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Abstract— We present a version of the Pontryagin Maximum
Principle with state-space constraints and very weak technical
hypotheses. The result does not require the time-varying vec-
tor fields corresponding to the various control values to be
continuously differentiable, Lipschitz, or even continuous with
respect to the state, since all that is needed is that they be
“co-integrably bounded integrally continuous.” This includes
the case of vector fields that are continuous with respect to
the state, as well as large classes of discontinuous vector fields,
containing, for example, rich sets of single-valued selections
for almost semicontinuous differential inclusions. Uniqueness
of trajectories is not required, since our methods deal directly
with multivalued maps. The reference vector field and reference
Lagrangian are only required to be “differentiable” along the
reference trajectory in a very weak sense, namely, that of
possessing suitable “variational generators.” The conclusion
yields finitely additive measures, as in earlier work by other
authors, and a Hamiltonian maximization inequality valid also
at the jump times of the adjoint covector.

I. I NTRODUCTION

In a series of previous papers (cf. [1], [2], [3], [4]), we
have developed a “primal” approach to the non-smooth
Pontryagin Maximum Principle, based on generalized
differentials, flows, and general variations. The method used
is essentially the one of classical proofs of the Maximum
Principle such as that of Pontryagin and his coauthors,
based on the construction of packets of needle variations,
but with a refinement of the “topological argument,” and
with concepts of differential more general than the classical
one, and usually set-valued.

In this note we describe the result of applying this
approach to optimal control problems with state-space
constraints. The paper is organized as follows. In§II we
introduce some of our notations, and in particular briefly
recall the simple but not widely known basic concepts about
finitely additive vector-valued measures on an interval. In§III
we review the notion of Generalized Differential Quotient
(GDQ), define the two types of variational generators that
will occur in the maximum principle, and state theorems
asserting that various classical generalized derivatives—
such as classical differentials, Clarke generalized Jacobians,
Michel-Penot subdifferentials, and, for functions defining
state-space constraints, the object often referred to as∂>x g in
the literature—are special cases of our variational generators.
In §IV we discuss the discontinuous vector fields studied in
detail in [5]. Finally, in§V we state the main theorem.
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Remark 1.1:For lack of space, we will omit the proofs,
which will be given in a much longer self-contained paper.
We point out, however, that the proof strategy is quite
straightforward, except for one crucial technical detail. We
make variations, which as usual are families of controls
depending on a finite-dimensional parameter~ε ; we associate
to each variation an “augmented terminal point map”E ;
we differentiateE at ~ε = 0 in the sense of GDQ theory;
we use a set separation theorem to infer the existence of
an adjoint covector for the variation and, finally, we use a
compactness argument to get an adjoint covector that works
for all variations. The “technical detail” referred to above
is that, instead of dealing with the usual packets of needle
variations, we have had to introduce “chattering variations,”
which approximately convexify the set of velocities at each
point.

II. N OTATIONAL PRELIMINARIES AND BACKGROUND

The abbreviations “FDRLS” and “FDNRLS” will stand
for “finite-dimensional real linear space,” and “finite-
dimensional normed real linear space,” respectively. IfX
andY are real linear spaces, thenLin(X,Y ) will denote the
set of all linear maps fromX to Y . We useX† to denote
Lin(X,R), i.e., the dual space ofX.

Single- and set-valued maps.A set-valued map is a triple
F = (A,B,G) such thatA andB are sets andG is a subset
of A×B. If F = (A,B,G) is a set-valued map, we say that
F is a set-valued map fromA to B. In that case, the setsA,
B, G are thesource, target, and graph of F , respectively,
and we writeA = So(F ), B = Ta(F ), G = Gr(F ). If
x ∈ So(F ), we writeF (x) = {y : (x, y) ∈ Gr(F )}. The set
Do(F ) = {x ∈ So(F ) : F (x) 6= ∅} is the domain of F . If
A, B are sets, we useSVM(A,B) to denote the set of all
set-valued maps fromA to B, and writeF : A 7→→ B to
indicate thatF ∈ SVM(A,B). A ppd map fromA to B
(where “ppd” stands for “possibly partially defined’) is an
F ∈ SVM(A,B) such thatF (x) has cardinality zero or
one for everyx ∈ A. We write F : A ↪→ B to indicate
that F is a ppd map fromA to B. If F : A 7→→ B, and
C ⊆ A, then therestriction of F to C is the set-valued map
F dC defined byF dCdef= (C,B,Gr(F ) ∩ (C ×B)).

Epimaps and constraint indicator maps.If f : S ↪→ R

is a ppd function, then theepimap of f is the set-valued
map f̌ : S 7→→ R whose graph is the epigraph off , so that



f̌(s) = {f(s) + v : v ∈ R, v ≥ 0} whenevers ∈ Do(f), and
f̌(s) = ∅ if s ∈ S\Do(f). The constraint indicator mapof
f is the set-valued mapχcof : S 7→→ R such thatχcof (s) = ∅
if f(s) ≤ 0 or s ∈ S\Do(f), and χcof (x) = [0,+∞ [ if
f(x) > 0 .

