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Abstract—We present a version of the Pontryagin Maximum Remark 1.1:For lack of space, we will omit the proofs,
Principle with state-space constraints and very weak technical which will be given in a much longer self-contained paper.
hypotheses. The result does not require the time-varying vec- We point out, however, that the proof strategy is quite
tor fields corresponding to the various control values to be . ' ’ . . .
continuously differentiable, Lipschitz, or even continuous with stralghtfor_vva_lrd, except for one crucial tech_r!lcal detail. We
respect to the state, since all that is needed is that they be Make variations, which as usual are families of controls
“co-integrably bounded integrally continuous.” This includes depending on a finite-dimensional parametewe associate
the case of vector fields that are continuous with respect to to each variation an “augmented terminal point mafy”
the state, as well as large classes of discontinuous vector fields,\,a differentiates at & = 0 in the sense of GDQ theory;
containing, for example, rich sets of single-valued selections . . .
for almost semicontinuous differential inclusions. Uniqueness we us_e_a set separation theo_rer_n to Infer.the existence of
of trajectories is not required, since our methods deal directly @n adjoint covector for the variation and, finally, we use a
with multivalued maps. The reference vector field and reference compactness argument to get an adjoint covector that works
Lagrangian are only required to be “differentiable” along the  for all variations. The “technical detail” referred to above
reference trajectory in a very weak sense, namely, that of s that instead of dealing with the usual packets of needle

possessing suitable “variational generators.” The conclusion iati h had to introd “chatteri iati N
yields finitely additive measures, as in earlier work by other variations, we have had to Introduce “chattering variations,

authors, and a Hamiltonian maximization inequality valid also ~ Which approximately convexify the set of velocities at each
at the jump times of the adjoint covector. point. |

I. INTRODUCTION [I. NOTATIONAL PRELIMINARIES AND BACKGROUND

In a series of previous papers (cf. [1], [2], [3], [4]), weThe abbreviations “FDRLS” and “FDNRLS” will stand
have developed a “primal” approach to the non-smootfpr “finite-dimensional real linear space” and “finite-
Pontryagin Maximum Principle, based on generalizedimensional normed real linear space,” respectivelyXIf
differentials, flows, and general variations. The method useghdy are real linear spaces, thénn(X,Y) will denote the

is essentially the one of classical proofs of the Maximundet of all linear maps fronX to Y. We useX ' to denote
Principle such as that of Pontryagin and his coauthorg,m(X, R), i.e., the dual space of.
based on the construction of packets of needle variations, ) )
but with a refinement of the “topological argument,” and>Ndle- and set-valued maps. set-valued mapis a triple
with concepts of differential more general than the classicdl = (4 B; G) such thatd and B are sets and; is a subset
one, and usually set-valued. of A x B.If F = (A, B,QG) is a set-valued map, we say that
In this note we describe the result of applying thist IS & Sét-valued map from to B. In that case, the sets,
approach to optimal control problems with state-spacE: G are thesource target andgraph of F', respectively,
constraints. The paper is organized as follows.§lnwe 2and we write A = So(F), B = Ta(F), G = Gr(F). If
introduce some of our notations, and in particular briefly’ € SO(F), we write F((z) = {y : (z,y) € Gr(F)}. The set
recall the simple but not widely known basic concepts aboldfo(F) = {z € So(F) : F(x) # 0} is the domain of F'. If
finitely additive vector-valued measures on an intervalin < B are sets, we usV M (4, B) to denote the set of all
we review the notion of Generalized Differential QuotienS€t-valued maps froml to B, and write " : A — B to
(GDQ), define the two types of variational generators thdpdicate thatk” € SVM(A, B). A ppd map fromA to B
will occur in the maximum principle, and state theorem&Where “ppd” stands for “possibly partially defined’) is an
asserting that various classical generalized derivativese € SV M (A, B) such thatF(z) has cardinality zero or
such as classical differentials, Clarke generalized JacobiaQ§'€ for everyx € A. We write F": A— B to indicate
Michel-Penot subdifferentials, and, for functions definingh@t £ is a ppd map fromA to B. If ' : A — B, and
state-space constraints, the object often referred &iygsn  C & 4 then therestrlc(t;ofn of I"to C'is the set-valued map
the literature—are special cases of our variational generatof8.] C defined byF [ C=(C, B, Gr(F) N (C x B)).
In §IV we discuss the discontinuous vector fields studied igpimaps and constraint indicator mapslf f : S < R

detail in [5]. Finally, in§V we state the main theorem. is a ppd function, then thepimapof f is the set-valued

Research supported in part by NSF Grant DMS01-03901 map f : S — R whose graph is the epigraph ¢f so that



f(s) ={f(s)+v:v€R,v >0} whenevers € Do(f), and
f(s) =0 if s € S\Do(f). The constraint indicator mapof
[ is the set-valued maR{’ : S — R such thatx;"(s) =0
if f(s) <0 ors e S\Do(f), andx{’(z) = [0,+oo] if
f(z) >0.

