,+∞[, [0,+∞[×R, [0,+∞[×[0,+∞[}. However, the multicone
TMo(0,0)K is an infinite set, consisting of R2 as well as all the half-planes

Ha,b = {(x, y) ∈ R2 : ax+ by ≥ 0} ,

for all the pairs (a, b) such that a ≤ 0 and b ≤ 0.) On the other hand, all that
is needed for the proof in Example 3.12 is the fact that TMo0 K1 × TMo0 K2 �
TMo(0,0)K, which is true. 2

The directional open mapping property. Given a subset A of Rν , and a
positive number r, we use Γ(A, r) to denote the set of all maps γ : [0, 1] 7→ A
such that γ(0) = 0 and ‖γ(t) − γ(s)‖ ≤ r|t − s| whenever s, t ∈ [0, 1]. (So,
naturally, Γ(A, r) is empty if 0 /∈ A.) It is then clear that if A is closed then
Γ(A, r) is a compact subset of C0([0, 1],Rν).

If D is a closed convex cone in Rν , and α > 0, we use D(α) to denote the set
{y ∈ D : ‖y‖ ≤ α}. If y ∈ Rν , we use σy to denote the set {ty : 0 ≤ t ≤ 1}.
If γ : [0, 1] 7→ A is an arc, then |γ| will denote the set {γ(t) : t ∈ [0, 1]}. Also,
we use 0ν to denote the origin of Rν .

Theorem 3.14 Assume that m,n ∈ Z+, S is a closed subset of Rn, U is an
open subset of Rn, 0n ∈ S ∩U , F is a set-valued map from U to Rm, and Λ is
a Warga derivate container of F at (0n, 0m). Let ȳ ∈ Rm be such that ‖ȳ‖ = 1
and ȳ ∈ IntL · p⊥ for every L ∈ Λ and every p ∈ NMo

0 S. Then there exist a
closed convex cone D in Rm such that ȳ ∈ IntD, positive numbers α, κ such
that B̄n(0, ακ) ⊆ U , and a single-valued Lipschitz map F : B̄n(0, ακ) 7→ R

m

such that F (x) ∈ F(x) for every x ∈ B̄n(0, ακ), having the property that

(∀y ∈ D(α))(∃γ ∈ Γ(S, ακ))(σy = |F ◦ γ|) . (4)

Proof. We assume, as we clearly may without loss of generality (after making
an orthogonal change of coordinates, if necessary) that ȳ = (0µ, 1), where
µ = m− 1. We then let R = Rµ, and identify Rm with R× R.

Let ΘS be the function defined in Equation (3) above. We show that

(#) There exists a real number δ ∈]0, 1[ such that, whenever q ∈ Rm,
L ∈ Rm×n, s ∈ S are such that ‖q‖ = 1, 〈q, ȳ〉 ≥ −δ, dist(L,Λ) ≤ δ,
s ∈ S, and ‖s‖ ≤ δ, it follows that ΘS(L†(q), s) ≥ δ.

We prove (#) by contradiction. Assume that δ does not exist. Then there are
sequences {δj}j∈N, {qj}j∈N, {Lj}j∈N, {sj}j∈N, such that limj→∞ δj = 0 and, for
each j, the following are true:
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δj > 0 ,

qj ∈Rm ,
‖qj‖= 1 ,

〈qj, ȳ〉≥−δj ,
sj ∈ S ,

‖sj‖≤ δj ,

Lj ∈ Rm×n ,
dist(Lj,Λ)≤ δj ,

ΘS(L†j(qj), sj)<δj .

Pick L̃j ∈ Λ such that ‖L̃j − Lj‖ ≤ δj. Then we may pass to a subsequence and
assume that the limit (q̄, L̄) = limj→∞(qj, L̃j) exists. Then ‖q̄‖ = 1, 〈q̄, ȳ〉 ≥ 0,
and L̄ ∈ Λ. In addition, limj→∞ sj = 0 and limj→∞ Lj = L̄. Let

pj = L†jqj , p̄ = L̄†q̄ ,

so limj→∞ pj = p̄. Since ΘS(pj, sj) < δj, it is clear that

lim inf
s→0,p→p̄

ΘS(p, s) = 0 ,

So Lemma 3.6 implies that p̄ ∈ NMo
0n S. Hence ȳ is an interior point of L̄ · p̄⊥.

On the other hand, if y ∈ L̄ · p̄⊥ then we can write y = L̄ · x, x ∈ p̄⊥, so that

〈q̄, y〉 = 〈q̄, L̄ · x〉 = 〈L̄† · q̄, x〉 = 〈p̄, x〉 ,

and 〈p̄, x〉 ≤ 0, since x ∈ p̄⊥. So 〈q̄, y〉 ≤ 0 for all y ∈ L̄ · p̄⊥. Since ȳ ∈ L̄ · p̄⊥
and 〈q̄, ȳ〉 ≥ 0, we conclude that 〈q̄, ȳ〉 = 0. But then, if we take y = ȳ + εq̄,
where ε is positive and small enough, we have 〈q̄, y〉 = ε > 0, while on the
other hand y ∈ L̄ · p̄⊥. So we have reached a contradiction, proving (#).

We now fix a δ having the properties of (#), choose κ = δ−1, and then let
Λ̂ = {L ∈ Rm×n : dist(L,Λ) ≤ δ}. We then use the definition of the Warga
derivate container, and obtain

• an R ∈ R such that R > 0, B̄n(0, R) ⊆ U and R ≤ δ,
• a single-valued Lipschitz map F : B̄n(0, R) 7→ R

m such that F (0) = 0 and
F (x) ∈ F(x) for every x ∈ B̄n(0, R),
• a sequence {Fj}j∈N of functions of class C1 from B̄

n(0, R) to Rm such that
· Fj → F uniformly on B̄n(0, R) as j →∞,

· DFj(x) ∈ Λ̂ for all x ∈ B̄n(0, R), j ∈ N.

After replacing Fj by Fj − Fj(0) we may assume, in addition, that Fj(0) = 0
for every j ∈ N.

We now let
D = {y ∈ Rm : 〈y, ȳ〉 ≥ (1− δ̃)‖y‖} ,

where δ̃ = δ2

2
, so that δ =

√
2δ̃. Then D is a closed convex cone, and ȳ ∈ IntD.

We choose α = δR, and define Ŝ = B̄n(0, R) ∩ S, so Ŝ is compact and 0 ∈ Ŝ.
We will prove (4). It clearly suffices to show that

(∀j∈N)(∀y∈D(α))(∃γ∈Γ(Ŝ, κα))(σy= |Fj ◦ γ|) . (5)
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(Indeed, if (5) holds, and y ∈ D(α), then for each j we can find γj ∈ Γ(Ŝ, κα)

such that |Fj ◦ γj| = σy. Since Γ(Ŝ, κα) is compact, there exists an infinite

subset J of N such that γ = limj→
J
∞ γj exists and belongs to Γ(Ŝ, κα). But

then limj→
J
∞(Fj ◦ γj) = F ◦ γ, so |F ◦ γ| = σy, and γ ∈ Γ(S, κα) .)

We now prove (5). We fix an index j, and write G = Fj. Then G(0) = 0,

G ∈ C1(B̄n(0, R),Rm), and DG(x) ∈ Λ̂ for all x ∈ B̄n(0, R). We want to prove
that (∀y ∈ D(α))(∃γ ∈ Γ(Ŝ, κα))(σy = |G ◦ γ|) .

Let D0(α) = IntD(α). Then, thanks to the compactness of Γ(Ŝ, κα), it suffices
to show that

(∀y ∈ D0(α))(∃γ ∈ Γ(Ŝ, κα))(σy = |G ◦ γ|) . (6)

To prove (6), we pick a point y∗ ∈ D0(α) and construct a γ ∈ Γ(Ŝ, κα) such
that σy∗ = |G ◦ γ|. We will do this by finding, for small positive ε, arcs

γε ∈ Γ(Ŝ, κα) such that the sets |G◦γε| converge to σy∗ in the Hausdorff metric.
Pick a positive ε such that B̄m(y∗, ε) ⊆ D0(α). (This implies, in particular, that
‖y∗‖+ ε < α.) Then let

Q̂ε = {v ∈ Rm : 〈v, y∗〉 = 0 ∧ ‖v‖ ≤ ε} ,

so Q̂ε is the µ-dimensional disc orthogonal to y∗, centered at 0, and having
radius ε. Define

Qε = {y∗ + v : v ∈ Q̂ε} ,
so Qε ⊆ B̄m(y∗, ε).

Next, we let ŷ = y∗
‖y∗‖ . (Recall that y∗ 6= 0, because y∗ ∈ D0(α), and 0 /∈ D0(α),

because if 0 ∈ D0(α) it would follow—since δ < 1—that 〈y, ȳ〉 ≥ 0 for all y
near 0, so ȳ = 0.) We then define a function hε : Rm 7→ R by letting

hε(x) = 〈x, ŷ〉 − λε‖x− 〈x, ŷ〉ŷ‖2 ,

where λε = ε−2‖y∗‖. Then hε(0) = 0, and in addition hε(x) also vanishes at
all points x belonging to the frontier

∂Qε = {y∗ + v : v ∈ Rm, v ⊥ y∗, ‖v‖ = ε}

of Qε. We then let Hε = hε ◦G, so Hε is a function of class C1 on U . We then
define

Qε = {x ∈ Rm : λε‖x− 〈x, ŷ〉ŷ‖2 ≤ 〈x, ŷ〉 ≤ ‖y∗‖} . (7)

Then Qε is obviously closed, and Qε 6= ∅, because 0 ∈ Qε. Furthermore, the
Hausdorff distance dHa(Qε, σy∗) is exactly ε. (Indeed, fix an x ∈ Qε. Then
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x = v + rŷ, with r = 〈x, ŷ〉 and v = x− rŷ, so v ⊥ ŷ. The fact that x ∈ Qε
implies that λε‖v‖2 ≤ r ≤ ‖y∗‖, so r ≥ 0, and then ry∗ belongs to σy∗ and
‖x− rŷ‖2 ≤ ε2, so ‖x − rŷ‖ ≤ ε. Since this is true for every x ∈ Qε, while
‖x − rŷ‖ = ε if x ∈ ∂Qε, we see that max{dist(x, σy∗) : x ∈ Qε} = ε. Since
σy∗ ⊆ Qε, it follows that dHa(Qε, σy∗) = ε.) In particular, Qε is bounded, so
Qε is compact.

We then define a set-valued function Ψε from the ball B̄n(0, R) to Rn by letting
Ψε(s) = {w ∈ Rn : ‖w‖ ≤ 1 and 〈∇Hε(s), w〉 ≥ δ} . It is then clear that the
map Ψε is upper semicontinuous with compact convex values.

Let S ′ε = G−1(Qε) ∩ Ŝ , S ′0,ε = {s ∈ S ′ε : ‖s‖ < R and 〈G(s), ŷ〉 < ‖y∗‖} . Then

S ′ε is a compact subset of Ŝ, S ′0,ε is a relatively open subset of S ′ε, and 0 ∈ S ′0,ε.
We will show that

Ψε(s∗) ∩ TBs∗S
′
ε 6= ∅ whenever s∗ ∈ S ′0,ε . (8)

To see this, pick a point s∗ ∈ S ′0,ε, and write

x∗ = G(s∗) , π∗ = ∇hε(x∗) , π̂∗ =
π∗
‖π∗‖

.

It follows that x∗ ∈ Qε, so x∗ = r∗ŷ + v∗, with v∗ ⊥ ŷ, r∗ = 〈x∗, ŷ〉, and
‖v∗‖ ≤ ε. The fact that s∗ ∈ S ′0,ε then implies the inequalities ‖v∗‖ < ε and
0 ≤ r∗ < ‖y∗‖. Also,

π∗ = ŷ − 2λε(x∗ − 〈x∗, ŷ〉ŷ) = ŷ − 2λεv∗ ,

and then
‖π∗‖ =

√
1 + 4λ2

ε‖v∗‖2 ,

since v∗ ⊥ ŷ. Also, 〈π∗, ȳ〉 = 〈ŷ, ȳ〉 − 2λε〈v∗, ȳ〉. Since ŷ ∈ D, and ‖ŷ‖ = 1, we
have 〈ŷ, ȳ〉 ≥ 1− δ̃, so

‖ŷ − ȳ‖2 = ‖ŷ‖2 + ‖ȳ‖2 − 2〈ŷ, ȳ〉 = 2(1− 〈ŷ, ȳ〉) ≤ 2δ̃ ,

and then ‖ŷ − ȳ‖ ≤
√

2δ̃ = δ, so that

2λε〈v∗, ȳ〉=2λε〈v∗, ȳ−ŷ〉≤2λε‖v∗‖ ‖ȳ−ŷ‖≤2λε‖v∗‖δ ,

(using the fact that v∗ ⊥ ŷ), and then

〈π∗, ȳ〉 ≥ 1− δ̃ − 2λε‖v∗‖δ ≥ −2λε‖v∗‖δ ≥ −2λεεδ

from which it follows that 〈π̂∗, ȳ〉 ≥ − 2λε‖v∗‖δ√
1+4λ2

ε‖v∗‖2
≥ −δ .

Let L∗ = DG(s∗). Then dist(L∗,Λ) ≤ δ. Since ‖π̂∗‖ = 1 and 〈π̂∗, ȳ〉 ≥ −δ,
(#) implies that ΘS(L†∗(π̂∗), s) ≥ δ. We can therefore find a w ∈ TBs S such
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that ‖w‖ = 1 and 〈L†∗(π̂∗), w〉 ≥ δ. It follows that 〈L†∗(π∗), w〉 ≥ δ‖π∗‖. Since
‖π∗‖ ≥ 1, we can conclude that 〈L†∗(π∗), w〉 ≥ δ. But the chain rule implies that
L†∗(π∗) = ∇Hε(x∗), so we have shown that 〈∇Hε(x), w〉 ≥ δ. This establishes
that w ∈ Ψε(s).

To complete the proof of (8), we have to show that w ∈ TBs S ′ε. Since w ∈ TBs S
and ‖w‖ = 1, we can find a sequence {sk}∈N of points of S\{s∗} that converges
to s∗ and is such that limk→∞wk = w , where wk = sk−s∗

‖sk−s∗‖
.

If we let
ωk = ‖sk − s∗‖ , w̃k = wk − w ,

we find

sk = s∗ + ωkw + ωkw̃k , lim
k→∞

ωk = 0 , lim
k→∞

w̃k = 0 .

Let ψ be a function from ]0,∞[ to [0,∞] that satisfies limr↓0 ψ(r) = 0 as well
as the conditions

‖G(s)−G(s∗)− L∗(s− s∗)‖≤ψ(‖s− s∗‖)‖s− s∗‖ (9)

|hε(x)− hε(x∗)− 〈π∗, x− x∗)| ≤ψ(‖x− x∗‖)‖x− x∗‖ (10)

for all s ∈ U and all x ∈ Rm, respectively. Let xk = G(sk). Then (9) implies
the inequality

‖xk − x∗ − ωkL∗(w + w̃k)‖ ≤ ψ(ωk)ωk ,

from which it follows that

‖xk − x∗ − ωkL∗(w)‖ ≤ νkωk ,

where νk = ψ(ωk) + ‖L∗(w̃k)‖, so that limk→∞ νk = 0. It then follows that

‖xk − x∗‖ ≤ ωk‖L∗(w)‖+ νkωk .

Then
|〈xk − x∗ − ωkL∗(w), π∗〉| ≤ ‖π∗‖νkωk .

Therefore

〈xk−x∗, π∗〉= 〈xk−x∗−ωkL∗(w), π∗〉+ωk〈L∗(w), π∗〉
≥−ωkνk‖π∗‖+ ωk〈w,L†∗(π∗)〉 ≥ ωk(δ − νk‖π∗‖) .

Now write ν ′k = ψ(‖xk − x∗‖), so that limk→∞ ν
′
k = 0. It then follows that

|hε(xk)− hε(x∗)− 〈π∗, xk − x∗)| ≤ ν ′k‖xk − x∗‖ ,

from which we can conclude that

hε(xk)− hε(x∗) ≥ 〈π∗, xk − x∗〉 − ν ′k‖xk − x∗‖ .
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Using of the facts that

‖xk − x∗‖≤ωk‖L∗(w)‖+ νkωk ,

〈π∗, xk − x∗〉≥ωk(δ − νk‖π∗‖) ,

we find that

hε(xk)− hε(x∗) ≥ ωk(δ − ‖π∗‖νk − ν ′k‖L∗(w)‖ − ν ′kνk) .

So we can pick a k̄ ∈ N such that

hε(xk)− hε(x∗) ≥
1

2
‖ωk‖δ whenever k ≥ k̄ .

It follows from (7) that x ∈ Qε if and only if hε(x) ≥ 0 and 〈x, ŷ〉 ≤ ‖y∗‖.
Since x∗ ∈ Qε, the inequality hε(x∗) ≥ 0 is true, and then hε(xk) > 0 if k ≥ k̄.
Furthermore, the fact that s∗ ∈ S ′0,ε implies that 〈G(s∗), ŷ〉 < ‖y∗‖, i.e., that
〈x∗, ŷ〉 < ‖y∗‖, and this implies that 〈xk, ŷ〉 < ‖y∗‖ if k is large enough. In
addition, using once again the fact that s∗ ∈ S ′0,ε, we find that ‖s∗‖ < R, so
‖sk‖ < R if k is large enough. It follows that we can find a k̄′ ∈ N such that
k̄′ ≥ k̄ and 〈xk, ŷ〉 < ‖y∗‖ whenever k ≥ k̄′. Then, if k ≥ k̄′, the the following
hold:

(i) sk ∈ S,
(ii) hε(xk) > 0,

(iii) 〈xk, ŷ〉 < ‖y∗‖,
(iv) ‖sk‖ < R.

It follows from (ii) and (iii) that xk ∈ Qε, so sk ∈ G−1(Qε), while on the other
hand (i) and (iv) imply that sk ∈ Ŝ. Therefore sk ∈ Sε. Hence w ∈ TBs∗Sε,
completing the proof of (8).

Now, using standard existence results from viability theory, we pick a solution
ξε : Iε 7→ S ′0,ε of the differential inclusion ξ̇(t) ∈ Ψε(ξ(t)) such that

(1) ξε(0) = 0,
(2) ξε is defined on a subinterval Iε of R such that 0 = min Iε,
(3) ξε is not extendable to a solution ξ̃ : Ĩ 7→ S ′0,ε such that 0 = min Ĩ,

Iε ⊆ Ĩ, and Iε 6= Ĩ.

Then ξε satisfies Hε(ξε(t)) ≥ δt for all t ∈ Iε. On the other hand,

Hε(s) = hε(G(s)) ≤ ‖y∗‖ for all s ∈ S ′ε ,

so Iε ⊆ [0, δ−1‖y∗‖]. It follows that Iε = [0, τε [ or Iε = [0, τε] for some τε
or such that 0 < τε ≤ δ−1‖y∗‖. If Iε = [0, τε], then ξε would be extendable,
contradicting the choice of (ξε, Iε). So Iε = [0, τε [ . Since ξε is Lipschitz with
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constant 1, the limit s̄ε = limt↑τε ξε(s) exists and belongs to S ′ε. If s̄ε ∈ S ′0,ε
then ξε would be extendable. So s̄ε /∈ S ′0,ε. But then either ‖s̄ε‖ = R or
〈G(s̄ε), ŷ〉 = ‖y∗‖. The possibility that ‖s̄ε‖ = R is easily excluded, because
‖s̄ε‖ ≤ τε ≤ δ−1‖y∗‖ < δ−1α = R. Hence 〈G(s̄ε), ŷ〉 = ‖y∗‖. If we let x̄ε = G(s̄ε),
then this shows that x̄ε ∈ Qε.

