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Abstract— Smooth and nonsmooth versions of the Pontryagin Il. PRELIMINARY BACKGROUND MATERIAL
Maximum Principle can be proved using necessary conditions . . .
for set separation in terms of approximating multicones arising If X, Y are real linear spaces, thérin(X,Y") will denote
from generalized differentiation theories. We propose a notion the space of all linear maps frooX to Y. If X and
of approximating multicone derived from J. Warga’s theory of Y are finite-dimensional and normed, thdnn(X,Y) is
derivate containers and the notion of Mordykhovich normall also finite-dimensional, and we will always regard it as
fr?en(;er’er?wr.]d state and prove the corresponding set separation a normed space, endowed with the operator ndjrmi.,
given by || L||op = sup{||L(z)|| : € X, ||z|| < 1}. We use
XT to denote the dual space df, so X' = Lin(X,R).
. INTRODUCTION We useR”, R™*" to denote, respectively, the space of
al n-dimensional column vectors, and the space of all

. r
In a series of papers (e.g., [1], [2], [3], [4]) we have proposegzal matrices withm rows and n columns. We iden-

versions (3[Lthe tPontrybaglndMaX|mum I?rlnglzlirfor ?lglhlytr:ﬁ R™<" with Lin(R",R™) in the usual way, by
Hon-smoc; Sys %mt?’ “as.e ﬁn getrrl]e:jalze I erenkla;s dentifying each matrixM € R™*™ with the linear map
OWs, and proved by primal Metnods, UsiNg packels O, o o\ yr. 0 c R If X is any set, thefix will denote

needle variations. All these proofs are based on separatiﬂpe identity map ofX. If X is a metric spacez ¢ X
theorems for sets, which give a necessary condition for tw, hd0 < - € R we .useIB%X(yz "), By (Z,1), to denoté

setsSy, S, containing a points to be separated at—in . . ,
e SO respecetively, the closed bdlk € X : dist(x,7) < r} and
D Taocncoalon, Iotes e tne open ballz € X - i(r.7) < ). We wrte 5 (5.1,
PP 9 POINL s (7 1 for By (7, 7), Bgn (7, 7).

and says that, ifC;, C, are approximating multicones to A conein a real linear spac& is a nonempty subset

Sl’,,S2 at 5, then C; and Cy are not "strongly tranver- o'x"o\\ o yhap. « ¢ wheneverr ¢ R, r» > 0, andc € C.

sal.” The notion of approximating multicone is specific . : + i

to a particular “generalized differentiation theory.” (ForTheDOIar of a coneC'in X' is th_e seC of al we X such
: that (w, c¢) < 0 for all c € C. It is clear thatCT is always a

example, the classical notion of Boltyanskii approximatin .
P y PP Liosed convex cone, ar@d+1 is the smallest closed convex

cone corresponds to the classical differential.) In our previous Iy : : i :
. . o ) cone containing”, so in particularC-+ = C if and only
papers, this was done for differentiation theories such 85~ is closed and convex. Aonvex multiconein X is a

the “generalized differential quotients,” and the result was
honempty set of convex cones.

used to prove very nonsmooth versions of the Pontryagin : o .
ey . . ..~ Two convex conex”;, Cy in a finite-dimensional real
principle. In all these versions, the transversality condmopn

turns out to involve some version of the notion of BoltyanskuI ear spacex are transyersaj It ¢y —Cy =X, l.e., if for
cone, and does not apply to Clarke tangent cones or Moef‘yeryx € X there existe; € C1, ez € (3, such that
dukhovich normal cones. T =cp = co The coneg”; and Co grestrongly transversal
) . if they are transversal and in additiary N Cy # {0}.
The purpose of this note is to present the analogue If C\ O are convex cones ii. then
of the separation theorem for the differentiation theory of b2 n o .
Warga derivate containers (cf. Warga [5], [6], [7]). We (1) C; and C, are transversal if and onll_y if either (0,
define the notion of a “MWAMC” (“Mordukhovich-Warga and ', are strongly transversal or (i, and C; are
approximating multicone” to a set at a point, and prove the _ linéar subspaces ar@d, & C; = X. _
separation theorem. As was the case for other differentiatioff) O# and TC2 are transversal if and only if
theories, the key element of the proof is a directional open Gy N (=Cy) = {0}
mapping theorem, stated and proveds\n The application (To prove (1), it suffices to assume thay and C, are
of these results to the nonsmooth maximum principle willransversal but not strongly transversal and show that (ii)
be discussed in subsequent papers. holds. Let us prove that; is a linear subspace. Picke C;.
Using the transversality of;, and Cy write —c = ¢; — ¢a,
Research supported in part by NSF Grant DMS01-03901 c; € C;. Thency +c¢c = cy. Bute; +c € Cp andey € Cs.



