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Abstract— In a series of nonsmooth versions of the
Pontryagin Maximum Principle, we used generalized
differentials of set-valued maps, flows, and abstract variations.
Bianchini and Stefani have introduced a notion of possibly
high-order variational vector that has the summability
property. We consider a slightly more general class of
variational vectors than that defined by Bianchini and Stefani,
and prove that the convex combinations of these vectors
arise as “differentials” of variations that are differentiable
in the sense of one of our generalized differentiation
theories, namely, that of “approximate generalized differential
quotients” (AGDQs).

A NOTE FOR THE REVIEWERS (which, naturally, will be omitted
in the final version): In the final version I will make the paper
shorter, by removing some technical details, in order to conform
to the 6-page limit.

I. I NTRODUCTION

In a series of papers, we showed how to derive general,
nonsmooth versions of the Pontryagin Maximum Principle
using generalized differentials of set-valued maps, flows,
and abstract point variations. The use of general variations
rather than the nedle variations used to prove the ordinary
maximum principle makes it possible to obtain high-order
versions of the maximum principle. The main technical
difficulty with these general abstract variations is that they
need not have the summability property, which is absolutely
essential in order to derive the necessary conditions for
optimality.

R. M. Bianchini and G. Stefani (cf. [1], [2], [3], [4], [5])
proposed a concept of high-order variation that has good
summability properties. The goal of this note is to relate this
concept to a theory generalized differentials, by describing
a slightly more general version of the Bianchini-Stefani
variations, and showing that they are differentiable in the
precise sense of the theory of “Approximate Generalized
Differential Quotients” (AGDQs). This makes is possible
to use these variations in order to get additional necessary
conditions for an optimum in situations such as the very
general one described in [12], where the differentials in-
volved are generalized differential quotients, anda fortiori
AGDQs.

1) Preliminary remarks on notation:We will use the
notations and abbreviations of [12]. In particular, “FDRLS”
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stands for “finite-dimensional real linear space,” “FDNRLS”
for “normed FDRLS,” “SVM” for “set-valued map,” and
“CCA” for “Cellina continuously approximable.” Also,IS

is the identity map of the setS, So(f), Ta(f) and Gr(f)
are, respectively, the source, target, and graph of a SVM
f , f : A 7→→ B means “f is a set-valued map fromA to
B,” and f : A ↪→ B means “f is a single-valued possibly
partially defined map fromA to B.”

We use ΘΘΘ to denote the class of all functions
θ : [0,+∞ [ 7→ [0,+∞] such that
• θ is monotonically nondecreasing (that is,θ(s) ≤ θ(t)

whenevers, t are such that0 ≤ s ≤ t < +∞);
• θ(0) = 0 and lims↓0 θ(s) = 0.

If X is a FDNRLS, x∗ ∈ X, r > 0, then
BX(x∗, r), B̄X(x∗, r) are, respectively, the open
ball {x ∈ X : ‖x− x∗‖ < r} and the closed ball
{x ∈ X : ‖x− x∗‖ ≤ r}. If X,Y are FDNRLSs, then
Lin(X,Y ), Aff(X,Y ) will denote, respectively, the set
of all linear maps and the set of all affine maps fromX
to Y . Hence the members ofAff(X,Y ) are the maps
X3x 7→A(x)=L · x+h , L∈Lin(X,Y ), h∈Y . (For a
map A of this form, the linear mapL ∈ Lin(X,Y ) and
the vectorh ∈ Y are the linear part and theconstant
part of A.) We identifyAff(X,Y ) with Lin(X,Y ) × Y
by identifying eachA ∈ Aff(X,Y ) with the pair
(L, h) ∈ Lin(X,Y )× Y , whereL, h are, respectively, the
linear part and the constant part ofA.

We endowLin(X,Y ) with the operator norm‖ · ‖op. If
Λ ⊆ Lin(X,Y ) andδ > 0, we define

Λδ = {L ∈ Lin(X,Y ) : dist(L,Λ) ≤ δ} ,

wheredist(L,Λ) = inf{‖L− L′‖op : L′ ∈ Λ}. Notice that
if L ∈ Lin(X,Y ), thendist(L, ∅) = +∞. In particular, if
Λ = ∅ thenΛδ = ∅. Notice also thatΛδ is compact ifΛ is
compact andΛδ is convex ifΛ is convex.

II. A PPROXIMATE GENERALIZED DIFFERENTIAL

QUOTIENTS

Definition 2.1: Assume that X,Y are FDNRLSs,
F : X 7→→ Y is a set-valued map,Λ is a compact subset
of Lin(X,Y ), x̄∗ ∈ X, ȳ∗ ∈ Y , and S ⊆ X. We
say that Λ is an approximate generalized differential
quotient of F at (x̄∗, ȳ∗) in the direction of S—and
write Λ∈AGDQ(F, x̄∗, ȳ∗, S)—if there exists a function



θ ∈ ΘΘΘ—called anAGDQ modulus for (Λ, F, x̄∗, ȳ∗, S)—
having the property that
(**) for every ε ∈ ]0,+∞ [ such thatθ(ε) < ∞ there

exists a set-valued map

Aε ∈ CCA(B̄X(x̄∗, ~ε) ∩ S,Aff(X,Y ))

such that, wheneverx ∈ B̄X(x̄∗, ε)∩ S and (L, h) ∈
Aε(x) , it follows thatL ∈ Λθ(ε) , ‖h‖ ≤ θ(ε)ε , and
ȳ∗ + L · (x− x̄∗) + h ∈ F (x).

1) Properties of AGDQs:The following statement is the
chain rule for AGDQs.

Theorem 2.2:For i = 1, 2, 3, let Xi be a FDNRLS,
and let x̄∗,i be a point ofXi. Assume that, fori = 1, 2,
(i) Fi : Xi 7→→ Xi+1 is a set-valued map, (ii)Si is a subset
of Xi, and (iii) Λi ∈ AGDQ(Fi, x̄∗,i, x̄∗,i+1, Si). Assume,
in addition, that (iv)F1(S1) ⊆ S2, and either (v)S2 is a
local quasiretract (cf. [13]) ofX2 at x̄∗,2 or (v’) there exists
a neighborhoodU of x̄∗,1 in X1 such that the restriction
F1 d (U ∩ S1) of F1 to U ∩ S1 is single-valued. Then
Λ2 ◦ Λ1 ∈ AGDQ(F2 ◦ F1, x̄∗,1, x̄∗,3, S1).

