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Abstract— Smooth and nonsmooth versions of the Pontryagin
Maximum Principle can be proved using necessary conditions
for set separation in terms of approximating multicones arising
from generalized differentiation theories. We propose a notion
of approximating multicone derived from J. Warga’s theory of
derivate containers and the notion of Mordukhovich normal
cone, and state and prove the corresponding set separation
theorem.

I. I NTRODUCTION

In a series of papers (e.g., [1], [2], [3], [4]) we have proposed
versions of the Pontryagin Maximum Principle for highly
non-smooth systems, based on generalized differentials and
flows, and proved by “primal” methods, using packets of
needle variations. All these proofs are based on separation
theorems for sets, which give a necessary condition for two
setsS1, S2 containing a point̄s to be separated at̄s—in
the sense thatS1 ∩ S2 = {s̄}. The condition involves the
notion of “approximating multicone” to a set at a point,
and says that, ifC1, C2 are approximating multicones to
S1, S2 at s̄, then C1 and C2 are not “strongly tranver-
sal.” The notion of approximating multicone is specific
to a particular “generalized differentiation theory.” (For
example, the classical notion of Boltyanskii approximating
cone corresponds to the classical differential.) In our previous
papers, this was done for differentiation theories such as
the “generalized differential quotients,” and the result was
used to prove very nonsmooth versions of the Pontryagin
principle. In all these versions, the transversality condition
turns out to involve some version of the notion of Boltyanskii
cone, and does not apply to Clarke tangent cones or Mor-
dukhovich normal cones.

The purpose of this note is to present the analogue
of the separation theorem for the differentiation theory of
Warga derivate containers (cf. Warga [5], [6], [7]). We
define the notion of a “MWAMC” (“Mordukhovich-Warga
approximating multicone”) to a set at a point, and prove the
separation theorem. As was the case for other differentiation
theories, the key element of the proof is a directional open
mapping theorem, stated and proved in§V. The application
of these results to the nonsmooth maximum principle will
be discussed in subsequent papers.
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II. PRELIMINARY BACKGROUND MATERIAL

If X, Y are real linear spaces, thenLin(X,Y ) will denote
the space of all linear maps fromX to Y . If X and
Y are finite-dimensional and normed, thenLin(X,Y ) is
also finite-dimensional, and we will always regard it as
a normed space, endowed with the operator norm‖ · ‖op
given by ‖L‖op = sup{‖L(x)‖ : x ∈ X, ‖x‖ ≤ 1}. We use
X† to denote the dual space ofX, so X† = Lin(X,R).
We useRn, Rm×n to denote, respectively, the space of
real n-dimensional column vectors, and the space of all
real matrices withm rows and n columns. We iden-
tify R

m×n with Lin(Rn,Rm) in the usual way, by
identifying each matrixM ∈ Rm×n with the linear map
R
n 3 x 7→M · x ∈ Rm. If X is any set, thenIX will denote

the identity map ofX. If X is a metric space,̄x ∈ X,
and 0 < r ∈ R, we useB̄X(x̄, r), BX(x̄, r), to denote,
respecetively, the closed ball{x ∈ X : dist(x, x̄) ≤ r} and
the open ball{x ∈ X : dist(x, x̄) < r}. We write B̄n(x̄, r),
B
n(x̄, r) for B̄Rn(x̄, r), BRn(x̄, r).
A cone in a real linear spaceX is a nonempty subsetC

of X such thatrc ∈ C wheneverr ∈ R, r ≥ 0, andc ∈ C.
Thepolar of a coneC in X is the setC† of all w ∈ X† such
that 〈w, c〉 ≤ 0 for all c ∈ C. It is clear thatC† is always a
closed convex cone, andC⊥⊥ is the smallest closed convex
cone containingC, so in particularC⊥⊥ = C if and only
if C is closed and convex. Aconvex multiconein X is a
nonempty set of convex cones.

Two convex conesC1, C2 in a finite-dimensional real
linear spaceX are transversal, if C1 − C2 = X, i.e., if for
every x ∈ X there existc1 ∈ C1, c2 ∈ C2, such that
x = c1 − c2. The conesC1 andC2 arestrongly transversal
if they are transversal and in additionC1 ∩ C2 6= {0}.

If C1, C2 are convex cones inX, then

(1) C1 andC2 are transversal if and only if either (i)C1

andC2 are strongly transversal or (ii)C1 andC2 are
linear subspaces andC1 ⊕ C2 = X.

(2) C1 and C2 are transversal if and only if
C†1 ∩ (−C†2) = {0}.

(To prove (1), it suffices to assume thatC1 and C2 are
transversal but not strongly transversal and show that (ii)
holds. Let us prove thatC1 is a linear subspace. Pickc ∈ C1.
Using the transversality ofC1 andC2 write −c = c1 − c2,
ci ∈ Ci. Then c1 + c = c2. But c1 + c ∈ C1 and c2 ∈ C2.



So c1 + c ∈ C1 ∩C2, and thenc1 + c = 0, sinceC1 andC2

are not strongly transversal. Therefore−c ∈ C1. This shows
that c ∈ C1 ⇒ −c ∈ C1. So C1 is a linear subspace. A
similar argument shows thatC2 is a linear subspace. Then
the transversality ofC1 andC2 implies thatC1 + C2 = X,
and the fact that they are not strongly transversal implies that
C1 ∩C2 = {0}. HenceC1 ⊕C2 = X. To prove (2) observe
thatC1−C2 is a convex cone, soC1−C2 = X if and only
if Clos(C1−C2) = X, and if Clos(C1−C2) 6= X then the
Hahn-Banach theorem implies thatC†1 ∩ (−C†2) 6= {0}.)