Cones.A conein a FDRLSX is a nonempty subset’ of
X such thatr - ¢ € C wheneverc € C,r € R and r > 0.

The polar of a coneC' C X is the closed convex cone

Ct={xeX': () <0forall ceC}.

If X is a FDRLS,S C X, andxz € S, a Boltyanskii
approximating cone toS at x is a convex con&’ in X
such that there exist an € Z,, a closed convex con®
in R™, a neighborhood/ of 0 in R™, a continuous map
F:UNnD+— S, and a linear mag, : R® — X, such
that F(h) = 2+ L - h + o(||h||) ash — 0 via values in
D, andC = L - D. A limiting Boltyanskii approximating
cone toS at x is a closed convex con€ such thatC' is
the closure of an increasing uni¢y;Z, C; such that each
C; is a Boltyanskii approximating cone t9 at x.

Tubes. If X is a FDNRLS, a,b € R, a < b,
¢€C%a,b],X) and § > 0, we use7X(¢,9) to denote
the §-tube about¢ in X, defined by

TX(E,8) Y {(2,t):ze X, a<t<b,|z—E@)||<8}. (1)

Finitely additive measures. If a,b € R, a < b, and X
is a FDNRLS, we usePc([a,b]; X) to denote the set of
all piecewise constank-valued functions orja, b], so that
f € Pc([a,b]; X) iff f:[a,b] — X and there exists a finite
partition P of [a,b] into intervals such thaf is constant
on eachl € P. We let Pc([a,b]; X) denote the set of all
uniform limits of members oP¢([a, b]; X), soPc([a, b]; X)

is a Banach space, endowed with the sup norm. Furthemore

Pc([a,b]; X) is exactly the space of alf : [a,b] — X
such that the left limitf(t—) = lims_¢ s<¢ f(s) exists for
all t €]a,b], and the right limit f(t+) = lims_¢ s>t f(s)
exists for allt € [a,b].

We define Pcy([a,b]; X)
VS ﬁ([avb];
countable (i.e., finite or countably infinite) set.
Pco([a, b]; X) is the closure inPc([a,b]; X) of the space
Peo(la, b]; X) of all f € Pc([a,b]; X) such thatf vanishes
on the complement of a finite set.)

We let pc([a,b]; X) be the
Pc(la,b); X)/Peco([a, b]; X).  Then
classF € pc([a,b]; X
F_, and a unique right-continuous membér., and o

to be the set of all

quotient
every

course ' = F, on the complement of a countable set
So pc([a, b]; X) can be identified with the set of all pairs

(f—, f+) of X-valued functions ona,b] such thatf_ is
left-continuous,f is right-continuous, ang_ = f, on the
complement of a countable set.

If X is a FDNRLS, anadditive X-valued
val function of bounded variation on [a,b]
member of the dual spage([a, b]; X )T bvadd([a, b]; X).
A member p of bvadd([a,b]; X) gives rise to a set

inter-

X) that vanish on the complement of a
(Then

space
equivalence
) has a unique left-continuous member

is a whereM; :

function i : Z([a, b]) — X (whereZ([a,b]) is the set of all
subintervals of{a,b]), defined by (i(I),y) = u(x¥) for
y € X', wherex¥(t) = 0if t ¢ I andx¥(t) = y if
t € I. We then associate tp its cumulative distribution
cd,, defined byed, (t) = —a([t,b]) for t € [a,b]. Then
cd, belongs to the spacévfn%’([a,b]; X) of all func-
tions ¢ : [a,b] — X that are of bounded variation and
such thaty(b) 0. (We call ¢ of bounded variation
if [|¢llen < oo, Where||¢||p, is the supremum of all the

sums> T [lo(t;) — ¢(s;)l, for all m € N and {s;}7,
{7, such thata<51<t1<52<t2 < S <ty <B.)