If M andN are manifolds of classC1, x̄∗∈M , ȳ∗∈N ,
S⊆M , and F : M 7→→ N , then it is possible to define
a set AGDQ(F, x̄∗, ȳ∗, S) of compact subsets of the
spaceLin(Tx̄∗M,Tȳ∗N) of linear maps fromTx̄∗M to
Tȳ∗N as follows. We let m = dimM , n = dimN ,
and pick coordinate chartsM 3 x ↪→ ξ(x) ∈ Rm,
N 3 y ↪→ η(y) ∈ Rn, defined near x̄∗, ȳ∗ and such
that ξ(x̄∗) = 0 and η(ȳ∗) = 0, and declare that a subset
Λ of Lin(Tx̄∗M,Tȳ∗N) belongs toAGDQ(F, x̄∗, ȳ∗, S)
if the composite mapDη(ȳ∗) ◦ Λ ◦Dξ(x̄∗)−1 is in
AGDQ(η ◦ F ◦ ξ−1, 0, 0, ξ(S))). It then follows easily
from the chain rule that, with this definition,the set
AGDQ(F, x̄∗, ȳ∗, S) does not depend on the choice of
the chartsξ, η. In other words,the notions of an AGDQ
is invariant under C1 diffeomorphisms and therefore
makes sense intrinsically on manifolds of classC1.

Then the chain rule also holds on manifolds.
Proposition 2.3:Assume that (I) for i = 1, 2, 3,

Mi is a manifold of classC1 and x̄∗,i∈Mi, and
(II) for i = 1, 2, (II.1) Si ⊆Mi, (II.2) Fi : Mi 7→→Mi+1,
and (II.3)Λi ∈ AGDQ(Fi, x̄∗,i, x̄∗,i+1, Si). Assume, in
addition, that eitherS2 is a local quasiretract ofM2 or
F1 is single-valued onU ∩ S1 for some neighborhood
U of x̄∗,1. Then the compositeΛ2 ◦ Λ1 belongs to
AGDQ(F2 ◦ F1, x̄∗,1, x̄∗,3, S1).

2) Partial AGDQs: Suppose that (a) fori = 1, 2, Xi

is a manifold of classC1, x̄i ∈ Xi, and Si is a subset
of Xi; (b) Y is a manifold of classC1 and ȳ ∈ Y ,
(c) X = X1 ×X2, (d) S = S1 × S2, (e) x̄ = (x̄1, x̄2),
(f) F : X 7→→ Y , and (g)Λ ∈ AGDQ(F ; x̄, ȳ;S). Then, if
we let ι1, ι2 be the partial mapsX1 3 x 7→ (x, x̄2) ∈ X
andX2 3 x 7→ (x̄1, x) ∈ X, the chain rule implies that the
“partial AGDQs” ΛX1 , ΛX2 (whereΛX1 is the set of all
mapsTx̄1X1 3 v 7→ L(v, 0) ∈ TȳY for all L ∈ Λ, ΛX2

is the set of all mapsTx̄2X2 3 v 7→ L(0, v) ∈ TȳY for

all L ∈ Λ, and we are using the canonical identification of
Tx̄X with Tx̄1X1 × Tx̄2X2) are AGDQs ofF ◦ ι1, F ◦ ι2,
respectively, at(x̄1, ȳ) and (x̄2, ȳ), alongS1, S2.

3) Approximating multicones.:A multicone is a set of
cones. Aconvex multiconeis a set of convex ones.

Assume thatM is a manifold of classC1, S is a subset
of M and x̄∗ ∈ S.

Definition 2.4: An AGDQ approximating multicone to
S at x̄∗ is a convex multiconeC in Tx̄∗M such that there
exist anm ∈ Z+, a set-valued mapF : Rm 7→→M , a convex
coneD in Rm, and aΛ ∈ AGDQ(F, 0, x̄∗, D), such that
F (D) ⊆ S andC = {LD : L ∈ Λ}.

4) Transversality of cones and multicones.:If S1, S2 are
subsets of a linear spaceX, we define thedifferenceS1−S2

by lettingS1 − S2 = {s1 − s2 : s1 ∈ S1, s2 ∈ S2} .
Definition 2.5: Let X be a FDRLS, and letC1, C2

be two convex cones inX. We say thatC1 and C2 are

transversal, and writeC1∩|
−
C2, if C1 − C2 = X. We say

thatC1 andC2 arestrongly transversal, and writeC1∩||
−
C2,

if C1∩|
−
C2 and in additionC1 ∩ C2 6= {0}.

Definition 2.6: Let X be a FDRLS. We say that two
convex multiconesC1 and C2 in X are transversal, and

write C1∩|
−
C2, if C1∩|

−
C2 for all C1 ∈ C1, C2 ∈ C2.

Definition 2.7: Let X be a finite-dimensional real linear
space. LetC1, C2 be convex multicones inX. We say that

C1 and C2 are strongly transversal, and writeC1∩||
−
C2, if

(i) C1∩|
−
C2, and (ii) there exists a nontrivial linear functional

λ ∈ X† such thatC1 ∩ C2 ∩ {x ∈ X : λ(x) > 0} 6= ∅ for
every (C1, C2) ∈ C1 × C2.

5) The nonseparation theorem.:The crucial fact about
AGDQs that leads to the maximum principle is the
transversal intersection property, that we now state (cf. [13]
for the proof).

Theorem 2.8:Let M be a manifold of classC1, let S1,
S2 be subsets ofM , and let s̄∗ ∈ S1 ∩ S2. Let C1, C2 be
AGDQ-approximating multicones toS1, S2 at s̄∗ such that

C1∩||
−
C2. Then S1 and S2 are not locally separated at̄s∗.

(That is, the setS1 ∩ S2 contains a sequence of pointssj

converging tos̄∗ but not equal tōs∗.)