We now define γε : [0, 1] 7→ S ′ε by letting γε(t) = ξε(τεt) for t ∈ [0, 1]. Then
γε ∈ Γ(S, κα) (since τε ≤ δ−1α = κα), and γε(0) = 0. Furthermore, the set
|G ◦ γε| is entirely contained in Qε, and G(γε(1)) ∈ Qε. We can then pick
a sequence {εk}k∈N of positive numbers such that limk→∞ εk = 0 and the
arcs γεk converge uniformly to an arc γ ∈ Γ(S, κα). This arc clearly satisfies
|G ◦ γ| ⊆ σy∗ . Furthermore, y∗ = limk→∞ xεk , so y∗ ∈ |G ◦ γ|, and then
|G ◦ γ| = σy∗ . This concludes the proof. 2

The transversal intersection property. If X is a topological space, and
S1, S2 are subsets ofX, we say that S1 and S2 are locally separated at a point
p ∈ X if there exists a neighborhood U of p in X such that S1∩S2∩U ⊆ {p}.

Theorem 3.15 Let M be a manifold of class C1, let S1, S2 be subsets of M ,
and let x̄ ∈ S1 ∩ S2. Let C1, C2, be WDC approximating multicones of S1, S2

at x̄. Assume that C1 and C2 are strongly transversal. Then S1 and S2 are not
locally separated at x̄. (That is, there exists a sequence {xj}j∈N of points of
(S1∩S2)\{x̄} such that limj→∞ xj = x̄.) Furthermore, there exists a Lipschitz
arc γ : [0, 1] 7→ M such that γ(0) = x̄, γ(t) does not identically equal x̄, and
γ(t) ∈ S1 ∩ S2 for all t ∈ [0, 1].

Proof. We will use Theorem 3.14. Without loss of generality, we assume that
M = Rn and x̄ = 0. We let X = Rn, X = X ×X, Y = X ×R. We fix a linear
functional µ : X 7→ R which is intersection positive on (C1, C2), and define a
map G : X = X ×X 7→ Y by letting

G(x1, x2) = (x1 − x2, µ(x1)) .

Then G is a linear map, so the differential DG(0) is just G.

Let
S = S1 × S2 , C = C1 × C2 , D = G · C .

Since Example 3.12 tells us that C is a WDC approximating multicone of S at
(0, 0), it follows that D is a WDC approximating multicone of G(S) at G(0, 0).

Let ȳ = (0, 1) ∈ Y = X × R. Then a straightforward calculation shows that
ȳ ∈ IntD for every D ∈ D. (Proof. Let D ∈ D, and write D = G(C1 × C2),
C1 ∈ C1, C2 ∈ C2. Then C1−C2 = X. Since µ is intersection positive on (C1, C2),
we can pick c̄ ∈ C1∩C2 such that µ(c̄) = 1. Then G(c̄, c̄) = ȳ. Given any v ∈ X,
we can use the transversality of C1 and C2 to write v = c1 − c2, with c1 ∈ C1,
c2 ∈ C2. So there exists r ∈ R such that (v, r) ∈ G(C1 × C2). If (e1, . . . , en)
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is a basis of X, and e0 = −(e1 + . . .+ en), then there are real numbers ri
such that (ei, ri) ∈ G(C1 × C2) for i = 0, . . . , n. Since ȳ ∈ G(C1 × C2), it
follows that (ei, r̄) ∈ G(C1 × C2), for every i, if r̄ = max(1, r0, r1, . . . , rn).
Hence (ẽi, 1) ∈ G(C1 × C2) for every i, if ẽi = r̄−1ei. This clearly implies our
conclusion.)

We have therefore verified the hypotheses of Theorem 3.14. It then follows
from the theorem that, for some positive number α, there exists a Lipschitz arc
ξ : [0, 1] 7→S that satisfies ξ(0)=0 and is such that the sets {G(ξ(t)) : t ∈ [0, 1]},
{(0, r) : 0 ≤ r ≤ α} coincide. Write ξ(t) = (ξ1(t), ξ2(t)), so ξ1(t) ∈ S1 and
ξ2(t)) ∈ S2. Let γ(t) = ξ1(t). Then, if t ∈ [0, 1], G(ξ(t)) = (0, r) for some
r, so ξ1(t) = ξ2(t), and then γ(t) ∈ S1 ∩ S2, Furthermore, γ does not vanish
identically because, for some t ∈ [0, 1], G(ξ(t)) = (0, α), so µ(γ(t)) = α. 2

4 Covariant differentiation and adjoint covectors

Ppd vector fields, trajectories, flow maps. We assume that

(A3) m,µ ∈ Z+, M is a manifold of class Cµ, µ ≥ 1, and m = dim M .

A ppd tvvf on M is a ppd map M × R 3 (x, t) ↪→ f(x, t) ∈ TM such that
f(x, t) ∈ TxM whenever (x, t) ∈ dom f . A trajectory, or integral curve, of
a ppd tvvf f on M is a locally absolutely continuous map ξ : I 7→M , defined
on a nonempty real interval I, such that for almost all t ∈ I the following two
conditions hold: (i) (ξ(t), t) ∈ dom(f), and (ii) ξ̇(t) = f(ξ(t), t). An integral
arc of f is an integral curve ξ : I 7→ X such that the interval I is compact.
If f is a ppd tvvf on M , then Traj (f) (resp. Traj c(f)) will denote the set of
all integral curves (resp. arcs) of f . For given t, s ∈ R, the time t to time s
flow map of f is the set-valued map Φf

s,t from M to M that assigns to each

x ∈ R× R×X the set Φf
s,t(x)

def
={ξ(s) : ξ ∈ Traj c(f), ξ(t) = x}.

Vector fields and covector fields along an arc. We assume (A3)

If ξ ∈ ARC(M), then we can consider the pullback bundles ξ∗TM , ξ∗T ∗M .
If dom ξ = [a, b] then, by definition, ξ∗TM , ξ∗T ∗M are the bundles over
[a, b] whose fibers (ξ∗TM)t, (ξ∗T ∗M)t at a t ∈ [a, b] are the spaces Tξ(t)M .
T ∗ξ(t)M . We use Γ(ξ∗TM), Γ(ξ∗T ∗M) to denote, respectively, the set of all
sections [a, b] 3 t 7→ v(t) ∈ Tξ(t)M , [a, b] 3 t 7→ w(t) ∈ T ∗ξ(t)M , of ξ∗TM ,
ξ∗T ∗M . The members of Γ(ξ∗TM), Γ(ξ∗T ∗M) are called, respectively, vector
fields along ξ and covector fields along ξ. If the arc ξ is such that
ξ([a, b]) ⊆ dom x for some chart x of M , then ξ has a coordinate representation
ξx ∈ C0([a, b], im x), given by ξx(t) = ξ(t)x = x(ξ(t)) for t ∈ [a, b]. Also, vector
fields v ∈ Γ(ξ∗(TM)) and covector fields w ∈ Γ(ξ∗(T ∗M)) have coordinate rep-
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resentations vx, wx, which are, respectively, maps from [a, b] to Rm and from
[a, b] to Rm, given by

vx(t) = v(t)x = (vx,1(t), vx,2(t), . . . , vx,m(t))† ,

wx(t) =w(t)x = (wx
1 (t), wx

2 (t), . . . , wx
m(t)) ,

where

vx,i(t) = 〈dxi(ξ(t)), v(t)〉 , wx
i (t) = 〈w(t), ∂x

i (ξ(t))〉 .

Since M is, in particular, a manifold of class C1, it makes sense to talk
about an arc ξ ∈ C0([a, b],M) being absolutely continuous, and we will
use W 1,1([a, b],M) to denote the space of all absolutely continuous maps
ξ : [a, b] 7→M . (Precisely, the members of W 1,1([a, b],M) are the arcs
ξ ∈ C0([a, b],M) with the property that, for every chart x of M and every
compact subinterval [α, β] of [a, b] with the property that ξ([α, β]) ⊆ dom x,
the restriction ξ̃ = ξ d [α, β] of ξ to the interval [α, β] is such that the coordinate
representation ξ̃x : [α, β] 7→Rm, given by ξ̃x = x−1◦ξ̃, is absolutely continuous.)
We write

W1,1(M) =
⋃

−∞<a≤b<+∞
W 1,1([a, b],M) .

If ξ ∈ ARC(M), then it makes sense to talk about vector fields and covector
fields along ξ being measurable, or continuous, since TM and T ∗M are
topological spaces. Furthermore, if 1 ≤ p ≤ ∞, it also makes sense to talk
about vector fields and covector fields along ξ belonging to Lp, since TM and
T ∗M are vector bundles. (Precisely, a vector field v ∈ Γ(ξ∗(TM)) belongs
to Lp if, for every chart x of M and every compact subinterval [α, β] of [a, b]
such that ξ([α, β]) ⊆ dom x, the restriction ṽ = v d [α, β] of v to [α, β] is
such that the coordinate representation ṽx : [α, β] 7→ R

m, given by the for-
mula ṽx(t) = Dx(ξκ(t))(v(t)) for t ∈ [α, β], belongs to Lp([α, β],Rm). Observe
that, if x, x′ are charts of M and ξ([α, β]) ⊆ dom x ∩ dom x′, then the vectors
ṽx′(t), ṽx(t) and related by ṽx′(t) = D(x′ ◦ x−1)(ξx(t)) · ṽx(t) for t ∈ [α, β], and
this implies that if ṽx belongs to Lp then ṽx′ is in Lp as well, since the matrix-
valued function [α, β] 3 t 7→ D(x′ ◦ x−1)(ξx(t)) is continuous, because µ ≥ 1.
A similar observation applies to covector fields, for which the transformation
law is w̃x(t) = w̃x′(t) ·D(x′ ◦ x−1)(ξx(t)).) We use Γmeas(ξ

∗TM), ΓC0(ξ∗TM),
ΓLp(ξ

∗TM), to denote the spaces of all v ∈ Γ(ξ∗TM) that are, respectively,
measurable, continuous, members of Lp. The three spaces Γmeas(ξ

∗T ∗M),
ΓC0(ξ∗T ∗M), and ΓLp(ξ

∗T ∗M) are defined in a similar way.

Remark 4.1 The concept of an absolutely continuous vector or covector field
along a ξ ∈ ARC(M) is not intrinsically defined if M is only of class C1,
even if ξ ∈ W1,1(M). Indeed, if x, x′ are charts whose domains contain im ξ,
then the coordinate representations vx, vx′ , of a v ∈ Γ(ξ∗TM) are related by
vx′(t) = J(ξx(t)) · vx(t), where J(q) = D(x′ ◦ x−1)(q) for q ∈ im x. Since the
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map J is only known to be continuous, there is no reason why vx′ should be
absolutely continuous if vx is, even if ξx is absolutely continuous. A similar
fact is true of covector fields.

On the other hand, it is clear that, the absolute continuity of vx′ follows from
that of vx if the map J is of class C1 and ξ ∈ W1,1(M). Hence the concept
of absolute continuity makes sense for members of Γ(ξ∗TM) and Γ(ξ∗T ∗M) if
ξ ∈ W1,1(M) and µ ≥ 2. (Alternatively, a member of Γ(ξ∗TM) or of Γ(ξ∗T ∗M)
is just a map from dom ξ to TM or to T ∗M which is a lift of ξ, i.e. is such
that its composite with the projection from TM or T ∗M to M is ξ. If µ ≥ 2,
then TM and T ∗M are manifolds of class C1, so the spaces W1,1(TM) and
W1,1(T ∗M) are intrinsically defined.) 2

Integrably Lipschitz ppd vector fields near an arc. We assume that

(A4) m,µ ∈ Z+, M is a manifold of class Cµ, µ ≥ 2, m = dim M ,
and ξ ∈ ARC(M) .

A chart covering of ξ is a finite set K such that (a) all the members of K
are ordered pairs (I,x) consisting of a compact subinterval I of dom ξ and a
chart x of M such that ξ(I) ⊆ dom x, and (b)

⋃{I : (∃x)(I,x) ∈ K} = dom ξ.

If M×R3(x, t) ↪→f(x, t)∈TxM is a ppd tvvf on M , K is a chart covering of
ξ, and k : dom ξ 7→ [0,+∞] is an integrable function, then a system of IL

constants for ξ, f, k, K is an ordered pair
(
{δI,x}(I,x)∈K, {CI,x}(I,x)∈K

)
of families of positive constants such that the following three conditions are
satisfied for every (I,x)∈K and every t ∈ I :

(IL.1) The ball B̄m(ξ(t)x, δI,x) is contained in im x.

(IL.2) f(x, t) is defined whenever x ∈ x−1
(
B̄
m(ξ(t)x, δI,x)

)
.

(IL.3) ‖fx(q, t)‖ ≤ CI,xk(t) and ‖fx(q, t) − fx(q′, t)‖ ≤ CI,xk(t) · ‖q − q′‖
for all q, q′ ∈ B̄m(ξ(t)x, δI,x).

If f , k, K are as above, then f is said to be integrably Lipschitz near ξ
with bound k (abbreviated “IL-k near ξ”) relative to K if there exists
a system of IL constants for ξ, f , k, K.

The following observation will be important later:

(IL.*) Suppose that f is a ppd tvvf on M , k : dom ξ 7→ [0,+∞] is integrable,
and K is chart covering of ξ such that f is IL-k near ξ relative to K.
Then f is IL-k near ξ relative to every chart covering of ξ.

To prove (IL.*), we start by fixing a system ({δI,x}(I,x)∈K, {CI,x}(I,x)∈K) of IL

constants for ξ, f , k, K. Let K̃, be another chart covering of ξ. We will show
that f is IL-k near ξ relative to K̃.
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Construct a new pair of chart coverings K#, K̃# of the arc ξ by letting
K# =

⋃{ΣI,x : (I,x) ∈ K} and K̃# =
⋃{Σ̃J,y : (J,y) ∈ K̃}, where ΣI,x is

the set of all pairs (L,x), for all intervals L such that ∅ 6= L and L = I ∩ J
for some (J,y) ∈ K̃, and Σ̃J,y is the set of all pairs (L,y), for all intervals L
such that ∅ 6= L and L = I ∩ J for some (I,x) ∈ K.

It is then clear that f is IL-k near ξ relative to K#. Indeed, if α ∈ K#, then
α ∈ ΣI,x for some (I,x) ∈ K, so α = (L,x) for some nonempty compact

interval L such that L ⊆ I. Then, if we let δ#
L,x = δI,x and C#

L,x = CI,x, it

follows that ({δ#
L,x}(L,x)∈K# , {C#

L,x}(L,x)∈K#) is a system of IL constants for ξ,
f , k, K#.

It is also clear that f will be IL-k near ξ relative to K̃ as long as it is IL-k near
ξ relative to K̃#. (Indeed, let ({δ̃#

H,y}(H,y)∈K̃# , {C̃#
H,y}(H,y)∈K̃#) be a system of

IL constants for ξ, f , k, K̃#. Then, for each member (J,y) of K̃, we define

δ̃J,y = min{δ̃#
H,y : (H,y) ∈ K̃#, H ⊆ J} ,

C̃J,y = max{C̃#
H,y : (H,y) ∈ K̃#, H ⊆ J} .

It is then easy to verify that ({δ̃J,y}(J,y)∈K̃, {C̃J,y}(J,y)∈K̃) is a system of IL

constants for ξ, f , k, K̃.)

So all we need is to verify that f is IL-k near ξ relative to K̃#. For this
purpose, we fix a system ({δ#

H,x}(H,x)∈K# , {C#
H,x}(H,x)∈K#) of IL constants for

ξ, f , k, K#. We then pick a member (H,y) of K̃#, and observe that we may
pick a chart x of M such that (H,x) ∈ K#. This implies, in particular, that
ξ(H) ⊆ dom x ∩ dom y.

We then pick a positive number δ such that the inclusions

B̄
m(ξ(t)y, δ) ⊆ im y , y−1(B̄m(ξ(t)y, δ)) ⊆ x−1(B̄m(ξ(t)x, δ#

H,x))

hold whenever t ∈ H. (The existence of δ is proved as follows. Suppose
first that there are arbitrarily small positive δ having the property that the
inclusion B̄m(ξ(t)y, δ) ⊆ im y is false for some t ∈ H. Then we can pick positive
δj, tj ∈ H, and qj ∈ B̄m(ξ(tj)

y, δj), such that δj → 0 and qj /∈ im y. By
passing to a subsequence, we may assume that tj → t for some t ∈ H. But
then ξ(tj) → ξ(t), so ξ(tj)

y → ξ(t)y. Since ‖qj − ξ(tj)
y‖ ≤ δj, it follows

that qj → ξ(t)y. But ξ(t)y ∈ im y, and im y is open in Rm, so qj ∈ im y is
open in Rm for large enough j, contradicting our choice of the qj. We now
know that there exists a positive δ̄ such that B̄m(ξ(t)y, δ̄) ⊆ im y for every
t ∈ H. Suppose that there are arbitrarily small values of δ ∈]0, δ̄] for which
the inclusion y−1(B̄m(ξ(t)y, δ)) ⊆ x−1(B̄m(ξ(t)x, δ#

H,x)) fails for some t ∈ H.
Then we can pick δj ∈]0, δ̄], tj ∈ H , and xj ∈ y−1(B̄m(ξ(tj)

y, δj)) such that
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δj → 0 and xj /∈ x−1(B̄m(ξ(tj)
x, δ#

H,x)). By passing to a subsequence, we may
assume that tj → t for some t ∈ H. But then ξ(tj) → ξ(t), so ξ(tj)

y → ξ(t)y

and ξ(tj)
x → ξ(t)x. Let qj = xy

j . Then ‖qj − ξ(tj)
y‖ ≤ δj, so qj → ξ(t)y.

Therefore xj → ξ(t), and then xx
j → ξ(t)x. Since ξ(tj)

x → ξ(t)x, it follows

that ‖xx
j − ξ(tj)x‖ → 0. Hence xx

j ∈ B̄m(ξ(tj)
x, δ#

H,x) if j is large enough, so

xj ∈ x−1(B̄m(ξ(tj)
x, δ#

H,x)) if j is large enough, contradicting our choice of the
xj.)

We take δ̃#
H,y to be the number δ chosen above. Then, if t ∈ H and q belongs

to B̄m(ξ(t)y, δ̃#
H,y), it follows that q ∈ im y, so we may pick x ∈ dom y for

which xy = q. Then x ∈ y−1(B̄m(ξ(t)y, δ̃H,y)), so x ∈ x−1(B̄m(ξ(t)x, δ#
H,x)).

Then f(x, t) is defined. Furthermore, ‖fx(xx, t)‖ ≤ C#
H,xk(t). Therefore

‖fy(q, t)‖ = ‖D(y ◦ x−1)(xx) · fx(xx, t)‖ ≤ AH,yC
#
H,xk(t) ,

where AH,y is defined by letting

AH,y = sup{‖D(y ◦ x−1)(z)‖ : z ∈ x(ZH,y)} ,

and the set ZH,y is given by

ZH,y =
⋃{

y−1(B̄m(ξ(t)y, δ̃#
H,y)) : t ∈ H

}
,

so that ZH,y is a compact subset of dom x ∩ dom y.