The mapbuvadd([a,b); X) > p — cd, € bufno?b([a,b];X)
is a bijection. The dual Banach space nojfm| of a 1 €
bvadd([a, b]; X') coincides with||cd,,||p. .

A i € bvadd([a, b]; X) is aleft (respright) delta function
if there exist anx € X and at €]a,b] (resp. at € [a,b])
such thatu(F) = (F(t—), z) (resp.u(F) = (F(t+), x)) for
all F € pc([a,b], X). We call 1 left-atomic (resp. right-
atomic) if it is the sum of a convergent series of left (resp.
right) delta functions.

A 1 € bvadd([a,b]; X) is continuousif the functioncd,,
is continuous. Everyu € bvadd([a,b]; X) has a unique
decomposition into the sum of a continous patt,, a
left-atomic party,. — and a right-atomic part.,; . (This
resembles the usual decomposition of a countably additive
measure into the sum of a continuous part and an atomic
part. The only difference is that in the finitely additive setting
there are left and right atoms rather than just atoms.)

If Y is a FDNRLS, abounded Y-valued measurable
pair on [a,b] is a pair (y—,v4+) of bounded Borel
measurable functions from[a,b] to Y such that
v_ =~v4 outside a countable set. IfX,Y,Z are
FDNRLSs, Y x X 3 (y,z) — (y,x) € Z is a bilinear
map, p € bvadd([a,b], X), nand (y_,v+) is a bounded
Y'-valued measurable pair da, b], then the product measure
~ - is a member obvadd([a, b, Z) defined by multiplying
the continuous part.., by v_ or v, the left-atomic part
by v_, and the right-atomic part by,. In particular, the
producty - v is a well defined member dfvadd([a, b], X)
wheneveru € bvadd([a,b],R) and+ is a boundedX -valued
measurable pair ofu, b].

Finally, we need to study the solutions of an “adjoint”
Cauchy problem represented formally as

dy(t) = —y(t) - L(1) - dt +dp(t), y(b) =9, (2

where p€bvadd([a,b], XT) and L€ L ([a, b], Lin(X, X)).

We do this by rewntmg our Cauchy problem as the integral

‘equationy(t) j; -ds, whereV = cd,,.
This is ea5|ly seen to have a unlque solutigngiven by

n(t) =5 My (b,t) - / dp(s)- My(s.t),  (3)

[t,b]
[a, b] x
solution of M
Mp(r,t)=1Ix+ [ L

[a,b] — Lin(X, X) is the fundamental
M L characterized by the identity
) - My (r,t)dr.



We will use the expressioWGé};’g(F;g*,a*; S) to denote
the set of allL! fixed-time GDQ variational generators bt
along (¢.,0.) in the direction ofS.

I1l. GENERALIZED DIFFERENTIAL QUOTIENTS(GDQS)
AND VARIATIONAL GENERATORS

Cellina continuosly approximable map#. K, Y are metric . S
spaces and is compact, thets'V M., (K, Y') will denote Definition 3.3_: Assume that (VGA) holds. Ap0|r_1tW|se
the subset ofSVM(K,Y) whose members are the Set_robust GDQ variational generator of” along (¢, o) in the

valued maps fronk to Y that have a compact graph. We Sa)pirection of $'is a set-valued map : [a, b] — Lin(X,Y)

that a sequencérF;},cn of members ofSV M om,(K,Y)
inward graph-convergego anF' € SV Mo, (K,Y)—and

write Fj ZE%, F—if for every open subse® of K x Y such
that Gr(F) C Q there exists gg € N such thaiGr(F;) C Q
whenever; > jq.

If X andY are metric spaces anfl : X — Y, thenF
is compactly graphedf for every compact subsek of X
the restrictionF' [ K of F to K has a compact graph.

Definition 3.1: Assume thatX, Y are metric spaces. A
Cellina continuously approximable set-valued mgpabbr.

“CCA map”) from X toY is a compactly graphed set-valued

map F' : X — Y such that
« for every compact subséf of X, F [ K is a limit—in

such that,
« there exist positve number$, 5, and a family
{2 }oc5<5.0<s<s Of functionsx®* : [a, b] — [0, +00]
such that -

li B5() =0 f tela,b
Shm s (t) or every [a, b]

(5)
and, in addition,
dist(ox(t +s) + A(t) - h, F(&(t + s) + h,t + 5))
< OR™(t) (6)

wheneverh € X, ||h|| <6, ¢t € [a,b], t+ s € [a,b], and
(&t +s)+h,t+s)eS. |

We write VGg%g)b(F;f*7a*;S) to denote the set of all

the sense of inward graph-convergence—of a sequenpeintwise robust GDQ variational generators bf along

of continuous single-valued maps frato Y.