III. F LOWS AND TRAJECTORIES.

1) State space bundles: If I is a nonempty real
interval, we defineI2,≥ = {(t, s) ∈ I × I : t ≥ s}, and
I3,≥ = {(t, s, r) ∈ I × I × I : t ≥ s ≥ r}. A state-space
bundle (abbr. SSB) over I is an indexed family
X = {Xt}t∈I of sets. A state-space bundleis a pair
X = (X, I) such thatI is a nonempty real interval and
X is an SSB overI. If C is a category of sets with some
additional structure (for example, topological spaces, metric
spaces, manifolds of classCk, linear spaces, FDRLSs), then
an SSB(X, I) is a bundle of C-objects if eachXt is a
member ofC. In particular, if k ∈ Z+, a Ck SSB is an
SSB of manifolds of classCk. Also, anFDRLS SSBis an
SSB of finite-dimensional real linear spaces.



2) Sections: Assume that
(A1) X = (X, I) = ({Xt}t∈I , I) is an SSB.

Definition 3.1: A section of X is a single-valued
everywhere defined mapξ on I such thatξ(t) ∈ Xt for
everyt ∈ I. We useSec(X ) to denote the set of all sections
of X .

3) The tangent bundle of a section:Suppose that (A1)
holds, X is a C1 SSB, andξ ∈ Sec(X ). The family
TξX = {Tξ(t)Xt}t∈I is the tangent bundleof X alongξ.
Clearly, the tangent bundleTξX of a C1 SSBX along a
sectionξ ∈ Sec(X ) is an FDRLS SSB.

4) Flows: Assume that (A1) holds.
Definition 3.2: A flow on X is an indexed family

f = {ft,s}(t,s)∈I2,≥ such that
1) ft,s is a set-valued map fromXs to Xt whenever

(t, s) ∈ I2,≥;
2) ft,t is the identity map ofXt whenevert ∈ I;
3) ft,s ◦ fs,r = ft,r whenever(t, s, r) ∈ I3,≥.
A flow is a pairF = (X , f) such thatX is a state space

bundle andf is a flow onX .
5) Comparison of flows: If, for i = 1, 2, F i = (X , f i)

are flows on the same SSBX , andf i = {f i
t,s}(t,s)∈I2,≥ , we

say thatF1 is a subflow of F2, or F2 is a superflowof
F1, and writeF1 � F2, if

f1
t,s(x) ⊆ f2

t,s(x) for all (t, s) ∈ I2,≥ .

6) Trajectories: Assume that (A1) holds, and
(A2) F = (X , f) is a flow, andf = {ft,s}(t,s)∈I2,ge .

Definition 3.3: A trajectory of F is a sectionξ of X
such that

ξ(t) ∈ ft,s(ξ(s)) whenever (t, s) ∈ I2,≥ . (1)

We useTraj(F) to denote the set of all trajectories of
the flowF .

7) Generalized differentials of flows along trajectories:
Assume that (A1-2) hold, an in addition

(A3) X is a C1 SSB;
(A4) ξ ∈ Traj(F).

Definition 3.4: An AGDQ of F along ξ is a family
g = {gt,s}(t,s)∈I2,≥ such that

1) if (t, s) ∈ I2,≥, then gt,s is a nonempty compact
set of linear maps fromTξ(s)Xs to Tξ(t)Xt such that
gt,s ∈ AGDQ(ft,s; ξ(s), ξ(t);Xs);

2) gt,t = {ITξ(t)Xt} whenevert ∈ I;
3) gt,s ◦ gs,r = gt,r whenever(r, s, t) ∈ I3,≥.
8) Compatible selections: Assume that (A1-2-3-4),

hold, and in addition
(A5) g = {gt,s}(t,s)∈T≥ is an AGDQ ofF along ξ.

Definition 3.5: A compatible selectionof g is a family
γ = {γt,s}(t,s)∈I2,≥ such that

1) γt,s ∈ gt,s whenever(t, s) ∈ I2,≥;
2) γt,t = ITξ(t)X for eacht ∈ I;
3) γt,sγs,r = γt,r whenever(t, s, r) ∈ I3,≥.
We write CSel(g) to denote the set of all compatible

selections ofg.

IV. VARIATIONS

1) Variations of set-valued maps:If f, f ′ are SVMs,
we write f � f ′ if So(f) = So(f ′), Ta(f) = Ta(f ′), and
Gr(f) ⊆ Gr(f ′).

Definition 4.1: Assume thatf, f ′ are SVMs such that
f � f ′. Then

1) A variation of f in f ′ is a family v = {vε}ε∈C such
that

a) C is a closed convex cone with nonempty
interior in some “ambient”FDRLS A(C);

b) eachvε is a SVM such thatSo(vε) = So(f) and
Ta(vε) = Ta(f);

c) v0 = f ;
d) vε � f ′ wheneverε ∈ C.

2) A variation of f is a variation off in the “maximal”
SVM (So(f),Ta(f),So(f)× Ta(f)).

If v is a variation off , andv = {vε}ε∈C , then the coneC
and the linear spaceA(C) are, respectively, theparameter
cone and theparameter spaceof v. The dimension ofC
(or of A(C)) is the number of parametersof v. We will
use ṽ to denote the SVM with sourceA(C)× So(v0) and
targetTa(v0) such thatṽ(ε, x) = vε(x) for all ε ∈ A(C),
x ∈ So(v0). (In particular,ṽ(ε, x) = ∅ if ε ∈ A(C)\C.)

2) Infinitesimal impulse variations: Assume that
(A1-2-3-4) hold.

Definition 4.2: An infinitesimal impulse variation(abbr,
IIV) for (F , ξ) is a pair (v, t) such that t ∈ I and
v ∈ Tξ(t)Xt.

3) Summability: Assume that (A1-2-3-4-5) hold.
Assume in addition that

(A6) F ′ = (X , f ′) = (X , {f ′t,s}(t,s)∈I2,≥) is a flow
on X which is a superflow ofF .