Soc; +c € Oy NCy, and thene; + ¢ = 0, sinceC; and Cy
are not strongly transversal. Therefore € C;. This shows
thatc € C7 =

the transversality of®; and Cy implies thatC; + C = X

and the fact that they are not strongly transversal implies thamplication  ¢.3)=(x.2)

C1NCy = {0}. HenceC; @ Cy, = X. To prove (2) observe
thatCy — C5 is a convex cone, s6;7 — Cy = X if and only
if Clos(Cy —C3) = X, and if Clos(Cy — C3) # X then the
Hahn-Banach theorem implies thaf N (—CJ) # {0}.)

Two convex multiconeg, Cs in a finite-dimensional real
linear spaceX are transversa) if C; is transversal ta’s
wheneverCy; € Cy, C5 € C>. The convex multiconeg;,

—c € (1. So C is a linear subspace. A such thalim; . s; = 5, lim; .o p;
similar argument shows that; is a linear subspace. Thenfor eachj. Then,©(p,, s;) = 0 for eachj, so (*.

If (x.1) holds, then we can find a sequengsg},cn Of
members ofS and a sequencép;};ecn Oof members ofX
= p, andp; € (T2 S)1
3) holds.

We now prove that #3)=(x.2)=(x.1). The
is trivial, because if (*.3)
holds then there is a sequencé(s;,p;)}jen Of

members of § x X such that lim; .s; = 3,
lim; o pj P, and lim;_,., ©(p;,s;) =0. Since
O(p,sj) < O(pj;,s;) + ||p—pjl, we can conclude that
lim; . ©(p, s;) = 0, and then £.2) holds.

We now assume that«@) holds, and provex(1). If
p=0thenp € NMS, so (.1) is true. So we may assume

C, are strongly transversalif they are transversal and in that p # 0 and then, without loss of generality, we may

addition there exists @ € X\{0} such that

(Vcl €Cy, Cy € CQ)(HLL’ eCi N CQ)(/J,(:L‘) > O) . (1)

Let S be a subset of a finite-dimensional real linear spa

X, and lets € S. The Bouligand tangent coneto S at

5 is the set of all vectors € X such that there exist a

sequence(s;};en Of points of S converging tos, and a

sequence{h;};en Of positive real numbers converging to

0, such thaty = lim; ., = 575 \We useT2S to denote the
Bouligand tangent cone tﬁs ats. Itis clear, and well known,
that 72S is a closed cone. Th8ouligand normal cone
of S at 5 is the polar congTES) of TES, that is, the
set of all covectoryp € XT such that(p,v) < 0 for all
v € T5BS. The limiting normal cone, or Mordukhovich
normal coneof S at 5 is the set of all covectorp € X'
such thatp = lim; .., p; for some sequencép,} cn Of
members ofX T and some sequends; }jcn of members of
S such thap; € (T2 S)" for eachj. We useN.” S to denote
the Mordukhovich normal cone of at 5. For eachp € X7,
we letp’ = {v € X : (p,v) < 0}. The Mordukhovich
tangent multiconeto S at s is the set

def

MTS=E {ph:pe NMS}.

Lemma 2.1:Let S be a closed subset of a finite-

dimensional normed real linear spadg and lets € S,
p € Xt. Then the following conditions are equivalent:

(1) peNMs,

(x.2) limipf (max{(ﬁ, v):veTBS, v < 1}) =0,

(%.3)  liminf (max{(p,v) v eTPS, |v|| < 1}) =0.
S*’S’p*)p

Proof: Although Conditions £.2) and .3) depend on

also assume thaftp| = 1. It follows from (x.2) that we
can find a sequencgs;};cn of members ofS such that
lim;_.e; =0, wheree; = O(p,s;) = 0. For a >0,

cheN, definegs; («) to be the minimum of all the nonnegative

real numbers3 such that the closed ba]H%X(sJ + ap, )
intersectsS. (The minimum exists becausgis closed.) Then
Bj(a) < a, because

=Bx(s; +ap,a).

We are going to construct, for eagha covectorp; which
is close top and such thap; is a Bouligand normal t&' at
a points; close tos;.