Two convex multiconesC1, C2 in a finite-dimensional real
linear spaceX are transversal, if C1 is transversal toC2

wheneverC1 ∈ C1, C2 ∈ C2. The convex multiconesC1,
C2 are strongly transversalif they are transversal and in
addition there exists aµ ∈ X†\{0} such that

(∀C1 ∈ C1, C2 ∈ C2)(∃x ∈ C1 ∩ C2)(µ(x) > 0) . (1)

Let S be a subset of a finite-dimensional real linear space
X, and let s̄ ∈ S. The Bouligand tangent coneto S at
s̄ is the set of all vectorsv ∈ X such that there exist a
sequence{sj}j∈N of points of S converging tos̄, and a
sequence{hj}j∈N of positive real numbers converging to
0, such thatv = limj→∞

sj−s̄
hj

. We useTBs̄ S to denote the
Bouligand tangent cone toS at s̄. It is clear, and well known,
that TBs̄ S is a closed cone. TheBouligand normal cone
of S at s̄ is the polar cone(TBs̄ S)† of TBs̄ S, that is, the
set of all covectorsp ∈ X† such that〈p, v〉 ≤ 0 for all
v ∈ T s̄BS. The limiting normal cone, or Mordukhovich
normal coneof S at s̄ is the set of all covectorsp ∈ X†
such thatp = limj→∞ pj for some sequence{pj}j∈N of
members ofX† and some sequence{sj}j∈N of members of
S such thatpj ∈ (TBsjS)† for eachj. We useNM

s̄ S to denote
the Mordukhovich normal cone ofS at s̄. For eachp ∈ X†,
we let p† = {v ∈ X : 〈p, v〉 ≤ 0}. The Mordukhovich
tangent multiconeto S at s̄ is the set

MT s̄S
def= {p† : p ∈ NM

s̄ S} .

Lemma 2.1:Let S be a closed subset of a finite-
dimensional normed real linear spaceX, and let s̄ ∈ S,
p̄ ∈ X†. Then the following conditions are equivalent:

(∗.1) p̄ ∈ NM
s̄ S ,

(∗.2) lim inf
s→s̄

(
max{〈p̄, v〉 : v ∈ TBs S, ‖v‖ ≤ 1}

)
= 0 ,

(∗.3) lim inf
s→s̄,p→p̄

(
max{〈p, v〉 : v ∈ TBs S, ‖v‖ ≤ 1}

)
= 0 .

Proof: Although Conditions (∗.2) and (∗.3) depend on
the norm ofX, it is easy to see that the truth values of
(∗.2) and (∗.3) are norm-independent. Hence we may assume,
without loss of generality, that the norm ofX arises from
an inner product〈·, ·〉, and we may use this inner product to
identify X andX† in the standard way.

For s ∈ S, p ∈ X, let

Θ(p, s) = max{〈p, v〉 : v ∈ TBs S, ‖v‖ ≤ 1} . (2)

ThenΘ(p, s) ≥ 0, because0 ∈ TBs S.

If (∗.1) holds, then we can find a sequence{sj}j∈N of
members ofS and a sequence{pj}j∈N of members ofX
such thatlimj→∞ sj = s̄, limj→∞ pj = p̄, andpj ∈ (TBsjS)†

for eachj. Then,Θ(pj , sj) = 0 for eachj, so (* .3) holds.
We now prove that (∗.3)⇒(∗.2)⇒(∗.1). The

implication (∗.3)⇒(∗.2) is trivial, because if (* .3)
holds then there is a sequence{(sj , pj)}j∈N of
members of S × X such that limj→∞ sj = s̄,
limj→∞ pj = p̄, and limj→∞Θ(pj , sj) = 0. Since
Θ(p̄, sj) ≤ Θ(pj , sj) + ‖p̄− pj‖, we can conclude that
limj→∞Θ(p̄, sj) = 0, and then (∗.2) holds.

We now assume that (∗.2) holds, and prove (∗.1). If
p̄ = 0 then p̄ ∈ NM

s̄ S, so (∗.1) is true. So we may assume
that p̄ 6= 0 and then, without loss of generality, we may
also assume that‖p̄‖ = 1. It follows from (∗.2) that we
can find a sequence{sj}j∈N of members ofS such that
limj→∞ εj = 0, where εj = Θ(p̄, sj) = 0. For α > 0,
j ∈ N, defineβj(α) to be the minimum of all the nonnegative
real numbersβ such that the closed ball̄BX(sj + αp̄, β)
intersectsS. (The minimum exists becauseS is closed.) Then
βj(α) ≤ α, because

sj ∈ B̄X(sj + αp̄, α‖p̄‖) = B̄X(sj + αp̄, α) .

We are going to construct, for eachj, a covectorpj which
is close top̄ and such thatpj is a Bouligand normal toS at
a point ŝj close tosj .

Fix a j. If βj(α) = α for some α, then the open
ball BX(sj + αp̄, α) does not intersectS, and this clearly
implies that p̄ ∈ (TBsjS)†. So in this case we take
pj = p̄ and ŝj = sj . Next assume thatβj(α) < α for
all positive α. Then for eachα we can pick a point
σ(α) ∈ B̄X(sj + αp̄, βj(α)) ∩ S. Let v(α) = σ(α)− sj ,
π(α) = αp̄ − v(α). Then v(α) 6= 0, and in addi-
tion 〈v(α), p̄〉 = 〈v(α)− αp̄, p̄〉+ α = α− 〈π(α), p̄〉, since
‖p̄‖ = 1. Furthermore,

‖π(α)‖ = ‖αp̄− v(α)‖ = ‖(sj + αp̄)− σ(α)‖ = βj(α)

so that〈π(α), p̄〉 ≤ βj(α), and then〈v(α), p̄〉 ≥ α− βj(α),
so that βj(α) ≥ α− 〈v(α), p̄〉. On the other hand,
lim supα↓0 ‖v(α)‖−1〈v(α), p̄〉 ≤ εj . (Indeed, suppose the
inequality is not true. Then there exist a positiveδ and a
sequence{αk}k∈N of positive numbers that converges to0
and is such that‖v(αk)‖−1〈v(αk), p̄〉 ≥ εj + δ. If we let
wk = ‖v(αk)‖−1v(αk), then we may assume, after passing
to a subsequence, that the limitw = limk→∞ wk exists.
Since sj + v(αk) ∈ S, the vectorw belongs toTBsjS.
But 〈w, p̄〉 ≥ εj + δ, and this contradicts the fact that
Θ(p̄, sj) = εj .)