If V is a finite set of IIVs for(F , ξ), we let RV, RV
+

denote, respectively, the set of all families~ε = {εV }V ∈V

of real numbers, and the set of all~ε = {εV }V ∈V ∈ RV

such thatεV ≥ 0 for all V ∈ V. (Hence, if m is the
cardinality of V, and V = {(v1, t1), . . . , (vm, tm)}, the
spaceRV can be identified withRm, by identifying each
family ~ε = {εV }ε∈V with them-tuple (ε̃1, . . . , ε̃m), where
ε̃j = ε(v

j ,tj) for j = 1, . . . ,m.) We define

t−(V) = min{t : (∃v)(v, t) ∈ V} ,
t+(V) = max{t : (∃v)(v, t) ∈ V} ,

and let I2,≥(V) be the set of all pairs(b, a) ∈ I2,≥

such that a < t−(V) and b > t−(V). If
γ = {γt,s}(t,s)∈I2,≥ ∈ CSel(g) and (b, a) ∈ I2,≥(V), we
define a linear mapLV,γ,a,b : RV × Tξ(a)Xa 7→ Tξ(b)Xb by
letting

LV,γ,a,b(~ε) = γb,a(x) +
∑

(v,t)∈V

ε(v,t)γb,t(v) .

We let ΛV,g,a,b be the set of all the mapsLV,γ,a,b, for all
γ ∈ CSel(g).

Definition 4.3: Let V be a set of IIVs for(F , ξ). We say
thatV is g-summable withinF ′ if the following is true:



• for every finite subset V of V, and every
pair (b, a) ∈ I2,≥(V), there exists a variation
w = {w~ε}~ε∈RV

+
of fb,a in f ′b,a such that the setΛV,g

is an AGDQ of the map̃w at ((0, ξ(a)), ξ(b)) along
RV

+ ×Xa.

V. GENERALIZED BIANCHINI -STEFANI VARIATIONS

Assume thatF , X , f , X, I, ξ, g, F ′, f ′, are such that
(A1-2-3-4-5-6) hold.

From now on, “GBS” will stand for “Generalized
Bianchini-Stefani”.

Definition 5.1: An F ′-compatible right GBS IIV for
(F , ξ) is an IIV (v, t) for (F , ξ) such that there exist
• a nonempty setΣ,
• positive real numbers̄c, ν,
• a pair (τ−, τ+) of functions fromΣ to I,
• a functionα : Σ 7→ ] 0,+∞ [ ,
• a pair of families

ϕϕϕ = {ϕσ,c}(σ,c)∈Σ×[0,c̄] , ψψψ = {ψσ,c}(σ,c)∈Σ×[0,c̄] ,

• a neighborhoodN of ξ(t) in Xt,
such that

1) t < τ−(σ) < τ+(σ) for everyσ ∈ Σ ;
2) for everyσ ∈ Σ and every real numberρ such that

0 < ρ ≤ 1, there exists aσ′ ∈ Σ such that the
following three identities are satisfied:

τ−(σ′)− t = ρ(τ−(σ)− t) ,
τ+(σ′)− t = ρ(τ+(σ)− t) ,

α(σ′) = ρνα(σ) ;

3) for every (σ, c) ∈ Σ× [0, c̄], ϕσ,c belongs to
SVM(Xτ+(σ), Xτ−(σ)) andψσ,c ∈ SVM(Xt, Xt) ;

4) ϕσ,0 = fτ+(σ),τ−(σ) andψσ,0 = IXt wheneverσ ∈ Σ;
5) ϕσ,c(x) ⊆ f ′τ+(σ),τ−(σ)(x) whenever σ ∈ Σ,

c ∈ [0, c̄], x ∈ Xτ−(σ),
6) for everyσ ∈ Σ, c ∈ [0, c̄], andx ∈ Xt, the inclusion

(fτ+(σ),t ◦ ψσ,c)(x) ⊆ (ϕσ,c ◦ fτ−(σ),t)(x) (2)

is satisfied;
7) for everyσ ∈ Σ, the map

[0, c̄]×Xt 3 (c, x) 7→→ ψσ,c(x)
def=Ψσ(c, x) ⊆ Xt

is Cellina continuously approximable on[0, c̄]×N ;
8) the continuity formula

lim
x→ξ(t),α(σ)→0

ψσ,c(x) = ξ(t) (3)

holds in the following precise sense:
• if N is any neighborhood ofξ(t) in Xt then

there exist a neighborhoodN ′ of ξ(t) in Xt

and a positive numberβ such thatψσ,c(x) ⊆ N
wheneverx ∈ N ′, c ∈ [0, c̄], andα(σ) < β;

9) the asymptotic formula

ψσ,c(x) = x+ α(σ)cv+ o
(
α(σ) + ‖x− ξ(t)‖

)
(4)

holds as(α(σ), x− ξ(t)) → (0, 0) , in the following
precise sense:
• if κ : Ω 7→ Rn is any coordinate chart ofXt

defined on an open subsetΩ of Xt such that
ξ(t) ∈ Ω, then

lim
β↓0

sup
{‖κ(y)− κ(x)− α(σ)cκ∗v‖
α(σ) + ‖κ(x)− κ(ξ(t))‖

}
= 0

where (i) the supremum is taken over all
4-tuples (σ, c, x, y) ∈ Σ× [0, c̄]× Ω× Ω such
that ‖κ(x) − κ(ξ(t))‖ ≤ β, α(σ) ≤ β,
y ∈ ψσ,c(x), and (ii) κ∗v = Dκ(ξ(t)) · v .

An 9-tuple D = (Σ, c̄, ν, τ−, τ+, α,ϕϕϕ,ψψψ,N ) for which
the conditions of the above definition hold will be called
a GBS data 9-tuplefor (F , ξ,F ′, v, t). Given a number
ν̄, an IIV (v, t) is of order ν̄ (as an F ′-compatible
right GBS IIV for (F , ξ)) if it admits a GBS data
9-tupleD = (Σ, c̄, ν, τ−, τ+, α,ϕϕϕ,ψψψ,N ) for (F , ξ,F ′, v, t)
for which ν = ν̄.

The following is the main theorem of this paper:
Theorem 5.2:Assume that (A1-2-3-4-5-6) hold. LetV

be the set of allF ′-compatible right GBS IIVs for(F , ξ).
ThenV is g-summable withinF ′.