Fix a j. If 8j(0) = « for some «, then the open
ball Bx (s; + ap,«) does not intersect, and this clearly
implies that p € (TBS) . So in this case we take
p; = p ands; = sj. ‘Next assume that; (o) < o for
all positive . Then for eacha we can pick a point
o(a) € Bx(s; +ap,Bi(a))NS. Let v(a)=o(a)— s,
m(a) = ap — v(a). Then v(a) # 0, and in addi-
tion (v(a),p) = (v(a) — ap,p) + @ = a — (w(«a), p), since
||l = 1. Furthermore,

[m()ll = llap = v(a)|| = [(s; + ap) — o(a)|| = B;(e)
so that(m(a), p) < B;(«), and then(v(a), p) > a — Bj(a),
so that §j(e) > a— (v(e),p). On the other hand,
limsup, o lv(a) ]|~ (v(e),p) < €;. (Indeed, suppose the
inequality is not true. Then there exist a positiveand a
sequence|ay }ren Of positive numbers that converges @o
and is such thatjv(ag) ||~ (v(ak), p) > €; + 6. If we let
wi = ||v(ar)|| " tv(ag), then we may assume, after passing
to a subsequence, that the limit = limy_ .., wy exists.
Since s; + v(ay) € S, the vectorw belongs toTBS
But (w,p) > ¢; + 0, and this contradicts the fact that

@(]57 sj) - 8] )

sj € Bx(s; + ap, alp])

the norm of X, it is easy to see that the truth values of Let o* be such that||v(e)| " (v(a),p) < &5 + 277

(x.2) and .3) are norm-independent. Hence we may assum@henevero < o < a*.

without loss of generality, that the norm of arises from

an inner product-, ), and we may use this inner product to0 < a < a*, wheres; = 2(¢;+277). Leta(a) =

identify X and XT in the standard way.
Forse S, pe X, let

O(p, s)
Then©(p,s) > 0, because) € T2 S.

= max{(p,v) :v € TZS, ||lv|| < 1}. 2

Given any «, it is clear that
lv(@)|] < 2a. Then0 < (v(a),p) < aé; whenever
j (v(), p)p,
b(a) = v(a) — a(a), sob(a) L a(a), and then||v(a)||? =
la(c)||?+|b()||?. On the other hands(a) = ap—v(« )
ap — a(e) = b(a), som(a) = (a — (v(a),p))p — b(a), a

then

a? = Bj(a)? = [m(e)]* = Ja = (v(a), p)I* + [Ib(c)* -



Since(v(a),p) < aé;, we havea — (v(a),p) > a(l — &;),
and thena? > o?(1 — &;)? + ||b(«)|?, so that

Ib(@)]I? < a®(1 — (1 - &)%) < a?(28; - £2) < 20%¢;,
and then||b(«)|| < a/2¢;. Therefore

[m(@) = apll = [{v(a), p))p + b(e)|| < g;,

whereé; = &; 4+ /2¢;. Hence, if we pick anyr such that
0 <a<a anda < 27771 and letp; = % 8
s; +v(a), we see thallp; — p|| < &;, [|3; — s;]| <277, and
p; is a Bouligand normal t& at 5;. This shows thap is a
limiting normal of S at s, concluding our proof. ]

If S is closed, theClarke tangent coneto S at s is the
set of all vectorsu € X such that, wheneve{s;};cy is
a sequence of points df converging tos, it follows that
there exist Bouligand tangent vectors TfS such that

lim; o v; = v. We useTE'S to denote the Clarke tangent

cone to S at 5. It is well known that7¢'S is a closed
convex cone. Also, it is well-known that“! s is the polar of
NMS. ThereforeT¢! = N{C : C € MT;S}. The Clarke
normal coneof S at 5 is the polar(T¢!S)T of the Clarke

tangent cone, s¢I'c!S)! is the smallest closed convex conep )

containing N S.

If X,Y are finite-dimensional real linear spac€sjs an
open subset ofX, F' : Q — Y is a map, andc, € , a
Warga derivate containeof F' at z, is a compact subset
A of Lin(X,Y") such that for every compact neighborhoo
A of A in Lin(X,Y) there exist an open neighborhoéd
of z, in X and a sequencéF;};cn of maps of clasg!
from U to Y such thatF; — F' uniformly onU asj — oo,
and DF;(z) € A’ for all z € U, j € N. It is clear that if
F has a Warga derivate containeragtthen F' is Lipschitz-
continuous on a neighborhood of.

