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1 Quadratic maps and the Hessian

NOTE: This section is “pure algebra.” So we work with linear spaces over an
arbitrary field K, assuming only that K is not of characteristic 2.

1.1 Quadratic and linear+quadratic maps.

If X and Y are linear spaces over K, and X ×X 3 (x, x′) 7→ B(x, x′) ∈ Y is
a symmetric bilinear map, we will write QB to denote the quadratic map
associated with B, i.e., the map

X 3 x 7→ 1
2
B(x, x)def=QB(x) ∈ Y .

It is well known that B is completely determined by QB, since

B(x, y) = QB(x + y)−QB(x)−QB(y) . (1)

Definition 1.1 Let X, Y be linear spaces over K. A quadratic map from
X to Y is a map Q such that Q = QB for some bilinear symmetric map
B : X ×X 7→ Y (which is then unique, as explained above). If Q is a quadratic
map, then we will use BQ to denote the corresponding symmetric bilinear map.

A linear+quadratic map from X to Y is a map M : X 7→ Y which is
the sum of a linear map and a quadratic map. ♦

If M : X 7→ Y is a linear+quadratic map, then the linear map L : X 7→ Y
and the quadratic map Q : X 7→ Y such that M = L + Q are uniquely
determined by M . (Indeed, fix x ∈ X; for ε ∈ K write

p(ε) = M(εx) = εL(x) + ε2Q(x) ;

then
p(1) = L(x) + Q(x) and p(2) = 2L(x) + 4Q(x) ,

so
L(x) =

4p(1)− p(2)
2

and Q(x) = p(1)− L(x) ;
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therefore L(x) and Q(x) are determined by M . Since this is true for all x ∈ X,
we see that L and Q are determined by M . Notice that this argument depends
quite strongly on the fact that K is not of characteristic 2.) The linear map L
and the quadratic map Q are, respectively, the linear part and the quadratic
part of M .

1.2 The differential of a linear+quadratic map.

Suppose that X and Y are linear spaces over the field K, and M : X 7→ Y is
a linear+quadratic map with linear part L and quadratic part Q. Let x0 be a
point of X. The differential of M at x0 is the linear map

X 3 x 7→ DM(x0)(x) def= L(x) + BQ(x0, x) ∈ Y .

This definition is justified by the fact that, if we write p(ε) = M(x0 + εx),
then DM(x0)(x) is the coefficient of ε in p(ε), since

M(x0 + εx) =
(
L(x0)+εL(x)

)
+

(1
2
BQ(x0, x0)+εBQ(x0, x)+

ε2

2
BQ(x0, x0)

)
= L(x0)+

1
2
BQ(x0, x0)+ε

(
L(x)+BQ(x0, x)

)
+

ε2

2
BQ(x0, x0) .

1.3 Zeros and regular zeros of a linear+quadratic map.

Definition 1.2 If S is a set and Y is a linear space, a zero of a map µ : S 7→
Y is a point s ∈ S such that µ(s) = 0.

♦

Definition 1.3 Suppose that X, Y are linear spaces, and M : X 7→ Y is a
linear+quadratic map. A regular point of M is a point x0 ∈ X such that the
linear map DM(x0) : X 7→ Y is surjective. A regular zero of M is a zero of
M which is is regular point. ♦

Equivalently, if L,Q are the linear and quadratic parts of M , a regular
zero of Q is a point x0 ∈ X such that

a. M(x0) = 0

and

b. the linear map X 3 x 7→ L(x) + BQ(x0, x) ∈ Y is surjective.
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1.4 The Hessian.

For a better understanding of this subection and the next one, the reader should
think of the special case when L and Q as the first derivative Df(x0) and one-
half of the second derivative D2f(x0) at a point x0 of a map of class C2 from
an open subset U containing x0 of a Banach space X to a Banach space Y .

Assume that

(H1) X and Y are linear spaces over K;

(H2) L : X 7→ Y is a linear map;

(H3) Q : X 7→ Y is a quadratic map.