Proof: It clearly suffices to prove that every finite
subsetV of V is g-summable withinF ′. Furthermore, it is
well known that there is no problem with the summability
of variations at different times, so it suffices to establish the
summability of a nonempty finite setV of F ′-compatible
right GBS IIVs for (F , ξ) all of which have the same
insertion timet.

Fix such a setV, and let m be its cardinality, so
m ≥ 1. Choose for each(v, t) ∈ V a GBS data
9-tuple Dv = (Σv, c̄v, νv, τv

−, τ
v
+, α

v, ϕϕϕv, ψψψv,N v) for
(F , ξ,F ′, v, t). Order the members ofV as a sequence
Ṽ = ((v1, t), (v2, t), . . . , (vm, t)), in such a way that
νv1 ≤ νv2 ≤ · · · ≤ νvm

.
From now on, we will writeΣj , c̄j , ν(j), τ j

−, τ j
+, αj ,

ϕϕϕj , ψψψj , N j instead ofΣvj

, c̄v
j

, νvj

, τvj

− , τvj

+ , αvj

, ϕϕϕvj

,

ψψψvj

, N vj

. Also, we fix ab ∈ I such thatb > t.
Define Σ=Σ1× · · · ×Σm, and let Σ̂ be the set of all

m-tuples ~σ = (σ1, . . . , σm) ∈ Σ such thatτ+(σm) ≤ b
and τ j

+(σj) ≤ τ j+1
− (σj+1) for j=1, 2, . . . ,m−1. Let

C = [0, c̄1]× · · · × [0, c̄m]. For each~c = (c1, . . . , cm) ∈ C,
and each~σ = (σ1, . . . , σm) ∈ Σ̂, write α(~σ) · ~c to denote
them-tuple (α1(σ1)c1, . . . , αm(σm)cm).

We let

α+(~σ) = max
{
αj(σj) : j ∈ {1, . . . ,m}

}
,

and, if β > 0, defineΣ̂(β) = {~σ ∈ Σ̂ : α+(~σ) ≤ β} .
Define set-valued mapsΦj

~σ,~c : Xt 7→→ Xτ+(σj)

inductively, by letting Φ1
~σ,~c = ϕ1

σ1,c1 ◦ fτ1
−(σ1),t and, for

j = 2, . . . ,m,

Φj
~σ,~c = ϕj

σj ,cj ◦ fτj
−(σj),τj−1

+ (σj−1) ◦ Φj−1
~σ,~c .

Then letΦ~σ,~c = fb,τm
+ (σm) ◦ Φm

~σ,~c , so Φ~σ,~c : Xt 7→→ Xb.



It is then clear thatΦ~σ,~c(x) ⊆ f ′b,t(x) for all triples
(σ, c, x) ∈ Σ̂× C ×Xt.

Introduce nonnegative real parametersεj , for
j = 1, . . . ,m, and define, for each~ε = (ε1, . . . , εm) ∈ Rm

+ ,

Φ#
~ε (x) =

⋃ {
Φ~σ,~c(x) : (~σ,~c) ∈ Σ̂× C, α(~σ) · ~c = ~ε

}
.

ThenΦΦΦ# = {Φ#
~ε }~ε∈Rm

+
is a variation offb,t in f ′b,t.

Now, for eachγ ∈ gb,t, we letLγ be the linear map from
Rm × Tξ(t)Xt to Tξ(b)Xb given by

Lγ(ε1, . . . , εm, w) = γ(w + ε1v1 + · · ·+ εmvm)

for (ε1, . . . , εm) ∈ Rm, w ∈ Tξ(t)Xt.
Let Λ be the set of all mapsLγ , for all γ ∈ gb,t. We will

show that

Λ ∈ AGDQ(Φ̃ΦΦ
#

; (0, ξ(t)), ξ(b); Rm
+ ×Xt) . (5)

(Recall that Φ̃ΦΦ
#

is the set-valued map
Rm ×Xt 3 (~ε, x) 7→ ΦΦΦ#

~ε (x) ⊆ Xb.)
To prove (5), we first define

Ψ~σ,~c = ψm
σm,cm ◦ · · · ◦ ψ2

σ2,c2 ◦ ψ1
σ1,c1 ,

and letΥ~σ,~c = fb,t ◦Ψ~σ,~c. We then observe that

Υ~σ,~c(x) ⊆ Φ~σ,~c(x) (6)

whenever~σ ∈ Σ̂, ~c ∈ C, andx ∈ X. (The proof of this is
straightforward: we have

(fτ1
+(σ1),t ◦ ψ1

σ1,c1)(x) ⊆ ϕ1
σ1,c1 ◦ fτ1

−(σ1),t(x) = Φ1
~σ,~c(x)

for all x. If we compose both sides withfτ2
−(σ2),τ1

+(σ1), we
find

(fτ2
−(σ2),t ◦ ψ1

σ1,c1)(x) ⊆ (fτ2
−(σ2),τ1

+(σ1) ◦ Φ1
~σ,~c)(x)

and then

(ϕ2
σ2,c2 ◦ fτ2

−(σ2),t ◦ ψ1
σ1,c1)(x)

⊆ (ϕ2
σ2,c2 ◦ fτ2

−(σ2),τ1
+(σ1) ◦ Φ1

~σ,~c)(x) ,

so that

(ϕ2
σ2,c2 ◦ fτ2

−(σ2),t ◦ ψ1
σ1,c1)(x) ⊆ Φ2

~σ,~c(x) . (7)

Next, we have

(fτ2
+(σ2),t ◦ ψ2

σ2,c2)(y) ⊆ (ϕ2
σ2,c2 ◦ fτ2

−(σ2),t)(y)

for all y. By applying this to the membersy of ψ1
σ1,c1(x),

we find

(fτ2
+(σ2),t ◦ ψ2

σ2,c2 ◦ ψ1
σ1,c1)(x)

⊆ (ϕ2
σ2,c2 ◦ fτ2

−(σ2),t ◦ ψ1
σ1,c1)(x) ,

and this, together with (7), implies that

(fτ2
+(σ2),t ◦ ψ2

σ2,c2 ◦ ψ1
σ1,c1)(x) ⊆ Φ2

~σ,~c(x) .