If M, N, are manifolds of clas€*, andz € M, then

it is easy to extend the concepts of Bouligand and Clarkd
tangent cone and Mordukhovich tangent multicone, as wi

as the corresponding normal cones, to a sulssef M at

§1

multiconeD in R™, such that (I)F'(0) = 3, () F(K)
(1) A is a Warga derivate container @f at 0, (V)
MT K and, finally V)C={L-D:LeA,D e D}

Example 3.1: IfS is a closed subset of a manifold of
classCt, 5 € S, andC is any convex multicone ifi; M/ such
that C < M7 3S, thenC is a MWAMC ofS at 5. Indeed, it
clearly suffices to assume thaf = R ands = 0. We then
let U, V be, respectively, an open subsetf containing0,
and a compact ball centeredsand contained i/. We then
take K =V NS, so K is compact and\7T (K = MTS.
We then letF' : U — R"™ be the inclusion map, and take=
{Ign}.ThenC ={L-C: L e A,C eC},andC < MT K.
[ |

gSu
D =

Example 3.2:As a special case of the previous examfile,
S is a closed subset of a manifoM of classC*, ands € S,
then the multicones\7 ;S and {T¢'S} are MWAMCs of
S at s. ]

Example 3.3:1t follows trivially from the definition that,
if M, N are manifolds of clas€'!, S C M,5€ S, F : M
N is a Lipschitz-continuous map\ is a Warga derivate

container of I at 5, and C is a MWAMC ofS at s, then

A-C¥{L.C:LeACecC)isa MWAMC of F(S) at

[ |
Example 3.4:. If M, M, are manifolds of clasgC!,
51€8. CM;, 39 € Sy C M, C; is a MWAMC
of S; at 51, and Cy is a MWAMC of S, at 35, then
x Co iIs a MWAMC of S; x Sy at (s1,52), where
C1 x C ¥ {C) x Cy: Cy €€y, Cy € Co}. To see this find,
for i = 1,2, a nonnegative integer;, a compact subsek;
of R™ containing0, an open neighborhodd; of 0 in R™:, a
Lipschitz-continuous mag; : U; — M; such thatF;(0) =
s; and F;(K;) C S;, a derivate containek; of F; at0, and
a convex multiconé; in R™: such thatD;, < M7 3, K;, for
whichC; ={L-C:C €C;, L € A;}. Definen = ny + no,
=U; xU; € R xR ~ R*, K = K; x K,
:MlXM2,5251X52,§:(§1,§2),A:A1 ><A2
(that is,A = {L1 XLo:Lj € Al, Ly € AQ}, whereL x Ly

z, and to define intrinsically the notion of a Warga derivatdS the map that sendgs;,s;) € R™ x R"™ to the pair

container atz of a mapF : M — N. In that case, ift €
S C M, then (i) the coneg? S, TS, are subsets of the
tangent spacé; M of M atz, the convex multicon@17 ;S
is a set of convex cones ifi; M, (i) the cones(T29)T,
(TS1S)T, NM D are subsets of the cotangent spétei ),
and (iii) the Warga derivate containers Bfat z are compact
subsets ofLin(Tz M, Trz)N).

Il. WARGA APPROXIMATING MULTICONES

If C, D are convex multicones, then we wrife< D if for
every D € D there exists &' € C such thatC C D.

If M is a manifold of clas€0!, 5 € S C M, andC is a
convex multicone irf3 M, we say that is aMordukhovich-
Warga approximating multiconeglabbr. MWAMC) of S at
s if there exist (i) a nonnegative integer, (i) a compact
subsetK of R™ such thal) € K, (iii) an open neighborhood
U of K in R™, (iv) a Lipschitz-continuous map' : U — M,
(v) a compact subset of Lin(R™, T5M), and (vi) a convex

(Ll . 81,L2 . 82) € Tsflj\/fl X TS’QMQ ~ TgM), C =C1 xCq,
D =Dy x Dy, F=F; x Fy. (That is, F' is the map that
sends (s1,s2) € U to (Fi(s1),Fa(s2)) € M.) Then
A is a derivate container of” at 5, and A - D C.
So the desired conclusion will follow if we show that
D < MT K. But this is trivial, because, i € NMS,
then p lim;_,. p; for some sequence(s’,p’)};en
such thats’ — 5 s; € S, andp; € (TEK). If
we write s7 = (s],s3), then TEK = TEK, x TEK,, so
51 S2 .
(TEK)" = (T5K1)" x (TEK,)T, and thenp? = (p], p}),
. 51 . 53
p € (THKYY, py € (TEK:)'. Hencep = (p1,p2),
p1 € Ng‘flKl, po € Nng;. SinceD; < MT; K; for
i = 1,2, we may pickD; € D; such thatD; C p!.
Then D; x Dy C pt and Dy x Dy € D. This shows that
D < M7 ;K and concludes our proof. [ |
Remark 3.5:In the previous example, it is important
to notice that the productM7; K1 x M7 5, Ko of the