(&4, 04) in the direction ofS.

We useCCA(X;Y') to denote the set of all CCA set-valuedexamples of variational generators.We now state four

maps fromX to Y. ]

GDQs. The precise definition of “generalized differential 9"

quotient” is as follows. Let us assume that (¥ and
Y are FDNRLSs, (i)F: X — Y is a set-valued map,
(i) z. € X, (iv) . € Y, and (v) S C X. We say
that A is a generalized differential quotient(abbreviated
“GDQ") of F at (z.,%.) in the direction of S, and write

A € GDQ(F;z.,y.;S), if (I) Ais a compact subset of

Lin(X,Y), () for every neighborhood of A in Lin(X,Y)
there existl/, G such that (11.1)U is a neighborhood of.
in X; (1.2) .+ G(z) - (x—Z,) C F(x) for everyz € UNS;
and (I1l.3) G is a CCA set-valued map froi N S to A.

Variational generators. It will be convenient to define two
types of “variational generators.” We will assume that

(VGA) X and Y are FDNRLSs,a,b € R, a < b
£ €C%a,b]; X), 041 [a,b] =Y, SC X xR,
andF : X xR—Y.

We recall that thalistancedist(S, S") between two subsets

S, S’ of a metric spacelM with distance functiond,; is
defined bydist(S, S’) = inf{dy/(s,s') : s € S, s’ € §'}.

Definition 3.2: Assume that (VGA) holds. Arl! fixed-
time GDQ variational generator off" along (¢, 0.) in the
direction of S is a set-valued map : [a,b] — Lin(X,Y)
such that,

« there exist a positive numbérand a family{°},_s5

of measurable functions’ : [a, b] — [0, +oc] such that
limsyo [ #(¢) dt = 0 and, in addition,

dist(o, (t) + A(t) - h, F(E.(t) + h,t)) < 66°(t) (4)

if he X, tela,b], (&(t)+h,t)€S, and||h]|<s. =

propositions giving important examples of variational
erators, omitting the proofs. In their statements, we use
0. f(g,t) to denote the Clarke generalized Jacobian at ¢
of the mapz — f(x,t), and 9%f(q,t)—if f has scalar
values—to denote the Michel-Penot subdifferentialzof-
flz,t) ate =q.

We recall that the notions oépimap and constraint
indicator mapwere defined irgll.

If (S,A) is a measurable space (that is, is a
set and A is a oc-algebra of subsets ofS), X is
a FDNRLS, andA:S+» X, then A is measurable if
{seS:A(s)NQ #0} € A for every open subsef of
X. If (S, A, ) is a nonnegative-measure space (that is,
(S, A) is a measurable space and: A+ [0,+00] is a
nonnegative measure) thenis integrably boundedf there
exists a u-integrable functionk : S — [0, +oc] such that
A(s)C{zeX:||z|| <k(s)} for u-almost alls€ S.

In the first three propositions, we will assume that
#) X and Y are FDNRLSs, f X xR <= Y,

& €C%a,b),X), 6 > 0, TX(&,,6) € Do(f), and
each partial mapt — f(z,t¢) is measurable.

Proposition 3.4: Assume that (#) holds and each partial
map =z — f(x,t) is Lipschitz with a Lipschitz constant
C(t) such that the functionC(:) is integrable. Let
A(t) = 0, f(&«(1), 1), and leto,(t) = f(&(t),t). ThenA is
an integrably bounded measurable set-valued function with
a.e. nonempty compact convex values, and an L fixed-
time variational GDQ off along(¢., o) in the direction of
X X [a,b]. [ |

Proposition 3.5: Assume that (#) holdsy = R, and
each partial map — f(x,t) is Lipschitz with a Lipschitz
constantC'(¢) such that the functior€'(-) is integrable. Let



A(t) = 02f(&x(t),t), and leto.(t) = f(£«(¢),t). Let F be

the epimap off. ThenA is an integrably bounded measurable
nonempty compact convex

set-valued function with a.e.
values, andA is an L' fixed-time variational GDQ ofF
along (¢., 0.) in the direction ofX x [a, b]. ]

