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Abstract—In a series of nonsmooth versions of the stands for “finite-dimensional real linear space,” “FDNRLS”
Pontryagin Maximum  Principle, we used generalized for “normed FDRLS,” “SVM” for “set-valued map,” and
differentials of set-valued maps, flows, and abstract variations. “CCA" for “Cellina continuously approximable.” Alsolg

Bianchini and Stefani have introduced a notion of possibly . . .
high-order variational vector that has the summability is the identity map of the sef, So(f), Ta(f) and Gr(f)

property. We consider a slightly more general class of are, respectively, the source, target, and graph of a SVM
variational vectors than that defined by Bianchini and Stefani, f, f : A — B means f is a set-valued map from to

and prove that the convex combinations of these vectors B” and f : A — B means ¥ is a single-valued possibly
arise as “differentials” of variations that are differentiable partially defined map fromt to B.”

in the sense of one of our generalized differentiation Wi e to d te th | f all funct
theories, namely, that of “approximate generalized differential € use 0 denote € Cclass of all funclions
quotients” (AGDQs). 0 : [0, +00 [+ [0, +oc] such that

« 0 is monotonically nondecreasing (that i§s) < 6(t)

A NOTE FOR THE REVIEWERS (which, naturally, will be omitted ~ Whenevers, ¢ are such that < s <t < +o0);

in the final version): In the final version | will make the paper  ¢(0) =0 andlim, o 6(s) =0

shorter, by removing some technical details, in order to conform i sl ’

to the 6-page limit. If X is a FDNRLS, z, € X, r > 0, then

By (z.,7), Bx(z.,7) are, respectively, the open
ball {reX:|z—uxz. <r} and the closed ball
In a series of papers, we showed how to derive generdly € X : ||z — x| <r}. If X,Y are FDNRLSs, then
nonsmooth versions of the Pontryagin Maximum Principle&in(X,Y), Aff(X,Y) will denote, respectively, the set
using generalized differentials of set-valued maps, flowsf all linear maps and the set of all affine maps from
and abstract point variations. The use of general variations Y. Hence the members ofiff(X,Y) are the maps
rather than the nedle variations used to prove the ordinaty > z+— A(x)=L-x+h, LeLin(X,Y), heY. (For a
maximum principle makes it possible to obtain high-ordemap A of this form, the linear mag. € Lin(X,Y) and
versions of the maximum principle. The main technicathe vectorh € Y are thelinear part and theconstant
difficulty with these general abstract variations is that thepart of 4.) We identify Aff(X,Y) with Lin(X,Y) x YV
need not have the summability property, which is absolutelyy identifying each A € Aff(X,Y) with the pair
essential in order to derive the necessary conditions for., h) € Lin(X,Y) x Y, whereL, h are, respectively, the
optimality. linear part and the constant part af

R. M. Bianchini and G. Stefani (cf. [1], [2], [3], [4], [5])  We endowLin(X,Y) with the operator nornj| - ||op. If
proposed a concept of high-order variation that has goatl C Lin(X,Y) andd > 0, we define
summability properties. The goal of this note is to relate this . .
concept to a theory generalized differentials, by describing A ={L € Lin(X,Y) : dist(L, A) < 6},
a slightly more general version of the Bianchini-Stefanivheredist(L,A) = inf{||L — L'||,, : L’ € A}. Notice that
variations, and showing that they are differentiable in théf L € Lin(X,Y), thendist(L, ) = +oo. In particular, if
precise sense of the theory of “Approximate Generalized = () then A’ = (). Notice also that\’ is compact ifA is
Differential Quotients” (AGDQs). This makes is possiblecompact and\° is convex if A is convex.
to use these variations in order to get additional necessary I
conditions for an optimum in situations such as the very '

I. INTRODUCTION

A PPROXIMATE GENERALIZED DIFFERENTIAL

general one described in [12], where the differentials in- o QUOTIENTS
volved are generalized differential quotients, anébrtiori Definition 2.1: Assume that X,Y are FDNRLSs,
AGDQs. F: XY is a set-valued mapA is a compact subset

1) Preliminary remarks on notationWe will use the ©Of Lin(X.Y), 7. € X, g, €Y, and 5 C X. We

notations and abbreviations of [12]. In particular, “FDRLS"Say that A is an approximate generalized differential
quotient of F' at (Z.,y.) in the direction of S—and

Research supported in part by NSF Grant DMS-05-09930 write A€ AGDQ(F, ., g, S)—if there exists a function



6 € ©—called anAGDQ modulus for (A, F, Z.,3.,S)— all L € A, and we are using the canonical identification of

having the property that T: X with Tz, X7 x Tz, Xo) are AGDQs ofF o ¢, F o 19,
(**) for everye €]0,4+00[ such thatf(s) < oo there respectively, alz,y) and(z2,y), alongsSi, Ss.
exists a set-valued map 3) Approximating multicones.A multicone is a set of

e B cones. Aconvex multiconeis a set of convex ones.