Also, if t ∈ H and q1, q2 ∈ B̄m(ξ(t)y, δ̃#
H,y), it follows that q1, q2 ∈ im y, so we

may pick x1, x2 ∈ dom y for which q1 = xy
1 and q2 = xy

2 . Then, if we let

Θ(z1, z2) = ‖z2−z1‖−1‖D(y ◦ x−1)(z2)−D(y ◦ x−1)(z1)‖ ,
BH,y = sup{Θ(z1, z2) : z1, z2 ∈ x(ZH,y), z1 6= z2} ,

Ψ(u1, u2) = ‖u1−u2‖−1‖(x ◦ y−1)(u2)− (x ◦ y−1)(u1)‖ ,
EH,y = sup

{
Ψ(u1, u2) : u1, u2 ∈ y(ZH,y), u1 6= u2

}
,

C̃#
H,y = (AH,y +BH,y)EH,yC

#
H,x ,

we find

‖fy(q2, t)− fy(q1, t)‖
= ‖D(y ◦ x−1)(xx

2 ) · fx(xx
2 , t)−D(y ◦ x−1)(xx

1 ) · fx(xx
1 , t)

≤‖D(y ◦ x−1)(xx
2 ) · fx(xx

2 , t)−D(y ◦ x−1)(xx
2 ) · fx(xx

1 , t)‖
+‖D(y ◦ x−1)(xx

2 ) · fx(xx
1 , t)−D(y ◦ x−1)(xx

1 ) · fx(xx
1 , t)‖

≤
∥∥∥D(y ◦ x−1)(xx

2 ) ·
(
fx(xx

2 , t)− fx(xx
1 , t)

)∥∥∥
+
∥∥∥(D(y ◦ x−1)(xx

2 )−D(y ◦ x−1)(xx
1 )
)
· fx(xx

1 , t)
∥∥∥
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≤AH,yC̃#
H,xk(t)‖xx

2 − xx
1‖+BH,yC̃

#
H,xk(t)‖xx

2 − xx
1‖

= (AH,y +BH,y)C̃#
H,xk(t)‖xx

2 − xx
1‖

= (AH,y +BH,y)C̃#
H,xk(t)‖(x ◦ y−1)(q2)− (x ◦ y−1)(q1)‖

≤ (AH,y +BH,y)EH,yC
#
H,xk(t)‖q2 − q1‖

= C̃#
H,xk(t)‖q2 − q1‖ .

It follows that ({δ̃#
H,x}(H,x)∈K̃# , {C̃#

H,x}(H,x)∈K̃#) is a system of IL constants for

ξ, f , k, K̃#. Hence f is IL-K near ξ for K̃# and, as explained before, this
completes the proof of (IL.*).

It follows from (IL.*) that we can simply talk about a ppd tvvf f being “IL-k
near ξ”, and that the validity of this condition can be verified relative to
any particular chart covering, in which case the condition will be valid for all
chart coverings. We say that a ppd tvvf f is integrably Lipschitz near ξ
(abbreviated “IL near ξ”), if it is IL-k for some nonnegative integrable function
k defined on dom ξ.

Lebesgue times. We recall that if N ∈ Z+, a, b∈R, a<b, and ϕ : [a, b] 7→RN
is an integrable function, a Lebesgue point of ϕ is a point τ ∈]a, b[ that has
the property that limh↓0

1
h

∫ τ+h
τ−h ‖ϕ(t)− ϕ(τ)‖ dt = 0.

This concept can be generalized trivially to ppd IL vector fields near an arc.
Assuming that (A4) holds, dom ξ = [a, b], and the ppd tvvf f is IL near ξ, a
τ ∈ [a, b] is said to be a Lebesgue time of f along ξ if (a) a < τ < b, and,
(b) τ is a Lebesgue point of the function t 7→ fx(ξ(t)x, t) ∈ Rm for some chart
x of M such that ξ(τ) ∈ dom x. It is easy to verify that if the conclusion of
(b) holds for some chart x such that ξ(τ) ∈ dom x, then it holds for every
such chart.

Covariant differentiations along an absolutely continuous arc. In
this subsection, we assume that

(A5) m,µ ∈ Z+, M is a manifold of class Cµ, µ ≥ 2, m = dim M ,
ξ ∈ W1,1(M) , a, b ∈ R, a < b, dom ξ = [a, b], and Ξ : [a, b] ↪→ TM
is the map, defined almost everywhere, given by Ξ(t) = (ξ(t), ξ̇(t)) for
a.e. t ∈ [a, b].

The facts that µ ≥ 2 and ξ ∈ W1,1(M) imply that the concepts of “absolutely
continuous vector field” and “absolutely continuous covector field” along ξ
are well defined. We write ΓW 1,1(ξ∗TM) (resp. ΓW 1,1(ξ∗T ∗M)), to denote the
space of all absolutely continuous vector (resp. covector) fields along ξ.

Naturally, if [a, b] 3 t 7→ v(t) ∈ Tξ(t)M is absolutely continuous, the “time
derivative” of v should be a vector field ∇v ∈ ΓL1(ξ∗TM). To make sense of
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this in an intrinsic fashion, we define the notion of “covariant differentiation
along ξ.”

Definition 4.2 A covariant differentiation along ξ is an R-linear map
∇ : ΓW 1,1(ξ∗TM) 7→ ΓL1(ξ∗TM) such that, whenever v ∈ ΓW 1,1(ξ∗TM) and
r ∈ W 1,1([a, b],R), it follows that ∇(rv) = ṙv + r∇v. 2

We will use Cov(ξ) to denote the set of all covariant differentiations along the
arc ξ. It is clear that any linear combination

∑n
i=1 si∇i of members of Cov(ξ)

with coefficients si ∈ R such that
∑n
i=1 si = 1 is again in Cov(ξ), so Cov(ξ) is

an affine space over R.

We now show that Cov(ξ) is canonically identified with a certain space of sec-
tions of the pullback ξ∗(J1Γ(TM)). Recall that J1Γ(TM) is a vector bundle
over M of class Cµ−2 and fiber dimension m+m2. It follows from this that the
concepts of “measurable” and “integrable” sections of ξ∗(J1Γ(TM)) are well
defined. (For example, a section [a, b] 3 t 7→ σ(t) ∈ J1

ξ(t)Γ(TM) is integrable
if its coordinate representation [α, β] 3 t 7→ σ(t)x ∈ Rm × Rm×m is an inte-
grable function of t whenever x is a chart and [α, β] is a subinterval of [a, b]
such that ξ([α, β]) ⊆ dom x.) Also, if [a, b] 3 t 7→ S(t) ⊆ J1

ξ(t)Γ(TM) is a set-
valued map, it makes sense to talk about S being “measurable” or “integrably
bounded.” (For example, S is measurable if the set {t ∈ [a, b[: Ω∩S(t) 6= ∅}
is measurable for every open subset Ω of J1Γ(TM). Also, S is integrably
bounded if, whenever x is a chart and [α, β] is a subinterval of [a, b] such that
ξ([α, β]) ⊆ dom x, there exists an integrable function k : [α, β] 7→ [0,+∞]
such that ‖σx‖ ≤ k(t) whenever t ∈ [α, β] and σ ∈ S(t).)

We use Γ(ξ∗(J1Γ(TM))), Γmeas(ξ
∗(J1Γ(TM))), ΓL1(ξ∗(J1Γ(TM))), to denote,

respectively, the set of all sections [a, b] 3 t 7→ σ(t) ∈ J1
ξ(t)Γ(TM) of the

pullback bundle ξ∗(J1Γ(TM)), the set of all σ ∈ Γ(ξ∗(J1Γ(TM))) that are
measurable, and the set of all σ ∈ Γ(ξ∗(J1Γ(TM))) that are integrable.

We will be particularly interested in those sections σ that are actually lifts
of the a.e. defined map Ξ : [a, b] ↪→ TM . We will use Γ(ξ∗(J1Γ(TM)); Ξ),
Γmeas(ξ

∗(J1Γ(TM)); Ξ), ΓL1(ξ∗(J1Γ(TM)); Ξ), to denote the corresponding
spaces of sections. (Naturally, these are really quotient spaces, in which two
sections that coincide almost everywhere are regarded as equal.) So, for
example, a section [a, b] 3 t 7→ σ(t) ∈ J1

ξ(t)Γ(TM) belongs Γ(ξ∗(J1Γ(TM)); Ξ)

if and only if πJ1Γ(TM),TM(σ(t)) = ξ̇(t) for a.e. t ∈ [a, b].

If σ ∈ ΓL1(ξ∗(J1Γ(TM)); Ξ), then σ gives rise to a covariant differentiation
∇σ∈Cov(ξ) as follows. We pick, for each t∈ [a, b], a vector field ft∈ΓC1(TM)
such that j1ft(ξ(t)) = σ(t). (This implies, in particular, that ft(ξ(t)) = ξ̇(t).)
Furthermore, we require the ppd tvvf M × [a, b] 3 (x, t) ↪→ ft(x) ∈ TxM to
be integrably Lipschitz near ξ. (It is easy to see that this can be done, for
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example by taking local coordinates.) Clearly, every v ∈ ΓW 1,1(ξ∗(TM)) can
be written as a finite sum v(t) =

∑N
k=1 rk(t)Xk(ξ(t)), where the Xk are vector

fields of class C1 on M , and the rk are integrable functions. We then define

∇σv(t) =
N∑
k=1

ṙk(t)Xk(ξ(t)) +
N∑
k=1

rk(t)[ft, Xk](ξ(t)) . (11)

To show that this is well defined, we must prove that if
∑N
k=1 rk(t)Xk(ξ(t)) ≡ 0

then
∑N
k=1 ṙk(t)Xk(ξ(t)) +

∑N
k=1 rk(t)[ft, Xk](ξ(t)) ≡ 0. This can be done, for

example, by using coordinates. If x is a chart and α, β ∈ [a, b] are such that
α < β and ξ([α, β]) ⊆ dom x, then, for t ∈ [α, β],

(
N∑
k=1

ṙk(t)Xk(ξ(t)) +
N∑
k=1

rk(t)[ft, Xk](ξ(t))

)x

=
N∑
k=1

ṙk(t)X
x
k (ξ(t)x) +

N∑
k=1

rk(t)[ft, Xk]
x(ξ(t)x)

=
N∑
k=1

ṙk(t)X
x
k (ξ(t)x) +

N∑
k=1

rk(t)
(
DXx

k · fx
t −Dfx

t ·Xx
k

)
(ξ(t)x)

=
N∑
k=1

(
ṙk(t)X

x
k (ξ(t)x) + rk(t)DX

x
k (ξ(t)x) · fx

t (ξ(t)x)
)

−
N∑
k=1

rk(t)
(
Dfx

t ·Xx
k

)
(ξ(t)x)

=
N∑
k=1

(
ṙk(t)X

x
k (ξ(t)x) + rk(t)DX

x
k (ξ(t)x) · ξ̇(t)x

)

−Dfx
t (ξ(t)x) ·

N∑
k=1

rk(t)X
x
k (ξ(t)x)

=
d

dt

(
N∑
k=1

rk(t)Xk(ξ(t))

)x

−Dfx
t (ξ(t)x) ·

( N∑
k=1

rk(t)Xk(ξ(t))
)x
,

which vanishes identically if
∑N
k=1 rk(t)Xk(ξ(t)) ≡ 0. This proves that ∇σ is

well defined. The identity then ∇σ(rv) = ṙv+ r∇σv follows trivially from the
definition of ∇σ. So ∇σ ∈ Cov(ξ).

It is clear that if ∇ = ∇σ, then ∇ satisfies

X∈ΓC1(TM) =⇒ ∇(X ◦ ξ)(t)=Lie1(ξ(t))(σ(t), j1X(ξ(t))) for a.e t,(12)

where X ◦ ξ is the map [a, b] 3 t 7→ X(ξ(t)) ∈ Tξ(t)M , and Lie1(x) is the map
from J1

xΓ(TM)× J1
xΓ(TM) to TxM defined in (1).
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Finally, Condition (12) uniquely determines the covariant differentiation ∇σ,
in view of the identity ∇(rv) = ṙv + r∇v.

We now write a coordinate expression for ∇σ. Assume that x is a chart and
α, β ∈ [a, b] are such that α < β and ξ([α, β]) ⊆ dom x. Let v ∈ ΓW 1,1(ξ∗TM).
Then, for t ∈ [α, β], v(t) =

∑m
i=1 v

x,i(t)(∂x
i ◦ ξ)(t), so

∇σv(t) =
m∑
i=1

v̇x,i(t)(∂x
i ◦ ξ)(t) +

m∑
i=1

vx,i(t)
(
[ft, ∂

x
i ] ◦ ξ

)
(t) .

Since [ft, ∂
x
i ]x is the column vector −∂fx

t

∂xi
, we find that

[ft, ∂
x
i ] ◦ ξ = −

m∑
j=1

∂fx,j
t

∂xi
∂x
j ◦ ξ ,

so
m∑
i=1

vx,i(t)
(
[ft, ∂

x
i ] ◦ ξ

)
= −

m∑
i=1

m∑
j=1

vx,i(t)
∂fx,j

t

∂xi
∂x
j ◦ ξ ,

and then

( m∑
i=1

vx,i(t)
(
[ft, ∂

x
i ] ◦ ξ

)
(ξ(t))

)x
=−Dfx

t (ξ(t)x).v(t)x =−σ(t)x,red.v(t)x .

So

(∇σv(t))x = v̇x(t)− σ(t)x,red · vx(t) . (13)

Formula (13) implies, in particular, that the map σ 7→ ∇σ is injective, because
the matrices σ(t)x,red can be recovered from ∇σ, and then σ(t) must be the
1-jet whose representation is (ξ̇(t)x, σ(t)x,red).

In addition, it is easy to see that every ∇ ∈ Cov(ξ) arises in this way, as
∇σ for some σ ∈ ΓL1(ξ∗(J1Γ(TM)); Ξ). Indeed, given ∇ ∈ Cov(ξ), we can
partition the interval [a, b] into subintervals Ik = [tk−1, tk], k = 1, . . . , N , in
such a way that each Ik is contained in the domain dom xk of some chart xk.
Then the identity ∇(rv) = ṙv + r∇v implies (∇(rv))xk = ṙvx,k + r(∇v)x,k.
On the other hand, if ∆ denotes ordinary differentiation with respect to t,
then ∆((rv)xk) = ∆(rvxk) = ṙvx,k + r∆vx,k. It then follows from these two
identities that (∇xk −∆)(rvxk) = r(∇xk −∆)vxk , showing that, for t ∈ Ik,

the vector
(
(∇xk − ∆)vxk

)
(t) only depends on the vector vxk(t). Therefore

the maps Rm 3 vxk(t) 7→ ((∇xk −∇)vxk)(t) ∈ Rm are well defined. Since these
maps are obviously linear, there exists, for each t, a matrix µxk

k (t) ∈ Rm×m
such that

(
(∇xk − ∇)vxk

)
(t) = µxk

k (t) · vxk(t). If we let σ be the member of

ΓL1(ξ∗(J1Γ(TM)); Ξ) such that σxk(t) = (ξ̇(t)xk , µxk
k (t)) for t ∈ Ik, we see that

∇ = ∇σ.
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So we have proved

Proposition 4.3 For every σ ∈ ΓL1(ξ∗(J1Γ(TM)); Ξ) there exists a unique
covariant differentiation ∇ along ξ that satisfies (12). Using ∇σ to denote this
covariant differentiation, then ∇σ is given by (11), if {ft}t∈[a,b] is any family
of vector fields ft ∈ ΓC1(TM) such that j1ft(ξ(t)) = σ(t) and the ppd map
M× [a, b] 3 (x, t) ↪→ ft(x) ∈ TxM is integrably Lipschitz near ξ. Furthermore,
the map ΓL1(ξ∗(J1Γ(TM)); Ξ) 3 σ 7→ ∇σ ∈ Cov(ξ) is a bijection. 2

If t = (t0, t1, . . . , tN) is a partition of [a, b] (i.e., t is an N + 1-tuple such
that a = t0 < t1 < · · · < tN = b), and x1, . . . ,xN are charts of M such that
ξ([tj−1, tj]) ⊆ dom xj for each j, then we can identify the space Cov(ξ) with
L1([a, b],Rm×m], by assigning to each σ ∈ ΓL1(ξ∗(J1Γ(TM)); Ξ) the matrix-
valued function µ : [a, b] 7→ R

m×m such that µ(t) = σ(t)xk,red for t ∈ Ik, where
Ik = [tk−1, tk]. The resulting bijection is an affine map, which depends on t and
the xk. A simple calculation shows, however, that, if B1, B2 are the bijections
that correspond to two different choices of t and the xk, and d1, d2 are the
distance functions on Cov(ξ) obtained by transporting to Cov(ξ) by means of
B1, B2 the distance functions arising from the L1 norm on L1([a, b],Rm×m),
then d1 and d2 are equivalent, in the sense that there are positive constants
C1, C2 such that the inequalities C1d1(∇,∇′) ≤ d2(∇,∇′) ≤ C2d1(∇,∇′) hold
for all ∇,∇′ ∈ Cov(ξ). Therefore Cov(ξ) is, canonically, a complete normable
real affine topological space. This implies, in particular, that the class
AffC0(Cov(ξ),R) of all continuous affine real-valued functionals on Cov(ξ) is
intrinsically defined. So Cov(ξ) has an intrinsically defined weak topology
Tweak, characterized as the weakest topology on Cov(ξ) that makes all the
maps ϕ ∈ AffC0(Cov(ξ),R) continuous.

Given a ∇ ∈ Cov(ξ), a vector field v ∈ ΓW 1,1(ξ∗TM) is parallel tranported
along ∇ if ∇v ≡ 0. It follows from (13) that the parallel translation equation
∇v ≡ 0, written in coordinates, if∇ = ∇σ for a σ ∈ ΓL1(ξ∗(J1Γ(TM)); Ξ), is a
linear time-varying system with an integrable coefficient matrix. This implies
existence and uniqueness of the solutions. Therefore, given any t ∈ [a, b] and
any vector v0 ∈ Tξ(t)M , there exists a unique v ∈ ΓW 1,1(ξ∗TM) which is
parallel translate along ∇ and such that v(t) = v0. We write v(s) = P∇s,t(v0).
It is then clear that the parallel translation maps, or propagators,
P∇s,t : Tξ(t)M 7→ Tξ(s)M are invertible linear maps, and satisfy the following
flow identities: P∇s,t ◦ P∇t,r = P∇s,r , (P∇s,t)

−1 = P∇t,s , and P∇t,t = ITξ(t)M .

The following observation follows from Gronwall’s inequality and the Ascoli-
Arzelà theorem.

Proposition 4.4 Let [a, b] 3 t 7→ S(t) ⊆ J1
Ξ(t)(Γ(TM)) be an integrably

bounded set-valued map. Let Γ(S) be the set of all measurable selections
[a, b] 3 t 7→ σ(t) ∈ S(t) of S, and let Σ(Γ(S)) = {∇σ : σ ∈ Γ(S)}, so that
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Σ(Γ(S)) ⊆ Cov(ξ). Let Σ(Γ(S))weak be Σ(Γ(S)) endowed with the topology
induced by the weak topology of Cov(ξ). Then, for every s, t ∈ [a, b], the map
Σ(Γ(S))weak 3 ∇ 7→ P∇s,t ∈ Lin(Tξ(t)M,Tξ(s)M) is continuous.

Proof. We must show that if {∇θ}θ∈Θ is a net of members of Σ(Γ(S)) that
converges weakly to ∇# ∈ Σ(Γ(S)), then the net {P∇θs,t (v)}θ∈Θ converges to

P∇
#

s,t (v) in Tξ(s)M for every v ∈ Tξ(t)M . In view of the flow identities, it
suffices to prove this if s and t both belong to an interval [α, β] such that
ξ([α, β]) ⊆ dom x for some chart x.