Mordukhovich tangent multicones\7 5, K1, MT; K, that~(0) =0 and||v(t) — v(s)|| < r|t — s| whenevers,t €
does not in general coincide with the Mordukhovich tanger|d, 1]. (So, naturally,'(A,r) is empty if0 ¢ A.) It is then
multicone M7 ;K of the product. On the other hand, it isclear thatif A is closed ther'(A,r) is a compact subset of

always true thatM7 5, K1 x M7 5, Ks < M7 K, and that
is all that is needed for the proof in Example 3.4. =

IV. THE TRANSVERSALITY THEOREM

Two subsetsS;, S, of a topological spaceX are locally
separatedat a pointp € X if there exists a neighborhodd
of p in X such thatS; NS NU = {p}.

Theorem 4.1:Let M be a manifold of clas€’!, let S,
So be subsets of\/, and letz € S; N Ssy. Let Cq, Co, be
MWAMCs of S;, S, at . Assume thatC; and C, are
strongly transversal. The$y andS, are not locally separated
at z.that is, there exists a sequenge;};cy of points of
(S1NS2)\{z} such thatim;_,, z; = Z. Furthermore, there
exists a Lipschitz arey : [0,1] — M such thaty(0) = z,
~(t) does not identically equal, and~(t) € S; N S, for all
t €10,1].

Proof:

The proof is based on the directional open

C°([0,1],R).

If D is a closed convex cone iR”, anda > 0, we use
D(«) to denote the sefy € D : ||y|]| < a}. If y € R¥, we
useo, to denote the sefty : 0 <t <1}. If v:[0,1] — A
is an arc, ther}y| will denote the sef{~(¢) : ¢ € [0, 1]}.

Theorem 5.1:Assume that

« m andn are nonnegative integers,

o S is a closed subset &™ such that0 € S,

« U is an open subset @&" such that0 € U,

e F:U+— R™ is a Lipschitz map such thdf(0) = 0,

o A is a Warga derivate container &f at 0,

e yeR™and|y| =1,

e ycIntL-p'for everyL € A. and everyp € N}*S.
Then there exist a closed convex cabén R™ and positive
numbersa, « such thaty € Int D and

(Vy € D(a))(3y € T(S, ka))(oy = [Fon]). ()

mapping property, stated and proved in Theorem 5.1 below.

Without loss of generality, we assume thet = R™ and
Z=0.WeletX =R", X =X xX,)Y=XxR. We
fix a linear functionaly : X — R such that (1) holds,
and define a mags : X X x X — Y by letting
G(x1,x2) = (1 — x2,4(21)). ThenG is a linear map, so
the differential DG(0) is justG.

Let S =57 x S5. Also, letC = C; x Cy. Then we know
from Example 3.4 that is a MWAMC of S at (0,0). Let
D =G-C. ThenD is a MWAMC of G(S) at G(0,0).

Let y = (0,1) € ¥ = X x R. Then a straightforward
calculation shows thag € Int D for every D € D. (Proof.
Let D € D, and write D = G(Cy x Cy), C1 € 1, Cy €
Cy. Then Cy — Cy X. In view of (1), we can pick
¢ € C; N Cy such thatu(c) = 1. ThenG(¢,¢) = y. Given
any v € X, we can use the transversality 6§ and Cs> to
write v = ¢; — ¢, With ¢; € Cq, ca € Cy. So there exists
r € R such that(v,r) € G(Cy x Cs). If (e1,...,e,) is a
basis of X, andeg = —(e1 + ...+ e,), then there are reals
r; such that(e;,r;) € G(Cy x Cy) for i = 0,...,n. Since
g€ G(Cy x Cy), it follows that (e;,7) € G(Cy x Cy),
for every i, if 7 max(1l,rg,r1,...,7,). Hence
(€:,1) € G(Cy x Cy) for everyi, if &; = 7~ te;. This clearly
implies our conclusion.)