A® € CCA(Bx (Z4,€) NS, Aff(X,Y)) Assume that\/ is a manifold of clas€?, S is a subset
such that, whenever € Bx (7.,e) NS and (L,h) € of M andz, € S.
As(z), it follows thatL € A®), ||h|| < 6(e)e, and Definition 2.4: An AGDQ approximating multicone to
Je + L-(x —Z4) + h € F(x). B S atz, is a convex multicon€ in Tz, M such that there
existanm € Z,, a set-valued map' : R™ —» M, a convex
chain rule for AGDQs. coneD in R™, and aA € AGDQ(F,0,z., D), such that

Theorem 2.2:For i — 1,2,3, let X; be a FONRLS, 1(P)SSandC={LD:L € A}. .
and letz, ; be a point ofX;. Assume that, for = 1,2, 4) Transversality of cones and multiconeH.:S;, S, are
() F; : X; — X1 is a set-valued map, (iiy; is a subset subsets of a linear space, we define thelifferenceS; —5>
of X;, and (jii) A; € AGDQ(F}, T i, Tuiy1,S;). Assume, by letting S; — Sy = {s1 — 52151 € 51,82 € Sa}.
in addition, that (iv)F;(S;) C S., and either (v)S; is a Definition 2.5: Let X be a FDRLS, and leC?, C?
local quasiretract (cf. [13]) oK, atz, » or (V') there exists De two convex cones iX. We say thatC" and C* are
a neighborhood’/ of z,; in X; such that the restriction transversa) and Writeclflﬁc*?, if C1 —(C? = X. We say
Fi[(UnNSy) of Fy to U N S; is single-valued. Then
Ay o Ay eAGDQ(F2OFl,j*71,.f*73751). |

If M and N are manifolds of clas€', z..€ M, 7. €N,

1) Properties of AGDQsThe following statement is the

thatC'! andC? arestrongly transversaland writeC'HhC?,

if C*MC? and in additionC'! N C2 # {0}. n
SCM, and F : M — N, then it is possible to define Definition 2.6: Let X be a FDRLS. We say that two
a set AGDQ(F, %.,7.,5) of compact subsets of the convex multicone’! and C? in X are transversa) and
SpaceLin(j}c*A]\47 Tg*N) of linear maps fromTi*M to write Clﬁcz, if ClﬁC’Q for all C! € Cl, C? e C?. |
T;.N as follows. We let m =dim M, n=dimN, Definition 2.7: Let X be a finite-dimensional real linear
and pick coordinate charts M o z < £(z) € R™,  space. LeC!, C* be convex multicones ick. We say that
N>y n(y) € R", defined nearz,, y. and such C! and(C? are strongly transversal and writeC'Mc2, if
that {(z.) = 0 and n(g.) = 0, and declare that a subsetjy -1f2 and (i) there exists a nontrivial linear functional
A of Lin(Tz, M, Ty, N) belongs tOAGDQ_(val*’?_J*vS) XA e Xt suchthatC' N C? N {z € X : M(z) > 0} # 0 for

if the composite map Dn(g.) o A o DE(Z.) IS N every (C1,02) € ¢! x C2. -
AGDQ(no Fo&1,0,0,£(5))). It then follows easily
from the chain rule that, with this definitiorthe set
AGDQ(F, Z.,y«,S) does not depend on the choice of
the charts¢&, n. In other wordsthe notions of an AGDQ
is invariant under C! diffeomorphisms and therefore
makes sense intrinsically on manifolds of clags!.

5) The nonseparation theoremThe crucial fact about
AGDQs that leads to the maximum principle is the
transversal intersection property, that we now state (cf. [13]
for the proof).

Theorem 2.8:Let M be a manifold of clasg'?, let S,
Then the chain rule also holds on manifolds. Sz be subsets_ OM.’ and Ie_ts* € 51N 5. Leit C1, C» be
Proposition 2.3: Assume that () fori — 1,2,3, AGDQ-approximating multicones 61, Sy at s, such that

M; is a manifold of classC' and z,;€M; and CifiCo. ThenS; and S, are not locally separated at.
(I for i = 1,2, (I.1) S; € M;, (1.2) F; : M; — M;,,, (Thatis, the set5; NS, contains a sequence of points
and (I.3)A; € AGDQ(F;, 4 i, 7+.i+1,5:). Assume, in converging tos, but not equal tcs..) u
addition, that eitherS, is a local quasiretract of\/, or [1l. FLOWS AND TRAJECTORIES