For θ ∈ Θ ∪ {#}, let σθ ∈ Γ(S) be such that ∇σθ = ∇θ, and let
Vθ ∈ ΓW 1,1(ξ∗(TM)) be such that ∇σθVθ = 0 and Vθ(t) = v. Then all we
have to do is show that the net {Vθ(s)}θ∈Θ converges to V#(s).

Let Aθ(t) = σx,red
θ (t), bθ(t) = Vθ(t)

x, v̂ = vx. Then we have to show that the
net {bθ(s)}θ∈Θ converges to b#(s). Since S is integrably bounded, we may pick
an integrable function k : [α, β] 7→ [0,+∞] such that ‖Aθ(u)‖ ≤ k(u) for every
u ∈ [α, β] and every θ ∈ Θ ∪ {#},

For τ ∈ [α, β], θ ∈ Θ, we have bθ(τ) = v̂+
∫ τ
t Aθ(u)·bθ(u) du . Hence Gronwall’s

inequality implies that ‖bθ(τ)‖ ≤ C, where C = e
∫ b
a
k(u) du‖v̂‖. Then the equal-

ity ḃθ(τ) = Aθ(τ) · bθ(τ) implies that ‖ḃθ(τ)‖ ≤ Ck(t). So the vector functions
bθ are uniformly bounded and equicontinuous. By the Ascoli-Arzelà theorem,
applied to an arbitrary subnet {bθ(ρ)}ρ∈R of the net {bθ}θ∈Θ, we conclude that

this subnet has a subnet {bθ(ρ(ζ))}ζ∈Z that converges uniformly to a limit b̃. By

well know arguments, if we show that b̂ = b#, it will follow that every subnet
of our original net has a subnet that converges to b#, so the net {bθ}θ∈Θ itself
converges unformly to b#, implying our desired result.

Write Kζ = Aθ(ρ(ζ)), hζ = bθ(ρ(ζ)). Then hζ(τ) = v̂ +
∫ τ
t Kζ(u) · hζ(u) du. Since

hζ → b̂ uniformly, we can conclude that

b̂(τ) = v̂ +

τ∫
t

A#(u)b̂(u) du+ lim
ζ

τ∫
t

(Kζ(u)hζ(u)− A#(u)b̂(u)) du , (14)

and it suffices to show that the limit in the above expression vanishes. Now,
Kζ(u)hζ(u)− A#(u)b̂(u) = Kζ(u)(hζ(u)− b̂(u)) + (Kζ(u)− A#(u))b̂(u) . The

integral of (Kζ(u) − A#(u))b̂(u) converges to zero because the functions Kζ

converge to A# weakly, and b̂ is a fixed function. In addition, the integral of

Kζ(u)(hζ(u)− b̂(u)) converges to zero because hζ → b̂ uniformly and the Kζ

are uniformly dominated by a fixed integrable function. Hence the limit in
(14) does vanish, as desired, and this completes our proof. 2

Finally, we point out that the covariant differentiation operators ∇σ extend,
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in the usual way, to fields of contravariant and covariant tensors of any type.
Here we will only need to consider fields of covectors. The operator ∇σ acts
on ΓW 1,1(ξ∗T ∗M) in such a way that

d

dt
〈w(t), v(t)〉 = 〈∇σw(t), v(t)〉+ 〈w(t),∇σv(t)〉

whenever w ∈ ΓW 1,1(ξ∗T ∗M) and v ∈ ΓW 1,1(ξ∗TM). This immediately yields
the coordinate expression for the action of ∇σ on covector fields, which turns
out to be given by

(∇σw(t))x = ẇx(t) + wx(t) · σ(t)x,red . (15)

In particular, the parallel translation equation for covector fields is the familiar
“adjoint equation” ẇx(t) = −wx(t) ·σ(t)x,red, i.e., ẇx(t) = −wx(t) ·Dfx

t (ξ(t)).

The variational inclusion and Warga’s differentiation theorem. In
this subsection, we assume that

(A6) m,µ ∈ Z+, M is a manifold of class Cµ, µ ≥ 2, m = dim M , ξ belongs
to W1,1(M) , dom ξ=[a, b], f is a ppd time-varying vector field on M ,
f is integrably Lipschitz near ξ, and ξ̇(t) = f(ξ(t), t) for almost all t.

Assume for a moment that the vector fields ft given by ft(x) = f(x, t) were
of class C1. Then their 1-jets j1ft(ξ(t)) would obviously give rise to a section
[a, b] 3 t 7→ σ(t) = j1ft(ξ(t)) ∈ J1

ξ(t)Γ(TM), which would in turn give rise to a
parallel translation equation ∇σv ≡ 0. In that case, it is well known that the
map P∇σb,a : Tξ(a)M 7→ Tξ(b)M is the differential of the time-a-to-time-b flow
map of f at ξ(a).

For the more general case when f is integrably Lipschitz but not necessarily
of class C1, the corresponding theorem on differentiation of the flow maps was
proved by J. Warga for vector fields in Rm, and yields a set-valued differential,
in the sense of Warga’s own theory of derivate containers. We now state the
intrinsic version of Warga’s result.

Since ft is a locally Lipschitz vector field on some neighborhood of ξ(t) for
almost every t, it follows that ft has a well defined Clarke generalized Jacobian
∂ft(ξ(t)), which is a nonempty compact convex subset of the m2-dimensional
affine space J1

ξ(t),ξ̇(t))
Γ(TM). We use ∂f ◦ ξ to denote the set-valued map

[a, b] 3 t 7→ ∂ft(ξ(t)) ⊆ J1
ξ(t),ft(ξ(t))

Γ(TM). It is then easy to see that ∂f ◦ ξ
is measurable and integrably bounded.

The expression Γ(∂f ◦ ξ) will denote the set of all measurable selections
[a, b] 3 t 7→ σ(t) ∈ (∂f ◦ ξ)(t) of ∂f ◦ ξ, and we use ∇∇∇Γ(∂f◦ξ) to denote the
corresponding set of covariant differentiations. Since ∂f ◦ ξ is an integrably
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bounded measurable set-valued map with compact, convex, nonempty values,
the set ∇∇∇Γ(∂f◦ξ) is weakly compact.

It then follows from Proposition 4.4 that, if we define

P∇∇∇Γ(∂f◦ξ)
t,s

def
= {P∇s,t : ∇ ∈ ∇∇∇Γ(∂f◦ξ)} = {P∇σs,t : σ ∈ Γ(∂f ◦ ξ)} ,

then P∇∇∇Γ(∂f◦ξ)
t,s is a compact subset of Lin(Tξ(t)M,Tξ(s)M), all whose members

are invertible maps, whenever s, t ∈ [a, b]. Furthermore, it is clear that the

sets P∇∇∇Γ(∂f◦ξ)
t,s satisfy the flow identities

P∇∇∇Γ(∂f◦ξ)
t,s ◦ P∇∇∇Γ(∂f◦ξ)

s,r =P∇∇∇Γ(∂f◦ξ)
t,r if a ≤ r ≤ s ≤ t ≤ b , (16)

(P∇∇∇Γ(∂f◦ξ)
t,s )−1 =P∇∇∇Γ(∂f◦ξ)

s,t if s, t ∈ [a, b] , (17)

P∇∇∇Γ(∂f◦ξ)
t,t = {ITξ(t)M} if t ∈ [a, b] , (18)

where, if X1, X2, X3 are linear spaces, and Λi ⊆ Lin(Xi, Xi+1) for i = 1, 2,
then Λ2 ◦ Λ1 is defined to be the subset of Lin(X1, X3) given by the formula

Λ2 ◦ Λ1 = {L2 ◦ L1 : L1 ∈ Λ1 , L2 ∈ Λ2}, and Λ−1
1

def
={L−1 : L ∈ Λ1} if Λ1 is a

set of invertible maps.

Remark 4.5 It is easy to see that the first flow identity is also true if r ≥ s ≥ t,
but can fail to be true if s > max(t, r) or s < min(t, r). For example, if

s > t = r, then P∇∇∇Γ(∂f◦ξ)
t,r = {ITξ(t)M}, while on the other hand

P∇∇∇Γ(∂f◦ξ)
t,s ◦ P∇∇∇Γ(∂f◦ξ)

s,r = (P∇∇∇Γ(∂f◦ξ)
s,t )−1 ◦ P∇∇∇Γ(∂f◦ξ)

s,t ,

which is never equal to the set {ITξ(t)M}, as long as P∇∇∇Γ(∂f◦ξ)
s,t has more than

one member. 2

We are now, finally, in a position to state and prove Warga’s differentiation
theorem (cf. [30–33]). (Recall that the time t to time s flow map Φf

s,t of f was
defined on Page 28.)

Theorem 4.6 Under Assumption (A6), there exists a neighborhood U of ξ(a)
such that the map Φf

b,a is defined, single-valued, and Lipschitz on U . Then the

compact set P∇∇∇Γ(∂f◦ξ)
b,a ⊆ Lin(Tξ(a)M,Tξ(b)M) is a Warga derivate container of

Φf
b,a at ξ(a).

Proof. In view of the chain rule for Warga derivate containers (cf. (WDC.4),
Page 9), and the flow identity (16), it suffices to prove our conclusion if the
interval [a, b] is such that ξ([a, b]) is entirely contained the domain dom x of a
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chart x. But then we may assume that M is an open subset of Rm and, for
some positive number δ̄ and some integrable function f : [a, b] 7→ [0,+∞][,
the tvvf f is defined on the tube T2δ̄ (where, for each positive δ, we let
Tδ = {(x, t) : a ≤ t ≤ b , ‖x− ξ(t)‖ ≤ δ}), and satisfies, for almost all t ∈ [a, b],
the bounds ‖f(x, t)‖ ≤ k(t) and ‖f(x, t)− f(x′, t)‖ ≤ k(t)‖x− x′‖, whenever
x, x′ ∈ Rm are such that (x, t) ∈ T2δ̄ and (x′, t) ∈ T2δ̄.

The first assertion, that U exists, is trivial in view of the Lipschitz bound for
f and Gronwall’s inequality. To prove the second assertion, we regularize f
as follows: we fix a nonnegative function ϕ ∈ C∞(Rm,R) such that ϕ(x) = 0
for ‖x‖ ≥ 1 and

∫
Rm

ϕ(x) dx = 1, and then for 0 ≤ ρ ≤ δ̄, (x, t) ∈ Tδ̄, we
define fρ(x, t) =

∫
Rm

ϕ(h)f(x + ρh, t) dh. Let κ(t) =
∫ t
a k(s) ds, K(t) = eκ(t),

κ∗ = κ(b), K∗ = K(b) = eκ∗ . Then

(*) If 0 < ρ ≤ δ̄, then the map B̄m(ξ(t), δ̄) 3 x 7→ fρ(x, t) ∈ Rm is of class C∞

for almost all t ∈ [a, b] and satisfies ‖fρ(x, t)‖ ≤ k(t), ‖Dfρ(x, t)‖ ≤ k(t),
and ‖fρ(x, t)− f(x, t)‖ ≤ ρk(t) whenever x ∈ B̄m(ξ(t), δ̄).

Now fix a positive δ∗ such that K∗(1 +κ∗)δ∗ ≤ δ̄. Then the flow maps Φ
fρ
t,a, for

0 ≤ ρ ≤ δ∗, are defined on the set U∗ = B̄m(ξ(a), δ∗) and satisfy

‖Φfρ
t,a(x)− Φ

fρ
t,a(x

′)‖≤K(t)‖x− x′‖ ,
‖Φfρ

t,a(x)− Φf
t,a(x)‖≤K(t)κ(t)ρ .

In particular, Φ
fρ
b,a(x) → Φf

b,a(x) as ρ ↓ 0 uniformly for x ∈ U∗. Furthermore,

the maps Φ
fρ
b,a, for ρ > 0, are of class C∞.

It is clear that the set Γ(∂f ◦ ξ) consists of all the measurable selections
[a, b]3 t 7→A(t)∈Rm×m of the set-valued map [a, b]3 t 7→∂ft(ξ(t))⊆Rm×m,
where ft(x) = f(x, t). For any such A, let MA denote the fundamental matrix
solution of Ṁ = A(t)M , so MA belongs to C0([a, b]× [a, b],Rm×m), and MA

is characterized—using Im×m to denote the m × m identity matrix—by the
integral equation

MA(t, s) = Im×m +

t∫
s

A(r)MA(r, s) dr .

Then

P∇∇∇Γ(∂f◦ξ)
b,a =M , where M = {MA(b, a) : A ∈ Γ(∂f ◦ ξ)} .

For each δ such that 0 < δ ≤ δ∗, and each t ∈ [a, b], use Dδ(t) to denote
the closed convex hull of the set of all the derivatives Dft(x) at all points
x ∈ B̄m(ξ(t), δ) ∩ diff(ft) (cf. Page 7). Then [a, b] 3 t 7→ Dδ(t) ⊆ Rm×m is a
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measurable set-valued map with compact convex nonempty values, such that
‖L‖ ≤ k(t) whenever L ∈ Dδ(t). Let Γ(Dδ) be the set of all measurable
selections [a, b]3 t 7→A(t)∈Rm×m of the map Dδ, and write

Mδ = {MA(b, a) : A ∈ Γ(Dδ)} .

Then the Mδ are compact subsets of Rm×m, and ∩δ>0Mδ =M. (Reason:
Let L ∈ ∩δ>0Mδ. Let {εk}k∈N be a decreasing sequence of positive numbers
that converges to 0 and is such that ε1 ≤ δ∗. Then for each k ∈ N we can find
Ak ∈ Γ(Dεk) such that L = MAk(b, a). Since Γ(Dε1)weak is compact and metriz-
able, we may pass to a subsequence of the sequence {(εk, Ak)}k∈N and assume
that {Aj}j∈N converges weakly to a limit A. Then the fact that L = MAk(b, a)
for all k implies that L = MA(b, a). We now show that A ∈ Γ(∂f ◦ ξ)}. For
k ∈ N, let Ak be the the set {Aj : j ≥ k}, and let Ak be the strong closure
in L1([a, b],Rm×m) of the convex hull of Ak. Then Ak is strongly closed and
convex, so it is weakly closed. Therefore A ∈ Ak. Hence we can find Bk ∈ Ak
such that ‖Bk − A‖L1 ≤ 2−k. Then the sequence {Bk(t)}k∈N converges to
A(t) for all t in a subset E of [a, b] such that meas([a, b]\E) = 0. If t ∈ E,
j, k ∈ N, and j ≥ k, then Bj is a convex combination of members of Aj, so
Bj(t) ∈ Dεk(t). It follows that A(t) ∈ Dεk(t). Since this is true for all k, and
∩k∈NDεk(t) = ∂ft(ξ(t)), we conclude that A(t) ∈ ∂ft(ξ(t)). So A ∈ Γ(∂f ◦ ξ)},
and then L ∈M.)

We now fix δ such that 0 < δ ≤ δ∗, and compute the differential DΦ
fρ
b,a(x), for

x ∈ B̄m(ξ(a), δ), 0 < ρ ≤ δ∗. In view of (*), we can use the classical variational
equation, and conclude that

DΦ
fρ
b,a(x) = MAρ,x(b, a) , where Aρ,x(t) = Dfρ,t(Φ

fρ
t,a(x)) ,

and fρ,t(y) = fρ(y, t). On the other hand,

Aρ,x(t) =
∫
Rm

ϕ(h)Dft(Φ
fρ
t,a(x) + ρh, t) dh .

Also, if we fix h such that ‖h‖ ≥ 1, and let z = y + ρh, y = Φ
fρ
t,a(x), then z

satisfies

‖z − ξ(t)‖ ≤ ‖y − ξ(t)‖+ ρ

≤ ‖y − Φf
t,a(x)‖+ ‖Φf

t,a(x)− Φf
t,a(ξ(a))‖+ ρ

≤ K(t)κ(t)ρ+K(t)‖x− ξ(t)‖+ ρ

≤ K(t)κ(t)ρ+K(t)δ + ρ

≤ K∗
(
(κ∗ + 1)ρ+ δ

)
def
= β̂(δ, ρ) .
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It follows that Aρ,x(t) is an average of members of Dβ̂(δ,ρ)(t) (because ϕ ≥ 0,

ϕ(h) = 0 if ‖h‖ ≥ 1, and
∫
ϕ = 1). So Aρ,x(t) ∈ Dβ̂(δ,ρ)(t). Hence Aρ,x belongs

to Γ(Dβ̂(δ,ρ)), so DΦ
fρ
b,a(x) ∈Mβ̂(δ,ρ).

Given a neigborhood N of M in Rm×m, we can find a positive β such that
Mβ ⊆ N , and then find positive δ, ρ̃ such that β̂(δ, ρ̃) ≤ β. ThenDΦ

fρ
b,a(x) ∈ N

whenever 0 < ρ ≤ ρ̃ and ‖x − ξ(a)‖ ≤ δ. Since the maps Φ
fρ
b,a are of class C1

on U(δ) = B̄
m(ξ(a), δ), and converge uniformly to Φf

b,a on U(δ), we conclude

that M∈WDC(Φf
b,a; ξ(a)), as desired. 2

5 The maximum principle

We now state and prove our basic version of the maximum principle, as a
necessary condition for a reachable set to be separated from some other given
set at the terminal point of the reference trajectory. We will then deduce
from this result the usual sufficient condition for local controllability along a
trajectory for Lipschitz systems, and a slightly stronger version of the usual
necessary condition for optimal control.

In all three results, the basic ingredient is a Lipschitz control system

ξ̇(t) = f(ξ(t), η(t), t) for a.e. t ∈ dom ξ ,

η(t) ∈ U for all t ∈ dom η ,

ξ(·) ∈W1,1(M) , η(·) ∈ U , and dom ξ = dom η .

The system is specified by a system data 4-tuple D = (M, f, U,U) such that

(H1) M (the state space) is a manifold of class C2;
(H2) U (the control space) is a set;
(H3) f (the dynamical law) is a family {fu}u∈U of ppd tvvfs on M ;
(H4) U (the class of admissible controllers) is a set of U-valued maps whose

domain is a compact subinterval of R.

Given such a data 4-tuple D,
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• We let m = dimM .
• We use f(x, u, t) as an alternative notation for fu(x, t).
• A U-control is a U -valued function η such that dom η is a nonempty

compact subinterval of R. (Then (H4) says that U is a set of U -controls.)
• If η is a U -control, then

- fη denotes the ppd tvvf M × R 3 (x, t) ↪→ f(x, η(t), t);
- if t ∈ R, then fη,t denotes the ppd vector field M 3 x ↪→ f(x, η(t), t);

- if ξ is an arc in M , then fη,ξ(t)
def
=f(ξ(t), η(t), t);

- a trajectory for η is a trajectory (cf. Page 28) of fη.

• A trajectory-control pair (abbr. TCP) is a pair (ξ, η) such that η is a
U -control and ξ is a trajectory for η.
• If γ = (ξ, η) is a TCP, then the domain dom γ is the set dom η, which,

by definition, is the same as dom ξ.
• An admissible control is a member of U .

• A TCP (ξ, η) is admissible if η ∈ U .
• We write TCP (D), TCPadm(D), to denote, respectively, the set of all

TCPs of D and the set of all admissible TCPs of D.