Cones.A cone in a FDRLSX is a nonempty subsetC of
X such thatr · c ∈ C wheneverc ∈ C, r ∈ R and r ≥ 0.
The polar of a coneC ⊆ X is the closed convex cone
C† = {λ ∈ X† : λ(c) ≤ 0 for all c ∈ C}.

If X is a FDRLS,S ⊆ X, and x ∈ S, a Boltyanskii
approximating cone toS at x is a convex coneC in X
such that there exist ann ∈ Z+, a closed convex coneD
in Rn, a neighborhoodU of 0 in Rn, a continuous map
F : U ∩ D 7→ S, and a linear mapL : Rn 7→ X, such
that F (h) = x + L · h + o(‖h‖) as h → 0 via values in
D, andC = L · D. A limiting Boltyanskii approximating
cone toS at x is a closed convex coneC such thatC is
the closure of an increasing union

⋃∞
j=1 Cj such that each

Cj is a Boltyanskii approximating cone toS at x.

Tubes. If X is a FDNRLS, a, b ∈ R, a ≤ b,
ξ ∈ C0([a, b], X) and δ > 0, we useT X(ξ, δ) to denote
the δ-tube aboutξ in X, defined by

T X(ξ, δ) def= {(x, t) :x∈X, a≤ t≤b, ‖x−ξ(t)‖≤δ} . (1)

Finitely additive measures. If a, b ∈ R, a < b, andX
is a FDNRLS, we usePc([a, b];X) to denote the set of
all piecewise constantX-valued functions on[a, b], so that
f ∈ Pc([a, b];X) iff f : [a, b] 7→ X and there exists a finite
partition P of [a, b] into intervals such thatf is constant
on eachI ∈ P. We let Pc([a, b];X) denote the set of all
uniform limits of members ofPc([a, b];X), soPc([a, b];X)
is a Banach space, endowed with the sup norm. Furthemore,
Pc([a, b];X) is exactly the space of allf : [a, b] 7→ X
such that the left limitf(t−) = lims→t,s<t f(s) exists for
all t ∈ ]a, b], and the right limitf(t+) = lims→t,s>t f(s)
exists for allt ∈ [a, b [ .

We define Pc0([a, b];X) to be the set of all
f ∈ Pc([a, b];X) that vanish on the complement of a
countable (i.e., finite or countably infinite) set. (Then
Pc0([a, b];X) is the closure inPc([a, b];X) of the space
Pc0([a, b];X) of all f ∈ Pc([a, b];X) such thatf vanishes
on the complement of a finite set.)

We let pc([a, b];X) be the quotient space
Pc([a, b];X)/Pc0([a, b];X). Then every equivalence
classF ∈ pc([a, b];X) has a unique left-continuous member
F−, and a unique right-continuous memberF+, and of
courseF− ≡ F+ on the complement of a countable set.
So pc([a, b];X) can be identified with the set of all pairs
(f−, f+) of X-valued functions on[a, b] such thatf− is
left-continuous,f+ is right-continuous, andf− ≡ f+ on the
complement of a countable set.

If X is a FDNRLS, an additive X-valued inter-
val function of bounded variation on [a, b] is a

member of the dual spacepc([a, b];X†)†def= bvadd([a, b];X).
A member µ of bvadd([a, b];X) gives rise to a set

function µ̂ : I([a, b]) 7→ X (whereI([a, b]) is the set of all
subintervals of[a, b]), defined by〈µ̂(I), y〉 = µ(χy

I
) for

y ∈ X†, where χy
I
(t) = 0 if t /∈ I and χy

I
(t) = y if

t ∈ I. We then associate toµ its cumulative distribution
cdµ, defined bycdµ(t) = −µ̂([t, b]) for t ∈ [a, b]. Then
cdµ belongs to the spacebvfn0;b([a, b];X) of all func-
tions ϕ : [a, b] 7→ X that are of bounded variation and
such thatϕ(b) = 0. (We call ϕ of bounded variation
if ‖ϕ‖bv < ∞, where ‖ϕ‖bv is the supremum of all the
sums

∑m
j=1 ‖ϕ(tj) − ϕ(sj)‖, for all m ∈ N and {sj}mj=1,

{tj}mj=1 such thata≤s1≤ t1≤s2≤ t2≤· · ·≤sm≤ tm≤b.)
The mapbvadd([a, b];X) 3 µ 7→ cdµ ∈ bvfn0;b([a, b];X)
is a bijection. The dual Banach space norm‖µ‖ of a µ ∈
bvadd([a, b];X) coincides with‖cdµ‖bv.

A µ ∈ bvadd([a, b];X) is a left (resp.right) delta function
if there exist anx ∈ X and at ∈ ] a, b] (resp. at ∈ [ a, b [ )
such thatµ(F ) = 〈F (t−), x〉 (resp.µ(F ) = 〈F (t+), x〉) for
all F ∈ pc([a, b], X). We call µ left-atomic (resp. right-
atomic) if it is the sum of a convergent series of left (resp.
right) delta functions.