We have therefore verified the hypotheses of Theorem 5%

It then follows from the theorem that, for some positive
there exists a Lipschitz ag: [0, 1] — S such that(0) = 0
and{G(&(t)) : t € [0,1]} = {(0,7) : 0 < r < a}. Write
£(t) = (&(1),&(1)), s0&i(t) € S1 and () € So. Let
~(t) = &(t). Then, ift € [0,1], G(&(¢)) = (0,r) for some
r, S0&1(t) = &(t), and themy(t) € S; N Sy, Furthermore,
~ does not vanish identically because, for sotne [0, 1],
G(£(1) = (0,0), sou(+(1)) = o m
V. THE DIRECTIONAL OPEN MAPPING PROPERTY

Given a subsetd of R”, and a positive number, we use
T'(A,r) to denote the set of all maps: [0,1] — A such

Proof: We assume, as we clearly may without
loss of generality (after making an orthogonal change of
coordinates, if necessary) that= (0#,1), wherey =m—1
and0# is the origin ofR*. We then letR = R*, and identify
R™ with R x R.

Ouir first task will be to reformulate our hypothesis in dual,
rather than primal terms, by proving that

(#) There exists a real numbef €]0,1[ such that, if
geR™, L € R™*", s e S are such that|q|| = 1,
(q,9) > =6, dist(L,A) < 4§, s € S, and||s|]| < 4, then
O(L'(q),s) > 6, where® is the function defined in (2)

We prove (#) by contradiction. Assume théatdoes not

exist. Then there are sequendgs}en, {L;} en, {5} en,

such that, for eacly, the following are trueiq; € R™,
lg;ll = 1, (gj,7) > =279, Lj € R™", dist(L;,A) <277,

s; € 8, |Is;ll < 279, and ©(Li(q;),s;) < 277. Pick

L; € A such that|L; — L;|| < 277. Then we may find an

infinite subset of N such that the limits; = lim;_, g;,

L = limj_ Lj, exist. Then|lg]| = 1, (¢, y) >0, and
LeA. In addition, hm]_,oo S5 = 0 and hm]_,oo Lj = L.
Let pj:Liqj, p=1L'g, so lim;_.p; = p. Since

O(pj,s;) <277, itis clear thatim inf, .o ,—.; O(p,s) = 0.
o Lemma 2.1 implies thagt € N}*S. Therefore the cone
L-p' belongs toC. Hencey is an interior point ofL - 5.
On the other hand, i € L-p' then we can write) = L - x,
WS ﬁT, SO that<(ja y> = <(j7f’ ' LB> = <ET - g, £E> = <]57 x>' and
(p,z) <0, sincex € pf. So(g,y) <0 foralyelL-p.
Sincey € L-p' and(g, y) > 0, we conclude thatg, y) = 0.
But then, if we takey = y + ¢, wheree is positive and
small enough, we havég,y) = > 0, while on the other
handy € L-p'. So we have reached a contradiction, proving
#).

We now fix ad having the properties of (#), and choose
x = 6~ 1. We then apply the definition of the Warga derivate
container, and obtain



e an R € R such thatR > 0, B"*(0,R) CU andR < §,
« a sequence{F;}en of functions of classC! from
B™(0, R) to R™ such that
— F; — F uniformly onB"(0, R) asj — oo,
— DFj(z) € A for all z € B"(0, R), j € N,
where A = {L € R™*" : dist(L, A) < §}. After replacing
F; by F; — F;(0) we may assume, in addition, that
— F;(0) =0 for everyj € N.
We now letD = {y € R™ : (y,3) > (1 —4)||y||, where
6 = % so thatd = v/25. Then D is a closed convex
cone, andy € Int D. We choosea 0R, and define
S =B"(0,R)NS, so S is compact and) € S. We will
prove (3). It clearly suffices to show that

(Vi €N)(Vy € D(a))(FyET(S, ra)) (o, =|Fjon]). (4)

(Indeed, if (4) holds, and) € D(«), then for each; we
can findv; € I'(S,ka) such that|F; o ;| = &,. Since
I'(S, ka) is compact, there exists an infinite subgeof N
such thaty = lim;_. 7y, eXists and belongs t0(9, kav).
But thenlimj_,Joo(Fj ov;) =Fo~, so|F o~| =g, and
v eT(S, ka).)

We now prove (4). We fix g, and writeG = F}. Then
G € CY(B"(0,R),R™), G(0) = 0, and DG(z) € A for all
r € B*(0, R). We want to prove that

(Vy € D(a))(37 € T(S, ka)) (0

=[Gonl). (5

Let Dy(a) = Int D(«). Then, thanks to the compactness of

(S, ka), it suffices to show that
(Vy € Do(a))(3y € T(S, ka)) (o, (6)

To prove (6), we pick a poing. € Dy(«) and construct
av € I'(S, ka) such thatr,, = |G o~|. We will do this by
finding, for small positivez, arcs~y,. € P(S,na) such that
the sets F" o 4. | converge tos,, in the Hausdorff metric.