In addition, we specify x∗, N , F and S such that

(H5) x∗ ∈M , N is a manifold of class C1, F is a ppd map from M to N
such that domF is open and F is locally Lipschitz on domF , and S
is a subset of N ,

as well as a reference interval [a∗, b∗] and a reference trajectory-control pair
(ξ∗, η∗) such that

(H6.a) a∗, b∗∈R, a∗<b∗, (ξ∗, η∗)∈TCPadm(D), and dom η∗=[a∗, b∗],
(H6.b) ξ∗(a∗) = x∗, ξ∗(b∗) ∈ domF and F (ξ∗(b∗)) ∈ S.

In order to state precisely the technical hypotheses on the tvvfs of the system,
we first let U c[a∗,b∗] denote the set of all constant U -controls defined on [a∗, b∗],

and define U c,∗[a∗,b∗]
= U c[a∗,b∗] ∪ {η∗} , so U c,∗[a∗,b∗]

consists of the reference control
η∗ and all the constant controls whose domain is [a∗, b∗].

The key technical hypothesis on our control dynamical law is then

(H7) For each η ∈ U c,∗[a∗,b∗]
, the tvvf fη is integrably Lipschitz near ξ∗ .

In addition to the above data, we will also specify C, Λ such that

(H8.a) C is a WDC approximating multicone of S at F (ξ∗(b∗)),
(H8.b) Λ is a Warga derivate container of F at ξ∗(b∗). .

Our last hypothesis will require the concept of an equal-time measurable-
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variational neighborhood (abbr. ETMVN) of a controller η. We say that a
set V of controllers is an ETMVN of a controller η if

• for every N ∈ N and every N-tuple u = (u1, . . . , uN) of members of U , there
exists a positive number ε = ε(N,u) such that whenever η : [a∗, b∗] 7→ U is
a map obtained from η∗ by first selecting an N-tuple M = (M1, . . . ,MM)
of pairwise disjoint measurable subsets of [a∗, b∗] with the property that∑M
j=1 meas(Mj) ≤ ε, and then substituting the constant value uj for the

value η∗(t) for every j = 1, . . . , N and every t ∈ Ij, it follows that η ∈ U .

We will then assume

(H9) The class U is an ETMVN of η∗.

5.1 The maximum principle for set separation

For the set separation problem, we specify a data 14-tuple

Dsep = (M, f, U,U , x∗, N, F, S, a∗, b∗, ξ∗, η∗, C,Λ) . (19)

We let D = (M, f, U,U), and we define the D-reachable set from x∗ over the
interval [a∗, b∗] to be the set RD;[a∗,b∗](x∗) given by

RD;[a∗,b∗](x∗) = {ξ(b∗) : (ξ, η) ∈ TCPadm(D) , ξ(a∗) = x∗} .

The local separation condition is then

(Hsep) there exists a neighborhood V of F (ξ∗(b∗)) in N such that

F (RD;[a∗,b∗](x∗)) ∩ S ∩ V = {F (ξ(b∗))} .

It will also be convenient to single out the following strong form of the negation
of (Hsep), that we will call the Lispchitz arc intersection property.

(HLip,in) There exists a Lipschitz arc γ : [0, 1] 7→F (RD;[a∗,b∗](x∗))∩S such that
γ(0) = F (ξ∗(b∗)) and γ(1) 6= γ(0).

We define the Hamiltonian of f to be the real-valued ppd function Hf on
T ∗M × U × R given by

Hf (x, p, u, t) = p · f(x, u, t) for x ∈M, p ∈ T ∗xM, u ∈ U, t ∈ R .

The following is then our version of the Lipschitz maximum principle for set
separation.
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Theorem 5.1 Assume that the data Dsep satisfy Hypotheses (H1) to (H9).
Let L be the set of all pairs (u, τ) such that u ∈ U , τ ∈]a∗, b∗[ and τ is a
Lebesgue time along ξ∗ of both time-varying vector fields fu and fη∗. Then
either (HLip,in) holds, or

(*) for every covector µ ∈ T ∗F (ξ∗(b∗))
N such that µ 6= 0 there exists a 4-tuple

(π0, ν, λ, L) such that
1. π0 is a nonnegative real number,
2. ν ∈ T ∗F (ξ∗(b∗))

N ,
3. λ ∈ Λ,
4. L is a map [a∗, b∗] 3 t 7→ L(t) ∈ J1

ξ∗(t),ξ̇∗(t)
Γ(TM), which is a measurable

selection of the set-valued map [a∗, b∗] 3 t 7→ ∂fη∗,t(ξ∗(t)),
5. if

a. π# = ν ◦ λ (so that π# ∈ T ∗ξ∗(b∗)M),
b. ∇L ∈ Cov(ξ∗) is the covariant differentiation corresponding to L,
c. π(t) = π# ◦P∇Lb∗,t for a∗ ≤ t ≤ b∗ (so that the field of covectors π is

the unique absolutely continuous solution of the “adjoint Cauchy
problem” ∇Lπ = 0, π(b∗) = π# ),

then the following three conditions are satisfied:
I. The Hamiltonian inequalities: for every pair (u, τ) ∈ L, the

inequality Hf (ξ∗(τ), π(τ), η∗(τ), τ) ≥ Hf (ξ∗(τ), π(τ), u, τ) holds.

II. Transversality: π0µ− ν ∈ C⊥.

III. Nontriviality: ν 6= 0 or π0 > 0.

In particular, if the local separation condition Hsep is satisfied, then (*) holds.

Remark 5.2 The Hamiltonian inequality of the theorem obviously implies
the “weak Hamiltonian maximization condition”

(I.wk) For each u ∈ U there is a Lebesgue-null subset N (u) of [a∗, b∗] such
that Hf (ξ∗(τ), π(τ), η∗(τ), τ) ≥ Hf (ξ∗(τ), π(τ), u, τ) if τ /∈ N (u).

Under some extra technical hypotheses, the following “strong Hamiltonian
maximization condition” can then be proved.

(I.st) There exists a Lebesgue-null subset N of [a∗, b∗] such that the equality
Hf (ξ∗(τ), π(τ), η∗(τ), τ) = max{Hf (ξ∗(τ), π(τ), u, τ) : u ∈ U} holds
whenever τ /∈ N .

For example, it is easy to prove

Proposition 5.3 Under the hypotheses of Theorem 5.1, if (HLip,in) does not
hold, π is as in the conclusion of the theorem, and in addition U is a separable
metric space and the function U 3 u 7→ f(ξ∗(t), u, t) is continuous for almost
every t ∈ [a∗, b∗], then (I.st) is satisfied.
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Proof. It suffices to pick for each u ∈ U a subset N (u) as in condition (I.wk),
and a null set B such that the function U 3 u 7→ f(ξ∗(t), u, t) is continuous
for all t /∈ B. We then let D be a countable dense subset of U , and define
N = B∪⋃u∈DN (u). It is then clear that the equality of (I.st) holds whenever
τ /∈ N . 2

Proof of Theorem 5.1. Using Hypothesis (H7), we pick, for each U -control η
such that η is constant or η = η∗, an integrable function k̂η : [a∗, b∗] 7→ [0,+∞]

such that fη is IL-k̂η near ξ∗ (cf. Page 33). We then let L̂ be the set of all

(u, τ) ∈ L such that, in addition, τ is a Lebesgue point of k̂u and k̂η∗ .

The key step of our proof will be the construction of a “needle variation” ΨΨΨu,τ

for each (u, τ) ∈ L̂. For this purpose, we fix a pair (u, τ) ∈ L̂ (so in particular
a∗ < τ < b∗). We then fix a 4-tuple (x, α, δ, C) such that x is a chart of M ,
α, δ, C ∈]0,+∞[, [τ − α, τ + α] ⊆ [a∗, b∗], and ξ∗([τ − α, τ + α]) is a subset of
dom x, having the property that, whenever t ∈ [τ − α, τ + α], it follows that

(i) B̄m(ξ∗(t)
x, δ) ⊆ im x,

(ii) fu(x, t) and fη∗(x, t) are defined for every x ∈ x−1(B̄m(ξ∗(t)
x, δ)),

(iii) the following four inequalities hold for x, x̃ ∈ x−1(B̄m(ξ∗(t)
x, δ)):

‖fu(x, t)x‖≤Ck̂u(t) ,
‖fη∗(x, t)x‖≤Ck̂η∗(t) ,

‖fu(x, t)x − fu(x̃, t)x‖≤Ck̂u(t)‖xx − x̃x‖ ,
‖fη∗(x, t)x−fη∗(x̃, t)x‖≤Ck̂η∗(t)‖xx − x̃x‖ .

We then let

ku(t) =Ck̂u(t) ,

kη∗(t) =Ck̂η∗(t) ,

k̄u = ku(τ) ,

k̄∗= kη∗(τ) ,

v̄u = fu,ξ∗(τ) ,

v̄∗= fη∗,ξ∗(τ) ,

and define Lu,τ to be the linear map from Tξ∗(τ)M × R to Tξ∗(τ)M given by

Lu,τ (∆x,∆σ) = ∆x+ ∆σ(v̄u − v̄∗) for ∆x ∈ Tξ∗(τ)M , ∆σ ∈ R . (20)

The variation ΨΨΨu,τ is going to be a set-valued map, whose graph will be
the union

⋃
ρ∈]0,ρ̄] Graph(Ψu,τ

ρ ), where {Ψu,τ
ρ }0<ρ≤ρ̄ is a family of single-valued

maps, depending on a small positive parameter ρ. To construct the maps Ψu,τ
ρ ,

we first let

θ(t) = |kη∗(t)− k̄∗|+ |ku(t)− k̄u|+ ‖fu,ξ∗(t)x − v̄x
u‖+ ‖fη∗,ξ∗(t)x − v̄x

∗ ‖ ,

and observe that the fact that (u, τ) ∈ L̂ implies that limh↓0
1
h

∫ τ+h
τ−h θ(t)dt=0.

47



Next, we define measurable subsets Eρ of the interval [τ − α, τ ] by letting
Eρ = {t ∈ [τ − α, τ ] : θ(t) ≤ ρ} if ρ > 0. Then, if 0 < h ≤ α, we have

1

h
meas([τ − h, τ ]\Eρ) ≤

1

ρh

∫
[τ−h,τ ]\Eρ

θ(t) dt ≤ 1

ρh

τ∫
τ−h

θ(t) dt ,

so limh↓0
1
h

meas([τ−h, τ ]\Eρ) = 0, and then limh↓0
1
h

meas(Eρ∩ [τ−h, τ ]) = 1.

Using the sets Eρ, we define controls ηu,τ,ρ : [a∗, b∗] 7→ U by letting ηu,τ,ρ(t) = u
if t ∈ Eρ and ηu,τ,ρ(t) = η∗(t) if t /∈ Eρ. We then let

Ψ̃u,τ
ρ (x, ε) =

(
Φ
fηu,τ,ρ
τ,τ−ε ◦ Φ

fη∗
τ−ε,τ

)
(x) (21)

for x near ξ∗(τ) and small positive ε. (In other words: we construct Ψ̃u,τ
ρ (x, ε)

by starting at x at time τ , and following a path [0, 2ε] 3 s 7→ γx,ε(s) in such

a way that (i) we first let γx,ε(s) = Φ
fη∗
τ−s,τ (x) for s ∈ [0, ε], that is, we follow

the trajectory of the reference control η∗ backwards in time up to time τ − ε,
and then (ii) we let γx,ε(s) = Φ

fηu,τ,ρ

τ−(2ε−s),τ−ε(γx,ε(ε)) for s ∈ [ε, 2ε], that is, we
move forward in time up to time τ using the control ηu,τ,ρ.)

We make (21) precise as follows:

• For each positive ρ, we let I(ρ) be the set of all positive numbers r that
satisfy the inequality 4r(1 + er)(k̄u + k̄∗ + 2) ≤ min(δ, ρ), and observe that
I(ρ) ⊆ I(ρ′) whenever 0 < ρ ≤ ρ′. We then let r̄(ρ) = sup I(ρ), so that

4r̄(ρ)(1 + er̄(ρ))(k̄u + k̄∗ + 2)≤min(δ, ρ) whenever ρ > 0 , . (22)

0 < r̄(ρ)≤ r̄(ρ′) whenever 0 < ρ ≤ ρ′ , (23)

lim
ρ↓0

r̄(ρ) = 0 . (24)

• We then let Br = {x ∈ dom x : ‖xx − ξ∗(τ)x‖ ≤ r}, for 0 < r ≤ δ.
• For each positive r, we let ε̄(r) be the supremum of all the real numbers ε

such that 0 ≤ ε ≤ min(α, r) and 2
∫ τ
τ−ε(ku(t) + kη∗(t)) dt ≤ r. Then

0 < ε̄(r)≤min(α, r) whenever r > 0 , (25)

(26)

2

τ∫
τ−ε̄(r)

(ku(t) + kη∗(t)) dt≤ r whenever r > 0 , (27)

ε̄(r)≤ ε̄(r′)whenever 0 < r ≤ r′ , (28)

lim
r↓0

ε̄(r) = 0 . (29)

• We write ε̄[ρ] = ε̄(r̄(ρ)), and define D̃ρ = {(x, ε) : x ∈ Br̄(ρ), 0 ≤ ε ≤ ε̄[ρ]}.
Then D̃ρ ⊆ D̃ρ′ whenever 0 < ρ ≤ ρ′.
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It follows from the above choices that

(A) If we let c̄(ρ) = 2er̄(ρ)(k̄u+k̄∗+ρ), then 2r̄(ρ)c̄(ρ)+4r̄(ρ)(k̄u+k̄∗+2ρ) ≤ ρ
whenever 0 < ρ ≤ 1. (This inequality will be used later.)

(B) For every r ∈]0, δ] the set Br is a compact neighborhood of ξ∗(τ), and
the map Br 3 x 7→ xx is a bijection onto the compact ball B̄m(ξ∗(τ)x, r),
which is a subset of B̄m(ξ∗(τ)x, δ).

(C) B2r̄(ρ) ⊆ x−1(B̄m(ξ∗(t)
x, δ)) for every ρ and every t ∈ [τ − ε̄[ρ], τ ].

(Indeed, suppose that t ∈ [τ − ε̄[ρ], τ ] and x ∈ B2r̄(ρ). Then
x ∈ dom x, because 2r̄(ρ) < δ, and ‖xx − ξ∗(τ)x‖ ≤ 2r̄(ρ). On
the other hand, if s ∈ [t, τ ] then of course s ∈ [τ − α, τ ], so
ξ∗(s) ∈ x−1(B̄m(ξ(s)x, δ)), and then ξ∗(s) ∈ dom x. Furthemore, for
almost all such s, ‖ξ̇∗(s)x‖ = ‖f(ξ∗(s), η∗(s), s)

x‖ ≤ kη∗(s). Since this is
true for almost every s ∈ [t, τ ], it follows that

‖ξ∗(t)x − ξ∗(τ)x‖ ≤
τ∫
t

kη∗(s) ds ≤
τ∫

τ−ε̄[ρ]

kη∗(s) ds ≤ r̄(ρ) .

Hence ‖xx − ξ∗(t)x‖ ≤ 3r̄(ρ) ≤ δ, so x ∈ x−1(B̄m(ξ∗(t)
x, δ)).)

(D) The bounds

‖fu(x, t)x‖≤ ku(t) , ‖fu(x, t)x − fu(x̃, t)x‖ ≤ ku(t)‖xx − x̃x‖ ,
‖fη∗(x, t)x‖≤ kη∗(t) , ‖fη∗(x, t)x − fη∗(x̃, t)x‖ ≤ kη∗(t)‖xx − x̃x‖

hold, for every ρ, whenever x, x̃ ∈ B2r̄(ρ) and t ∈ [τ − ε̄[ρ], τ ]. (This
follows from the fact that B2r̄(ρ) ⊆ x−1(B̄m(ξ∗(t)

x, δ).)

(E) For every ρ, if x ∈ Br̄(ρ), then Φ
fη∗
t,τ (x) is defined and belongs to dom x

for every t ∈ [τ − ε̄[ρ], τ ], and ‖Φfη∗
t,τ (x)x − xx‖ ≤

∫ τ
τ−ε̄[ρ] kη∗(s) ds ≤ r̄(ρ),

so in particular Φ
fη∗
t,τ (x) ∈ B2r̄(ρ).

(F) For every ρ, if (x, ε) ∈ D̃ρ, then Φ
fηu,τ,ρ
t,τ−ε

(
Φ
fη∗
τ−ε,τ (x)

)
is defined

and belongs to dom x for every t ∈ [τ − ε, τ ]. Furthermore,

‖Φfηu,τ,ρ
t,τ−ε

(
Φ
fη∗
τ−ε,τ (x)

)x
− xx‖ ≤

∫ τ
τ−ε̄[ρ](2kη∗(s) + ku(s)) ds ≤ r̄(ρ), so that,

in particular Φ
fηu,τ,ρ
t,τ−ε

(
Φ
fη∗
τ−ε,τ (x)

)
∈ B2r̄(ρ).

It follows from (E) and (F) that Ψ̃u,τ
ρ (x, ε) is defined and belongs to B2r̄(ρ)

whenever (x, ε) belongs to D̃ρ. Furthermore, all the “intermediate points of
the construction of Ψu,τ

ρ (x, ε)”—that is, the points that lie on the path γx,ε
described above—belong to B2r̄(ρ). Therefore, at all these points the bounds of
(D) hold. Hence all the calculations involving these points take place within
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B2r̄(ρ) and as long as we never leave B2r̄(ρ) we can do our calculations by
identifying the points x ∈M with their x-coordinate representations, that is,
by just writing “x” when we really mean “xx ”. We will use this notational
simplification, until we arrive at conclusions that are manifestly independent
of the chart.

Simple applications of Gronwall’s inequality then yield the inequalities

‖Ψ̃u,τ
ρ (x, ε)− Ψ̃u,τ

ρ (x̃, ε)‖≤ er̄(ρ)‖x− x̃‖ , (30)

‖Ψ̃u,τ
ρ (x, ε)− Ψ̃u,τ

ρ (x̃, ε)− (x− x̃)‖≤ r̄(ρ) er̄(ρ)‖x− x̃‖ ≤ ρ‖x− x̃‖ , (31)

if (x, ε) and (x̃, ε) belong to D̃ρ.

We now estimate ‖Ψ̃u,τ
ρ (x, ε1)− Ψ̃u,τ

ρ (x, ε2)‖, for (x, ε1) ∈ D̃ρ and (x, ε2) ∈ D̃ρ.