A µ ∈ bvadd([a, b];X) is continuous if the functioncdµ
is continuous. Everyµ ∈ bvadd([a, b];X) has a unique
decomposition into the sum of a continous partµco, a
left-atomic partµat,− and a right-atomic partµat,+. (This
resembles the usual decomposition of a countably additive
measure into the sum of a continuous part and an atomic
part. The only difference is that in the finitely additive setting
there are left and right atoms rather than just atoms.)

If Y is a FDNRLS, abounded Y -valued measurable
pair on [a, b] is a pair (γ−, γ+) of bounded Borel
measurable functions from[a, b] to Y such that
γ− ≡ γ+ outside a countable set. IfX,Y, Z are
FDNRLSs, Y ×X 3 (y, x) 7→ 〈y, x〉 ∈ Z is a bilinear
map, µ ∈ bvadd([a, b], X), nand (γ−, γ+) is a bounded
Y -valued measurable pair on[a, b], then the product measure
γ ·µ is a member ofbvadd([a, b], Z) defined by multiplying
the continuous partµco by γ− or γ+, the left-atomic part
by γ−, and the right-atomic part byγ+. In particular, the
productγ · µ is a well defined member ofbvadd([a, b], X)
wheneverµ ∈ bvadd([a, b],R) andγ is a boundedX-valued
measurable pair on[a, b].

Finally, we need to study the solutions of an “adjoint”
Cauchy problem represented formally as

dy(t) = −y(t) · L(t) · dt+ dµ(t) , y(b) = ȳ , (2)

where µ∈bvadd([a, b], X†) andL∈L1([a, b], Lin(X,X)).
We do this by rewriting our Cauchy problem as the integral
equationy(t)− V (t) =

∫ b
t
y(s) · L(s) · ds, whereV = cdµ.

This is easily seen to have a unique solutionπ, given by

π(t) = ȳ ·ML(b, t)−
∫

[t,b]

dµ(s) ·ML(s, t) , (3)

whereML : [a, b]× [a, b] 7→ Lin(X,X) is the fundamental
solution of Ṁ = M · L, characterized by the identity
ML(τ, t) = IX +

∫ τ
t
L(r) ·ML(r, t) dr.



III. G ENERALIZED DIFFERENTIAL QUOTIENTS(GDQS)
AND VARIATIONAL GENERATORS

Cellina continuosly approximable maps.If K, Y are metric
spaces andK is compact, thenSVMcomp(K,Y ) will denote
the subset ofSVM(K,Y ) whose members are the set-
valued maps fromK to Y that have a compact graph. We say
that a sequence{Fj}j∈N of members ofSVMcomp(K,Y )
inward graph-convergesto anF ∈ SVMcomp(K,Y )—and

write Fj
igr−→ F—if for every open subsetΩ of K×Y such

thatGr(F ) ⊆ Ω there exists ajΩ ∈ N such thatGr(Fj) ⊆ Ω
wheneverj ≥ jΩ.

If X andY are metric spaces andF : X 7→→ Y , thenF
is compactly graphedif for every compact subsetK of X
the restrictionF dK of F to K has a compact graph.

Definition 3.1: Assume thatX, Y are metric spaces. A
Cellina continuously approximable set-valued map(abbr.
“CCA map”) fromX to Y is a compactly graphed set-valued
mapF : X 7→→ Y such that

• for every compact subsetK of X, F dK is a limit—in
the sense of inward graph-convergence—of a sequence
of continuous single-valued maps fromK to Y .

We useCCA(X;Y ) to denote the set of all CCA set-valued
maps fromX to Y .

GDQs. The precise definition of “generalized differential
quotient” is as follows. Let us assume that (i)X and
Y are FDNRLSs, (ii)F : X 7→→ Y is a set-valued map,
(iii) x̄∗ ∈ X, (iv) ȳ∗ ∈ Y , and (v) S ⊆ X. We say
that Λ is a generalized differential quotient(abbreviated
“GDQ”) of F at (x̄∗, ȳ∗) in the direction of S, and write
Λ ∈ GDQ(F ; x̄∗, ȳ∗;S), if (I) Λ is a compact subset of
Lin(X,Y ), (II) for every neighborhood̂Λ of Λ in Lin(X,Y )
there existU , G such that (II.1)U is a neighborhood of̄x∗
in X; (II.2) ȳ∗+G(x)·(x−x̄∗) ⊆ F (x) for everyx ∈ U∩S;
and (III.3) G is a CCA set-valued map fromU ∩ S to Λ̂.

Variational generators. It will be convenient to define two
types of “variational generators.” We will assume that

(VGA) X and Y are FDNRLSs,a, b ∈ R, a ≤ b
ξ∗ ∈ C0( [a, b] ; X ), σ∗ : [a, b] ↪→ Y , S ⊆ X × R,
andF : X × R 7→→ Y .

We recall that thedistancedist(S, S′) between two subsets
S, S′ of a metric spaceM with distance functiondM is
defined bydist(S, S′) = inf{dM (s, s′) : s ∈ S, s′ ∈ S′} .