Continuing in this way, we show that

(fτj
+(σj),t ◦ ψ

j
σj ,cj ◦ · · · ◦ ψ1

σ1,c1)(x) ⊆ Φj
~σ,~c(x)

for j = 1, . . . ,m. In particular,

(fτm
+ (σm),t ◦Ψ~σ,~c)(x) ⊆ Φj

~σ,~c(x)

If we then compose both sides withfb,τm
+ (σm), we conclude

that (6) holds.)
We now defineΨ# and Υ# exactly as we definedΦ#,

but using theΨ~σ,~c and Υ~σ,~c instead of theΦ~σ,~c. That is,
we define

Ψ#
~ε (x) =

⋃ {
Ψ~σ,~c(x) : (~σ,~c) ∈ Σ̂× C, α(~σ) · ~c = ~ε

}
,

Υ#
~ε (x) =

⋃ {
Υ~σ,~c(x) : (~σ,~c) ∈ Σ̂× C, α(~σ) · ~c = ~ε

}
,

for each ~ε = (ε1, . . . , εm) ∈ Rm
+ . Then the family

ΥΥΥ# = {Υ#
~ε }~ε∈Rm

+
is a variation offb,t in f ′b,t, such that

Υ#
~ε (x) ⊆ Φ#

~ε (x) whenever ~ε ∈ Rm
+ , x ∈ Xt . (8)

Clearly, (5) is a consequence of

Λ ∈ AGDQ(Υ̃ΥΥ
#

; (0, ξ(t)), ξ(b); Rm
+ ×Xt) , (9)

and this in turn will follow—thanks to the chain rule—if
we prove that

{L} ∈ AGDQ(Ψ̃ΨΨ
#

; (0, ξ(t)), ξ(t); Rm
+ ×Xt) . (10)

whereL is the linear map fromRm × Tξ(t)Xt to Tξ(t)Xt

given by

L(ε1, . . . , εm, w) = w + ε1v1 + · · ·+ εmvm (11)

for (ε1, . . . , εm) ∈ Rm, w ∈ Tξ(t)Xt.
To prove (10), we construct an AGDQ modulus for

({L}, Ψ̃ΨΨ
#

; (0, ξ(t)), ξ(t); Rm
+ ×Xt) .

Our first step will be to introduce coordinates
on Xt near ξ(t). We let n = dimXt, and write
Bn = {y ∈ Rn : ‖y‖ < 1}, B̄n = {y ∈ Rn : ‖y‖ ≤ 1},
rBn = {y ∈ Rn : ‖y‖ < r}, rB̄n = {y ∈ Rn : ‖y‖ ≤ r}.
We fix a coordinate chartκ : Ω 7→ Rn of class C1,
mapping an open subsetΩ of Xt onto Bn, and such that
κ(ξ(t)) = 0. We then choosēr such that0 < r̄ < 1, having
the property thatκ−1(r̄B̄n) ⊆

⋂m
j=1N j , so all the maps

[0, c̄]× κ−1(r̄B̄n) 3 (c, x) 7→→ ψσ,c(x) ⊆ Xt are CCA. We
then use the continuity property of theψj to find radii
r0, r1, . . . , rm such that0 < r0 < r1 < r2 < · · · < rm ≤ r̄,
and a positive numberβ∗, having the property that,

(*) wheneverj = 1, . . . ,m, c ∈ [0, c̄j ], σ ∈ Σj , and
αj(σ)≤β∗, the inclusionψj

σ,c(x) ⊆ κ−1(rjBn) holds
for all x ∈ κ−1(rj−1B̄n).

We then identifyΩ with Bn by means ofκ, and restrict the
mapsx 7→→ ψj

σ,c(x), for αj(σ) ≤ β∗, to the ballrj−1B̄n.
Thenξ(t) = 0, and

ψj
σ,c(x) ⊆ rjBn if x ∈ rj−1B̄n , α

j(σ) ≤ β∗ .

Furthermore, sincerj−1B̄n ⊆ r̄B̄n ⊆ N j , it is clear that
each map[0, c̄j ] × rj−1B̄n 3 (c, x) 7→→ ψj

σ,c(x) ⊆ rjBn is
CCA.



Next, we pick in an arbitrary fashion anm-tuple
~σ∗ = (σ1

∗, . . . , σ
m
∗ ) ∈ Σ. (Clearly,σ∗ exists because theΣj

are nonempty.) Then, even though it could happen that one
or both inequalitiesτm

+ (σm
∗ ) > b, αm(σm

∗ ) > β∗ hold,
we can always pick a numberρ such that0 < ρ ≤ 1,
ρ(τm

+ (σm
∗ )− t) ≤ b− t, andρν(m)αm(σm

∗ ) ≤ β∗. We can
then find aσ̃m

∗ such thatτm
+ (σ̃m

∗ ) − t = ρ(τm
+ (σm

∗ ) − t)
and αm(σ̃m

∗ ) = ρν(m)αm(σm
∗ ). If we then relabel̃σm

∗ to
be σm

∗ , we now have both inequalitiesτm
+ (σm

∗ ) ≤ b and
αm(σm

∗ ) ≤ β∗.
Similarly, it could happen thatτm−1

+ (σm−1
∗ ) > τm

− (σm
∗ )

and αm−1(σm−1
∗ ) > β∗, but we can pick aρ such

that 0 < ρ ≤ 1, ρ(τm−1
+ (σm−1

∗ ) − t) ≤ τm
− (σm

∗ ) − t,
and ρν(m−1)αm−1(σm−1

∗ ) < β∗. We can then find a
σ̃m−1
∗ such thatτm−1

+ (σ̃m−1
∗ ) − t = ρ(τm−1

+ (σm−1
∗ ) − t)

and αm−1(σ̃m−1
∗ ) = ρν(m−1)αm−1(σm−1

∗ ). Then, if we
take σ̃m−1

∗ to be our newσm−1
∗ , we get the inequalities

τm−1
+ (σm−1

∗ ) ≤ τm
− (σm

∗ ), andαm−1(σm−1
∗ ) ≤ β∗.