Fy is single-valued onU N S; for some neighborhood

U of z,;. Then the compositeA; o A; belongs to interval, we define 12> — {(t,s) e I x I:¢> s}, and

AGDQ(Fz 0 F1, 311, %3, 51)- 32 ={(t,s,r)elIxIxI:t>s>r}. A state-space

2) Partial AGDQs: Suppose that (a) fof = 1,2, X; bundle (abbr. SSB) over I is an indexed family
is a manifold of classC!, z; € X;, and S, is a subset X = {X;},c; of sets. A state-space bundlds a pair
of X;; (b) Y is a manifold of classC! andy € Y, & =(X,I) such thatl is a nonempty real interval and
) X=X;xXy, (d) S =5 x5, () z = (T1,Z2), X isan SSB ovel. If C is a category of sets with some
) F: X—Y,and (9)A € AGDQ(F;z,y;S). Then, if additional structure (for example, topological spaces, metric
we let 11, o be the partial maps(; > = +— (r,72) € X  spaces, manifolds of clag¥, linear spaces, FDRLSs), then
and X3 3 z — (Z1,z) € X, the chain rule implies that the an SSB(X,I) is a bundle of C-objectsif each X, is a
“partial AGDQs” Ax,, Ax, (Where Ay, is the set of all member ofC. In particular, ifk € Z,, a C*¥ SSBis an
mapsTs, X1 2 v — L(v,0) € T;Y for all L € A, Ay, SSB of manifolds of clas€’*. Also, anFDRLS SSBis an
is the set of all mapgs,X, > v — L(0,v) € T;Y for SSB of finite-dimensional real linear spaces.

1) State space bundles: If [ is a nonempty real



2) Sections: Assume that
(Al) X =(X,I) = ({Xt}ter,I) is an SSB.

Definition 3.1: A section of X is a single-valued we write f < f’ if So(f) = So(f’),

everywhere defined mag on I such that{(t) € X, for
everyt € I. We useSec(X) to denote the set of all sections
of X. ]

3) The tangent bundle of a sectionSuppose that (A1)
holds, X is a C' SSB, and¢ € Sec(X). The family
TeX = {T¢+)X¢}ecr is thetangent bundleof X' alongé.
Clearly, the tangent bundl&'¢ X of a C' SSBX along a
section¢ € Sec(X) is an FDRLS SSB

4) Flows: Assume that (A1) holds.

Definition 3.2: A flow on X is an indexed family
f = {fi.s}t,5er2> such that

1) fis is a set-valued map fronk; to X, whenever

(t,s) € I*=;

2) fi+ is the identity map ofX, whenevert € I;

3) fiso fsr = frr Whenever(t,s,r) € I3=.

A flow is a pairF = (X, f) such thatY is a state space
bundle andf is a flow onX'. ]

5) Comparison of flows: If, for i = 1,2, F* = (X, f?)
are flows on the same SSB, andf’ = {f/ .} ses2.>, We
say thatF! is a subflow of 72, or F2 is a superflow of
F1, and write F! < 72, if

fli(@) C f(x) for all (t,s)€*=.
6) Trajectories: Assume that (A1) holds, and
(A2) F = (X,f)is aflow, andf = {f; s} s)er2.0e-

Definition 3.3: A trajectory of F is a sectioné¢ of X
such that

E(t) € frs(€(s)) whenever (t,s) € I%=.

@)

We useTraj(F) to denote the set of all trajectories of

the flow F. ]
7) Generalized differentials of flows along trajectories:
Assume that (A1-2) hold, an in addition
(A3) X is aC' SSB;
(A4) €€ Traj(F).
Definition 3.4: An AGDQ of F along ¢ is a family
g = {9t.s}1,5)e12.> such that
1) if (t,s) € I*Z, then g, is a nonempty compact
set of linear maps frond; ) X to T¢ ;) X; such that
9t.s € AGDQ(f1,55€(5),€(t); Xs);
2) gi4p = {HTw)Xt} whenevert € I;
3) gt.s © gs.r = gi.r Whenever(r, s, t) € 132, [ ]
8) Compatible selections: Assume that (Al-2-3-4),
hold, and in addition
(A5) g = {gt,s}(t,5)eT> IS an AGDQ ofF along¢.
Definition 3.5: A compatible selectiorof g is a family
¥ = {Vt.s}(t,s)er2> such that
1) s € gi,s Whenever(t, s) € I2;
2) Y= 7., x for eacht € I;
3) Ye.sVs.r = Ye.r Whenever(t,s,r) € 132,
We write C'Sel(g) to denote the set of all compatible
selections ofg. [ |