Definition 3.2: Assume that (VGA) holds. AnL1 fixed-
time GDQ variational generator ofF along (ξ∗, σ∗) in the
direction of S is a set-valued mapΛ : [a, b] 7→→ Lin(X,Y )
such that,

• there exist a positive number̄δ and a family{κδ}0<δ≤δ̄
of measurable functionsκδ : [a, b] 7→ [0,+∞] such that
limδ↓0

∫ b
a
κδ(t) dt = 0 and, in addition,

dist(σ∗(t) + Λ(t) · h, F (ξ∗(t) + h, t)) ≤ δκδ(t) (4)

if h∈X, t∈ [a, b], (ξ∗(t)+h, t)∈S, and‖h‖≤δ.

We will use the expressionV GL
1,ft

GDQ(F ; ξ∗, σ∗;S) to denote
the set of allL1 fixed-time GDQ variational generators ofF
along (ξ∗, σ∗) in the direction ofS.

Definition 3.3: Assume that (VGA) holds. Apointwise
robust GDQ variational generator ofF along (ξ∗, σ∗) in the
direction of S is a set-valued mapΛ : [a, b] 7→→ Lin(X,Y )
such that,
• there exist positive numbers̄δ, s̄, and a family
{κδ,s}0<δ≤δ̄,0<s≤s̄ of functionsκδ,s : [a, b] 7→ [0,+∞]
such that

lim
δ↓0,s↓0

κδ,s(t) = 0 for every t ∈ [a, b] (5)

and, in addition,

dist(σ∗(t+ s) + Λ(t) · h, F (ξ∗(t+ s) + h, t+ s))
≤ δκδ,s(t) (6)

wheneverh ∈ X, ‖h‖ ≤ δ, t ∈ [a, b], t+ s ∈ [a, b], and
(ξ∗(t+ s) + h, t+ s) ∈ S.

We write V Gpw,robGDQ (F ; ξ∗, σ∗;S) to denote the set of all
pointwise robust GDQ variational generators ofF along
(ξ∗, σ∗) in the direction ofS.

Examples of variational generators.We now state four
propositions giving important examples of variational
generators, omitting the proofs. In their statements, we use
∂xf(q, t) to denote the Clarke generalized Jacobian atx = q
of the map x 7→ f(x, t), and ∂oxf(q, t)—if f has scalar
values—to denote the Michel-Penot subdifferential ofx 7→
f(x, t) at x = q.

We recall that the notions ofepimap and constraint
indicator mapwere defined in§II.

If (S,A) is a measurable space (that is,S is a
set and A is a σ-algebra of subsets ofS), X is
a FDNRLS, and Λ:S 7→→X, then Λ is measurable if
{s ∈ S : Λ(s) ∩ Ω 6= ∅} ∈ A for every open subsetΩ of
X. If (S,A, µ) is a nonnegative-measure space (that is,
(S,A) is a measurable space andµ : A 7→ [0,+∞] is a
nonnegative measure) thenΛ is integrably boundedif there
exists aµ-integrable functionk : S 7→ [0,+∞] such that
Λ(s)⊆{x∈X :‖x‖≤k(s)} for µ-almost alls∈S.

In the first three propositions, we will assume that
(#) X and Y are FDNRLSs,f : X × R ↪→ Y ,

ξ∗ ∈ C0([a, b], X), δ̄ > 0, T X(ξ∗, δ̄) ⊆ Do(f), and
each partial mapt 7→ f(x, t) is measurable.

Proposition 3.4:Assume that (#) holds and each partial
map x 7→ f(x, t) is Lipschitz with a Lipschitz constant
C(t) such that the functionC(·) is integrable. Let
Λ(t) = ∂xf(ξ∗(t), t), and letσ∗(t) = f(ξ∗(t), t). ThenΛ is
an integrably bounded measurable set-valued function with
a.e. nonempty compact convex values, andΛ is anL1 fixed-
time variational GDQ off along(ξ∗, σ∗) in the direction of
X × [a, b].

Proposition 3.5:Assume that (#) holds,Y = R, and
each partial mapx 7→ f(x, t) is Lipschitz with a Lipschitz
constantC(t) such that the functionC(·) is integrable. Let



Λ(t) = ∂oxf(ξ∗(t), t), and letσ∗(t) = f(ξ∗(t), t). Let F be
the epimap off . ThenΛ is an integrably bounded measurable
set-valued function with a.e. nonempty compact convex
values, andΛ is an L1 fixed-time variational GDQ ofF
along (ξ∗, σ∗) in the direction ofX × [a, b].

Proposition 3.6:Assume that (#) holds and each
partial map x 7→ f(x, t) is continuous. Also,
assume that (i) for eacht the map x 7→ f(x, t) is
differentiable atξ∗(t), and (ii) there exists a nonnegative
integrable function [a, b] 3 t 7→ C(t) ∈ R such that
‖f(ξ∗(t) + h, t)− f(ξ∗(t), t)‖ ≤ C(t)‖h‖ whenever
t ∈ [a, b], h ∈ X, and‖h‖ ≤ δ̄. Let Λ(t) = {Dxf(ξ∗(t), t)},
and let σ∗(t) = f(ξ∗(t), t). Then Λ is an L1 fixed-time
variational GDQ of f along (ξ∗, σ∗) in the direction of
X × [a, b].