Assume first that ε2 < ε1. Let y = Φ
fη∗
τ−ε1,τ (x), and write ξ(t) = Φ

fηu,τ,ρ
t,τ−ε1 (y) and

ξ̃(t) = Φ
fη̃
t,τ−ε1(y) for τ − ε1 < t ≤ τ . Then

Ψ̃u,τ
ρ (x, ε1) =

(
Φ
fηu,τ,ρ
τ,τ−ε1 ◦ Φ

fη∗
τ−ε1,τ

)
(x)

= Φ
fηu,τ,ρ
τ,τ−ε1(y)

= ξ(τ) ,

Ψ̃u,τ
ρ (x, ε2) =

(
Φ
fηu,τ,ρ
τ,τ−ε2 ◦ Φ

fη∗
τ−ε2,τ

)
(x)

=
(
Φ
fηu,τ,ρ
τ,τ−ε2 ◦ Φ

fη∗
τ−ε2,τ−ε1 ◦ Φ

fη∗
τ−ε1,τ

)
(x)

=
(
Φ
fηu,τ,ρ
τ,τ−ε2 ◦ Φ

fη∗
τ−ε2,τ−ε1

)
(y)

= Φ
fη̃
τ,τ−ε1(y)

= ξ̃(τ) ,

where η̃ is any U -control such that η̃(t) = η∗(t) for τ − ε1 ≤ t ≤ τ − ε2 and
η̃(t) = ηu,τ,ρ(t) for τ − ε2 < t ≤ τ . Then, if we write k = ku + kη∗ , and let

S(t) = [τ − ε1,min(t, τ − ε2)] ∩ Eρ , a(s) = f(ξ̃(s), u, s)− f(ξ̃(s), η∗(s), s) ,

we find

ξ(t)− ξ̃(t) =

t∫
τ−ε1

(
f(ξ(s), ηu,τ,ρ(s), s)− f(ξ̃(s), η̃(s), s)

)
ds

=

t∫
τ−ε1

(
f(ξ(s), ηu,τ,ρ(s), s)− f(ξ̃(s), ηu,τ,ρ(s), s)

)
ds
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+

t∫
τ−ε1

(
f(ξ̃(s), ηu,τ,ρ(s), s)− f(ξ̃(s), η̃(s), s)

)
ds

=

t∫
τ−ε1

(
f(ξ(s), ηu,τ,ρ(s), s)− f(ξ̃(s), ηu,τ,ρ(s), s)

)
ds

+
∫

[τ−ε1,min(t,τ−ε2)]∩Eρ

(
f(ξ̃(s), u, s)− f(ξ̃(s), η∗(s), s)

)
ds

=

t∫
τ−ε1

(
fη

u,τ,ρ

(ξ(s), s)−fηu,τ,ρ(ξ̃(s), s)
)
ds+

∫
S(t)

a(s)ds , (32)

‖ξ(t)− ξ̃(t)‖≤
t∫

τ−ε1

k(s)‖ξ(s)− ξ̃(s)‖ ds+
∫
S(t)

‖a(s)‖ ds . (33)

If s belongs to Eρ, then ‖f(ξ̃(s), u, s)‖ ≤ k(s) and ‖f(ξ̃(s), η∗(s), s)‖ ≤ k(s).
Furthermore, k(s) ≤ k̄u + k̄∗ + ρ. It follows that ‖a(s)‖ ≤ 2(k̄u + k̄∗ + ρ), so
that

∫
S(t) ‖a(s)‖ ds ≤ 2(k̄u + k̄∗ + ρ) meas(S(t)), from which we conclude that∫

S(t)

‖a(s)‖ ds ≤ 2(k̄u + k̄∗ + ρ) meas([τ − ε1, τ − ε2] ∩ Eρ) .

Let σ̂ρ(ε) = meas([τ − ε, τ ] ∩ Eρ). It then follows immediately that

meas([τ − ε1, τ − ε2] ∩ Eρ) = σ̂ρε1,ε2 ,

where σ̂ρε1,ε2 = σ̂ρ(ε1)− σ̂ρ(ε2) . This in turn implies that∫
S(t)

‖a(s)‖ ds ≤ 2(k̄u + k̄∗ + ρ) σ̂ρε1,ε2 .

This fact, together with (33) and Gronwall’s inequality, imply, if we write
c̄(ρ) = 2er̄(ρ)(k̄u + k̄∗ + ρ), that

‖ξ(t)− ξ̃(t)‖ ≤ 2(k̄u + k̄∗ + ρ)e
∫ t
τ−ε1

k(s) ds
σ̂ρε1,ε2 ≤ c̄(ρ)σ̂ρε1,ε2 .

If we take t = τ , then ξ(τ) = Ψ̃u,τ
ρ (x, ε1) and ξ̃(τ) = Ψ̃u,τ

ρ (x, ε2), so we have

proved that ‖Ψ̃u,τ
ρ (x, ε1)−Ψ̃u,τ

ρ (x, ε2)‖ ≤ c̄(ρ)σ̂ρε1,ε2 , under the assumption that
ε1 > ε2. A similar estimate is clearly valid when ε1 < ε2, and we then get the
unrestricted estimate

‖Ψ̃u,τ
ρ (x, ε1)−Ψ̃u,τ

ρ (x, ε2)‖≤ c̄(ρ) |σ̂ρε1,ε2| for x∈Br̄(ρ), ε1, ε2∈ [0, ε̄[ρ]]. (34)

In addition, if s ∈ Eρ we have
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‖f(ξ̃(s), u, s)− v̄u‖≤‖f(ξ̃(s), u, s)− f(ξ∗(s), u, s)‖+ ‖f(ξ∗(s), u, s)− v̄u‖
≤ ku(s)‖ξ̃(s)− ξ∗(s)‖+ ρ ≤ 4r̄(ρ)(k̄u + ρ) + ρ .

Similarly, ‖f(ξ̃(s), η∗(s), s)− v̄∗‖ ≤ 4r̄(ρ)(k̄∗ + ρ) + ρ. On the other hand,

‖a(s)− (v̄u − v̄∗)‖ ≤ ‖f(ξ̃(s), u, s)− v̄u‖+ ‖f(ξ̃(s), η∗(s), s)− v̄∗‖ ,

and then ‖a(s)− (v̄u − v̄∗)‖ ≤ 4r̄(ρ)(k̄u + k̄∗ + 2ρ) + 2ρ.

Clearly, (32) implies, if we write Eε1,ε2
ρ = [τ − ε1, τ − ε2] ∩ Eρ, that

ξ(τ)− ξ̃(τ) =

τ∫
τ−ε1

(
fη

u,τ,ρ

(ξ(s), s)− fηu,τ,ρ(ξ̃(s), s)
)
ds+

∫
E
ε1,ε2
ρ

a(s) ds ,

from which it follows, using (A), that if 0 < ρ ≤ 1, then

‖Ψ̃u,τ
ρ (x, ε1)− Ψ̃u,τ

ρ (x, ε2)− (σ̂ρ(ε1)− σ̂ρ(ε2))(v̄u − v̄∗)‖

≤ 2r̄(ρ)c̄(ρ) |σ̂ρε1,ε2|+
(
4r̄(ρ)(k̄u+k̄∗+2ρ)+2ρ

)
|σ̂ρε1,ε2|≤ρ|σ̂

ρ
ε1,ε2
| . (35)

(This inequality has been proved assuming that ε1 > ε2, and then it follows,
by interchanging ε1 and ε2, that it is also true for ε1 ≤ ε2.)

The function σ̂ρ : [0, ε̄[ρ]] 7→ R is nonnegative, monotonically nondecreasing,
and satisfies σ̂ρ(0) = 0 and σ̂ρ(ε̄[ρ]) = σ̄[ρ] > 0 , where we define σ̄[ρ]
by letting σ̄[ρ] = meas([τ − ε̄[ρ], τ ] ∩ Eρ). The function need not be strictly
increasing, so σ̂ρ need not be invertible as a map from [0, ε̄[ρ]] to [0, σ̄[ρ]]. On
the other hand, σ̂ρ is continuous, so σ̂ρ maps [0, ε̄[ρ]] onto [0, σ̄[ρ]], and (34)
tells us that Ψ̃u,τ

ρ (x, ε1) = Ψ̃u,τ
ρ (x, ε2) if σ̂ρ(ε1) = σ̂ρ(ε2). It follows that we can

“change variables and use σ ∈ [0, σ̄[ρ]] instead of ε ∈ [0, ε̄[ρ]].” Precisely, we
define Dρ = {(x, σ) : x ∈ Br̄(ρ), 0 ≤ σ ≤ σ̄[ρ]} and, for (x, σ) ∈ Dρ, we let

Ψu,τ
ρ (x, σ) = Ψ̃u,τ

ρ (x, ε).

Then (34) says that ‖Ψu,τ
ρ (x, σ1) − Ψu,τ

ρ (x, σ2)‖ ≤ c̄(ρ) |σ1 − σ2| whenever
(x, σ1) ∈ Dρ and (x, σ2) ∈ Dρ. If we combine this with (30), we get the
Lipschitz estimate

‖Ψu,τ
ρ (x1, σ1)−Ψu,τ

ρ (x2, σ2)‖ ≤ er̄(ρ)‖x1 − x2‖+ c̄(ρ) |σ1 − σ2| , (36)

valid whenever (x1, σ1) and (x2, σ2) belong to Dρ and 0 < ρ ≤ 1.

Also, if we combine (31) and (35), we get the estimate

‖Ψu,τ
ρ (x1, σ1)−Ψu,τ

ρ (x2, σ@)− (x1 − x2)− (σ1 − σ2)(v̄u − v̄∗)‖
≤ ρ(‖x1 − x2‖+ |σ1 − σ2|) . (37)
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The map Ψu,τ
ρ : Dρ 7→ R

m satisfies Ψu,τ
ρ (x, 0) = x. So we can extend Ψu,τ

ρ to the

set D̂ρ
def
=Br̄(ρ) × [−σ̄[ρ], σ̄[ρ]], by requiring that the maps σ 7→ Ψu,τ

ρ (x, σ)− x
be odd, i.e., by defining Ψu,τ

ρ (x, σ) = 2x−Ψu,τ
ρ (x,−σ) for (x,−σ) ∈ Dρ. We

use the same expression Ψu,τ
ρ for the extended map. Then

(G) If 0<ρ≤1, then the bounds (36), (37) hold for (xi, σi) ∈ D̂ρ , i = 1, 2.
(H) Ψu,τ

ρ (x, 0) = x whenever x ∈ Br̄(ρ).
(I) If a ≤ τ̂ < τ , then there exists a positive number ρ̂ such that

(I.*) If 0 < ρ ≤ ρ̂, then Φ
fη∗
τ̂ ,τ (x) is defined for every x ∈ Br̄(ρ), and

Ψu,τ
ρ (x, σ) ∈ RD;[τ̂ ,τ ](Φ

fη∗
τ̂ ,τ (x)) whenever (x, σ) ∈ Dρ.

(To prove (I), we first observe that Φ
fη∗
τ̂ ,τ (x) is defined for x = ξ∗(τ), so there

is a neighborhood N of ξ∗(τ) such that Φ
fη∗
τ̂ ,τ (x) is defined for all x ∈ N . Since

(24) and (29) imply that limρ↓0 ε̄[ρ] = 0, we may pick ρ̂ such that ε̄[ρ̂] < τ − τ̂
and Br̄(ρ̂) ⊆ N . Since (23) and (28) imply that the functions ρ 7→ r̄(ρ) and
ρ 7→ ε̄[ρ] are increasing, it follows that

ε̄[ρ] < τ − τ̂ and Br̄(ρ) ⊆ Br̄(ρ̂) ⊆ N whenever 0 < ρ ≤ ρ̂ .

This implies, in particular, that if 0 < ρ ≤ ρ̂ then Φ
fη∗
τ̂ ,τ (x) is defined for

all x ∈ Br̄(ρ). Furthermore, if 0 < ρ ≤ ρ̂ and (x, σ) ∈ Dρ, then x ∈ Br̄(ρ), so

Φ
fη∗
τ̂ ,τ (x) is defined, and, if we let z = Φ

fη∗
τ̂ ,τ (x), and pick ε such that 0 ≤ ε ≤ ε̄[ρ]

and σ = σ̂ρ(ε), then

Ψu,τ
ρ (x, σ) = Ψu,τ

ρ (Φ
fη∗
τ,τ̂ (z), σ) = Ψu,τ

ρ (Φ
fη∗
τ,τ̂ (z), σ̂ρ(ε)) = Ψ̃u,τ

ρ (Φ
fη∗
τ,τ̂ (z), ε)

= (Φ
fηu,ρ,τ
τ,τ−ε ◦ Φ

fη∗
τ−ε,τ )(Φ

fη∗
τ,τ̂ (z)) = Φ

fηu,ρ,τ
τ,τ−ε (Φ

fη∗
τ−ε,τ̂ (z)) = Φ

fηu,ρ,τ

τ,τ̂ (z) ,

showing that Ψu,τ
ρ (x, σ) is reachable from z over the interval [τ̃ , τ ].)

The bound (36) tells us that the map Ψu,τ
ρ is Lipschitz, and then (37) enables us

to determine, approximately, the Clarke generalized Jacobian ∂Ψu,τ
ρ (ξ∗(τ), 0).

Indeed, if Ψu,τ
ρ is classically differentiable at a point (x, σ), and the differential

DΨu,τ
ρ (x, σ) is the linear map L : Rm × R 7→ R

m, then, if we write

A(ε, x, σ,∆x,∆σ) = Ψu,τ
ρ (x+ ε∆x, σ + ε∆σ)−Ψu,τ

ρ (x, σ) ,

it follows that limε↓0
1
ε
A(ε, x, σ,∆x,∆σ) = L(∆x,∆σ). On the other hand,

(37) implies, if Lu,τ is the linear map defined in (20), that

∥∥∥1

ε
A(ε, x, σ,∆x,∆σ)− Lu,τ (∆x,∆σ)

∥∥∥
=

1

ε

∥∥∥A(ε, x, σ,∆x,∆σ)− Lu,τ (ε∆x, ε∆σ)
∥∥∥
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=
1

ε

∥∥∥Ψ̂u,τ
ρ (x+ε∆x, σ+ε∆σ)−Ψ̂u,τ

ρ (x, σ)−ε∆x−ε∆σ(v̄u−v̄∗)
∥∥∥

≤ ρ
ε

(ε‖∆x‖+ ε|∆σ|)

= ρ(‖∆x‖+ |∆σ|)
≤ 2ρ(‖∆x‖2 + |∆σ|2)1/2 ,

since ‖∆x‖ + |∆σ| ≤ 2(‖∆x‖2 + |∆σ|2), and
√

2 < 2. We may then let ε
converge to 0, and find that ‖(L − Lu,τ )(∆x,∆σ)‖ ≤ 2ρ(‖∆x‖2 + |∆σ|2)1/2,
so ‖L− Lu,τ‖ ≤ 2ρ.

Let Λu,τ (ρ) be the set of all linear maps L : Rm × R 7→ R
m such that

‖L− Lu,τ‖ ≤ 2ρ. Then we have shown that all the derivatives of Ψu,τ
ρ , at all

points (x, σ) ∈ diff(Ψu,τ
ρ ), belong to Λu,τ (ρ). Since Λu,τ (ρ) is compact and

convex, it follows that ∂Ψu,τ
ρ (ξ∗(τ), 0) ⊆ Λu,τ (ρ).

We now let ΨΨΨu,τ be the set-valued map fromM×R toM such that y∈ΨΨΨu,τ (x, σ)
if and only if y = Ψu,τ

ρ (x, σ) for some ρ such that (x, σ) ∈ D̂ρ. Then

(#) The set {Lu,τ} is a Warga derivate container of ΨΨΨu,τ at (ξ∗(τ), 0).

(##) If (u, τ) ∈ L̂, then, given any τ̂ such that a∗ ≤ τ̂ < τ , the set-valued
map ΨΨΨu,τ is such that ΨΨΨu,τ (Φτ,τ̂ (z), σ) ⊆ RD;[τ̂ ,τ ](z) whenever (z, σ)
belongs to a sufficiently small neighborhood of (ξ∗(τ̂), 0) in M × R
and σ ≥ 0.

We are now ready to combine the one-parameter needle variations ΨΨΨu,τ into
multiparameter variations. Suppose first that we are given a finite subset
F of L̂, such that the times τ of the pairs (u, τ) ∈ F are all different.
We can then write F = {(u1, τ1), . . . , (uN , τN)}, where u1, . . . , uN ∈ U and
a∗ < τ1 < τ2 < · · · < τN < b∗. Fix a family τ̂̂τ̂τ = {τ̂j}Nj=1. of times τ̂j such that

a < τ̂1 < τ1 < τ̂2 < τ2 < · · · < τ̂N−1 < τN−1 < τ̂N < τN < b .

We then let Xi = Tξ∗(τi)M , Yi = Lin(Xi × R, Xi), and write ΨΨΨ(i) = ΨΨΨui,τi .
Then there exist neighborhoods N (i) of ξ∗(τ̂i), and positive numbers σ̄(i) such

that ΨΨΨ(i)(Φτi,τ̂i(z), σ) ⊆ RD;[τ̂i,τi](z) whenever z ∈ N (i) and σ ∈ [0, σ̄(i)].

Define Σ(i) = [−σ̄(1), σ̄(1)]× · · · × [−σ̄(i), σ̄(i)], Σ(i),+ = [0, σ̄(1)]× · · · × [0, σ̄(i)].
Then construct set-valued maps Υ(i) : Σ(i) 7→ 2M , for i = 1, . . . , N , by first
letting Υ(1)(σ1) = Ψ(1)(ξ∗(τ1), σ1), and then defining the Υ(i) recursively for

i > 1 by letting Υ(i)(σσσi) = Ψ(i)
(
Φfη∗
τi,τi−1

(Υ(i−1)(σσσi−1)), σi
)

for i > 1, where

we write σσσi = (σ1, . . . , σi). It follows that Υ(1)(σ1) ⊆ RD;[a∗,τ1](ξ∗(a∗)) if

σ1 ∈ [0, σ̄(1)], because Υ(1)(σ1) = Ψ(1)(ξ∗(τ1), σ1) = Ψ(1)
(
Φ
fη∗
τ1,τ̂1

(ξ∗(τ̂1)), σ1

)
,

so Υ(1)(σ1) ⊆ RD;[τ̂1,τ1](ξ∗(τ̂1)) ⊆ RD;[a∗,τ1](ξ∗(a∗)). It is then easy to prove
inductively that Υ(i)(σσσi) ⊆ RD;[a∗,τi](ξ∗(a∗)) for every i and every σσσi ∈ Σ(i),+.
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(Indeed, assume that i > 1 and Υ(i−1)(σσσi−1) ⊆ RD;[a∗,τi−1](ξ∗(a∗)) whenever
σσσi−1 ∈ Σ(i−1),+. Then, if σσσi ∈ Σ(i),+, we have

Υ(i)(σσσi) =Ψ(i)
(
Φfη∗
τi,τi−1

(Υ(i−1)(σσσi−1)), σi)
)

= Ψ(i)
(
Φ
fη∗
τi,τ̂i

(Φ
fη∗
τ̂i,τi−1

(Υ(i−1)(σσσi−1))), σi
)
,

so

Υ(i)(σσσi) ⊆ RD;[τ̂i,τi]

(
Φ
fη∗
τ̂i,τi−1

(Υ(i−1)(σσσi−1))
)

def
=
⋃{
RD;[τ̂i,τi](y) : y ∈ Φ

fη∗
τ̂i,τi−1

(Υ(i−1)(σσσi−1))
}
.

Since
Φ
fη∗
τ̂i,τi−1

(Υ(i−1)(σσσi−1)) ⊆ RD;[τi−1,τ̂i](Υ
(i−1)(σσσi−1)) ,

and
Υ(i−1)(σσσi−1)) ⊆ RD;[a∗,τi−1](ξ∗(a∗)) ,

the desired conclusion that Υ(i)(σσσi) ⊆ RD;[a∗,τi](ξ∗(a∗)) follows.)

Next, we define Υ̂(σσσN)=Φb∗,τN (Υ(N)(σσσN)). Then Υ̂(σσσN)⊆RD;[a∗,b∗](ξ∗(a∗)) if

σσσN ∈ Σ(N),+, because Υ(N)(σσσN) ⊆ RD;[a∗,τN ](ξ∗(a∗)). Hence Υ̂ maps Σ(N),+

into the reachable set RD;[a∗,b∗](ξ∗(a∗)).

For each measurable selection L of the map t 7→ ∂fη∗,t(ξ∗(t)), define linear
maps Qi;L from R

i to Tξ∗(τi)M by letting Q1;L(σ1) = Lu1,τ1(0, σ1), and then,
recursively,

Qi;L(σσσi) = Lui,τi
(
P∇Lτi,τi−1

(Qi−1;L(σσσi−1)), σi
)
.