Pick a positives such thatB™(y.,s) C Do(a). (This
implies, in particular, that|jy.]] + ¢ < «.) Then
let Q. = {veR™: (v,y.) =0A|v] <e}, so Q. is the
p-dimensional disc orthogonal tg,, centered ato, and
having radiuse. We defineQ. = {y. + v : v € Q.}, so
QE g Bm(y*,é)

Next, we lety = Z—H (Recall thaty,. # 0, because
Y« € Do(a), and 0 ¢ Dg(«x), because if0 € Dy(a) it
would follow—sinces < 1—that (y,y) > 0 for all y near
0, so y = 0.) We then define a functior, : R™ — R
by letting h.(z) = (2,9) — Xellz — (x,9)9||?>, where
Xe = €7 2||y«||. Then h.(0) = 0, and in additionh.(z)
also vanishes at all points belonging to the frontier
0Q: ={y« +v:veR™ v Ly, |v|] =c} of Q.. We then
let H. = h. o G, so H. is a function of clas€'! on U.

We now let

Qe ={r e R": Acflx — <x,@>g}||2

=[Gonl).

< () <yl (7)

Then Q. is obviously closed, an@ # (), because) € Q.
Furthermore, the Hausdorff distanég.(Q., o, ) is exactly
e. (Indeed, letz € Q.. Thenz = v + rg, with r = (z,§)

andv =z —rg, sov L g. The fact thatz € Q. implies
that \.||v||> < r < ||y.||, sor > 0, and thenry, € o,, and
|z — rg||? < €%, so ||z — rg|| < &; since this is true for
everyz € 9., while ||z —rg|| = ¢ if x € 0Q., we see
that max{dist(z,0,,) : ¢ € Q.} = ¢. Sinceo,, C Q.,
it follows that dp.(Qc,0,,) = €) In particular, Q. is
bounded, s®. is compact.

We then define a set-valued functidn. from B"(0, R)
to R™ by letting

U (s) ={w e R": ||w|| <1 and (VH.(s),w) >} .

Then ¥, is upper semicontinuous with compact convex
values. Let

S = GQ)ns,
S{J’a {s€SL:|s]| < R and (G(s),

9) < llyll3-

Then S, is a compact subset o, Sh . is a relatively open
subset ofS7, and0 € Sj .. We will show that

Ue(si)NTES. #0 whenever s, €5;.. (8)

To see this, pick a poini € Sy ., and writez, = G(s.),
e = Vhe(zy), T = T - It follows that z, € Q., so
Ty = T4 + vy, With v, 1 Uy v = (x4, 7), aNd|jvi]] < €.
The fact thats. € Sj, . then implies thad < . < [|y.| and
[|lve]| < e. AlSO, Ty = § — 2A (s — (T4, §)T) = § — 2Ac 0,

and then
[mell = V14 4X2[|v. |,

since v, L 3. Furthermore,(m.,y) = (§,¥) — 2A:(v«, U)
Sincey € D, and||g|| = 1, we have(g,3) > 1 — 4, so
15 =917 = 131> + 111> — 2(3,5) = 2(1 — (§,)) < 23,

and then||j — || < V26 = 4, so that
2 (vs, U) =
(using the fact that, L ¢), and then

2A(0s, T=8) S2Ac][ou[ 15— 91 <2Ac[|vs |6,

(T ) > 1 =8 — 20 |Jva |6 > —2Xc|Jva |6 > —2).€6
from which it follows that

o 2Xc ||v4]|6

(0, 9) 2~ 2 —

14 422[jv. 2

Let L. = DG(s.). Thendist(L,,A) < 6 Since||7.] =1
and (#.,7) > —6, (#) implies thato(Ll(#,),s) > 5. We
can therefore find av € TES such that|w| = 1 and
(L(#,),w) > 6. It follows that (Li(r,), w> > 6||7r*||
Since ||m,| > 1, we can conclude thatZL!(r,),w) >
But the chain rule implies thak!(r,) = VH.(z,), so we
have shown tha{VH_(z),w) > ¢. This establishes that

w € U(s).
To complete the proof of (8), we have to show that
weTBS!. Sincew € TBS and ||w|| = 1, we can find

a sequencésy }en of points of S\ {s.} that converges te,
and is such that
Sk — Sx

sk — sl

lim wy =w, where w,= 9)
k—oo



If we let wy, = ||sp — s«||, Wx = wg — w, we find
Sk = 8¢ +WrW + wWrWy ler{:Owk =0, kllrrgolbk =0.
Let ¢ be a function from]0, oo to [0,00] that satisfies
lim, o ¢ (r) = 0 as well as the conditions
1G(5) = G(sx) = Lu(s = s )l < ¢(lls=sx[)lls— s« , (10)
|he (@) =he (22) = (T, 2 =) | < P([x =) 2 =] (11)

for al s € U and all + € R™, respectively.
Let z G(sx). Then (10) implies the inequality
lzr — 2o — wi L (w + wy)|| < ¢(wg)wg. Therefore