Proposition 3.7:Assume that X is a FDNRLS,
ξ∗ ∈ C0([a, b], X), δ̄ > 0, T = T X(ξ∗, δ̄), andg : T 7→ R

is a single-valued everywhere defined function. Assume
that (a) g(ξ∗(t), t) ≤ 0 for all t ∈ [a, b], (b) each
partial map t 7→ g(x, t) is upper semicontinuous on
{t ∈ R : (x, t) ∈ T}, (c) each partial mapx 7→ g(x, t) is
Lipschitz on {x ∈ X : ‖x− ξ∗(t)‖ ≤ δ̄}, with a Lipschitz
constantC which is independent oft for t ∈ [a, b]. Let
Avg = {(x, t) ∈ T : g(x, t) > 0} soAvg = Do(χcog ).

For eacht ∈ [a, b], let Λ(t) = ∂>x g(ξ∗(t), t), where

(*) ∂>x g(x̄, t) is the convex hull of the set of all limits
limj→∞ ωj , for all sequences{(xj , tj , ωj)}j∈N such
that limj→∞(xj , tj)→ (x̄, t) and, for allj,

(*.i) (1) (xj , tj) ∈ Avg, (2) the functionx 7→ g(x, tj) is
differentiable atxj , and (3)ωj = ∇xg(xj , tj),

Let K = {t ∈ [a, b] : (ξ∗(t), t) ∈ ClosAvg}.
Let σ∗(t) = 0 for t ∈ [a, b]. Then (I) Λ is an upper
semicontinuous set-valued map with compact convex values,
(II) K is compact, (III)K = {t ∈ [a, b] : Λ(t) 6= ∅}, and
(IV) Λ is a pointwise robust GDQ variational generator of
χcog along (ξ∗, σ∗) in the direction ofAvg.

IV. D ISCONTINUOUS VECTOR FIELDS

Integral boundedness and integral continuity.If X is a
FDRLS,BLe(X,R) will denote theσ-algebra of subsets of
X × R generated by (a) all the productsB × L, with B a
Borel subset ofX andL a Lebesgue-measurable subset of
R, together with (b) all the subsetsS of X × R such that
the set{t ∈ R : (∃x ∈ X)((x, t) ∈ S)} is Lebesgue-null.

Let X,Y be FDNRLSs, letf be a ppd map fromX ×R
to Y , and letK be a compact subset ofX × R.

1. We say that f is essentially Borel×Lebesgue
measurable onK, or BLe(X,R)-measurable onK,
if K ⊆ Do(f) and f−1(U) ∩K ∈ BLe(X,R) for all
open subsetsU of Y .

2. An integrable boundfor f onK is an integrable funtion
R 3 t→ ϕ(t) ∈ [0,+∞] such that‖f(x, t)‖ ≤ ϕ(t) for
all (x, t) ∈ K.

3. If Y = R, an integrable lower boundfor f onK is an
integrable funtionR 3 t → ϕ(t) ∈ [0,+∞] such that
f(x, t) ≥ −ϕ(t) for all (x, t) ∈ K.

4. We call f integrably bounded(IB)—resp. integrably
lower bounded (ILB)—on K if f is BLe(X,R)-
measurable onK and there exists an integrable bound—
resp. an integrable lower bound—forf on K.

5. We write IB(X × R,K;Y ), ILB(X × R,K;R) to
denote, respectively, the sets of (i) all ppd maps from
X × R to Y that are IB onK, and (ii) all ppd maps
from X × R to R that are ILB onK.

If S ⊆ X × R, we write Arc (S) to denote the set of
all ξ such that, for some nonempty compact intervalIξ,
(i) ξ∈C0( Iξ ; X ), and (ii) (ξ(t), t) ∈ S for all t ∈ Iξ.
If k : R 7→ [0,+∞] is a locally integrable function, then
Arc k(S) denotes the set of allξ ∈ Arc (S) such thatξ
is absolutely continuous and‖ξ̇(t)‖ ≤ k(t) for a. e.t ∈ Iξ.

The setsArc (S) are metric spaces, with the distance
d(ξ, ξ′) of two membersξ : [a, b] 7→ X, ξ′ : [a′, b′] 7→ X of
Arc (S) defined by

d(ξ, ξ′) = |a− a′|+ |b− b′|+ sup{‖ξ̃(t)− ξ̃′(t)‖ : t ∈ R}

where, for any continuous mapγ : [α, β] 7→ X, γ̃ is the
extension ofγ to R which is identically equal toγ(α) on
]−∞, α] and toγ(β) on [β,+∞[.

If X,Y are FDNRLSs,K ⊆ X × R is compact, and
f ∈ IB(X × R,K;Y ), then we define a real-valued
integral map If,K : Arc (K) 7→ R, by letting
If,K(ξ) =

∫
Do(ξ)

f(ξ(s), s) ds for every ξ ∈ Arc (K). If
S ⊆ Arc (K), we call f integrally continuous (abbr. IC)
on S if If,K d S is continuous. Iff ∈ ILB(X × R,K;R),
thenIf,K is still well defined as a map intoR∪{+∞}, and
we call f integrally lower semicontinuous(abbr. ILSC)on
S if If,K d S is lower semicontinuous.