IV. VARIATIONS
1) Variations of set-valued maps:lf f, f’ are SVMs,
Ta(f) = Ta(f’), and
Gr(f) € Gr(f").

Definition 4.1: Assume thatf, f/ are SVMs such that
f=f. Then

1) A variation of f in f’is a familyv = {v.}.c¢ such

that
a) C' is a closed convex cone with nonempty
interior in some “ambientF DRLS A(C);
b) eachv. is a SVM such thabo(v.) = So(f) and
Ta(ve) = Ta(f);
c) vo=/;
d) v. < f’ whenevers € C.
2) A variation of f is a variation off in the “maximal”
SVM (So(f), Ta(f), So(f) x Ta(f)). m

If v is a variation off, andv = {v. }.c¢, then the con€’
and the linear spacd(C) are, respectively, thparameter
cone and theparameter spacef v. The dimension o’
(or of A(C)) is the number of parametersof v. We will
used to denote the SVM with source(C) x So(vg) and
target Ta(vg) such thati(e,xz) = v.(x) for all £ € A(C),
x € So(vp). (In particular,o(s,z) = 0 if e € A(C)\C.)

2) Infinitesimal impulse variations: Assume that
(A1-2-3-4) hold.

Definition 4.2: An infinitesimal impulse variation(abbr,
v) for (F,§) is a pair (v,t) such thatt € I and
ORS Tf(t)Xt |

3) Summability:  Assume that (Al-2-3-4-5) hold.

Assume in addition that

(AB) F' = (X,£) = (X, {fl Hwpere=) is a flow
on X which is a superflow of.

If V is a finite set of IIVs for(F,¢), we letRY, RY
denote, respectively, the set of all families= {¢V }ycv
of real numbers, and the set of afl= {¢"}ycyv € RY
such thate¥ > 0 for all V € V. (Hence, ifm is the
cardinality of V, and V = {(v!,t1),..., (v™,t™)}, the
spaceRV can be identified witiR™, by identifying each
family &= {e" }.cv with the m-tuple (¢},...,&™), where
& =Wt for j =1,...,m.) We define

t_(V) = min{t: (Jv)(v,t) € V},

t (V) = max{t: (Iv)(v,t) € V},
and let I22(V) be the set of all pairs(b,a) € I>=
such that a < (V) and b > +¢_(V). If

v = {Vt,s}t,5)er2> € CSel(g) and (b,a) € I*=(V), we
define alinear mapV-7* : RV x T¢(q) Xq — Te(r)Xp by
letting

LY @) = ma(a) + D (o).
(v,t)eV

We let AV-&2? pe the set of all the mapsV "-*, for all
v € CSel(g).

Definition 4.3: Let V be a set of 1IVs for(F, £). We say
thatV is g-summable within 7’ if the following is true:



o for every finite subsetV of )V, and every
pair (b,a) € I>=(V), there exists a variation
w = {we}zepy Of fo.q in fy, such that the sehA V-8
is an AGDQ of the mapo at ((0,¢(a)),£(b)) along
RY x X,. [

V. GENERALIZED BIANCHINI-STEFANI VARIATIONS

Assume thatF, X, f, X, I, &, g, F', f/, are such that
(A1-2-3-4-5-6) hold.

From now on, “GBS”
Bianchini-Stefani”.

Definition 5.1: An F’-compatible right GBS IV for
(F,&) is an IV (v,t) for (F,¢) such that there exist

« a nonempty sek,

« positive real numbers, v,

» a pair(r_, ) of functions fromX to I,

« a functiona : ¥ —]0, 400,

« a pair of families

will stand for “Generalized

e =A{voctocenxings Y= {Voctoc)esxo,q>

« a neighborhoodV of £(t) in X,
such that
1) t <7_(0) < 714(0) for everyoc € ;
2) for everyo € ¥ and every real numbey such that
0 < p < 1, there exists &’ € ¥ such that the
following three identities are satisfied:

(Y=t = plr_(0) —1t),
(o) —t = plri(o)— 1),
a(o) = palo):

3) for every (o,c) €X x[0,¢, ¢, belongs to
SVM(XT+(J)aXT_(J)) and'(/}o',c € SVM(Xtht) ;

4) 95,0 = fr,(0),r (o) ANAY, 0 = Lx, Whenevew € X;