Definition 1.4 If (H1,2,3) hold, then the Hessian of the pair (L,Q) is the
quadratic map HL,Q : KL 7→ CL (where KL = ker L, CL = cokerL = Y/im L)
given by

HL,Q(k) = π(Q(k)) for k ∈ K , (2)

where π is the canonical projection from Y to the quotient space CL. ♦

Remark 1.5 As we pointed out above, an important special case of our gen-
eral definition of the Hessian occurs when K = R, X and Y are real Banach
spaces, L = Df(x0) and Q = 1

2D2f(x0), where f is a map of class C2 from
an open subset U of X to Y , and U contains x0. In that case, the Hessian
HL,Q is called the Hessian of f at x0, and we use the alternative notation
Hf (x0) for HL,Q (i.e., for HDf(x0), 1

2
D2f(x0)). ♦

Remark 1.6 Under the conditions of the previous remark, the Hessian Hf

is a quadratic map from kerDf(x0) to coker Df(x0). Clearly, kerDf(x0) is
a closed subspace of X, but in principle there is no reason for im Df(x0)
to be closed in Y , and if im Df(x0) is not closed in Y then the quotient
cokerDf(x0) = Y/im Df(x0) is not a Banach space.

This is probably why in several papers on this subject (e.g. [1, 2]) the
authors impose the extra requirement that im Df(x0) be closed. It turns
out, however, that this assumption is never needed. As we have shown, the
concept of a “regular zero of Hf” can be defined in a purely algebraic way.
Furthermore, in the next subsection we show that the existence of a regular
zero of Hf is exactly equivalent to the existence of a regular zero of another
linear+quadratic map ΦL,Q (that is, ΦDf(x0), 1

2
D2f(x0)), and this second map is
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automatically a map between Banach spaces, because it goes from the product
X × ker Df(x0) to Y . ♦

Remark 1.7 The Hessian Hf (x0) of a map f of class C2 at a point x0 is
defined in terms of the best linear approximation Df(x0)(h) of f(x0+h)−f(x0)
and the best quadratic approximation 1

2D2f(x0)(h) of f(x0 + h) − f(x0) −
Df(x0)(h) near h = 0. However, the formula for Hf (x0) only makes use of
the values D2f(x0)(h) for h ∈ ker Df(x0). This suggests that the existence of
the second derivative in directions not belonging to kerDf(x0) should not be
needed. It turns out, in fact, that the proper setting for the theory is much
more general. All that is needed (assuming, for simplicity, that x0 = 0 and
f(x0) = 0) is the existence of a continuous linear map L : X 7→ Y and a
continuous quadratic map Q : KL 7→ Y (where KL = kerL) such that, for
(x, k) ∈ X ×KL,

f(x + k) = Lx + Q(k) + o(|||(x, k)|||2) as (x, k) → (0, 0) ∈ X ×KL , (3)

where |||(x, k)||| def= ‖x‖1/2 + ‖k‖.
This condition is of course satisfied when f is of class C2 near 0. (Proof.

Write
f(x + k) = L(x + k) + Q(x + k) + o(‖x‖2 + ‖k‖2) ,

where L = Df(x0) and Q = 1
2D2f(x0). Then L(x + k) = L(x) because

k ∈ ker L. Furthermore,

Q(x + k) =
1
2
BQ(x + k, x + k) =

1
2
BQ(x, x) + BQ(x, k) +

1
2
BQ(k, k) ,

and
1
2
BQ(x, x) + BQ(x, k) = o(‖x‖) ,

so
f(x + k) = L(x) + Q(k) + o(‖x‖+ ‖k‖2) .

And, finally, a quantity which is o(‖x‖+‖k‖2) is a fortiori o(|||(x, k)|||2), since
‖x‖+ ‖k‖2 ≤ (‖x‖1/2 + ‖k‖)2.)

The map f must be required to be continuous, but it is not necessary that
it be of class C2 or even of class C1. (For example, let ϕ : R2 7→ R be a
nowhere differentiable function. Define f : R2 7→ R by letting

f(x, y) = x + y2 + (x4 + y4)ϕ(x, y) .
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Then f clearly is continuous and has a quadratic approximation of the desired
type, while on the other hand f is not differentiable at any point other than
(0, 0).) ♦

Remark 1.8 The expression |||(x, k)||| is in fact a “homogeneous norm” rela-
tive to a group of dilations on X×KL. (Precisely, define δt : X×KL 7→ X×KL,
for t > 0, by letting δt(x, k) = (t2x, tk). Let |||(x, k)||| = ‖x‖1/2 + ‖k‖. Then
|||δt(x, k)||| = t|||(x, k)|||. Furthermore, ||| · ||| satifies the triangle inequality
|||(x1 +x2, k1 +k2)||| ≤ |||(x1, k1)|||+ |||(x2, k2)|||, as well as the condition that
|||(x, k)||| = 0 if and only if (x, k) = (0, 0).)