Continuing in this way we obtain, after appropriate
relabelings, a~σ∗ = (σ1

∗, . . . , σ
m
∗ ) ∈ Σ such that

τm
+ (σm

∗ ) ≤ b , (12)

τ j−1
+ (σj−1

∗ ) ≤ τ j
−(σj

∗) for j∈{2, . . . ,m}, (13)

αj(σj
∗) ≤ β∗ for j∈{1, . . . ,m}. (14)

It follows, in particular, that~σ∗ belongs toΣ̂.
Having selected~σ∗, we now modify β∗ by taking

β∗ = α+(~σ∗). It is clear that this new choice makesβ∗
smaller, so it does not interfere with the condition (*) that
was used to make our first choice ofβ∗.

Now, for j = 1, . . . ,m, 0 < β ≤ β∗, 0 < r ≤ rj−1, we
define

ωj(β, r) = sup
{‖y − x− αj(σ)cvj‖

αj(σ) + ‖x‖
: ‖x‖ ≤ rj−1 ,

y ∈ ψj
σ,c(x) , σ ∈ Σj , αj(σ) ≤ β, c ∈ [0, c̄j ]

}
.

Then lim
β↓0,r↓0 ω

j(β, r) = 0 for eachj.
We now define mapsζ~σ : C × r0B̄n 7→→ rmBn, for

~σ ∈ Σ̂(β∗), by letting ζ~σ(~c, x) = Ψ~σ,~c(x) for ~c ∈ C,
x ∈ r0B̄n. Then

ζ~σ ∈ CCA(C × r0B̄n, rmB̄n) if σ ∈ Σ̂(β∗)

because, if~c = (c1, . . . , cm), then

ζ~σ(c1, . . . , cm, x) = (ψm
σm,cm ◦ · · · ◦ ψ1

σ1,c1)(x) ,

and each map[0, c̄j ]×r̄j−1B̄n 3 (c, x) 7→→ ψj
σj ,c(x) ⊆ rjBn

is CCA.
We then define, for~σ ∈ Σ̂(β∗), ~c ∈ C, andx ∈ r0B̄n,

h~σ(~c, x) = ζ~σ(~c, x)− x−
m∑

j=1

αj(σj)cjvj .

(The precise meaning of the above inequality is that
h~σ(~c, x) = {y −

∑m
j=1 α

j(σj)cjvj : y ∈ ζ~σ(~c, x)} .) Then

h~σ ∈ CCA(C × r0B̄n; Rn) if σ ∈ Σ̂(β∗) .

We now get an estimate forh~σ. Suppose thatσ ∈ Σ̂(β∗),
x ∈ r0B̄n, ~c ∈ C, and z ∈ h~σ(~c, x). Write
~σ = (σ1, . . . , σm), ~c = (c1, . . . , cm). Then there exist
y0, y1, . . . , ym such thaty0 = x, yj ∈ ψσj ,cj (yj−1) for
j = 1, . . . ,m, andz = ym−y0−

∑m
j=1 α

j(σj)cjvj . Since
yj−1 ∈ rj−1B̄n, yj ∈ ψσj ,cj (yj−1), andαj(σj) ≤ β∗, we
can conclude that

‖yj − yj−1 − αj(σj)cjvj‖
αj(σj) + ‖yj−1‖

≤ ωj(α+(~σ), ‖yj−1‖) ,

so that

‖yj − yj−1 − αj(σj)cjvj‖ ≤(
αj(σj) + ‖yj−1‖

)
ωj(α+(~σ), ‖yj−1‖) .

It follows, in particular, that

‖yj‖ ≤ ‖yj−1‖+ λα+(~σ)
+(α+(~σ) + ‖yj−1‖)ωj(α+(~σ), ‖yj−1‖) .

whereλ = max{c̄j‖vj‖ : j = 1, . . . ,m}. Therefore

‖yj‖ ≤
(
‖yj−1‖+ α+(~σ)

)(
λ̂+ ωj(α+(~σ), ‖yj−1‖)

)
,

whereλ̂ = max(1, λ).
Given a positive number δ, let ν(δ) be

such that 0 < ν(δ) ≤ β∗, ν(δ) < r0, and

ωj
(
ν(δ) , (m+1)(λ̂+ν(δ))mν(δ)

)
≤min(1, δ) whenever

j = 1, . . . ,m. Suppose thatσ ∈ Σ̂(ν(δ)) and‖x‖ ≤ ν(δ).
Then

‖y1‖ ≤ (‖x‖+α+(~σ))
(
λ̂+ω1(ν(δ), ν(δ))

)
≤ 2ν(δ)(λ̂+1) .

Since ‖y1‖ ≤ 2ν(δ)(λ̂ + 1), we can conclude that
ω2(α+(~σ), ‖y1‖) ≤ ω2(ν(δ), 2ν(δ)(λ̂+ 1)) ≤ 1, so

‖y2‖ ≤
(
‖y1‖+α+(~σ)

)
(λ̂+1) ≤ 2ν(δ)(λ̂+1)2+ν(δ)(λ̂+1) ,

and then‖y2‖ ≤ 3ν(δ)(λ̂+1)2 . Continuing in this way, we
show that‖yj‖ ≤ (j+1)ν(δ)(λ̂+1)j for all j ∈ {1, . . . ,m}.
It then follows that

ωj
(
α+(~σ), ‖yj−1‖

)
≤ωj

(
ν(δ), (m+1)(λ̂+ν(δ))mν(δ)

)
≤δ

for all j. Hence

‖yj − yj−1 − αj(σj)cjvj‖ ≤ δ
(
αj(σj) + ‖yj−1‖

)
≤ δ

(
ν(δ) + (m+ 1)(λ̂+ 1)m

)
ν(δ) .

The identityz = ym − y0 −
∑m

j=1 α
j(σj)cjvj implies that

z =
∑m

j=1(yj − yj−1 − αj(σj)cjvj) . Sinceν(δ) ≤ β∗, it
follows that

‖z‖ ≤ Kδ ν(δ) ,

whereK = m
(
β∗ + (m+ 1)(λ̂+ 1)m

)
.