Then define Q̂L(σσσN) = P∇Lb∗,τN

(
QN ;L(σσσN)

)
, so Q̂L is a linear map from R

N to

Tξ∗(b∗)M . Finally, we let QQQ denote the set of all maps Q̂L, for all measurable
selections L of the map t 7→ ∂fη∗,t(ξ∗(t)). Then QQQ is a compact subset of
Lin(RN , Tξ∗(b∗)M). A simple calculation then shows thatQQQ is a Warga derivate

container of Υ̂ at (0, ξ∗(b∗)) ∈ RN ×M .

Since Υ̂ maps the nonnegative orthant RN+ into RD;[a∗,b∗](ξ∗(a∗)), it follows

from Examples 3.10 and 3.11 that the set QQQ · RN+ = {Q · RN+ : Q ∈ Q̃QQ} is a
WDC approximating multicone ofRD;[a∗,b∗](ξ∗(a∗)) at ξ∗(b∗), and then Λ·QQQ·RN
is a WDC approximating multicone of F (RD;[a∗,b∗](ξ∗(a∗))) at F (ξ∗(b∗)).

Now assume that (HLip,in) does not hold. Then Theorem 3.15 tells us that the
multicones Λ · QQQ · RN and C are not strongly transversal.

Let µ be an arbitrary nonzero member of T ∗F (ξ∗(b∗))
N . Then Lemma 3.5 tells us

that there exist a nonnegative number π0, covectors ν, ν̂ ∈ T ∗F (ξ∗(b∗))
N , linear

maps λ ∈ Λ, Q ∈ QQQ, and a cone C ∈ C, such that π0µ = ν + ν̂, ν̂ ∈ C⊥,
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ν ∈ (λ · Q · RN+ )⊥, and (π0, ν, ν̂) 6= (0, 0, 0). Then (π0, ν) 6= (0, 0) (because
if (π0, ν) = (0, 0) then the identity π0µ = ν + ν̂ would imply that ν̂ = 0 as
well, so (π0, ν, ν̂) = (0, 0, 0)). Since ν̂ = π0µ− ν, we have shown that π0 and ν
satisfy Conditions II and III of our conclusion.

We now let π# = ν ◦ λ. Then π# ∈ (Q · RN+ )⊥. The map Q is of the form

Q̂L, for a measurable selection L of t 7→ ∂fη∗,t(ξ∗(t)). Define π(t) = π# ◦P∇Lb∗,t .
Then, if σσσN ∈ RN+ ,

〈π#, Q(σσσN)〉= 〈π#, Q̂L(σσσN)〉 =
N∑
i=1

σi〈π#, P∇Lb∗,τi
(v̄ui,τi − v̄∗,τi)〉

=
N∑
i=1

σi〈π(τi), v̄ui,τi − v̄∗,τi〉 ,

where we have written v̄ui,τi = f(ξ∗(τi), ui, τi), v̄∗,τi = f(ξ∗(τi), η∗(τi), τi).
Since 〈π#, Q(σσσN)〉 ≤ 0 for all σσσN ∈ RN+ , we conclude that the inequalities
〈π(τi), v̄ui,τi − v̄∗,τi〉 ≤ 0 hold for i = 1, . . . , N . We have therefore shown that
Hf (ξ∗(τi), π(τi), ui, τi) ≤ Hf (ξ∗(τi), π(τi), η∗(τi), τi) for i = 1, . . . , N .

We have thus obtained π0, ν, λ, L that satisfy all our desired conditions, except
for the fact that the inequalities of the Hamiltonian maximization condition
have only been established for special sets F of pairs (u, τ), namely, sets F
that satisfy three additional restrictions: (r1) F is finite, (r2) F ⊆ L̂, and
(r3) no two different members of F have the same time τ .

What we actually need is to have the inequalities for all pairs (u, τ) ∈ L.
This more general set of inequalities can be obtained from the inequalities
for our special sets F by a well known compactness argument. Fix a norm
in the space T ∗F (ξ∗(b∗))

N , and (still keeping µ fixed) consider the set K of all
4-tuples (π0, ν, λ, L) such that π0 ∈ R, π0 ≥ 0, ν ∈ T ∗F (ξ∗(b∗))

N , π0 + ‖ν‖ = 1,

π0µ − ν ∈ C⊥, and L is a measurable selection of [a∗, b∗] 3 t 7→ ∂fη∗,t(ξ∗(t)).
Then K is compact (using the weak topology for the Ls).

For every subset G of L, let KG be the set of all (π0, ν, λ, L) ∈ K such that
the inequalities Hf (ξ∗(τ), π(τ), η∗(τ), τ) ≥ Hf (ξ∗(τ), π(τ), u, τ) hold for all
(u, τ) ∈ G, where π(t) = π# ◦P∇Lb∗,t and π# = ν ◦λ. Then each KG is a compact
subset of K, and our proof will be complete if we show that KL 6= ∅.

Let F be any finite subset of L. Let F = {(u1, τ1), . . . , (uN , τN)}. Then
we can construct sequences {τ ji }j∈N of members of ]a∗, b∗[ in such a way

that (ui, τ
j
i ) ∈ L̂, limj→∞ τ

j
i = τi, limj→∞ f(ξ∗(τ

j
i ), ui, τ

j
i ) = f(ξ∗(τi), ui, τi),

limj→∞ f(ξ∗(τ
j
i ), η∗(τ

j
i ), τ ji )=f(ξ∗(τi), η∗(τi), τi), and τ ji 6= τ ji′ whenever i 6= i′.

Let F j = {(u1, τ
j
1 ), . . . , (uN , τ

j
N)}. Then the F j satisfy all three restrictions

(r1), (r2), (r3). Therefore KFj 6= ∅. Pick (πj0, ν
j, λj, Lj) ∈ KFj . By passing to
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a subsequence, we may assume that {(πj0, νj, λj, Lj)}j∈N converges to a limit
(π0, ν, λ, L) ∈ K. Then (π0, ν, λ, L) ∈ KF . SoKF 6= ∅. As F varies over all finite
subsets of L, the sets KF are compact and nonempty. Furthermore, any finite
intersection A = KF1∩KF2∩· · ·∩KFN is nonempty, because A = KF1∪F2∪···∪FN .
Therefore the intersection of all the sets KF is nonempty. So KL is nonempty,
completing our proof. 2

5.2 The maximum principle for local controllability

Given a control system with data D = (M, f, U,U), and a TCP (ξ∗, η∗) of D
with domain [a∗, b∗], we say that D) is locally controllable along ξ∗ if the
reachable set RD;[a∗,b∗](ξ∗(a∗)) is a neighborhood of ξ(b∗).

In the local controllability problem, the same type of data as in the separation
problem are specified, except that N , F , S, C and Λ are not needed. So we
are given a data 9-tuple Dlc = (M, f, U,U , x∗, a∗, b∗, ξ∗, η∗), consisting of a
system data 4-tuple D = (M, f, U,U), an initial state x∗, endpoints a∗, b∗ of
the reference interval [a∗, b∗], and a reference TCP (ξ∗, η∗).

The following is then our version of the Lipschitz maximum principle for local
controllability.

Theorem 5.4 Assume that the data Dlc are such that Hypotheses (H1), (H2),
(H3), (H4), (H6.a), (H7) and (H9) hold, and x∗ ∈ M . Let L be as in the
statement of Theorem 5.1. Then, if the system with data D = (M, f, U,U) is
not locally controllable along ξ∗, it follows that there exist

1. a nonzero covector π# ∈ T ∗ξ∗(b∗)M ,
2. a measurable selection [a∗, b∗] 3 t 7→ L(t) ∈ ∂fη∗,t(ξ∗(t)) of the set-valued

map [a∗, b∗] 3 t 7→ ∂fη∗,t(ξ∗(t)) ⊆ J1
ξ∗(t),ξ̇∗(t)

Γ(TM),

having the property that, if ∇L ∈ Cov(ξ∗) is the covariant differentiation
corresponding to L, and we define π(t) = π# ◦ P∇Lb∗,t for t ∈ [a∗, b∗], then
the following Hamiltonian maximization condition is satisfied:

(HM) Hf (ξ∗(τ), π(τ), η∗(τ), τ) ≥ Hf (ξ∗(τ), π(τ), u, τ) whenever (u, τ) ∈ L.

Proof. Fix a coordinate chart x near ξ∗(b∗), and identify all points x ∈ dom x
with their coordinate representations xx.

Since our system is not locally controllable along ξ∗, we may pick a sequence
σ = {xj}j∈N of points of dom x that do not belong to RD;[a∗,b∗](ξ∗(a∗)) and are
such that limj→∞ xj = ξ∗(b∗). Then in particular xj 6= ξ∗(b∗) for all j. After
passing to a subsequence of σ, if necessary, we may assume that the limit
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v = limj→∞
xj−ξ∗(b∗)
‖xj−ξ∗(b∗)‖ exists. Clearly, v 6= 0. After passing to a subsequence

again, we may also assume that the xj are all different, that ‖xj−xj+1‖ ≤ 21−j

for all j, and limj→∞
xj−xj+1

‖xj−xj+1‖ = v. Define a Lipschitz curve ζ : [0, 1] 7→M by

letting ζ(0) = ξ∗(b∗) and

ζ(t) = 2j
(
(21−j − t)xj+1 + (t− 2−j)xj

)
for 2−j ≤ t ≤ 21−j , j ∈ N ,

so that ζ(21−j) = xj, and the map ζ is linear on each interval [2−j, 21−j].

Let S = {ζ(t) : t ∈ [0, 1]}. Then S is a compact subset of M , and it is easy to
see that, if C = {rv : r ≥ 0}, then {C} is a WDC approximating cone to S
at ξ∗(b∗). (Actually, C is the Clarke tangent cone of S at ξ∗(b∗).)

It is clear that the Lipschitz arc intersection property cannot hold with this
choice of the set S because, if there existed a nonconstant Lipschitz arc
γ : [0, 1] 7→ RD;[a∗,b∗](ξ∗(a∗)) ∩ S such that γ(0) = ξ∗(b∗), then there would
have to exist arbitrarily small tk such that γ(tk) belongs to the set {xj : j ∈ N},
contradicting the fact that the xj do not belong to RD;[a∗,b∗](ξ∗(a∗)).

It then follows from Theorem 5.4—taking N = M , letting the map F be the
identity map, and choosing Λ = {ITξ∗(b∗)M} and C = {C}—that for every
µ ∈ T ∗ξ∗(b∗)M\{0} there exists a 4-tuple (π0, ν, λ, L) that satisfies Property (*)
of the statement of that theorem. We apply this to a µ that does not belong to
C⊥. (For example, we could take any µ such that 〈µ, v〉 = 1.) Let π# = ν ◦ λ.
Then π# = ν, because λ is the identity map of Tξ∗(b∗)M . The covector π# and
the measurable selection L clearly satisfy our desired conditions, except only
for the fact that π# might vanish. To exclude this possibility, we observe that
if π# = 0 then ν = 0, so π0 > 0 by the nontriviality condition of Theorem
5.4. But then the fact that π0µ − ν ∈ C⊥ simply says that π0µ ∈ C⊥, and
then µ ∈ C⊥, since π0 > 0. So we have reached a contradiction, showing that
π# 6= 0, and concluding our proof. 2

5.3 The maximum principle for optimal control

We now consider a fixed time-interval Lagrangian optimal control problem

minimize ϕ(ξ(b)) +
∫ b
a f0(ξ(t), η(t), t) dt

subject to


ξ(·) ∈ W 1,1([a, b],Rn) and ξ̇(t) = f(ξ(t), η(t), t) a.e. ,

ξ(a) = x∗ and F (ξ(b)) ∈ S ,

η(t) ∈ U for all t ∈ [a, b] , and η(·) ∈ U .
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We assume, as before, that we are given a reference trajectory-control pair
(ξ∗, η∗), whose domain is the reference interval [a∗, b∗]. And, finally, we assume
that we are given a multicone C. So we are specifying a data 14-tuple Dsep as
in (19), and we will assume that all the conditions (H1) to (H9) hold.

In addition to Dsep, we now need to specify a cost functional. For this purpose,
we give f0 and ϕ such that

(H10) f0 is a ppd function from M × U × R to R, and ϕ is a ppd function
from M to R which is defined and Lipschitz on some neighborhood of
ξ∗(b∗).

Furthermore, we need to be able to differentiate ϕ at ξ∗(b∗). We could do
this by specifying a Warga derivate container Θ of ϕ at ξ∗(b∗), but we will
allow the slightly more general possibility that, instead of separate derivate
containers Λ, Θ of F and ϕ, the map x 7→ (ϕ(x), F (x)) may have a joint
derivate container. For this purpose, we will substitute for Hypothesis (H8.b)
the following condition

(H8.b’) Λ̃ is a nonempty compact subset of Lin(Tξ∗(b∗)M,R × TF (ξ∗(b∗))N),
and is a Warga derivate container at the point ξ∗(b∗) of the ppd map
M 3x ↪→ (ϕ(x), F (x))∈R×N .

Then, if Dopt = (M, f, U,U , x∗, N, F, S, a∗, b∗, ξ∗, η∗, C, Λ̃, f0, ϕ) is our data
16-tuple,

• A TCP (ξ, η) with domain [a∗, b∗] is endpoint-cost-admissible if it
satisfies the following five conditions: (i) (ξ, η) is admissible, (ii) ξ(a∗) = x∗,
(iii) ξ(b∗) ∈ domF ∩ domϕ, (iv) F (ξ(b∗)) ∈ S, and, finally (v) the real-
valued function [a∗, b∗]3 t 7→f0(ξ(t), η(t), t) is a. e. defined, measurable, and

such that
∫ b∗
a∗ min

(
0, f0(ξ(t), η(t), t)

)
dt > −∞.

• We write TCPadm,ec(Dopt) to denote the set of all TCPs of Dopt that are
endpoint-cost-admissible.

It follows that if (ξ, η) belongs to TCPadm,ec(Dopt) then the number

J(ξ, η) = ϕ(ξ(b∗)) +

b∗∫
a∗

f0(ξ(t), η(t), t) dt

—called the cost of (ξ, η)—is well defined and belongs to ]−∞,+∞].

For the data Dopt, we define a ppd map f : M×U×R ↪→ R×M , called the
augmented dynamics, by letting

dom(f) = dom(f0) ∩ dom(f) ,

f(z) = (f0(z), f(z)) for z = (x, u, t) ∈ dom(f) .
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If η is a U -control, we write f0,η(x, t) = f0(x, η(t), t), fη(x, t)= f(x, η(t), t), so
f0,η is a ppd function from M ×R to R, and fη is a ppd map that sends each
(x, t) ∈ dom fη ⊆ M × R to a point fη(x, t) ∈ R× TxM . If in addition ξ is an
arc in M , we write

f0,η,ξ(t) = f0(ξ(t), η(t), t) ,

fη,ξ(t) = f(ξ(t), η(t), t) .

It will also be convenient, using the obvious identification of the product
R× TxM with the tangent space T(x0,x)(R × M), to regard the fη as ppd
maps R×M × R 3 (x0, x, t) 7→ (f0,η(x, t), fη(x, t)) ∈ T(x0,x)(R×M), that is,
as ppd time-varying vector fields on R×M that happen not to depend on x0.

The precise technical hypothesis on f0 is

(H11) for every control η ∈ U c,∗[a∗,b∗]
, the time-varying function f0,η is

integrably Lipschitz near ξ∗ (cf. Remark 5.5 below).

Remark 5.5 The definition of the “integrably Lipschitz” property for ppd
time-varying functions is identical to that for ppd vector fields, with the
obvious trivial modifications. Alternatively, we can regard the augmented
dynamics as giving rise to ppd time-varying vector fields fη on R × M , as
explained above, and then the “integrably Lipschitz” condition for f0, together
with Assumption (H7), just amounts to requiring that the fη, for η ∈ U c,∗[a∗,b∗]

,
be integrably Lipschitz near the arc [a∗, b∗] 3 t 7→ (0, ξ∗) ∈ R×M . 2

We write ξ0,∗(t) =
∫ t
a∗ f0(ξ∗(s), η∗(s), s) ds, so the function ξ0,∗ is the running

Lagrangian cost along (ξ∗, η∗), initialized so that ξ0,∗(a∗) = 0. We then let
Ξ∗(t) = (ξ0,∗(t), ξ∗(t)), so Ξ∗ : [a∗, b∗] 7→ R × M is the cost-augmented
reference trajectory. Clearly, Ξ∗ is an integral curve of fη∗ , if we regard
fη∗ as a ppd tvvf on R ×M , as explained above, and our assumptions imply
that fη∗ is integrably Lipschitz near Ξ∗. This makes it possible to talk about
the Clarke generalized Jacobian ∂fη∗,t(Ξ∗(t)), for which we will also use the
notation ∂fη∗,t(ξ∗(t)), since fη∗,t does not depend on the first component. Then
∂fη∗,t(ξ∗(t)) is a compact convex subset of the space J1

Ξ∗(t),Ξ̇∗(t)
Γ(T (R×M)).

We recall that J1
Ξ∗(t),Ξ̇∗(t)

Γ(R×TM) is the set of all 1-jets at Ξ∗(t) of sections ζ

of the bundle T (R×M) such that ζ(Ξ∗(t)) = Ξ̇∗(t). However, the value of fη∗,t
at a point (r, x) ∈ R × M does not depend on r. So the 1-jet j1fη∗,t(r, x)
at a point (r, x) ∈ diff(fη∗,t) is a 1-jet at x of sections ζ of R ×M TM
such that ζ(ξ∗(t)) = Ξ̇∗(t), where R ×M TM is the bundle over M whose
fiber at each point x ∈ M is the product R × TxM . Hence we can regard
∂fη∗,t(ξ∗(t)) as a compact convex subset of J1

ξ∗(t),Ξ̇∗(t)
Γ(R×M M). Furthermore,

J1
ξ∗(t),Ξ̇∗(t)

Γ(R×M TM)=J1
ξ∗(t),ξ̇0,∗(t)

Γ(R)×J1
ξ∗(t),ξ̇∗(t)

Γ(TM), so every member
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of J1
ξ∗(t),Ξ̇∗(t)

Γ(R × TM) can be regarded as a pair (L0, L), where L0 is a

1-jet at ξ∗(t) of real functions ψ ∈ C1(M,R) such that ψ(ξ∗(t)) = ξ̇0,∗(t),
and L is a 1-jet at ξ∗(t) of vector fiields Ψ on M such that Ψ(ξ∗(t)) = ξ̇∗(t).
Finally, J1

ξ∗(t),ξ̇0,∗(t)
Γ(R) can obviously be identified with the cotangent space

T ∗ξ∗(t)M . Hence the set ∂fη∗,t(ξ∗(t)) is a compact convex subset of the product

T ∗ξ∗(t)M × J
1
ξ∗(t),ξ̇∗(t)

Γ(TM).