So (3) is precisely the statement that f(x + k) has a linear+quadratic
approximation with an error which is a “small o of the norm squared.” In
addition, relative to the dilations δt, the linear+quadratic approximation is
just “quadratic homogeneous,” in the sense that, if we define M(x, k) = L(x)+
Q(k), then M(δt(x, k)) = t2M(x, k).

This approach is pursued in Sussmann [3], where it is proved that, when an
approximation of this kind exists, and the approximating map has a regular
zero, then the map itself is open at 0, provided that the target space Y is
finite-dimensional. (In the infinite-dimensional case, stronger conditions are
needed, analogous to those of Graves’ theorem on strictly differentiable maps.
This is also discussed in [3].) ♦

1.5 Regular zeros of the Hessian.

The regular zeros of a Hessian HL,Q can also be characterized as the regular
zeros of a linear+quadratic map ΦL,Q : X ×KL to Y as follows. We define a
map ΦL,Q : X ×KL to Y by

ΦL,Q(x, k) = Lx + Q(k) .

Then ΦL,Q is clearly linear+quadratic.

Theorem 1.9 Assume that X, Y, L,Q are such that (H1,2,3) hold, and KL,
CL, HL,Q are as in Definition 1.4. Then a point k0 ∈ KL is a regular zero
of HL,Q if and only if there exists an x0 ∈ X such that (x0, k0) is a regular
zero of ΦL,Q. In particular, HL,Q has a regular zero if and only if ΦL,Q has a
regular zero.

Proof. Let π : Y 7→ CL be the canonical projection. Suppose k0 is a regular
zero of HL,Q. Then k0 ∈ KL, HL,Q(k0) = 0 as a member of CL, and the linear
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map KL 3 k 7→ π(BQ(k0, k)) ∈ CL is surjective. The fact that HL,Q(k0) = 0
as a member of CL says that Q(k0) = 0 modulo im L, that is, that there exists
x0 ∈ X such that L(x0) + Q(k0) = 0 in Y . Hence (x0, k0) is a zero of ΦL,Q.
To show that (x0, k0) is a regular zero of ΦL,Q we must prove the surjectivity
of the differential DΦL,Q(x0, k0), which is a linear map from X × KL to Y .
So let us pick an arbitrary y ∈ Y . The surjectivity of DHL,Q(k0) implies that
we can find k ∈ KL such that DHL,Q(k0)(k) = π(y). But DHL,Q(k0)(k) =
π(BQ(k0, k)), so BQ(k0, k) = y modulo im L. Then there exists x ∈ X such
that L(x) + BQ(k0, k) = y, so y = DΦL,Q(x0, k0)(x, k), completing the proof
that DΦL,Q(x0, k0) is surjective.

To prove the converse, suppose (x0, k0) is a regular zero of ΦL,Q. Then
0 = ΦL,Q(x0, k0) = L(x0) + Q(k0), so Q(k0) = 0 modulo im L, and then
HL,Q(k0) = 0, so k0 is a zero of HL,Q. To prove regularity, we have to show
that the linear map KL 3 k 7→ π(BQ(k0, k)) ∈ CL is surjective. So we pick
η ∈ CL and try to express η as π(BQ(k0, k)) for some k ∈ KL. Pick y ∈ Y
such that π(y) = η. Since DΦL,Q(x0, k0) is surjective, we can find x ∈ X,
k ∈ KL, such that L(x) + BQ(k0, k) = y. But then BQ(k0, k) = y modulo
im L, so π(BQ(k0, k)) = π(y) = η. ♦

2 A second-order open mapping theorem

In this section we do analysis, so now the field of scalars is R.

If A,B are topological spaces, f is a map from A to B, and a ∈ A, we say
that f is open at a if, whenever W is an open subset of A such that a ∈ W ,
it follows that f(a) is an interior point of f(W ).