We will be particularly interested in mapsf that, for
some integrable functionk, are both integrably bounded with
integral boundk and integrally continuous onArc k(K).

Definition 4.1: If X, Y are FDNRLSs,K is a compact
subset ofX × R, andf : X × R ↪→ Y , we call f co-IBIC
(“co-integrably bounded and integrally continuous”)on K if
f ∈ IB(X × R,K;Y ) and there exists an integrable bound
k : R 7→ [0,+∞] for f onK such thatf is IC onArc k(K).
If f : X × R ↪→ R, we call f co-ILBILSC (“co-integrably
bounded and integrally lower semicontinuous”)on K if
f ∈ ILB(X×R,K;R) and there exists an integrable lower
boundk : R 7→ [0,+∞] for f on K such thatf is ILSC
on Arc k(K).

Points of approximate continuity.Suppose thatX
and Y are FDNRLSs, f : X × R ↪→ Y ,
and (x̄∗, t̄∗) ∈ X × R. A modulus of approximate
continuity (abbr. MAC) for f near (x̄∗, t̄∗) is a function
] 0,+∞ [×R 3 (β, r) 7→ ψ(β, r) ∈ ] 0,+∞ ] such that

(MAC.1) the functionR 3 r 7→ ψ(β, r) ∈ ] 0,+∞ ] is
measurable for eachβ ∈ ] 0,+∞ [ ,

(MAC.2) lim(β,ρ)→(0,0),β>0,ρ>0
1
ρ

∫ ρ
−ρ ψ(β, r) dr = 0,



(MAC.3) there exist positive numbersβ∗, ρ∗, such that

(MAC.3.a) f(x, t) is defined whenever‖x − x̄∗‖ ≤ β∗
and |t− t̄∗| ≤ ρ∗,

(MAC.3.b) whenever β∈R, x∈X, t∈R, |t− t̄∗|≤ρ∗,
and ‖x−x̄∗‖≤β≤β∗, it follows that
‖f(x, t)− f(x̄∗, t̄∗)‖ ≤ ψ(β, t− t̄∗).

Definition 4.2: A point of approximate continuity(abbr.
PAC) for f is a point(x̄∗, t̄∗) ∈ X×R such that there exists
a MAC for f near(x̄∗, t̄∗).

An important example of a class of maps with many points
of approximate continuity is given by the following corollary
of the well-known Scorza-Dragoni theorem.

Proposition 4.3:SupposeX, Y are FDNRLSs,Ω is open
in X, a, b ∈ R, a < b, andf : Ω × [a, b] 7→ Y is such that
(a) the partial map[a, b] 3 t 7→ f(x, t) ∈ Y is measurable
for every x ∈ Ω, (b) the partial mapΩ 3 x 7→ f(x, t) ∈ Y
is continuous for everyt ∈ [a, b], and (c) there exists
an integrable function[a, b] 3 t 7→ k(t) ∈ [0,+∞]
such that the bound‖f(x, t)‖ ≤ k(t) holds whenever
(x, t) ∈ Ω× [a, b]. Then there exists a subsetG of [a, b]
such thatmeas([a, b]\G) = 0, having the property that every
(x̄∗, t̄) ∈ Ω×G is a PAC off .

Another important example of maps with many PACs is
given by the following result, proved in [5].

Proposition 4.4:SupposeX, Y are FDNRLSs,a, b ∈ R,
a < b, and F : X × [a, b] 7→→ Y is an almost lower
semicontinuous set-valued map with closed nonempty values
such that for every compact subsetK of X the function
[a, b] 3 t 7→ sup{min{‖y‖ : y ∈ F (x, t)} : x ∈ K}
is integrable. Then there exists a subsetG of [a, b] such
that meas([a, b]\G) = 0, having the property that, whenever
x∗ ∈ X, t∗ ∈ G, v∗ ∈ F (x∗, t∗), andK ⊆ X is compact,
there exists a mapK × [a, b] 3 (x, t) 7→ f(x, t) ∈ F (x, t)
which is co-IBIC onK × [a, b] and such that(x∗, t∗) is a
PAC of f andf(x∗, t∗) = v∗.

V. THE MAXIMUM PRINCIPLE

We consider afixed time-interval optimal control problem
with state space constraints, of the form

minimize ϕ(ξ(b)) +
∫ b

a

f0(ξ(t), η(t), t) dt

subject to the conditions: (i)ξ(·) ∈ W 1,1([a, b], X),
(ii) ξ̇(t) = f(ξ(t), η(t), t) for a.e. t, (iii) ξ(a) = x̄∗,
(iv) gi(ξ(t), t)≤ 0 for t∈ [a, b], i= 1, . . . ,m, (v) ξ(b) ∈ S,
(vi) hj(ξ(b)) = 0 for j = 1, . . . , m̃, (vii) η(t) ∈ U for all
t ∈ [a, b], (viii) η(·) ∈ U

and areference trajectory-control pair(ξ∗, η∗).