Summarizing, we have proved that
(#) If δ > 0, and~σ belongs toΣ̂(ν(δ)), then the maph~σ is

in CCA(C×r0B̄n,Rn), and the bound‖z‖ ≤ Kδ ν(δ)
holds whenever‖x‖ ≤ ν(δ) ~c ∈ C, and z ∈ h~σ(~c, x).



Using (#), we will now conclude our proof. Recall that
we have chosen a member~σ∗ = (σ1

∗, . . . , σ
m
∗ ) of Σ̂ such

thatα+(~σ∗) = β∗, and the identities (12), (13), (14) hold.
Now, if ρ is any real number such that0 < ρ ≤ 1, we

can pick for eachj a σj
ρ ∈ Σj such that

τ j
−(σj

ρ)− t = ρ1/ν(j)(τ j
−(σj

∗)− t) ,

τ j
+(σj

ρ)− t = ρ1/ν(j)(τ j
+(σj

∗)− t) ,

αj(σj
ρ) = ραj(σj

∗) .

Let ~σρ = (σ1
ρ, . . . , σ

m
ρ ). It is then clear that

α+(~σρ) = ρα+(~σ∗) = ρβ∗. Furthermore,~σρ belongs toΣ̂.
(Indeed, ifj = 2, . . . ,m, we have

τ j−1
+ (σj−1

ρ )− t = ρ1/ν(j−1)(τ j−1
+ (σj−1

∗ )− t)

≤ ρ1/ν(j)(τ j−1
+ (σj−1

∗ )− t)

≤ ρ1/ν(j)(τ j
−(σj

∗)− t)

≤ τ j
−(σj

ρ)− t ,

since ν(j − 1) ≤ ν(j) and 0 < ρ ≤ 1. Hence
τ j−1
+ (σj−1

ρ ) ≤ τ j
−(σj

ρ) for all j. Also,

τm
+ (σm

ρ )− t = ρ1/ν(m)(τm
+ (σm

∗ )− t)
≤ τm

+ (σm
∗ )− t)

≤ b− t .

Henceτm
+ (σm

ρ ) ≤ b.)
Given a positiveδ, let ρ(δ) = ν(δ)/β∗, so0 < ρ(δ) ≤ 1,

because0 < ν(δ) ≤ β∗. Let Q(δ) be the set of all
(~ε, x) = (ε1, . . . , εm, x) ∈ Rm × Rn such that‖x‖ ≤ ν(δ)
and0 ≤ εj ≤ αj(σj

ρ(δ))c̄
j for j = 1, . . . ,m.

Then, if (~ε, x) ∈ Q(δ), it follows, if we let
~c(~ε) = (ε1/α1(σ1

ρ(δ)), . . . , εm/α
m(σm

ρ(δ))), that ~c(~ε) ∈ C.
Therefore the mapHδ : Q(δ) 7→→ Rn given
by Hδ(~ε, x) = h~σρ

(~c(~ε), x) belongs to CCA(Q(δ),Rn.
Furthermore, this map satisfies the bound‖z‖ ≤ Kδν(δ)
wheneverz ∈ Hδ(~ε, x), (~ε, x) ∈ Q(δ).

Let ε(δ) be the minimum ofν(δ) and the numbers
αj(σj

ρ(δ))c̄
j , for j = 1 . . . ,m. Let B(δ) be the

closed Euclidean ball inRm × Rn having radius
ε(δ) and center 0. Then B(δ) is the set of all
m+n-tuples (ε1, . . . , εm, x1, . . . , xn) ∈ Rm × Rn that
satisfy ε21 + · · ·+ ε2m + x2

1 + · · ·+ x2
n ≤ ε(δ). Let

B+(δ) = B(δ) ∩ (Rm
+ × Rn). Then B+(δ) is clearly

a subset ofQ(δ), so Hδ, restricted toB+(δ) is a CCA
map fromB+(δ) to Rn.

For (~ε, x) ∈ B+(δ), define a setAδ(~ε, x) of affine maps
from Rm×Rn by lettingAδ(~ε, x) be the set of all maps of
the form (~γ,w) → L(~γ,w) + u, for u ∈ Hδ(~ε, x). (Recall
that the mapL was defined in (11).) ThenAδ is a CCA
map fromB+(δ) to Aff(Rm × Rn; Rn).

Given an(~ε, x) ∈ B+(δ), and any mapM ∈ Aδ(~ε, x), we
have, ifu ∈ Hδ(~ε, x) is such thatM(~γ,w) ≡ L(~γ,w) + u,
and~c(~ε) = (c1, . . . , cm)

M(~ε, x)=L(~ε, x)+u=x+
m∑

j=1

εjv
j =x+

m∑
j=1

αj(σj
ρ)c

jvj .

Since u ∈ Hδ(~ε, x) = h~σρ
(~c(~ε), x), it follows that

M(~ε, x) ∈ ζ~σρ
(~c, x) = Ψ~σρ,~c(x). Sinceα(~σρ) · ~c = ~ε, we

conclude thatM(~ε, x) ∈ Ψ̃#(~ε, x).
Therefore the map Aδ belongs to

CCA(B+(δ);Aff(Rm × Rn; Rn) and is such that
L(~ε, x) + u ∈ Ψ#(~ε, x) whenever(L, u) ∈ Aδ(~ε, x).

This almost proves (9). To complete the proof, we must
derive, for theu’s such that(L, u) ∈ Aδ(~ε, x), a bound
‖u‖ ≤ θ(ε)ε, whereε is the radius ofB(δ), i. e., ε = ε(δ).
We already have the bound‖u‖ ≤ Kδν(δ), so it suffices
to show thatν(δ) ≤ qε(δ) for some constantq. But

ε(δ) = min
(
ν(δ),min{αj(σj

ρ(δ))c̄
j : j = 1 . . . ,m}

)
,

and αj(σj
ρ(δ)) = ρ(δ)αj(σj

∗) = ν(δ)/β∗. Hence

αj(σj
ρ(δ))c̄

j ≥ ν(δ)ĉ
β∗

, where ĉ = min{c̄j : j = 1 . . . ,m}.
Therefore, if we let q = max(1, β∗/ĉ), we find that
ν(δ) ≤ qε(δ), concluding our proof.
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