Let α∗ be such that‖v(α)‖−1〈v(α), p̄〉 ≤ εj + 2−j

whenever0 < α ≤ α∗. Given any α, it is clear that
‖v(α)‖ ≤ 2α. Then 0 ≤ 〈v(α), p̄〉 ≤ αε̃j whenever
0 < α ≤ α∗, whereε̃j = 2(εj+2−j). Leta(α) = 〈v(α), p̄〉p̄,
b(α) = v(α) − a(α), so b(α) ⊥ a(α), and then‖v(α)‖2 =
‖a(α)‖2 +‖b(α)‖2. On the other hand,π(α) = αp̄−v(α) =
αp̄− a(α)− b(α), soπ(α) = (α− 〈v(α), p̄〉)p̄− b(α), and
then

α2 ≥ βj(α)2 = ‖π(α)‖2 = |α− 〈v(α), p̄〉|2 + ‖b(α)‖2 .



Since〈v(α), p̄〉 ≤ αε̃j , we haveα− 〈v(α), p̄〉 ≥ α(1− ε̃j),
and thenα2 ≥ α2(1− ε̃j)2 + ‖b(α)‖2, so that

‖b(α)‖2 ≤ α2(1− (1− ε̃j)2) ≤ α2(2ε̃j − ε2
j ) ≤ 2α2ε̃j ,

and then‖b(α)‖ ≤ α
√

2ε̃j . Therefore

‖π(α)− αp̄‖ = ‖〈v(α), p̄〉)p̄+ b(α)‖ ≤ αε̂j ,

where ε̂j = ε̃j +
√

2ε̃j . Hence, if we pick anyα such that
0 < α ≤ α∗ and α ≤ 2−j−1, and let pj = π(α)

α , ŝj =
sj + v(α), we see that‖pj − p̄‖ ≤ ε̂j , ‖ŝj − sj‖ ≤ 2−j , and
pj is a Bouligand normal toS at ŝj . This shows that̄p is a
limiting normal ofS at s̄, concluding our proof.

If S is closed, theClarke tangent coneto S at s̄ is the
set of all vectorsv ∈ X such that, whenever{sj}j∈N is
a sequence of points ofS converging tos̄, it follows that
there exist Bouligand tangent vectorsvj ∈ TBsjS such that
limj→∞ vj = v. We useTCls̄ S to denote the Clarke tangent
cone toS at s̄. It is well known thatTCls̄ S is a closed
convex cone. Also, it is well-known thatTCls̄ S is the polar of
NM
s̄ S. ThereforeTCls̄ =

⋂
{C : C ∈ MT s̄S}. The Clarke

normal coneof S at s̄ is the polar(TCls̄ S)† of the Clarke
tangent cone, so(TCls̄ S)† is the smallest closed convex cone
containingNM

s̄ S.
If X,Y are finite-dimensional real linear spaces,Ω is an

open subset ofX, F : Ω 7→ Y is a map, andx∗ ∈ Ω, a
Warga derivate containerof F at x∗ is a compact subset
Λ of Lin(X,Y ) such that for every compact neighborhood
Λ̂ of Λ in Lin(X,Y ) there exist an open neighborhoodU
of x∗ in X and a sequence{Fj}j∈N of maps of classC1

from U to Y such thatFj → F uniformly onU asj →∞,
andDFj(x) ∈ Λ′ for all x ∈ U , j ∈ N. It is clear that if
F has a Warga derivate container atx∗ thenF is Lipschitz-
continuous on a neighborhood ofx∗.

If M , N , are manifolds of classC1, and x̄ ∈ M , then
it is easy to extend the concepts of Bouligand and Clarke
tangent cone and Mordukhovich tangent multicone, as well
as the corresponding normal cones, to a subsetS of M at
x̄, and to define intrinsically the notion of a Warga derivate
container at̄x of a mapF : M 7→ N . In that case, if̄x ∈
S ⊆ M , then (i) the conesTBx̄ S, TClx̄ S, are subsets of the
tangent spaceTx̄M of M at x̄, the convex multiconeMT x̄S
is a set of convex cones inTx̄M , (ii) the cones(TBx̄ S)†,
(TClx̄ S)†, NM

s̄ D are subsets of the cotangent space(Tx̄M)†,
and (iii) the Warga derivate containers ofF at x̄ are compact
subsets ofLin(Tx̄M,TF (x̄)N).

III. WARGA APPROXIMATING MULTICONES

If C, D are convex multicones, then we writeC � D if for
everyD ∈ D there exists aC ∈ C such thatC ⊆ D.

If M is a manifold of classC1, s̄ ∈ S ⊆ M , andC is a
convex multicone inTs̄M , we say thatC is aMordukhovich-
Warga approximating multicone(abbr. MWAMC) of S at
s̄ if there exist (i) a nonnegative integern, (ii) a compact
subsetK of Rn such that0 ∈ K, (iii) an open neighborhood
U of K in Rn, (iv) a Lipschitz-continuous mapF : U 7→M ,
(v) a compact subsetΛ of Lin(Rn, Ts̄M), and (vi) a convex

multiconeD in Rn, such that (I)F (0) = s̄, (II) F (K) ⊆ S,
(III) Λ is a Warga derivate container ofF at 0, (IV) D �
MT s̄K and, finally (V)C = {L ·D : L ∈ Λ, D ∈ D}.