5) ¢oc(®) S fl () (s)(®) Whenever o€,

cel0,¢, z € X; (o),

6) for everyo € %, c € [0,¢], andz € X, the inclusion
(fri (o)t © Yoe) (@) S (Poco fro)e)(@) (2
is satisfied;
7) for everyo € ¥, the map
(0,8 x X; 3 (¢,2) > Vgo(2) W, (c,2) C X,
is Cellina continuously approximable d6, ¢] x A/;
8) the continuity formula
lim sc(x) = &(t 3
edim  eelr) =€) ®)
holds in the following precise sense:
e if N is any neighborhood of(¢) in X, then
there exist a neighborhood” of £(¢) in X;
and a positive numbe# such that), () C N
wheneverz € N’, ¢ € [0,¢], anda(o) < §;
9) the asymptotic formula

Yoo(z) =+ a(o)cv + o(a(o) tlz— f(t)H) (4)

holds as(a(o),x — £(t)) — (0,0), in the following
precise sense:
o if k: Q — R™is any coordinate chart ok
defined on an open subs@t of X; such that
lim sup

£(t) € Q, then
810 } =0

{ 5(y) — £(z) — afo)cr,v||
a(o) + [|k(z) — w(&@))]l
where (i) the supremum is taken over all
4-tuples (o, ¢, z,y) € X x [0,¢] x Q x Q such
that |ls(z) — s(E(1)] < B, alo) < B,
Y € Yo.c(z), and (ii) kv = Dr(&(t)) -v. N

An 9-tuple D = (3,¢,v, 7,74, , p, %, N) for which
the conditions of the above definition hold will be called
a GBS data 9-tuplefor (F,&,F,v,t). Given a number
v, an IIV (v,t) is of order 7 (as an F’-compatible
right GBS 1IV for (F,¢)) if it admits a GBS data
O-tupleD = (X,¢,v, 7, 7, , p, 0, N) for (F,&, F' v, t)
for whichv = p.

The following is the main theorem of this paper:

Theorem 5.2:Assume that (A1-2-3-4-5-6) hold. Let
be the set of allF’-compatible right GBS IIVs for(F, €).
ThenV is g-summable withinF’. [ |

Proof: It clearly suffices to prove that every finite
subsetV of V is g-summable withinF’. Furthermore, it is
well known that there is no problem with the summability
of variations at different times, so it suffices to establish the
summability of a nonempty finite s& of F’-compatible
right GBS I1IVs for (F,&) all of which have the same
insertion timet.

Fix such a setV, and letm be its cardinality, so
m > 1. Choose for each(v,t) € V a GBS data
9-tuple DV (XU, e, vv, 0, 7 ol @l Y NV for
(F,& F',u,t). Order the members oV as a sequence
V = ((v', 1), (v2,t),...,(v™, 1), in such a way that
l/vl < V“z <... < va.

From now on, we will writeX?, &, v(j), 77, 77, o,
@', ¥, N7 instead of ="', &', v¥', 7', 7V, @¥,
¥Y, NV Also, we fix ab € I such thath > ¢.

Define Z=¥!x --- xX™, and let> be the set of all
m-tuples @ = (¢',...,0™) € ¥ such thatry(¢™) < b
and 71 (07) < 7ItN(oItY) for j=1,2,...,m—1. Let

C =10,¢"] x --- x [0,&™]. Foreacht' = (c',...,c™) € C,
and eachs = (o!,...,0™) € %, write () - ¢ to denote
the m-tuple (a!(at)ct, ..., a™(c™)c™).

We let
04 (7) =max {al(o?) 1 j € {1,....m}},

and, if 3 > 0, define(8) = {7 € £ : a,(7) < 8} .
Define set-valued mapsp’ . Xe — X (oh)
inductively, by letting @} . = ¢l .. © fr1(,1), and, for
j=2,...,m,
I J

_ ) ) Jj—1
5.8 = Ppici © fﬂ(oj)ﬁfl(gj—l) oz ..

Then |et¢)5—‘7g = fby"'r(ffm) o®d7., so (I)[f’g : Xy — X,

F,c"



It is then clear thatdz s(z) C f;,(z) for all triples
(0,¢,2) € ¥ x C x X,.

Introduce nonnegative real parameters’, for
j=1,...,m, and define, for eac= (¢!,...,e™) € R,
8% (z) = | J {@575(39) (3,8 €S xC, aF) &= 5} .

Then®# = {¢§}5€RT is a variation off; ; in fg,t.
Now, for eachy € g, ;, we letL” be the linear map from
R™ x Tg(t)Xt to Tg(b)Xb given by

LY. e™w) = y(w+ etol + - 4 e™u™)

for (81, . ,€m) ceR™, we Tg(t)Xt.
Let A be the set of all map&”, for all v € g; .. We will
show that

~# m

A€ AGDQ(®";(0,£(t)),6(b);RY x X;). ()
(Recall  that & is the setvalued map
R™ x X; 5 (€,2) — % (z) C X,,.)