Theorem 2.1 Let X, Y be Banach spaces such that dim Y < ∞. Let f be
a Y -valued map of class C2 from an open subset U of X such that 0 ∈ U .
Assume that f(0) = 0. Suppose that the Hessian Hf (0) has a regular zero.
Then f has regular zeros arbitrarily close to 0. In particular f is open at 0.

Remark 2.2 The openness part of the statement follows from the assertion
about the regular zeros, because if W is open and 0 ∈ W then we can find a
regular zero x0 of f belonging to W and then f(x0) will be an interior point
of f(W ), i.e., ∈ IntW .

It turns out, however, that it is more convenient to prove the openness first
and then use it to deduce the result about the regular zeros as a corollary.
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For the optimal control application, what we really need is the openness
result. So the reader may ask why we do not simply omit the result on
the regular zeros, since in any case it is proved after rather than before the
openness assertion. The reason is that the existence of regular zeros will be
needed in our inductive proof of the main theorem on the index. ♦

Proof of Theorem 2.1. Write

L = Df(0) ,

Q =
1
2
D2f(0) ,

K = ker L ,

C = cokerL .

We know from Theorem 1.9 that the existence of a regular zero of Hf is
equivalent to the existence of points x0 ∈ X, k0 ∈ K such that

(E1) Φ(x0, k0) = 0,

and

(E2) the linear map X ×K 3 (x, k) 7→ L(x) + BQ(k0, k) ∈ Y is surjective,

where Φ is the map X ×K 3 (x, k) 7→ L(x) + Q(k) ∈ Y .

Let Ψ be the linear map of (E2), so Ψ = DΦ(x0, k0). Using the fact that
f ∈ C2, write

f(x + k) = L(x) + Q(k) + o(|||(x, k)|||2) as (x, k) → (0, 0) ,

where |||(x, k))||| =
√
‖x‖+ ‖k‖ (cf. Remark 1.7). Also, let

δt(x, k) = (t2x, tk) for (x, k) ∈ X ×K , t ∈ R , t ≥ 0 .

Then |||δt(x, t)||| = t|||(x, k)||| and Φ(δt(x, k)) = t2Φ(x, k) for all x, k, t.
Fix an open subset W of X such that 0 ∈ W and W ⊆ U . Find an

open subset W of X ×K such that x + k ∈ W whenever (x, k) ∈ W. Define
F (x, k) = f(x + k), so F is defined on W.

Let s 7→ σ(s) be a function, defined for s in some interval ]0, s̄] with s̄ > 0,
such that lims↓0 σ(s) = 0, and having the property that the conditions

(x, k) ∈ W and ‖F (x, k)− L(x)−Q(k)‖ ≤ σ(‖x‖+ ‖k‖)|||(x, k)|||2
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hold whenever ‖x‖+ ‖k‖ ≤ s̄.

For t > 0, let ξ(t) = δt(x0, k0), i.e., ξ(t) = (t2x0, tk0). Then all the points
ξ(t) are regular zeros of Φ. We are going to prove that there exist regular
zeros ζ(t) of F “close” to the ξ(t) in a sense to be made precise below.

Let BY (r) be the closed unit ball of Y with center 0 and radius r. Since
Φ(x0, k0) = 0 and the linear map DΦ(x0, k0) = Ψ : X ×K 7→ Y is surjective,
the usual implicit function theorem (which is applicable here since Y is finite-
dimensional, so the closed linear subspace ker Ψ of X has a complement), we
can find a positive number r̄ and a smooth map Θ : BY (r̄) 7→ X × K such
that Φ◦Θ = idBY (r̄) and Θ(0) = (x0, k0). Since Y is finite-dimensional, BY (r̄)
is compact, so Θ(BY (r̄)) is compact. Hence the exists a positive constant κ
such that ‖Θ(y)‖ ≤ κ whenever y ∈ BY (r̄). (NOTE: the norm ‖ · ‖ on X ×K
is the map (x, k) 7→ ‖x‖+ ‖k‖.)

We now define maps µt : BY (r̄) 7→ Y , for t > 0, t small, as follows.

µt(y) =
1
t2

F
(
δt(Θ(y))

)
if y ∈ BY (r̄) , 0 < t ≤ τ .