H;Ck — Xy — ka*(’LU)H < Vpwg ,

where v, = ¢¥(wg) + || L« (@), SO thatlimy_,oo v = 0.
Hence|lzg — z.|| < w||Ly(w)|| + viw.
Then [{z — z. — wi Lo (w), mi)| < ||7ms||viwy. Therefore

(T — T, Ts) (g — s —wp La(w), me) +wi (Lu(w), )

—wip ||| + wi(w, L (7))

>
> wp(0 = vpllml) -

Let v, = ¢(||zk — z.]|), SOlimg_.o0 v, = 0. Then
he(ti) = he(@a) — (a2 — 22)] < Vi l2n — 2],
SO
he(k) = he(ws) = (e, 2k — ) — Vg [l — 2|

Since lzg — || < wiell L ()| + vews and

(i, T — To) > wi(d — vg||7]]), we find
heon) — o) > wr® — vk — VLo ()] = s

So we can pick & € N such that

1 _
he(xg) — he(xy) > §Wk||5 whenever k>Fk. (12)

It follows from (7) thatx € Q. if and only if A.(z) >0
and(z,9) < |ly«||. Sincez. € Q., the inequalityh. (x.) > 0
is true, and therh. (z) > 0 if k > k. Furthermore, the fact
that s. € S} . implies that(G(s.),9) < |v.ll. i.e., that
(z.,9) < |ly+|l, and this implies thatzy, §) < |y.|| if &

lly<|| for all s € S., soI. C [0,5 'y It follows
that I. = [0,7.[ or I. = [0,7.] for some 7. or such
that 0 < 7. < 6 Y|y.||. If I. = [0,7.], then&. would be
extendable, contradicting the choice @f;,1.). So I.
[0, 7 [. Since&. is Lipschitz with constant, the limit 5.
limyy -, & (s) exists and belongs t87. If 5. € S, thené&,
would be extendable. So ¢ S .. But then eithef|s. || = R
or (G(5.),%9) = |ly<|. The possibility that ||5.| = R
is excluded becauséd|s.|| < 7. <6 Yyl < la=R.
Hence(G(5:),4) = ||ly«||- If we let z. = G(5.), then this
shows thatz. € Q..

We now definey. : [0,1] — S’ by letting . (t) = & (7:t)
for t € [0,1]. Theny. € T'(S, ka) (sincer. < 6 la = ka),
and ~.(0) 0. Furthermore, the selG o +.| is en-
tirely contained inQ., and G(1:(1)) € Q.. We can then
pick a sequenc€ey}reny Of positive numbers such that
limy_, o € = 0 and the arcsy,, converge uniformly to an
arcy € I'(S, ka). This arc clearly satisfief~ o .| C oy,.
Furthermorey. = limg_,o 2., , SOy« € |G o 7,|, and then
|G 07| = oy, . This concludes the proof. |
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is large enough. In addition, using once again the fact that

s« € Sy, we find that[s.|| < R, so|sx]| < Rif kis

large enough. It follows that we can find4d € N such
that &’ > k and (zy,9) < ||y.|| wheneverk > k’. Then, if

k > k', the the following hold: (i)s) € S, (i) he(xy) > 0,

(i) (xk, 9) < lly«]l, and (iv) ||sk]| < R. It follows from (i)

and (iii) thatz;, € Q., sos, € G~1(Q.), while on the other
hand (i) and (iv) imply thats, € S. Therefores;, € S..

Hencew € TSB;SE, completing the proof of (8).

Using standard existence results from viability theory, we

pick a solutioné. : I. — Sj . of the differential inclusion
£-(t) € W (&(t)) such that (i¥.(0) = 0, (ii) & is defined on
a subintervall, of R such tha = min I, and (iii) & is not
extendable to a solutiog: I — S such that) = min 7,
I. C I, andI. # I. Then¢, satisfiesH.(¢.(t)) > ot
for all ¢ € I.. On the other handH.(s) = h.(G(s)) <