Proposition 3.6: Assume that (#) holds and each
partial map z+— f(z,t) is continuous. Also,
assume that (i) for eacht the map z+— f(xz,t) is
differentiable até.(t), and (i) there exists a nonnegative
integrable  function [a,b] >t+— C(t) € R such that
[ (& (t) + b, t) = f(E (), 1) ]| < C @) whenever
t€la,b),he X, and|h| <. LetA(t) = {D,f(&(t),t)},
and leto,(t) = f(&(t),t). Then A is an L! fixed-time
variational GDQ of f along (¢.,0.) in the direction of
X X [a,b]. [ |

Proposition 3.7:Assume that X is a FDNRLS,
& €C%a,b),X), 6 >0,T=T%(,.,6),andg : T — R

3. If Y =R, anintegrable lower boundor f on K is an

integrable funtionR > ¢t — ¢(t) € [0, +o00] such that

f(z,t) > —p(t) for all (z,t) € K.

We call f integrably bounded(IB)—resp. integrably

lower bounded (ILB)—on K if f is BL°(X,R)-

measurable o and there exists an integrable bound—

resp. an integrable lower bound—fgron K.

5. We write ZB(X x R, K;Y), ZLB(X x R, K;R) to
denote, respectively, the sets of (i) all ppd maps from
X xR toY that are IB onk, and (ii) all ppd maps
from X x R to R that are ILB onkK. ]

If S C X xR, we write Arc(S) to denote the set of

all ¢ such that, for some nonempty compact interva

(i) €€CO(I¢; X)), and (i) (£(2),t) € S for all ¢ € I.

If £:R+~—[0,400] is a locally integrable function, then

Arc(S) denotes the set of af € Arc(S) such that¢

is absolutely continuous anitf(t)|| < k(t) for a. e.t € I.
The setsArc(S) are metric spaces, with the distance

4,

is a single-valued everywhere defined function. Assumé(¢,¢’) of two members : [a,b] — X, £ : [a’,b] — X of

that (a) g(&.(¢),t) < 0 for all ¢t € [a,b], (b) each
partial map ¢+— g(xz,t) is upper semicontinuous on
{t € R: (z,t) € T}, (c) each partial map: — g(z,t) is
Lipschitz on {z € X : ||z — &(t)|| < &}, with a Lipschitz
constantC which is independent of for ¢t € [a,b]. Let
Avg = {(z,t) € T : g(,t) > 0} s0 Av, = Do(xy").
For eacht € [a,b], let A(t) = 97 g(&.(t),t), where
(*) 97g(z,t) is the convex hull of the set of all limits
lim; .., wj;, for all sequence(z;,t;,w;)};en such
thatlim;_,(z;,t;) — (z,t) and, for allj,
(*.) (1) (zj,t;) € Avg, (2) the functionz — g(z,t;) is
differentiable atr;, and (3)w; = V.g(z;,t;),
Let K {t € [a,}] (&«(t),t) € ClosAuvg}.
Let 0.(t) =0 for t € [a,b]. Then (I) A is an upper

Arc (S) defined by
d(&,€") =la—a'| + b= V| +sup{|é(t) - '(®)] : t € R}

where, for any continuous map : [, 3] — X, 7 is the
extension ofy to R which is identically equal tey(«) on
] — o0, a] and to(5) on [8, +ocl.

If XY are FDNRLSs,K C X xR is compact, and
feIB(X xR,K;Y), then we define a real-valued
integral map Z; x Arc(K) +— R, by letting
Iy.k(8) = Jpoge) f(&(s),5) ds for every £ € Arc(K). If
S C Arc(K), we call f integrally continuous (abbr. IC)
on Sif Zy i [ S is continuous. Iff € ZLB(X x R, K;R),
thenZ; x is still well defined as a map intR U {400}, and
we call f integrally lower semicontinuougabbr. ILSC)on

semicontinuous set-valued map with compact convex valueS,if Z; x [ S is lower semicontinuous.

(I) K is compact, (N)K = {t € [a,b] : A(t) # 0}, and

We will be particularly interested in map$ that, for

(IV) A is a pointwise robust GDQ variational generator osome integrable functiok, are both integrably bounded with

Xy~ along (§«,0.) in the direction ofAv,. [ |

IV. DISCONTINUOUS VECTOR FIELDS

Integral boundedness and integral continuity.lf X is a
FDRLS, BL?(X,R) will denote thes-algebra of subsets of
X x R generated by (a) all the products x L, with B a

Borel subset ofX and L a Lebesgue-measurable subset o

R, together with (b) all the subsef$ of X x R such that
the set{t € R: (3x € X)((z,t) € S)} is Lebesgue-null.