Example 3.1: IfS is a closed subset of a manifoldM of
classC1, s̄ ∈ S, andC is any convex multicone inTs̄M such
that C �MT s̄S, thenC is a MWAMC ofS at s̄. Indeed, it
clearly suffices to assume thatM = R

n and s̄ = 0. We then
let U , V be, respectively, an open subset ofRn containing0,
and a compact ball centered at0 and contained inU . We then
takeK = V ∩ S̃, soK is compact andMT 0K =MT s̄S.
We then letF : U 7→ R

n be the inclusion map, and takeΛ =
{IRn}. ThenC = {L · C : L ∈ Λ, C ∈ C}, andC �MT 0K.

Example 3.2:As a special case of the previous example,if
S is a closed subset of a manifoldM of classC1, ands̄ ∈ S,
then the multiconesMT s̄S and {TCls̄ S} are MWAMCs of
S at s̄.

Example 3.3:It follows trivially from the definition that,
if M ,N are manifolds of classC1, S ⊆M , s̄ ∈ S, F : M 7→
N is a Lipschitz-continuous map,Λ is a Warga derivate
container ofF at s̄, and C is a MWAMC ofS at s̄, then
Λ · Cdef= {L · C : L ∈ Λ, C ∈ C} is a MWAMC ofF (S) at
F (s̄).

Example 3.4:. If M1, M2 are manifolds of classC1,
s̄1 ∈ S1 ⊆M1, s̄2 ∈ S2 ⊆ M2, C1 is a MWAMC
of S1 at s̄1, and C2 is a MWAMC of S2 at s̄2, then
C1 × C2 is a MWAMC of S1 × S2 at (s̄1, s̄2), where

C1 × C2
def= {C1 × C2 : C1 ∈ C1, C2 ∈ C2}. To see this find,

for i = 1, 2, a nonnegative integerni, a compact subsetKi

of Rni containing0, an open neighborhoodUi of 0 in Rni , a
Lipschitz-continuous mapFi : Ui 7→ Mi such thatFi(0) =
s̄i andFi(Ki) ⊆ Si, a derivate containerΛi of Fi at 0, and
a convex multiconeDi in Rni such thatDi ≺MT s̄iKi, for
which Ci = {L · C : C ∈ Ci, L ∈ Λi}. Definen = n1 + n2,
U = U1 × U2 ⊆ R

n1 × Rn2 ∼ R
n, K = K1 × K2,

M = M1 ×M2, S = S1 × S2, s̄ = (s̄1, s̄2), Λ = Λ1 × Λ2

(that is,Λ = {L1×L2 : L1 ∈ Λ1, L2 ∈ Λ2}, whereL1×L2

is the map that sends(s1, s2) ∈ R
n1 × Rn2 to the pair

(L1 · s1, L2 · s2) ∈ Ts̄1M1 × Ts̄2M2 ∼ Ts̄M ), C = C1 × C2,
D = D1 ×D2, F = F1 × F2. (That is, F is the map that
sends (s1, s2) ∈ U to (F1(s1), F2(s2)) ∈ M .) Then
Λ is a derivate container ofF at s̄, and Λ · D = C.
So the desired conclusion will follow if we show that
D � MT s̄K. But this is trivial, because, ifp ∈ NM

s̄ S,
then p = limj→∞ pj for some sequence{(sj , pj)}j∈N
such that sj → s̄, sj ∈ S, and pj ∈ (TBsjK)†. If
we write sj = (sj1, s

j
2), then TBsjK = TB

sj1
K1 × TBsj2

K2, so

(TBsjK)† = (TB
sj1
K1)† × (TB

sj2
K2)†, and thenpj = (pj1, p

j
2),

pj1 ∈ (TB
sj1
K1)†, pj2 ∈ (TB

sj2
K2)†. Hence p = (p1, p2),

p1 ∈ NM
s̄1 K1, p2 ∈ NM

s̄2 K2. SinceDi ≺ MT s̄iKi for
i = 1, 2, we may pickDi ∈ Di such thatDi ⊆ p†i .
ThenD1 × D2 ⊆ p† andD1 × D2 ∈ D. This shows that
D �MT s̄K and concludes our proof.

Remark 3.5:In the previous example, it is important
to notice that the productMT s̄1K1 × MT s̄2K2 of the



Mordukhovich tangent multiconesMT s̄1K1, MT s̄2K2

does not in general coincide with the Mordukhovich tangent
multiconeMT s̄K of the product. On the other hand, it is
always true thatMT s̄1K1×MT s̄2K2 �MT s̄K, and that
is all that is needed for the proof in Example 3.4.

IV. T HE TRANSVERSALITY THEOREM

Two subsetsS1, S2 of a topological spaceX are locally
separatedat a pointp ∈ X if there exists a neighborhoodU
of p in X such thatS1 ∩ S2 ∩ U = {p}.

Theorem 4.1:Let M be a manifold of classC1, let S1,
S2 be subsets ofM , and let x̄ ∈ S1 ∩ S2. Let C1, C2, be
MWAMCs of S1, S2 at x̄. Assume thatC1 and C2 are
strongly transversal. ThenS1 andS2 are not locally separated
at x̄.that is, there exists a sequence{xj}j∈N of points of
(S1∩S2)\{x̄} such thatlimj→∞ xj = x̄. Furthermore, there
exists a Lipschitz arcγ : [0, 1] 7→ M such thatγ(0) = x̄,
γ(t) does not identically equal̄x, andγ(t) ∈ S1 ∩S2 for all
t ∈ [0, 1].