To prove (5), we first define
Vs o= 1ymem o0 1/42,2,62 0 gt o1
and letYz z = f; . o ¥z 2. We then observe that
Tzz(7) C Oz 4(x) (6)

wheneverg € 3, ¢ € C, andz € X. (The proof of this is
straightforward: we have

(fri(on)e© Vo1 1)(@) S o1 g1 0 fr1 (o1 4(x) = Of #()
for all z. If we compose both sides witﬂ3(02)7Ti(Ul), we
find

(f‘rg (62),t © 1/1;.1,61)(1’) - (fTE (0'2),71(0'1) © (I)}?,E')(z)
and then
((,032162 © f‘rE (o2),t © w}rl,cl)(l')
- (@32702 ° fTi (02),71 (1) ° (I)(l?,é’)(x) )
so that
(‘pi?,& © fﬂ'f(cf?),t © ¢1171,c1)(x) - éé,a(x) .
Next, we have
(fTJZr(Uz),t o w§2,02)(y) - ((pg’z,cz 0 f'ri((ﬂ),t)(y)

for all y. By applying this to the members of ¢}, . (x),
we find ’

(fr2(02),6 © V2,02 © Vg 1)(2)
C (02,2 © fr2 (02) © Yg1,01) (@)
and this, together with (7), implies that
(fri(ag),t ° ¢§2,c2 ° T/Jil,cl)(%) C ®Z A(x).
Continuing in this way, we show that

(f-rj_(gg” o d’ij,cg ©:++0 1/%1,61)(96) C ‘I);a(fc)

)

for j =1,...,m. In particular,
(frmomyi© Uz 2)(@) C VL ()

If we then compose both sides Wiﬁ;ﬁr(gm), we conclude
that (6) holds.)

We now definel# and Y# exactly as we defined#,
but using the¥z » and Tz 7 instead of the®s . That is,
we define

e = Y {\pg,g(x) (G, eS8 xC, alF) &= 5},
#@) = | {Tg,g(x) (3, eSxC, alF) &= g},
for eache = (e!,...,e™) € R7. Then the family

T = {T§}€ERT is a variation off; ; in fl;)t, such that

T?(aﬁ) C @?(m) whenever £eRY, z € X;. (8)
Clearly, (5) is a consequence of
A H#
A e AGDQ(T;(0,£(1)), (b RY x X)), (9)

and this in turn will follow—thanks to the chain rule—if
we prove that
~ # m
{L} € AGDQ(¥ ;(0,&(1)),£(t); RY x X¢).  (10)

where L is the linear map fronR™ x T ;) X; t0 Te() Xy
given by

L(t, ...

for (81, e 75””) S Rm, w e Tg(t)Xt
To prove (10), we construct an AGDQ modulus for

e w) = w4 etol 4o g™ (12)

=
(L}, ¥ 5(0,8(2)), &(8); R x X).
Our first step will be to introduce coordinates
on X; near £(t). We let n = dimX;, and write

B ={yeR":|lyl <1}, B

B ={yeR": [yl <r}, rB"={yeR":|y[ <r}.

We fix a coordinate chart : Q — R" of class C?,

mapping an open subsét of X; onto B", and such that

k(&(t)) = 0. We then chooseé such thal < 7 < 1, having

the property that:™'(7B") C (12, N7, so all the maps

[0,¢] x k~1(FB") 3 (¢,7) = Vy.(r) C X; are CCA. We

then use the continuity property of the/ to find radii

70,T1,...,Tm SUChthal) < rg <71 <79 <+ - <1y, <T,
and a positive numbes,, having the property that,

(*) wheneverj = 1,...,m, ¢ € [0,¢'], o € ¥, and
o’ () < B, the inclusion)? .(x) C x~'(r;B,) holds
forall z € k= 1(r;_1B,).

We then identifyQ2 with B™ by means of, and restrict the

mapsz — ¢ .(z), for a’(o) < f,, to the ballr;_1B,.

Then¢(t) =0, and

B"={yeR":|y| <1},

i (x)CrB, if zer;_B,, o’(o) <B..

Furthermore, sincej_llﬁin C 7B,, C A7, it is clear that
each map0,&] x r;_1B,, 3 (¢,z) — ¢J (z) C r;B, is
CCA.