The technical hypotheses.We assume that the data 14-tuple
D = (X,m, m̃, U, a, b, ϕ, f0, f, x̄∗,g,h, S,U) satisfies:

(H1) X is a FDNRLS,m ∈ Z+, m̃ ∈ Z+; U is a set,
a, b ∈ R, a < b, x̄∗ ∈ X andS ⊆ X;

(H2) f0 is a ppd function fromX × U × R to R;
(H3) f is a ppd function fromX × U × R to X;

(H4) g = (g1, . . . , gm) is an m-tuple of ppd functions
from X × R to R;

(H5) h = (h1, . . . , hm̃) is an m̃-tuple of ppd functions
from X to R;

(H6) ϕ is a ppd function fromX to R;
(H7) U is a set of ppd functions fromR to U such that

the domain of everyη ∈ U is a nonempty compact
interval.

Given such aD, a controller is a ppd functionη : R ↪→ U
whose domain is a nonempty compact interval. (Hence (H7)
says thatU is a set of controllers.) Anadmissible controller
is a member ofU . If α, β ∈ R and α ≤ β, then we
useW 1,1([α, β], X) to denote the space of all absolutely
continuous mapsξ : [α, β] 7→ X. A trajectoryfor a controller
η : [α, β] 7→ U is a mapξ ∈ W 1,1([α, β], X) such that, for
almost everyt ∈ [α, β], (ξ(t), η(t), t) belongs toDo(f) and
ξ̇(t) = f(ξ(t), η(t), t). A trajectory-control pair(abbr. TCP)
is a pair(ξ, η) such thatη is a controller andξ is a trajectory
for η. Thedomainof a TCP(ξ, η) is the domain ofη, which
is, by definition, the same as domain ofξ. A TCP (ξ, η) is
admissibleif η ∈ U .

A TCP (ξ, η) with domain [α, β] is cost-
admissible if (i) (ξ, η) is admissible, (ii) the function
[α, β] 3 t 7→ f0(ξ(t), η(t), t) is a. e. defined and

measurable, (iii)
∫ β
α

min
(

0, f0(ξ(t), η(t), t)
)
dt > −∞,

and (iv) ξ(β) ∈ Do(ϕ).
It follows that if (ξ, η) is cost-admissible then the number

J(ξ, η) = ϕ(ξ(β)) +
∫ β
α
f0(ξ(t), η(t), t) dt (called thecost

of (ξ, η)) is well defined and belongs to]−∞,+∞].
A TCP (ξ, η) with domain[α, β] is constraint-admissible

if it satisfies all our state space constraints, that is, if
(CA1) ξ(α) = x̄∗,
(CA2) (ξ(t), t) ∈ Do(gi) and gi(ξ(t), t) ≤ 0 for all

t ∈ [α, β], and all i ∈ {1, . . . ,m},
(CA3) ξ(β) ∈ S ∩

(
∩m̃j=1 Do(hj)

)
(CA4) hj(ξ(β)) = 0 for j = 1, . . . , m̃.

We useADM(D) andADM[a,b](D) to denote the sets of
(i) all cost-admissible, constraint-admissible TCPs(ξ, η), and
(ii) all (ξ, η) ∈ ADM(D) whose domain is[a, b].

The hypothesis on the reference TCP(ξ∗, η∗) is that it is
a cost-minimizer inADM[a,b](D). In other words,

(H8) (ξ∗, η∗) ∈ ADM[a,b](D), J(ξ∗, η∗) < +∞, and
J(ξ∗, η∗) ≤ J(ξ, η) for all (ξ, η) ∈ ADM[a,b](D) .

The “cost-augmented dynamics”f : X×U×R ↪→ R×X
and the “epi-augmented dynamics”f̌ : X×U×R 7→→R×X
are defined by takingDo(f) = Do(f̌) = Do(f0) ∩ Do(f),
and then letting, forz = (x, u, t) ∈ X×U×R,

f(z) = (f0(z), f(z)) and f̌(z) = [f0(z),+∞[×{f(z)} .

We will also use the constraint indicator maps
χcogi : X × R 7→→ R, for i = 1, . . . ,m, and the epimap
ϕ̌ : X 7→→ R. (These two notions were defined in§II.)

For i ∈ {1, . . . ,m}, we let

σf
∗(t)= f(ξ∗(t), η∗(t), t) and σgi∗ (t)=0 if t ∈ [a, b],
Avgi ={(x, t) ∈ X × [a, b] : gi(x, t) > 0} ,



(so theAvgi are the “sets to be avoided”). We then define
Ki to be the set of allt ∈ [a, b] such that(ξ∗(t), t) belongs
to the closure ofAvgi . ThenKi is obviously compact..

We now make technical hypotheses onD, ξ∗, η∗, and
five new objects calledΛf , Λg, Λh, Λϕ, andC. To state
these hypotheses, we letUc;[a,b] denote the set of all
constantU -valued functions defined on[a, b], and define
Uc;[a,b];∗ = Uc;[a,b] ∪ {η∗}.