Proof: The proof is based on the directional open
mapping property, stated and proved in Theorem 5.1 below.

Without loss of generality, we assume thatM = R
n and

x̄ = 0. We letX = R
n, X = X × X, Y = X × R. We

fix a linear functionalµ : X 7→ R such that (1) holds,
and define a mapG : X = X × X 7→ Y by letting
G(x1, x2) = (x1 − x2, µ(x1)). ThenG is a linear map, so
the differentialDG(0) is justG.

Let S = S1 × S2. Also, let C = C1 × C2. Then we know
from Example 3.4 thatC is a MWAMC of S at (0, 0). Let
D = G · C. ThenD is a MWAMC of G(S) at G(0, 0).

Let ȳ = (0, 1) ∈ Y = X × R. Then a straightforward
calculation shows that̄y ∈ IntD for everyD ∈ D. (Proof.
Let D ∈ D, and writeD = G(C1 × C2), C1 ∈ C1, C2 ∈
C2. Then C1 − C2 = X. In view of (1), we can pick
c̄ ∈ C1 ∩ C2 such thatµ(c̄) = 1. ThenG(c̄, c̄) = ȳ. Given
any v ∈ X, we can use the transversality ofC1 andC2 to
write v = c1 − c2, with c1 ∈ C1, c2 ∈ C2. So there exists
r ∈ R such that(v, r) ∈ G(C1 × C2). If (e1, . . . , en) is a
basis ofX, ande0 = −(e1 + . . .+ en), then there are reals
ri such that(ei, ri) ∈ G(C1 × C2) for i = 0, . . . , n. Since
ȳ ∈ G(C1 × C2), it follows that (ei, r̄) ∈ G(C1 × C2),
for every i, if r̄ = max(1, r0, r1, . . . , rn). Hence
(ẽi, 1) ∈ G(C1 × C2) for everyi, if ẽi = r̄−1ei. This clearly
implies our conclusion.)

We have therefore verified the hypotheses of Theorem 5.1.
It then follows from the theorem that, for some positiveα,
there exists a Lipschitz arcξ : [0, 1] 7→ S such thatξ(0) = 0
and {G(ξ(t)) : t ∈ [0, 1]} = {(0, r) : 0 ≤ r ≤ α}. Write
ξ(t) = (ξ1(t), ξ2(t)), so ξ1(t) ∈ S1 and ξ2(t)) ∈ S2. Let
γ(t) = ξ1(t). Then, if t ∈ [0, 1], G(ξ(t)) = (0, r) for some
r, so ξ1(t) = ξ2(t), and thenγ(t) ∈ S1 ∩ S2, Furthermore,
γ does not vanish identically because, for somet ∈ [0, 1],
G(ξ(t)) = (0, α), soµ(γ(t)) = α.

V. THE DIRECTIONAL OPEN MAPPING PROPERTY

Given a subsetA of Rν , and a positive numberr, we use
Γ(A, r) to denote the set of all mapsγ : [0, 1] 7→ A such

that γ(0) = 0 and‖γ(t)− γ(s)‖ ≤ r|t− s| whenevers, t ∈
[0, 1]. (So, naturally,Γ(A, r) is empty if 0 /∈ A.) It is then
clear thatif A is closed thenΓ(A, r) is a compact subset of
C0([0, 1],Rν).

If D is a closed convex cone inRν , andα > 0, we use
D(α) to denote the set{y ∈ D : ‖y‖ ≤ α}. If y ∈ Rν , we
useσy to denote the set{ty : 0 ≤ t ≤ 1}. If γ : [0, 1] 7→ A
is an arc, then|γ| will denote the set{γ(t) : t ∈ [0, 1]}.

Theorem 5.1:Assume that

• m andn are nonnegative integers,
• S is a closed subset ofRn such that0 ∈ S,
• U is an open subset ofRn such that0 ∈ U ,
• F : U 7→ R

m is a Lipschitz map such thatF (0) = 0,
• Λ is a Warga derivate container ofF at 0,
• ȳ ∈ Rm and‖ȳ‖ = 1,
• ȳ ∈ IntL · p† for everyL ∈ Λ. and everyp ∈ NM

0 S.

Then there exist a closed convex coneD in Rm and positive
numbersα, κ such thatȳ ∈ IntD and

(∀y ∈ D(α))(∃γ ∈ Γ(S, κα))(σy = |F ◦ γ|) . (3)

Proof: We assume, as we clearly may without
loss of generality (after making an orthogonal change of
coordinates, if necessary) thatȳ = (0µ, 1), whereµ = m−1
and0µ is the origin ofRµ. We then letR = R

µ, and identify
R
m with R× R.
Our first task will be to reformulate our hypothesis in dual,

rather than primal terms, by proving that

(#) There exists a real numberδ ∈]0, 1[ such that, if
q ∈ Rm, L ∈ Rm×n, s ∈ S are such that‖q‖ = 1,
〈q, ȳ〉 ≥ −δ, dist(L,Λ) ≤ δ, s ∈ S, and ‖s‖ ≤ δ, then
Θ(L†(q), s) ≥ δ, whereΘ is the function defined in (2).