Next, we pick in an arbitrary fashion amn-tuple

G = (ol,...,0™) € X. (Clearly,o. exists because the’

are nonempty.) Then, even though it could happen that ose = (¢°, ...

or both inequalitiesr}*(o7*) > b, o™ (¢}*) > B, hold,
we can always pick a number such that0 < p < 1,
p(tT (o) —t) < b—t, and p*™ ™ (o7
then f|nd acy" such thatr* (") —t = p(t7*(c]") — 1)
and a™(6™) = p*Ma™ (™). If we then relabeloj;“ to
be ¢7*, we now have both inequalities}" (¢*) < b and

a™(o7") < B

S|m|larly, it could happen that}"~* (o7
and o™ 1(o”
that 0 < p <1, p(r7" ' (o™ 1) —

) > (el)

t) < 7™m(o) —t,

and p¥(m— Dgm- 1(0’” Yy < B,. We can then find a

&m=1 such thatr]" ' (57 1) —t = p(Tf Yom=1) — 1)
and o™ 1( m— 1) _ pu(m l)am 1(

T 1(0 ) <o )a”dam_l(am_1)<ﬁ*

Continuing in thls way we obtain, after appropriate

relabelings, &, = (o}

*,...

o) € ¥ such that

™ (el) < b, (12)
o™ < 7l(0d) for je{2,...,m}, (13)
(el < B, for je{l,...,m}. (14)

It follows, in particular, tha@, belongs tos.
Having selecteds,, we now modify 5, by taking
B« = a4 (d%). It is clear that this new choice makes

m=ly > 3, but we can pick ap such

D). Then, if we
take 671 to be our newo™ !, we get the inequalities

We now get an estimate fdr;. Suppose that € 2(6*),

r € rB", ¢ € C, and z € hz(¢x). Write
Lo.,om), &= (c,...,c™). Then there exist

»Ym SUCh thatyo = @, y; € Yoici(yj-1) for
,m,andz = y,, —yo — Z L ad ((ﬂ)cjvf Since

Yo, Y1, - - -
i=1,...

M) < Be. Wecan  y;_q € 1j1B", yj € Vi i (yj-1), andoﬂ(aﬂ) < Bs, We

can conclude that
ly; — yj—1 — o (0?) v
ad(07) + [lyj—1]|
so that

< W (s (), Iy ),

lys = yi—1 = & (07)l0’ || <
(07(07) + g1l ) (0. (3. g 1)

It follows, in particular, that

Iyl < Nyl + Aag ()
+(ap(9) + lyj-1 e’ (et (0), lly;-1) -
where A = max{é||v’|| : 5 = 1,...,m}. Therefore

sl < (il + v (@) (A + (@1 (@), Iyl ) -

where A = max(1, \).
Given a positive number 4, let
such that 0<v(d) <fB., v(9) < ro, and

W (u(a) , (m+1)(5\+u(5))mu(5)> <min(1,8) whenever
m. Suppose that € %(v(6)) and ||z|| < v(5).

v(5) be

j=1,...,

smaller, so it does not interfere with the condition (*) thafThen

was used to make our first choice 6f.
Now, forj=1,...,m, 0< B3 <G8, 0<r <rj_q, We

define
- ly — = — ad(o)evd|
j = -
GEr) = s (T
(x),0€%, ad(0) < B, ce [o,gj]}.
810,710 w’ (57 7") =0 for eaChj._
We now define mapsz : C x roB" +—» r,,B", for

G € X(3.), by letting (z(6,z) = Vs (x) for ¢ € C,
x € roBB". Then

(s € CCA(C x roB", r,,B") if o € 3(6,)

el < 7

y eV,

Thenlim

because, i = (cl,
C(}*(Cl, ..., C )

and each maff), &) x7#~1B" >
is CCA. R B
We then define, foF € X(5.), ¢ € C, andx € roB",

m

=G r)—x— Zaj(aj)cjv-j .

Jj=1

™), then
(wam em © 00 d)i’l cl)(x) )
3 (¢, x) = 9L, (x) CrB"

hs(C, x)

(The precise meaning of the above inequality is that

hz(cx) ={y — Zm 1 ol (o9)cdv? 1y € (3(¢,x)}.) Then
hy € CCA(C x 7oB™;R") if o € S(3.).

il < (Jzll+as (3) (ot (6), u(a») < 20(8)(A+1).

Since || < 2w(8)(A + 1), can conclude that
w(ay (@), lnll) < w*(v ( ),2v(0 )( 1)) <1,s0
w2l < (I ll+a (3)) A1) < 20(@) A+ 1) +0(8) (A1),

) Continuing in this way, we

and then||y, | < 3v(8)(A+1
Du(6)(A+1)7 forall j € {1,...,m}.

show that]y;|| < (j+
It then follows that

W (a4 F), llgs-all) <o (v6), (ma) Gesw(8))"w(8) ) <8
for all j. Hence
lys = v5-1 = (@) < 6o’ (07) + llys-all)
< 5(v(8) + (m+ DA+ 1) )1(3).