It is then clear that ∂fη∗,t(ξ∗(t)) ⊆ ∂f0,η∗,t(ξ∗(t)) × ∂fη∗,t(ξ∗(t)) , from which
it follows immediately that every measurable selection of the set-valued map
[a∗, b∗] 3 t 7→ ∂fη∗,t(ξ∗(t)) can be regarded as a pair (ω,L), where

(i) ω is an integrable field of covectors along ξ∗, which is a measurable
selection of [a∗, b∗] 3 t 7→ ∂f0,η∗,t(ξ∗(t)),

(ii) L is an integrable function [a∗, b∗] 3 t 7→ L(t) ∈ J1
ξ∗(t),ξ̇∗(t)

Γ(TM), which

is a measurable selection of the map [a∗, b∗] 3 t 7→ ∂fη∗,t(ξ∗(t)),

Then L gives rise to a covariant differentiation ∇L along ξ∗, and we can write
the “inhomogeneous adjoint equation” ∇Lπ = π0ω, for any π0 ∈ R. The
corresponding Cauchy problem, with terminal condition π(b∗)= π̄, clearly has
a unique solution π for any given ω,L, π0, π̄. A field π of covectors (or a pair
(π0, π)) arising in this way is called an adjoint covector, or adjoint vector.

The hypothesis on the reference TCP (ξ∗, η∗) is that it is a local cost-
minimizer in TCPadm,ec(Dopt). In other words,

(Hopt) (ξ∗, η∗) ∈ TCPadm,ec(Dopt), and there exists a neighborhood V of
F (ξ∗(b∗)) in N having the property that J(ξ∗, η∗)≤J(ξ, η) for all pairs
(ξ, η) ∈ TCPadm,ec(Dopt) such that F (ξ(b∗)) ∈ V .

It will also be convenient to consider the following strong form of the negation
of (Hopt), that we will call the Lispchitz arc nonoptimality property.

(HLip,nonopt) There exists a map [0, 1]3s 7→(ξs, ηs)∈TCPadm,ec(Dopt) such that
(i) the map [0, 1]3s 7→(J(ξs, ηs), F (ξs(b∗)))∈R×N is Lipschitz,
(ii) (ξ0, η0) = (ξ∗, η∗),
(iii) J(ξs, ηs) < J(ξ∗, η∗) for all s ∈]0, 1].

We define the Hamiltonian of f to be the parametrized family of functions
H f
α : T ∗M × U × R ↪→ R, (depending on the real parameter α), given by the

formula H f
α(x, p, u, t) = p · f(x, u, t)− αf0(x, u, t) . Also, we recall that Λ̃ is a

subset of Lin(Tξ∗(b∗)M,R×TF (ξ∗(b∗))N), which can be naturally identified with

the product P = T ∗ξ∗(b∗)M × Lin(Tξ∗(b∗)M,TF (ξ∗(b∗))N)—Λ̃ is in fact a subset
of P , that is, a set of pairs (θ, λ), θ ∈ T ∗ξ∗(b∗)M , λ ∈ Lin(Tξ∗(b∗)M,TF (ξ∗(b∗))N).

The following is then our version of the maximum principle for optimal control.
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Theorem 5.6 Assume that the data 16-tuple Dopt satisfies Hypotheses (H1)
to (H11) (with (H8.b) replaced by (H8.b’)). Let L denote the set of all pairs
(u, τ) such that u ∈ U , τ ∈]a∗, b∗[, and τ is a Lebesgue time along ξ∗ of both
augmented time-varying vector fields fu and fη∗. Then, if (HLip,nonopt) is not
true, it follows that

(*) there exist
1. a covector π# ∈ T ∗ξ∗(b∗)M ,

2. a pair (ν, (θ, λ)) ∈ T ∗ξ∗(b∗)M × Λ̃,
3. a measurable selection [a∗, b∗] 3 t 7→ (ω(t), L(t)) ∈ ∂fη∗,t(ξ∗(t)) of the

set-valued map [a∗, b∗] 3 t 7→ ∂fη∗,t(ξ∗(t)) ⊆ T ∗ξ∗(t)M×J
1
ξ(t),ξ̇(t)

Γ(TM),

4. a nonnegative real number π0,

such that, if ∇L ∈ Cov(ξ∗) is the covariant differentiation corresponding to
L, and we let π be the unique absolutely continuous solution of the “adjoint
Cauchy problem” ∇Lπ(t) = π0ω(t), π(b∗) = π# , then the following three
conditions are satisfied:

I. Hamiltonian maximization: Hf
π0

(ξ∗(τ), η∗(τ), τ)≥Hf
π0

(ξ∗(τ), u, τ)
whenever (u, τ) ∈ L,

II. Transversality: −ν ∈ C⊥, and π# = ν · λ− π0θ,
III. Nontriviality: ν 6= 0 or π0 > 0.

In particular, if (Hopt) holds then (*) is true as well.

Remark 5.7 In most situations, N is just M , and F is the identity map. In
that case, one can just take take Λ̃ = Θ × {ITξ∗(b∗)M}, where Θ is a a Warga
derivate container of ϕ at ξ∗(b∗). Then the transversality condition takes the
more familiar form −π# ∈ π0Θ + C⊥. 2

Remark 5.8 The conclusion of Theorem 5.6 implies in particular the “weak
Hamiltonian maximization condition”: for every control value u ∈ U there
exists a Lebesgue-null subset N (u) of the interval [a∗, b∗] with the property
that H f

π0
(ξ∗(τ), π(τ), η∗(τ), τ) ≥ H f

π0
(ξ∗(τ), π(τ), u, τ) whenever τ /∈ N (u).

Under extra technical hypotheses, one can deduce the “strong Hamiltonian
maximization condition”: if (i) U is a separable metric space and (ii) the
function U 3 u 7→ f(ξ∗(t), u, t) is continuous for a. e. t ∈ [a∗, b∗], then the
equality H f

π0
(ξ∗(τ), π(τ), η∗(τ), τ) = max{H f

π0
(ξ∗(τ), π(τ), u, τ) : u ∈ U} holds

for all τ in the complement of a null subset N of [a∗, b∗]. (The proof is exactly
like that of Proposition 5.3.) 2

Proof of Theorem 5.6. We assume that Condition (HLip,nonopt) is not true, and
apply Theorem 5.1 to a separation problem whose data 14-tuple D̂sep, given by
D̂sep = (M̂, f̂ , Û , Û , x̂∗, N̂ , F̂ , Ŝ, â∗, b̂∗, ξ̂∗, η̂∗, Ĉ, Λ̂), is constructed in a suitable
way from our optimal control data Dopt.
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We take Û=U , Û=U , and let M̂=R×M , so the state space of the new system
is that of the old one with the addition of a new variable x0, the Lagrangian
running cost. The new dynamics f̂ is f , the augmented dynamics of the optimal
control problem, so that that the right-hand side of the dynamical equation
d
dt

(x0, x) = f̂(x0, x, u, t) is given by f̂(x0, x, u, t) = (f0(x, u, t), f(x, u, t)), and
the dynamical equation is equivalent to the pair of conditions ẋ0 = f0(x, u, t),
ẋ = f(x, u, t). We take x̂∗ = (0, x∗), so the initial state for our augmented
system is the same as for the original one, and the initial value of the running
cost is 0. We take â∗ = a∗, b̂∗ = b∗, η̂∗ = η∗.

We let ξ̂∗ be the trajectory of the augmented system for the control η̂∗ and the
initial condition x̂∗. (That is, ξ̂∗ is the curve introduced earlier and labelled
Ξ∗.) So ξ̂∗(t) = (ξ0,∗(t), ξ∗(t)), where ξ0,∗(t) =

∫ t
a∗ f0(ξ∗(s), η∗(s), s) ds. We then

write c∗ = ξ0,∗(b∗), and define ĉ∗ = c∗+ϕ(ξ∗(b∗)), so c∗ are ĉ∗ are, respectively,
the Lagrangian cost and the total cost of the reference TCP.

We take N̂ = R × N . The map F̂ : M̂ ↪→ N̂ is then defined by letting
F̂ (x0, x) = (x0 + ϕ(x), F (x)). For each (θ, λ) ∈ Λ̃, we let λ̂θ,λ be the linear map

from R× Tξ∗(b∗)M (identified with T(c∗,ξ∗(b∗))M̂) to R× TF (ξ∗(b∗))N (identified

with T(ĉ∗,ξ∗(b∗))N̂) given by λ̂λ,θ(∆x0,∆x) = (∆x0 + θ · ∆x, λ · ∆x). We then

let Λ̂ = {λ̂θ,λ : (θ, λ) ∈ Λ̃}. It is then easy to verify that Λ̂ is a Warga derivate

container of F̂ at (c∗, ξ∗(b∗)) (i. e., at ξ̂∗(b∗)).

To construct the set Ŝ, we first fix a smooth function ψ : N 7→ R such that
ψ(F (ξ∗(b∗))) = 0 and ψ(y) > 0 for all y ∈ N\{F (ξ∗(b∗))}. We then define
Ŝ = {(y0, y) : y ∈ S and y0 ≤ ĉ∗ − ψ(y)} . It is then easy to see that

(#) The Lipschitz arc intersection property (HLip,in) is not satisfied by the
new separation data.

Indeed, suppose that the condition was satisfied. Let R̂ be the reachable set
for the new system from x̂∗ over [a∗, b∗]. Let γ̂ be a Lipschitz arc, defined
on [0, 1], having values in the set F̂ (R̂) ∩ Ŝ, and such that γ̂(0) = F̂ (ξ̂∗(b∗))
and γ̂(1) 6= F̂ (ξ̂∗(b∗)). Write γ̂(s) = (γ0(s), γ(s)), so γ0(s) ∈ R, γ(s) ∈ S, and
γ0(s) ≤ ĉ∗ − ψ(γ(s)). Then γ0(0) = ĉ∗, γ(0) = F (ξ∗(b∗)), γ0(s) ≤ ĉ∗ for all
s, and γ0(s) < ĉ∗ whenever γ(s) 6= γ(0). Let A = {s ∈ [0, 1] : γ0(s) < ĉ∗}.
Then A is a relatively open subset of [0, 1], and 0 /∈ A. On the other hand,
1 ∈ A, because γ̂(1) 6= F̂ (ξ̂∗(b∗)), γ̂(1) ∈ Ŝ, and F̂ (ξ̂∗(b∗)) is the only point
(y0, y) ∈ Ŝ such that y0 = ĉ∗. Let I = {s ∈]0, 1[: [s, 1] ⊆ A}. Then I is an
open interval of the form ]α, 1[, such that γ0(α) = ĉ∗ and γ0(s) < ĉ∗ whenever
α < s ≤ 1. It then follows that γ(α) = F (ξ∗(b∗)). Let γ̃(r) = γ̂(α + r(1− α))
for r ∈ [0, 1]. Then γ̃ is a Lipschitz map with values in F̂ (R̂) ∩ Ŝ, such that
γ̃(0) = F̂ (R̂) and γ̃(s) 6= F̂ (R̂) whenever 0 < s ≤ 1. Since γ̃(s) ∈ F̂ (R̂)
for each s, we can pick points (x0,s, xs) ∈ R̂ such that F̂ (x0,s, xs) = γ̃(s), so

γ̃(s) = (x0,s +ϕ(xs), F (xs)). Since (x0,s, xs) ∈ R̂ for each s, we can pick TCPs
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(ξ̂s, ηs) = ((ξ0,s, ξs), ηs) such that ξ0,s(a∗) = 0, ξs(a∗) = x∗, ξ0,s(b∗) = x0,s,
and ξs(b∗) = xs. Then x0,s =

∫ b∗
a∗ f0(ξs(t), ηs(t)) dt, x0,s+ϕ(xs) = J(ξs, ηs), and

F (xs) = F (ξs(b∗)), so γ̃(s) = (J(ξs, ηs), F (ξs(b∗))). It is then clear that we may
pick (ξ0, η0) to be (ξ∗, η∗) and that J(ξs, ηs) < J(ξ∗, η∗) whenever 0 < s ≤ 1.
Hence (HLip,nonopt) is true, contradicting our assumption, and completing the
proof of (#).

Let Ĉ =] − ∞, 0] × C, i.e., Ĉ = {] − ∞, 0]×C : C ∈ C
}

. Then Ĉ is a WDC

approximating multicone to Ŝ at F̂ (ξ̂∗(b∗)). (To see this, let S̃ =]−∞, ĉ∗]× S,
and observe that Ĉ is a WDC approximating multicone to S̃ at F̂ (ξ̂∗(b∗)). Let
Φ be the map R×N 3 (y0, y) 7→ (y0 − ψ(y), y) ∈ R×N . Then Ŝ = Φ(S̃),
Φ(F̂ (ξ̂∗(b∗))) = F̂ (ξ̂∗(b∗)), and the differential of Φ at F̂ (ξ̂∗(b∗))) is the identity
map. Therefore Ĉ is a WDC approximating multicone to Ŝ at F̂ (ξ̂∗(b∗)).)

We now apply Theorem 5.1 to the separation problem that we have just
constructed, with data D̂sep=(M̂, f̂ , Û , Û , x̂∗, N̂ , F̂ , Ŝ, â∗, b̂∗, ξ̂∗, η̂∗, Ĉ, Λ̂), and
the covector µ ∈ T ∗

F̂ (ξ̂∗(b∗))
N̂ given by µ = (−1, 0) (so that µ(∆y0,∆y) = −∆y0

whenever (∆y0,∆y) belongs to TF̂ (ξ̂∗(b∗))
N̂ ∼ R× TF (ξ∗(b∗))N). We then get a

4-tuple (π̂0, ν̂, λ̂, L̂) such that

(i) L̂ is a measurable selection of the map [a∗, b∗] 3 t 7→ ∂fη∗,t(ξ∗(t)),
(ii) π̂0 ∈ R and π̂0 ≥ 0,
(iii) ν̂ ∈ T ∗

F̂ (ξ̂∗(b∗))
N̂ ,

(iv) π̂0µ− ν̂ ∈ Ĉ⊥,
(v) (π̂0, ν̂) 6= (0, 0),

(vi) λ̂ ∈ Λ̂,

such that, if we define π̂# = ν̂ ◦ λ̂ (so that π̂# ∈ T ∗
ξ̂∗(b∗)

M̂), then the inequality

H f̂ (ξ̂∗(τ), π̂(τ), η∗(τ), τ) ≥ H f̂ (ξ̂∗(τ), π̂(τ), u, τ)

holds whenever (u, τ) ∈ L, where π̂ is the solution of the adjoint equation
∇L̂π̂ = 0 with terminal condition π̂(b∗) = π̂#.

Write π̂(t) = (p0(t), π(t)), using the identification T ∗
ξ̂∗(t)

M̂ ∼ R×T ∗ξ∗(t)M . Also,

write L̂(t) = (ω(t), L(t)), using the identification of the measurable selections
of the set-valued map [a∗, b∗] 3 t 7→ ∂fη∗,t(ξ∗(t)) with pairs (ω,L), as described
above. Then ω is a field of covectors along ξ∗, and L is a selection of the
map [a∗, b∗] 3 t 7→ ∂fη∗,t(ξ∗(t)), so in particular L gives rise to a covariant
differentiation ∇L. It is then easy to see that the adjoint equation ∇L̂π̂ = 0
amounts to the pair of statements ∇Lπ + p0ω = 0, ṗ0 = 0. Hence, if we let
π0 = −p0, we see that π0 is constant as a function of t, and ∇Lπ = π0ω. If
we then write π# = π(b∗), it is clear that π̂# = (−π0, π

#), and the covector
field π is the solution of ∇Lπ = π0ω with endpoint condition π(b∗) = π#. It
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follows that the Hamiltonian maximization condition takes the desired form
H f
π0

(ξ∗(τ), π(τ), η∗(τ), τ) ≥ H f
π0

(ξ∗(τ), π(τ), u, τ).

Let ν̂ = (ν0, ν), so that ν̂(∆y0,∆y) = ν0∆y0 + ν · ∆y for every tangent
vector (∆y0,∆y) ∈ TF̂ (ξ̂∗(b∗))

N̂ . Also, let (θ, λ) ∈ Λ̃ be such that λ̂ = λ̂θ,λ.

Then, since π̂# = (−π0, π
#), and π̂# = ν̂ ◦ λ̂, we have, if v∈R×Tξ∗(b∗)M and

v = (∆x0,∆x), the equality π̂#v = −π0∆x0 + π#∆x, while on the other
hand π̂#v satisfies π̂#v = ν̂(λ̂v) = ν̂ · (∆x0 + θ · ∆x, λ · ∆x) . Therefore
−π0∆x0 + π#∆x = ν0∆x0 + ν0θ ·∆x+ ν · λ ·∆x for every v, and this implies
that −π0 = ν0 and π# = ν0θ + ν · λ, so π# = −π0θ + ν · λ.

Then the condition π̂0µ − ν̂ ∈ Ĉ⊥ says that there exist cones Ĉj ∈ Ĉ and

covectors q̂j ∈ T ∗F (ξ̂∗(b∗))
N̂ such that q̂j → π̂0µ− ν̂ and q̂j ∈ Ĉ⊥j . On the other

hand, each Ĉj is a product ]−∞, 0]×Cj for some Cj ∈ C. Write q̂j = (q0,j, qj),

q0,j ∈ R, qj ∈ T ∗F (ξ∗(b∗))
N . Then q0,j → −π̂0 − ν0 and qj → −ν. Since q̂j ∈ Ĉ⊥j ,

we have q̂j(∆y0,∆y) ≤ 0 for all (∆y0,∆y) ∈]−∞, 0]×Cj. Hence q0,j ≥ 0 and
qj ∈ C⊥j . Since q0,j → −π̂0 − ν0, we conclude that −π̂0 − ν0 ≥ 0, and then
ν0 ≤ −π̂0. Since we know that π̂0 ≥ 0, we can conclude that ν0 ≤ 0, so π0 ≥ 0.
Since qj → −ν, the covector −ν belongs to C⊥. Since π# = −π0θ + ν · λ, we
have established the transversality condition.

We are now in a position to prove the nontriviality condition, which is our
only missing conclusion. Suppose that this condition is false. Then ν = 0 and
π0 = 0. But we know that −π0 = ν0. So ν0 = 0, and then ν̂ = 0. Furthermore,
we also know that ν0 ≤ −π̂0. So π̂0 ≤ 0. Since π̂0 ≥ 0, we conclude that π̂0 = 0.
So (π̂0, ν̂) = (0, 0), contradicting the fact that (π̂0, ν̂) 6= (0, 0). This completes
our proof. 2

5.4 Theorem 5.6 easily implies Theorem 5.1

We have used Theorem 5.1 as our main tool to derive Theorem 5.6. For
completeness, we now prove that Theorem 5.1 is in turn a simple consequence
of Theorem 5.6.

Assume that Theorem 5.6 holds. Let a data 14-tuple Dsep as in (19) be
given, such that all the assumptions of Theorem 5.1 hold. Fix a covector
µ ∈ TNF∗(ξ∗(b∗))\{0}. Then apply Theorem 5.6 to the optimal control problem

in which f0 ≡ 0 and ϕ = ψ ◦ F , where ψ : N 7→ R is a function of class C1

such that dψ(F (ξ∗(b∗))) = −µ, taking as Λ̃ the set {(−µλ, λ) : λ ∈ Λ}. It is
easy to see that the reference TCP (ξ∗, η∗) is optimal. Theorem 5.6 then gives
a 4-tuple (π0, π

#, ν̃, (−µλ, λ)) such that −ν̃ ∈ C⊥, π# = ν̃λ + π0µλ, and, if π
satisfies ∇Lπ = 0, π(b∗) = π#, then the Hamiltonian maximization conditions
hold.
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Then, if we let ν = π0µ + ν̃, we see that π0µ − ν ∈ C⊥, and π# = νλ.
Furthermore, it is clear that the nontriviality condition (π0, ν̃) 6= (0, 0) implies
(π0, ν) 6= (0, 0). It is then clear that the 4-tuple (π0, ν, λ, L) satisfies all the
conclusions of Theorem 5.1. 2
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