Let X,Y be FDNRLSSs, letf be a ppd map fromX x R
to Y, and letK be a compact subset &f x R.

1. We say that f is essentially BoreklLebesgue
measurable onK, or BL*(X,R)-measurable onk,
if K C Do(f) andf~Y(U)N K € BL(X,R) for all
open subset# of Y.

Anintegrable boundfor f on K is an integrable funtion
R 3t — ¢(t) € [0,+00] such that] f(x,t)|| < @(t) for
all (z,t) € K.

integral boundt and integrally continuous oArc  (K).
Definition 4.1: If X, Y are FDNRLSs,K is a compact
subset ofX x R, andf: X x R — Y, we call f co-IBIC
(“co-integrably bounded and integrally continuoust) K if
fe€IB(X xR,K;Y) and there exists an integrable bound
k:R — [0,+0c0] for f on K such thatf is IC on Arc ;(K).
If f:X xR < R, we call f co-ILBILSC (“co-integrably
Pounded and integrally lower semicontinuousih K if
f € ILB(X xR, K;R) and there exists an integrable lower
boundk : R — [0,+o0] for f on K such thatf is ILSC
on Arc,(K). [ |

Points of approximate continuity.Suppose that X
and Y are FDNRLSs, f X X R < Y,
and (z.,t.) € X x R. A modulus of approximate
continuity (abbr. MAC) for f near (z.,t.) is a function
10, +00 [ xR 3 (3,7) — 9(8,r) €]0,+00] such that
(MAC.1) the functionR > 7 +— ¢¥(8,r) €]0,+00] is
measurable for eacl$ €]0, +oo [,
(MAC.2) lim L pp Y(B,r)dr =0,

(8,0)—(0,0),6>0,p>0 p J—



(MAC.3) there exist positive numbers., p., such that

(MAC.3.a) f(z,t) is defined whenevefz — .| < 3.
and |t —t.| < p.,
(MAC.3.b) whenever [BeR, zeX, teR, [t—t. < ps,
and ||z—z.||<f<p., it follows that
1£(2,8) = f(@a 8] < (Bt — L),
Definition 4.2: A point of approximate continuity(abbr.
PAC) for f is a point(z.,t.) € X x R such that there exists
a MAC for f near(z.,t,). |

H4) g = (¢1,-.-,9m) IS an m-tuple of ppd functions
from X x R to R;

(H5) h = (hy,...,hs) is an m-tuple of ppd functions
from X to R;

(H6) ¢ is a ppd function fromX to R;

(H7) U is a set of ppd functions frolR to U such that
the domain of every € I/ is a nonempty compact
interval

Given such aD, a controller is a ppd functiory : R — U

An important example of a class of maps with many poimgvhose domain is a nonempty compact interval. (Hence (H7)

of approximate continuity is given by the following corollary

of the well-known Scorza-Dragoni theorem.

Proposition 4.3: SupposeX, Y are FDNRLSsS2 is open
in X, a,beR, a<b andf:Q x[a,b] — Y is such that
(a) the partial maga,b] 3t +— f(x,t) € Y is measurable
for every z € 2, (b) the partial mag2 > z — f(x,t) €Y
is continuous for everyt € [a,b], and (c) there exists
an integrable functionfa,b] > t — k(t) € [0,4]
such that the bound|f(x,t)|| < k(t) holds whenever
(z,t) € Q x [a,b]. Then there exists a subsét of [a,d]
such thatmeas([a, b]\G) = 0, having the property that every
(Z4,1) € 2 x Gisa PAC off.

Another important example of maps with many PACs i
given by the following result, proved in [5].

Proposition 4.4: SupposeX, Y are FDNRLSsga,b € R,
a<b, and F : X X [a,b] — Y is an almost lower

says that/ is a set of controllers.) Aadmissible controller
is a member of/. If a,0 € R anda < 3, then we
use Wi([a, 3], X) to denote the space of all absolutely
continuous maps : [a, 8] — X. A trajectoryfor a controller
n: o, 8] — U is a mapé € Whi([a, ], X) such that, for
almost everyt € [«, 8], (£(t),n(t),t) belongs toDo(f) and
£(t) = f(&(t),n(t), t). A trajectory-control pair(abbr. TCP)
is a pair(¢,n) such that) is a controller and is a trajectory
for . Thedomainof a TCP(&, n) is the domain of;, which
is, by definition, the same as domain &fA TCP (¢, 7) is
admissibleif n € U.
A TCP (&mn) with domain [o,3] is cost-
dmissible if (i) (¢,n) is admissible, (ii) the function
fa,ﬁ] 3t — fol&(t),n(t), is a. e. defined and

o
measurable, (i) [ min 80, fo(g(t),n(t),t)) dt > —oo,
and (iv) (8) € Do(¢p).