—yo — 2=y o (07)c/v’ implies that
yj—1 — ol (o7)c?v?). Sincev(d) < fy, it

The identityz = y,,

z = Z;'n:ﬂyj -

follows that
|2]] < Kév(d),

where K = m(ﬁ* +(m+ 1A+ 1)m)

Summarizing, we have proved that

(#) If 6 > 0, andd belongs ta:(v(6)), then the mah is
in COA(C xroB",R"), and the boundz|| < K§v/(6)

holds whenevelfiz|| < v(d§) ¢ € C, and z € hz(¢, z).



Using (#), we will now conclude our proof. Recall thatSince v € Hs(g, )

we have chosen a membér = o™) of ¥ such
thatO[+(O_:*)
Now, if p is any real number such that< p <1, we

can pick for eacty aag € ¥’ such that

(k...

A=t = PO (o) 1),
(o)) —t = p/"I(l(e]) - 1),
&(0d) = pad(od).
Let &, = (op,...,00"). It is then clear that

a4 (3,) = pai(.) = pB.. Furthermoreg, belongs tos..

(Indeed, ifj = 2,...,m, we have
fTNop ) =t = PN 0 )
< 1/1/()(7-3r 1(03 -1
< p"O(l(al) — 1)
< Ti(of;)—t,

sincev(j — 1) < v(j) and 0 < p < 1. Hence

Y o371) < 71 (03) for all j. Also,

oy =t = pMM(Er (el — 1)
") —t)

7'+(
b—t.

IA A

Hencer}'(o}") < b.)

Given a p05|t|ve5, let p(6) = v(d) /B, SO0 < p(d) <1,
becaused < v(§) < f.. Let Q(d) be the set of all
(€ x) = (e1,...,em,x) € R™ x R™ such that||z|| < v(d)
and0 < ¢; goﬂ(a 5)) forj=1,...,m

Then, if (& a:) € Q(9), it follows, if we let
ée) = (51/a1(o})(5)), s Em/a™(0]5)), that c(&) € C.
Therefore the map H; Q(5) +— R™ given
by H;(&,x) = hs,(C(€),r) belongs to CCA(Q(d),R".
Furthermore, this map satisfies the bound| < Kdv(6)
wheneverz € Hs(g, x), (€, ) € Q(I).

Let £(6) be the minimum ofv(s) and the numbers
ai(a 5))07 for 7 = 1...,m. Let B(§) be the
closed Euclidean ball inR™ x R™ having radius

e(d) and center 0. Then B(d) is the set of all
m+n-tuples (eq,... sm,xl,...,xn) € R™ x R™ that
satisfy —e? 4. 4+ 42?4+ +22 <e(d).  Let
Bi(0) = B(5) N (R x R™). Then B, (0) is clearly
a subset ofQ(d), so Hs, restricted toB.(5) is a CCA
map fromB,(§) to R™.

For (£,z) € B, (9), define a setd’(,z) of affine maps

from R™ x R™ by letting A°(, z) be the set of all maps of

the form (¥, w) — L(¥,w) + u, for u € Hs(&, z). (Recall
that the mapL was defined in (11).) Them’ is a CCA
map fromB,(6) to Af f(R™ x R™;R™).

Given an(g, x) € B, (8), and any mag/ € A°(g,z), we
have, ifu € Hs(¢, x) is such thatM (¥, w) = L(7, w) + u,
andé(@) = (¢, ..., cm

m m
x)=L(¢, :v)Jru:erZ ;v ::erZ aj(of;)cjvj .
j=1 j=1

M,

= f3,, and the identities (12), (13), (14) hold.

hg,(¢(€),z), it follows that
M(& x) € (5,(¢, ) = Vg, z(x). Sincea(d,) - ¢ = &, we
conclude thatM (¢, z) € U# (&, z).

Therefore the map A’ belongs
CCA(BL(0); Aff(R™ x R™R™) and is such
L(&,x) +u € U#(&,2) whenever(L,u) € A%(&,x).

This almost proves (9). To complete the proof, we must
derive, for theu's such that(L,u) € A%(¢,z), a bound
lu]l < 8(e)e, wheree is the radius of3(¢), i. e.,e = £(9).

We already have the bounh| < Kdév(d), so it suffices
to show thatv(d) < ¢e(d) for some constang. But

to
that

g(6) = min (V((S),min{a (o (5))07 j=1. m}) ,
and /(o)) = p(0)al(ol) = w(5)/B.. Hence
aﬂ(aj((;))d > 53 whereé = min{¢/ : j = 1...,m}.
Therefore, if we Ietq = max(1,8./¢), we find that
v(§) < ge(d), concluding our proof. [ |
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