We prove (#) by contradiction. Assume thatδ does not
exist. Then there are sequences{qj}j∈N, {Lj}j∈N, {sj}j∈N,
such that, for eachj, the following are true:qj ∈ R

m,
‖qj‖ = 1, 〈qj , ȳ〉 ≥ −2−j , Lj ∈ Rm×n, dist(Lj ,Λ) ≤ 2−j ,
sj ∈ S, ‖sj‖ ≤ 2−j , and Θ(L†j(qj), sj) < 2−j . Pick
L̃j ∈ Λ such that‖L̃j − Lj‖ ≤ 2−j . Then we may find an
infinite subsetJ of N such that the limits̄q = limj→∞ qj ,
L̄ = limj→∞ L̃j , exist. Then‖q̄‖ = 1, 〈q̄, ȳ〉 ≥ 0, and
L̄ ∈ Λ. In addition, limj→∞ sj = 0 and limj→∞ Lj = L̄.
Let pj = L†jqj , p̄ = L̄†q̄, so limj→∞ pj = p̄. Since
Θ(pj , sj) < 2−j , it is clear thatlim infs→0,p→p̄ Θ(p, s) = 0.
So Lemma 2.1 implies that̄p ∈ NM

0 S. Therefore the cone
L̄ · p̄† belongs toC. Henceȳ is an interior point ofL̄ · p̄†.
On the other hand, ify ∈ L̄ · p̄† then we can writey = L̄ ·x,
x ∈ p̄†, so that〈q̄, y〉 = 〈q̄, L̄ · x〉 = 〈L̄† · q̄, x〉 = 〈p̄, x〉, and
〈p̄, x〉 ≤ 0, sincex ∈ p̄†. So 〈q̄, y〉 ≤ 0 for all y ∈ L̄ · p̄†.
Sinceȳ ∈ L̄ · p̄† and〈q̄, ȳ〉 ≥ 0, we conclude that〈q̄, ȳ〉 = 0.
But then, if we takey = ȳ + εq̄, whereε is positive and
small enough, we have〈q̄, y〉 = ε > 0, while on the other
handy ∈ L̄ · p̄†. So we have reached a contradiction, proving
(#).

We now fix aδ having the properties of (#), and choose
κ = δ−1. We then apply the definition of the Warga derivate
container, and obtain



• anR ∈ R such thatR > 0, B̄n(0, R) ⊆ U andR ≤ δ,
• a sequence{Fj}j∈N of functions of classC1 from
B̄
n(0, R) to Rm such that

– Fj → F uniformly on B̄n(0, R) as j →∞,
– DFj(x) ∈ Λ̂ for all x ∈ B̄n(0, R), j ∈ N,

whereΛ̂ = {L ∈ Rm×n : dist(L,Λ) ≤ δ}. After replacing
Fj by Fj − Fj(0) we may assume, in addition, that

– Fj(0) = 0 for every j ∈ N.

We now letD = {y ∈ Rm : 〈y, ȳ〉 ≥ (1 − δ̃)‖y‖, where

δ̃ = δ2

2 , so that δ =
√

2δ̃. Then D is a closed convex
cone, andȳ ∈ IntD. We chooseα = δR, and define
Ŝ = B̄

n(0, R) ∩ S, so Ŝ is compact and0 ∈ Ŝ. We will
prove (3). It clearly suffices to show that

(∀j∈N)(∀y∈D(α))(∃γ∈Γ(Ŝ, κα))(σy= |Fj ◦ γ|) . (4)

(Indeed, if (4) holds, andy ∈ D(α), then for eachj we
can find γj ∈ Γ(Ŝ, κα) such that|Fj ◦ γj | = σy. Since
Γ(Ŝ, κα) is compact, there exists an infinite subsetJ of N
such thatγ = limj→

J
∞ γj exists and belongs toΓ(Ŝ, κα).

But then limj→
J
∞(Fj ◦ γj) = F ◦ γ, so |F ◦ γ| = σy, and

γ ∈ Γ(S, κα) .)
We now prove (4). We fix aj, and writeG = Fj . Then

G ∈ C1(B̄n(0, R),Rm), G(0) = 0, andDG(x) ∈ Λ̂ for all
x ∈ B̄n(0, R). We want to prove that

(∀y ∈ D(α))(∃γ ∈ Γ(Ŝ, κα))(σy = |G ◦ γ|) . (5)

Let D0(α) = IntD(α). Then, thanks to the compactness of
Γ(Ŝ, κα), it suffices to show that

(∀y ∈ D0(α))(∃γ ∈ Γ(Ŝ, κα))(σy = |G ◦ γ|) . (6)

To prove (6), we pick a pointy∗ ∈ D0(α) and construct
a γ ∈ Γ(Ŝ, κα) such thatσy∗ = |G ◦ γ|. We will do this by
finding, for small positiveε, arcsγε ∈ Γ(Ŝ, κα) such that
the sets|F ◦ γε| converge toσy∗ in the Hausdorff metric.

Pick a positiveε such that B̄m(y∗, ε) ⊆ D0(α). (This
implies, in particular, that ‖y∗‖ + ε < α.) Then
let Q̂ε = {v ∈ Rm : 〈v, y∗〉 = 0 ∧ ‖v‖ ≤ ε}, so Q̂ε is the
µ-dimensional disc orthogonal toy∗, centered at0, and
having radiusε. We defineQε = {y∗ + v : v ∈ Q̂ε}, so
Qε ⊆ B̄m(y∗, ε).

Next, we let ŷ = y∗
‖y∗‖ . (Recall thaty∗ 6= 0, because

y∗ ∈ D0(α), and 0 /∈ D0(α), because if0 ∈ D0(α) it
would follow—sinceδ < 1—that 〈y, ȳ〉 ≥ 0 for all y near
0, so ȳ = 0.) We then define a functionhε : Rm 7→ R

by letting hε(x) = 〈x, ŷ〉 − λε‖x − 〈x, ŷ〉ŷ‖2, where
λε = ε−2‖y∗‖. Then hε(0) = 0, and in additionhε(x)
also vanishes at all pointsx belonging to the frontier
∂Qε = {y∗ + v : v ∈ Rm, v ⊥ y∗, ‖v‖ = ε} of Qε. We then
let Hε = hε ◦G, soHε is a function of classC1 on U .