semicontinuous set-valued map with closed nonempty valueslt follows that if (¢, 7) is cost-admissible then the number

such that for every compact subskt of X the function
[a,b] > t — sup{min{|ly|] : v € F(z,t)} : = € K}
is integrable. Then there exists a subsétof [a,b] such

J(&mn) = ¢&(B)) + ff fo(&(t),n(t), ) dt (called thecost
of (&,m)) is well defined and belongs td—oo, +o¢].
A TCP (&, 7n) with domain]«, 3] is constraint-admissible

thatmeas([a, b]\G) = 0, having the property that, wheneverif it satisfies all our state space constraints, that is, if

z. € X, t. € G, vx € F(x,,t,), and K C X is compact,
there exists a mag x [a,b] > (z,t) — f(x,t) € F(z,t)
which is co-IBIC onK x [a,b] and such thatz,,t.) is a
PAC of f and f(z.,t.) = v.. [ |

V. THE MAXIMUM PRINCIPLE

We consider dixed time-interval optimal control problem
with state space constraintsf the form

b
minimize gp(f(b))Jr/ fo(&(#),n(t),t) dt

subject to the conditions: (i)}(-) € Wbhi([a,b], X),

(i) £(t) = f(E@).n(t).t) for ae. t, (i) &a) = 7,
(iv) gi(&(t),t) <0 for t€a,b], i=1,...,m, (v) £(b) € S,
(vi) h;(&(b)) =0 for j =1,...,m, (vii) n(t) € U for all

t € [a,b], (vii) n(-) e U

and areference trajectory-control paifé., 7).

The technical hypothesesVe assume that the data 14-tuple

D= (X,m,m,U,a,b,p, fo, f,T«, g, h,S U) satisfies:
(H1) X is a FDNRLS,m € Zy, m € Z4; U is a set,
a,beR,a<b, z,€ X and S C X;
(H2) fo is a ppd function fromX x U x R to R;
(H3) fis a ppd function fromX x U x R to X;

(CAL) &(a) = T,
(CA2) (&(t),t) € Do(g;) and g;(&(t),t) < 0 for all
tefa,p],and alli € {1,...,m},

(CA3) ¢(8) € 51 (N7, Do(hy))

(CA4) hj(&(B))=0forj=1,...,m.
We useADM (D) and AD M|, (D) to denote the sets of
(i) all cost-admissible, constraint-admissible TGPg,), and
(iiy all (¢,n) € ADM (D) whose domain iga, b].

The hypothesis on the reference TQR,7.) is that it is
a cost-minimizer inAD M, (D). In other words,

(H8) (E*an*) € ADM[a,b](D)v J(f*ﬂl*) < +o0, and
J(&,m) < J(E;m) for all (§,m) € ADMq (D).

The “cost-augmented dynamic§” X xUxR — Rx X
and the “epi-augmented dynamic§” X xU xR—»Rx X

are defined by takindo(f) = Do(f) = Do(fy) N Do(f),
and then letting, for = (z,u,t) € X xU xR,
f(2) = (fo(2), f(2)) and f(2) = [fo(2), +oo[x{f(2)}.

We will also use the constraint indicator maps
Xg. * X xR—>R, for i 1,...,m, and the epimap
@ : X +— R. (These two notions were defined §i.)

Forie {1,...,m}, we let

al(t)=£(& (1), n:(1), 1) and ofi(t)=0
Avg, ={(z,t) € X x [a,b] : gi(x,t) > 0},

if t € [a,b],



(so the Av,, are the “sets to be avoided”). We then define Theorem 5.1:Assume that (H1-16) hold, and let