The technical hypotheses are as follows.
(H9) For each η ∈ Uc;[a,b];∗. there exist a positive

numberδη such that
(H9.a) f(x, η(t), t) is defined whenever(x, t) belongs

to T X(ξ∗, δη),
(H9.b) the map T X(ξ∗, δη) 3 (x, t) 7→ f(x, η(t), t)

is co-IBIC on T X(ξ∗, δη), and the function
T X(ξ∗, δη)3(x, t) 7→f0(x, η(t), t)∈R is
co-ILBILSC onT X(ξ∗, δη),

(H10) The numberδη∗ can be chosen so that (i) each
function gi is defined on T X(ξ∗, δη∗), and
(ii) for each i ∈ {1, . . . ,m}, t ∈ [a, b], the
set {x ∈ X : gi(x, t) > 0, ‖x− ξ∗(t)‖ ≤ δη∗}
is relatively open in the ball
{x ∈ X : ‖x− ξ∗(t)‖ ≤ δη∗},

(H11) Λf is a measurable integrably bounded set-
valued map from [a, b] to X† × Lin(X,X)
with compact convex values such that
Λf ∈ V GL

1,ft
GDQ(f̌ ; [a, b]; ξ∗, σf

∗;X × R),
(H12) Λg is an m-tuple (Λg1 , . . . ,Λgm) such that,

for each i ∈ {1, . . . ,m}, Λgi is an upper
semicontinous set-valued map from[a, b] to
X† with compact convex values, such that
Λgi ∈ V Gpw,robGDQ (χcogi ; ξ∗, σ

gi
∗ , Avgi),

(H13) Λh ∈ GDQ
(
h;
(
ξ∗(b),h(ξ∗(b))

)
;X
)

,

(H14) Λϕ ∈ GDQ
(
ϕ̌;
(
ξ∗(b), ϕ(ξ∗(b))

)
;X
)

.
(H15) C is a limiting Boltyanskii approximating cone of

S at ξ∗(b).
Our last hypothesis requires the concept of an “equal-

time interval-variational neighborhood” (abbr. ETIVN) of a
controllerη. We say that a setV of controllers is an ETIVN
of a controllerη if
• for everyn ∈ Z+ and everyn-tuple u = (u1, . . . , un)

of members ofU , there exists a positive numberε =
ε(n,u) such that wheneverη′ : Do(η) 7→ U is a
map obtained fromη by selecting ann-tuple I =
(I1, . . . , In) of pairwise disjoint subintervals ofDo(η)
such that

∑n
j=1 meas(Ij) ≤ ε, and substituting the

constant valueuj for the valueη(t) for every t ∈ Ij ,
j = 1, . . . , n, it follows thatη ∈ U .

We will then assume
(H16) The classU is an equal-time interval-variational

neighborhood ofη∗.

We are now ready to state our version of the maximum
principle. First, we define theHamiltonian to be the function
Hα :X×U×X†×R ↪→R (depending on α∈R) given by
Hα(x, u, p, t)=p · f(x, u, t)−αf0(x, u, t).

Theorem 5.1:Assume that (H1-16) hold, and let
I = {i ∈ {1, . . . ,m} : Ki 6= ∅}. Then there exist

1. a covector̄π ∈ X†, a nonnegative real numberπ0, and
an m̃-tupleλλλ = (λ1, . . . , λm̃) of real numbers,

2. a measurable map[a, b] 3 t 7→ (L0(t), L(t)) ∈ Λ(t),
3. measurable pairs (cf.§II) γi = (γi−, γ

i
+) of selections

of the set-valued mapsΛgi , defined onKi, for i ∈ I,
4. a memberLh = (Lh1 , . . . , Lhm̃) ∈ (X†)m̃ of Λh,
5. a memberLϕ of Λϕ,
6. a family {νi}i∈I of nonnegative additive measures

νi ∈ bvadd([a, b];R) such thatsupport(νi) ⊆ Ki,

such that the following three conditions are satisfied:

I. Hamiltonian maximization: the inequality
Hπ0(ξ∗(t̄), η∗(t̄), π(t̄)) ≥ Hπ0(ξ∗(t̄), u, π(t̄)) holds
wheneveru ∈ U , t̄ ∈ [a, b] are such that(ξ∗(t̄), t̄)
is a point of approximate continuity of both
augmented vector fields(x, t) 7→ f(x, u, t) and
(x, t) 7→ f(x, η∗(t), t),

II. transversality:−π̄ ∈ C†,
III. nontriviality: ‖π̄‖+ π0 +

∑m̃
j=1 |λj |+

∑
i∈I ‖νi‖ > 0,

whereπ : [a, b] 7→ X† is the unique solution of{
dπ(t)=(−π(t) · L(t)+π0L0(t))dt+

∑
i∈I γ

i(t)dνi(t)
π(b) = π̄ −

∑m̃
j=1 λjL

h
j − π0L

ϕ

Remark 5.2:The adjoint covectorπ can also be expressed
using (3). The result is the formula

π(t) = π(b)−
∫ b

t

ML(s, t)†
(
π0L0(s) ds+

∑
i∈I

d(γi·νi)(s)
)
,

where π(b) = π̄ −
∑m̃
j=1 λjL

h
j − π0L

ϕ, and ML is the
fundamental solution ofṀ = L ·M .
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