We now let

Qε = {x ∈ Rm : λε‖x− 〈x, ŷ〉ŷ‖2 ≤ 〈x, ŷ〉 ≤ ‖y∗‖} . (7)

ThenQε is obviously closed, andQ 6= ∅, because0 ∈ Q.
Furthermore, the Hausdorff distancedHa(Qε, σy∗) is exactly
ε. (Indeed, letx ∈ Qε. Then x = v + rŷ, with r = 〈x, ŷ〉

and v = x− rŷ, so v ⊥ ŷ. The fact thatx ∈ Qε implies
that λε‖v‖2 ≤ r ≤ ‖y∗‖, so r ≥ 0, and thenry∗ ∈ σy∗ and
‖x − rŷ‖2 ≤ ε2, so ‖x − rŷ‖ ≤ ε; since this is true for
every x ∈ Qε, while ‖x − rŷ‖ = ε if x ∈ ∂Qε, we see
that max{dist(x, σy∗) : x ∈ Qε} = ε. Sinceσy∗ ⊆ Qε,
it follows that dHa(Qε, σy∗) = ε.) In particular,Qε is
bounded, soQε is compact.

We then define a set-valued functionΨε from B̄
n(0, R)

to Rn by letting

Ψε(s) = {w ∈ Rn : ‖w‖ ≤ 1 and 〈∇Hε(s), w〉 ≥ δ} .

Then Ψε is upper semicontinuous with compact convex
values. Let

S′ε = G−1(Qε) ∩ Ŝ ,
S′0,ε = {s ∈ S′ε : ‖s‖ < R and 〈G(s), ŷ〉 < ‖y∗‖} .

ThenS′ε is a compact subset of̂S, S′0,ε is a relatively open
subset ofS′ε, and0 ∈ S′0,ε. We will show that

Ψε(s∗) ∩ TBs∗S
′
ε 6= ∅ whenever s∗ ∈ S′0,ε . (8)

To see this, pick a points∗ ∈ S′0,ε, and writex∗ = G(s∗),
π∗ = ∇hε(x∗), π̂∗ = π∗

‖π∗‖ . It follows that x∗ ∈ Qε, so
x∗ = r∗ŷ + v∗, with v∗ ⊥ ŷ, r∗ = 〈x∗, ŷ〉, and ‖v∗‖ ≤ ε.
The fact thats∗ ∈ S′0,ε then implies that0 ≤ r∗ < ‖y∗‖ and
‖v∗‖ < ε. Also, π∗ = ŷ − 2λε(x∗ − 〈x∗, ŷ〉ŷ) = ŷ − 2λεv∗,
and then

‖π∗‖ =
√

1 + 4λ2
ε‖v∗‖2 ,

since v∗ ⊥ ŷ. Furthermore,〈π∗, ȳ〉 = 〈ŷ, ȳ〉 − 2λε〈v∗, ȳ〉.
Sinceŷ ∈ D, and‖ŷ‖ = 1, we have〈ŷ, ȳ〉 ≥ 1− δ̃, so

‖ŷ − ȳ‖2 = ‖ŷ‖2 + ‖ȳ‖2 − 2〈ŷ, ȳ〉 = 2(1− 〈ŷ, ȳ〉) ≤ 2δ̃ ,

and then‖ŷ − ȳ‖ ≤
√

2δ̃ = δ, so that

2λε〈v∗, ȳ〉=2λε〈v∗, ȳ−ŷ〉≤2λε‖v∗‖ ‖ȳ−ŷ‖≤2λε‖v∗‖δ ,

(using the fact thatv∗ ⊥ ŷ), and then

〈π∗, ȳ〉 ≥ 1− δ̃ − 2λε‖v∗‖δ ≥ −2λε‖v∗‖δ ≥ −2λεεδ

from which it follows that

〈π̂∗, ȳ〉 ≥ −
2λε‖v∗‖δ√

1 + 4λ2
ε‖v∗‖2

≥ −δ .

Let L∗ = DG(s∗). Thendist(L∗,Λ) ≤ δ. Since‖π̂∗‖ = 1
and 〈π̂∗, ȳ〉 ≥ −δ, (#) implies thatΘ(L†∗(π̂∗), s) ≥ δ. We
can therefore find aw ∈ TBs S such that‖w‖ = 1 and
〈L†∗(π̂∗), w〉 ≥ δ. It follows that 〈L†∗(π∗), w〉 ≥ δ‖π∗‖.
Since ‖π∗‖ ≥ 1, we can conclude that〈L†∗(π∗), w〉 ≥ δ.
But the chain rule implies thatL†∗(π∗) = ∇Hε(x∗), so we
have shown that〈∇Hε(x), w〉 ≥ δ. This establishes that
w ∈ Ψε(s).

To complete the proof of (8), we have to show that
w ∈ TBs S′ε. Sincew ∈ TBs S and ‖w‖ = 1, we can find
a sequence{sk}∈N of points ofS\{s∗} that converges tos∗
and is such that

lim
k→∞

wk = w , where wk =
sk − s∗
‖sk − s∗‖

. (9)



If we let ωk = ‖sk − s∗‖, w̃k = wk − w, we find

sk = s∗ + ωkw + ωkw̃k , lim
k→∞

ωk = 0 , lim
k→∞

w̃k = 0 .

Let ψ be a function from]0,∞[ to [0,∞] that satisfies
limr↓0 ψ(r) = 0 as well as the conditions

‖G(s)−G(s∗)−L∗(s−s∗)‖ ≤ ψ(‖s−s∗‖)‖s−s∗‖ , (10)

|hε(x)−hε(x∗)−〈π∗, x−x∗)| ≤ ψ(‖x−x∗‖)‖x−x∗‖ (11)

for all s ∈ U and all x ∈ R
m, respectively.