K; to be the set of alt € [a, b] such that({.(¢),¢) belongs I ={ie{1,...,m}: K; # (0}. Then there exist

to the closure ofdv,,. Then K is obviously compact.. 1. a covectorr € XT, a nonnegative real numbeyp, and
We now make technical hypotheses ®n ., 7., and anm-tuple A = (A1, ..., \z) of real numbers,

five new objects called\’, A%, A", A?, andC. To state 2. a measurable map, b] > ¢ — (Lo(t), L(t)) € A(t),

these hypotheses, we Ii.,, denote the set of all 3. measurable pairs (c§ll) +* = (7°,+%) of selections

constantU-valued functions defined ofu,b], and define of the set-valued mapa?:, defined onk;, for i € I,

Ucila bl = Ucifap) U {74} 4. amembel® = (LM ... Lhw) e (XT)™ of AR,

The technical hypotheses are as follows. 5. a member¥ of A%,
(H9) For eachn € U, there exist a positive 6. a family {v;};,c; of nonnegative additive measures
numbers, such that v; € bvadd([a,b]; R) such thatsupport(v;) C K;,
(H9.a) f(z,n(t),t) is defined whenever,t) belongs such that the following three conditions are satisfied:
to 7% (&, 6,), I. Hamiltonian maximization:  the inequality
(HOb) the map T(6.,0,)3 (#,0) = [@0()0)  Hyy(&(0).m. (0, 7(0) > Hoy (60(0).u,w(?) holds
is co-IBIC on 7% (¢,,4,), and the function wheneveru € U, t € [a,b] are such that¢.(f),)
TX(&,0y)3 (2, 1) fo(z,n(t), t) ER is is a point of approximate continuity of both
co-ILBILSC onT ¥ (&,,4,), augmented vector fieldgz,t) +— f(z,u,t) and
(H10) The numbers,, can be chosen so that (i) each (z,t) — £z, n.(t), 1),
function g; is defined on 7%X(¢,,4,,), and Il. transversality:—7 € CT,
(i) for each i € {1,...,m}, t € l[a,b], the . nontriviality: ||| +mo -+ 370, [Aj] + >, [[will > 0,
set  {reX:gi(z,t)>0 ]z &M <d.} wherer: [a,b] — XT is the unique solution of
is relatively open in the ball ,
{zeX:|z—-&0) <6} { dr(t)=(—m(t) - L(t)+moLo(t))dt+3 ;e 7' (t)dvi(t)
(H11) Af is a measurable integrably bounded set- | 7(b) =7 — 37", \j L — mL#

valued map fromla,0] to X' x Lin(X,X) Remark 5.2:The adjoint covector can also be expressed
with corppact convex values such thatusing (3). The result is the formula
AT € VGEp (£ a,b]: €, 0% X X R), \

(H12) A8 is an m-tuple (A9,...,A9") such that, ﬂ(t)zﬁ(b)_/ ML(s,t)T(woLo(s) d8+2d(7i-u,-)(s)),
for each i € {1,...,m}, A% is an upper t el
semicontinous set-valued map froru,b] to - .

Xt with compact convex values, such thatvhere m(b) = @ —3 7", ALY —mL?, and My, is the

A9 € VGRS (X5 & 08, Avy,), fundamental solution of\/ = L - M. ]

(H13) AP € GDQ(h; ( &.(b),h(& (D)) ); X ),

(H14) A e GDQ @il & (b)’ (’9(5* (b)) ;X ). [1] Sussmann, H. J., “A maximum principle for hybrid optimal control
(H15) C is a limiting Boltyanskii approximating cone of problems.” InProc. 38th IEEE Conf. Decision and Control, Phoenix,
S at 5*(()) AZ, Dec. 19991EEE publications, New York, 1999, pp. 425-430.
. . w [2] Sussmann, H.J., “Bsultats ecents sur les courbes optimales.”lI&®
Our last hypothesis requires the concept of an “equal- " joyrree Annuelle de la Sdde Mattemathique de France (SMF)

time interval-variational neighborhood” (abbr. ETIVN) of a Publications de la SMF, Paris, 2000, pp. 1-52.

controllern We say that a sat of controllers is an ETIVN [3] Sussmann, H.J., “New theories of set-valued differentials and new
; versions of the maximum principle of optimal control theory. Non-
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such thatZ?:1 meas(I;) < e, and substituting the
constant valueu; for the valuen(t) for everyt € I;,
j=1,...,n, it follows thatn € U.

We will then assume

(H16) The classi/ is an equal-time interval-variational

neighborhood ofj..

We are now ready to state our version of the maximum
principle. First, we define thelamiltonian to be the function
H,:XxUxX"xR—R (depending onacR) given by
H(z,u,p,t)=p- f(z,u,t)—afo(z,u,t).