Here the constant τ is chosen so that

δt(Θ(BY (r̄))) ⊆ {(x, k) : ‖x‖+ ‖k‖ ≤ s̄} whenever 0 < t ≤ τ .

(This is poosible because the set Θ(BY (r̄)) is bounded and δt → 0 as t ↓ 0
uniformly on bounded sets.)

Let us study the map νt obtained by substituting Φ for F in the definition
of µt, and compare νt with µt. We have

νt(y) =
1
t2

Φ
(
δt(Θ(y)

)
if y ∈ BY (r̄) , 0 < t ≤ τ .

Since

Φ
(
δt(Θ(y))

)
= t2Φ(Θ(y)) = t2y ,

we see that

νt(y) = y if y ∈ B , 0 < t ≤ τ
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Furthermore, if y ∈ BY (r̄), 0 < t ≤ τ , we have

‖µt(y)− νt(y)‖ =
∥∥∥ 1
t2

F
(
δt(Θ(y)

)
− 1

t2
Φ

(
δt(Θ(y)

)∥∥∥
=

1
t2

∥∥∥∥∥F
(
δt(Θ(y)

)
− Φ

(
δt(Θ(y)

)∥∥∥∥∥
≤ 1

t2
σ
(
‖δt(Θ(y)‖

)
|||δt(Θ(y)|||2

=
1
t2

σ
(
‖δt(Θ(y)‖

)
t2 |||Θ(y)|||2

= σ
(
‖δt(Θ(y)‖

)
|||Θ(y)|||2 .

Since ‖δt(Θ(y))‖ → 0 as t ↓ 0, uniformly with respect to y ∈ BY (r̄), and
Θ(BY (r̄)) is bounded, it follows that ‖µt(y) − νt(y)‖ → 0 as t ↓ 0, uniformly
with respect to y ∈ BY (r̄), and Θ(BY (r̄)). In other words,

lim
t↓0

β(t) = 0 , (4)

where
β(t) = sup

{
‖µt(y)− y‖ : y ∈ BY (r̄)

}
= 0 . (5)

Let τ̄ be such that 0 < τ̄ ≤ τ and 2β(t) < r̄ for 0 < t ≤ τ̄ . Then, if 0 < t ≤ τ̄ ,
and z ∈ BY (β(t)), the map

BY (2β(t)) 3 y 7→ y − µt(y) + z
def=ωz,t(y)

satisfies ‖ωz,t(y)‖ ≤ 2β(t) for all y ∈ BY (2β(t)). Hence ωz,t is a continuous
map from BY (2β(t)) to BY (2β(t)). Therefore the Brouwer fixed point theorem
implies that there exists a yz,t ∈ BY (2β(t)) such that ωz,t(yz,t) = yz,t. i.e.,
that µt(yz,t) = z.

Let ζ∗z (t) = δt(Θ(yz,t)). Then F (ζ∗z (t)) = t2z. It follows that, if 0 < t ≤ τ̄ ,
w ∈ BY (t2β(t)), and we define ζw(t) = ζ∗w/t2(t), then F (ζw(t)) = w.

In particular, we have shown that the ball BY (t2β(t)) is contained in F (W).
Since F (W) ⊆ f(W ), we have shown that BY (t2β(t)) ⊆ f(W ) if t is small
enough, and this proves the openness of f at 0.

Furthermore, if we let ζ(t) = ζ0(t), the points ζ(t) satisfy F (ζ(t)) = 0, so
the ζ(t) are zeros of F . It follows that, if we write ζ(t) = (x(t), k(t)), then
x(t) + k(t) is a zero of f .