Let xk = G(sk). Then (10) implies the inequality
‖xk − x∗ − ωkL∗(w + w̃k)‖ ≤ ψ(ωk)ωk. Therefore

‖xk − x∗ − ωkL∗(w)‖ ≤ νkωk ,

where νk = ψ(ωk) + ‖L∗(w̃k)‖, so that limk→∞ νk = 0.
Hence‖xk − x∗‖ ≤ ωk‖L∗(w)‖+ νkωk.

Then |〈xk − x∗ − ωkL∗(w), π∗〉| ≤ ‖π∗‖νkωk. Therefore

〈xk−x∗, π∗〉 = 〈xk−x∗−ωkL∗(w), π∗〉+ωk〈L∗(w), π∗〉
≥ −ωkνk‖π∗‖+ ωk〈w,L†∗(π∗)〉
≥ ωk(δ − νk‖π∗‖) .

Let ν′k = ψ(‖xk − x∗‖), so limk→∞ ν′k = 0. Then

|hε(xk)− hε(x∗)− 〈π∗, xk − x∗)| ≤ ν′k‖xk − x∗‖ ,

so

hε(xk)− hε(x∗) ≥ 〈π∗, xk − x∗〉 − ν′k‖xk − x∗‖

Since ‖xk − x∗‖ ≤ ωk‖L∗(w)‖+ νkωk and
〈π∗, xk − x∗〉 ≥ ωk(δ − νk‖π∗‖), we find

hε(xk)− hε(x∗) ≥ ωk(δ − ‖π∗‖νk − ν′k‖L∗(w)‖ − ν′kνk) .

So we can pick āk ∈ N such that

hε(xk)− hε(x∗) ≥
1
2
ωk‖δ whenever k ≥ k̄ . (12)

It follows from (7) thatx ∈ Qε if and only if hε(x) ≥ 0
and〈x, ŷ〉 ≤ ‖y∗‖. Sincex∗ ∈ Qε, the inequalityhε(x∗) ≥ 0
is true, and thenhε(xk) > 0 if k ≥ k̄. Furthermore, the fact
that s∗ ∈ S′0,ε implies that 〈G(s∗), ŷ〉 < ‖y∗‖, i.e., that
〈x∗, ŷ〉 < ‖y∗‖, and this implies that〈xk, ŷ〉 < ‖y∗‖ if k
is large enough. In addition, using once again the fact that
s∗ ∈ S′0,ε, we find that‖s∗‖ < R, so ‖sk‖ < R if k is
large enough. It follows that we can find āk′ ∈ N such
that k̄′ ≥ k̄ and 〈xk, ŷ〉 < ‖y∗‖ wheneverk ≥ k̄′. Then, if
k ≥ k̄′, the the following hold: (i)sk ∈ S, (ii) hε(xk) > 0,
(iii) 〈xk, ŷ〉 < ‖y∗‖, and (iv) ‖sk‖ < R. It follows from (ii)
and (iii) thatxk ∈ Qε, sosk ∈ G−1(Qε), while on the other
hand (i) and (iv) imply thatsk ∈ Ŝ. Thereforesk ∈ Sε.
Hencew ∈ TBs∗Sε, completing the proof of (8).

Using standard existence results from viability theory, we
pick a solutionξε : Iε 7→ S′0,ε of the differential inclusion
ξ̇ε(t) ∈ Ψε(ξ(t)) such that (i)ξε(0) = 0, (ii) ξε is defined on
a subintervalIε of R such that0 = min Iε, and (iii) ξε is not
extendable to a solutioñξ : Ĩ 7→ S′0,ε such that0 = min Ĩ,
Iε ⊆ Ĩ, and Iε 6= Ĩ. Then ξε satisfiesHε(ξε(t)) ≥ δt
for all t ∈ Iε. On the other hand,Hε(s) = hε(G(s)) ≤

‖y∗‖ for all s ∈ S′ε, so Iε ⊆ [0, δ−1‖y∗‖]. It follows
that Iε = [0, τε [ or Iε = [0, τε] for some τε or such
that 0 < τε ≤ δ−1‖y∗‖. If Iε = [0, τε], then ξε would be
extendable, contradicting the choice of(ξε, Iε). So Iε =
[0, τε [ . Sinceξε is Lipschitz with constant1, the limit s̄ε =
limt↑τε ξε(s) exists and belongs toS′ε. If s̄ε ∈ S′0,ε then ξε
would be extendable. Sōsε /∈ S′0,ε. But then either‖s̄ε‖ = R
or 〈G(s̄ε), ŷ〉 = ‖y∗‖. The possibility that ‖s̄ε‖ = R
is excluded because‖s̄ε‖ ≤ τε ≤ δ−1‖y∗‖ < δ−1α = R.
Hence〈G(s̄ε), ŷ〉 = ‖y∗‖. If we let x̄ε = G(s̄ε), then this
shows that̄xε ∈ Qε.

We now defineγε : [0, 1] 7→ S′ε by lettingγε(t) = ξε(τεt)
for t ∈ [0, 1]. Thenγε ∈ Γ(S, κα) (sinceτε ≤ δ−1α = κα),
and γε(0) = 0. Furthermore, the set|G ◦ γε| is en-
tirely contained inQε, andG(γε(1)) ∈ Qε. We can then
pick a sequence{εk}k∈N of positive numbers such that
limk→∞ εk = 0 and the arcsγεk converge uniformly to an
arc γ ∈ Γ(S, κα). This arc clearly satisfies|G ◦ γε| ⊆ σy∗ .
Furthermore,y∗ = limk→∞ xεk , so y∗ ∈ |G ◦ γε|, and then
|G ◦ γε| = σy∗ . This concludes the proof.
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[3] Sussmann, H. J., “Ŕesultats ŕecents sur les courbes optimales.” In
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