We now show that if t is small enough then x(t) + k(t) is a regular zero of
f . For this purpose, we want to show that the points ζ(t) are “very close” to
the ξ(t).
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By definition, ζ(t) = ζ∗0 (t) = δt(Θ(y0,t)). So δ−1
t (ζ(t)) = Θ(y0,t). As t ↓ 0,

y0,t goes to 0 (because y0,t ∈ BY (t2β(t))). Hence Θ(y0,t) goes to Θ(0), i.e., to
(x0, k0). So we have shown that

lim
t↓0

δ−1
t (ζ(t)) = (x0, k0) . (6)

Since ξ(t) = δt(x0, k0), we have (x0, k0) = δ−1
t (ξ(t))). So we can rewrite (6) as

lim
t↓0

δ−1
t

(
ζ(t)− ξ(t)

)
= 0 . (7)

Formulas (6) and (7) tell us that ζ(t) is very close to ξ(t) is a very precise
sense. If we write ζ(t) = (x(t), k(t)) as before, (6) says that

lim
t↓0

x(t)
t2

= x0 and lim
t↓0

k(t)
t

= k0 . (8)

In other words, the points (x(t), k(t)) that we have found satisfy

x(t) = t2x0 + o(t2) and k(t) = tk0 + o(t) . (9)

We now prove that

(#) For sufficiently small t, x(t) + k(t) is a regular point of f .

To prove (#), we first observe that it suffices to show that

(#’) For sufficiently small t, ζ(t) is a regular point of F .

(Indeed, it follows from the chain rule that the differential DF (ζ(t)) : X×K 7→
Y is the composite map Df(x(t)+k(t))◦Σ, where Σ : X×K 7→ X is the map
(x, k) 7→ x+k. Hence Df(x(t)+k(t)) is necessarily surjective if DF (x(t), k(t))
is surjective.)

We now prove (#’). Using the fact that f is of class C2, write

F (x, k) = f(x + k) = Df(0)(x + k) +
1
2
D2f(0)(x + k) + R(x, k) ,

where the remainder R is a map of class C2 such that R(0, 0), DR(0, 0), and
D2R(0, 0) vanish.

Then DF (x, k) = Df(0) ◦ Σ + Λx,k + DR(x, k), where Σ is, as above, the
map X × K 3 (x, k) 7→ x + k ∈ X, and Λx,k is the linear map X × K 3
(∆x,∆k) 7→ BQ(x + k, ∆x + ∆k) ∈ X.
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For t > 0, let Ξt be the linear map

X ×K 3 (x, k) 7→
(
x,

k

t

)
∈ X ×K .

Then
DF (x(t), k(t)) ◦ Ξt = M(t) + DR(x(t), k(t)) ◦ Ξt , (10)

where M(t) is the linear map

X ×K 3 (∆x, ∆k) 7→ DF (0)
(
∆x +

∆k

t

)
+ BQ

(
x(t) + k(t),∆x +

∆k

t

)
∈ Y .

Then, if (∆x,∆k) ∈ X ×K, we have

M(t)(∆x,∆k) = DF (0)
(
∆x +

∆k

t

)
+ BQ

(
x(t) + k(t),∆x +

∆k

t

)
= DF (0)(∆x) + BQ

(
x(t) + k(t),

t∆x + ∆k

t

)
= DF (0)(∆x) + BQ

(x(t) + k(t)
t

, t∆x + ∆k
)

,

where we have used the bilinearity of BQ and the fact that DF (0)(∆k) = 0
since ∆k ∈ ker Df(0).

In view of (9),

lim
t↓0

(x(t) + k(t)
t

)
= k0 .

Therefore
lim
t↓0

M(t) = M(0) , (11)

where M(0) is the linear map

X ×K 3 (∆x,∆k) 7→ DF (0)∆x + BQ

(
k0,∆k) ∈ Y ,

which is exactly the linear map of (E2). It follows that M(0) is surjective.
In addition, the fact that R(0, 0), DR(0, 0), and D2R(0, 0) vanish implies

that DR(x, k) = o(‖x‖+‖k‖) as (x, k) → (0, 0). Then ‖DR(x(t), k(t))‖ = o(t)
as t ↓ 0, since ‖x(t)‖+ ‖k(t))‖ = O(t). Since ‖Ξt‖ = 1

t , we can conclude that

lim
t↓0

DR(x(t), k(t)) ◦ Ξt = 0 . (12)

Then (10), (11) and (12) imply

lim
t↓0

DF (x(t), k(t)) ◦ Ξt = M(0) . (13)

Since M(0) is surjective, the map DF (x(t), k(t)) ◦ Ξt must be surjective for t
small enough. This in turn implies that DF (x(t), k(t)) is surjective for t small
enough. Hence we have proved (#’), and the proof of our theorem is complete.
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