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We present a generalization of the Pontryagin Maximum Principle, in which
the usual adjoint equation, which contains derivatives of the system vector
fields with respect to the state, is replaced by an integrated form, containing
only differentials of the reference flow maps. In this form, the conditions of the
maximum principle make sense for a number of control dynamical laws whose
right-hand side can be nonsmooth, nonlipschitz, and even discontinuous. The
“adjoint vectors” that are solutions of the “adjoint equation” no longer need
to be absolutely continuous, and may be discontinuous and unbounded. We
illustrate this with two examples: the “reflected brachistochrone problem”
(RBP), and the derivation of Snell’s law of refraction from Fermat’s minimum
time principle. In the RBP, where the dynamical law is Hölder continuous with
exponent 1/2, the adjoint vector turns out to have a singularity, in which one
of the components goes to infinity from both sides, at an interior point of the
interval of definition of the reference trajectory. In the refraction problem,
where the dynamical law is discontinuous, the adjoint vector is bounded but
has a jump discontinuity.

1 Introduction

It is well known that the minimum time problem whose solution is Snell’s law
of refraction was the first link of a long chain of mathematical developments
that eventually led to the Pontryagin Maximum Principle (PMP) of optimal
control theory: Snell’s law was used by Johann Bernoulli’s in his solution of
the brachistochrone problem; this in turn was a decisive step towards the
formulation of the general necessary condition of Euler and Lagrange for
the classical Calculus of Variations; the Euler-Lagrange conditions were then
strengthened by Legendre, whose second-order condition was later strength-
ened by Weierstrass; and, finally, Weierstrass’ excess function condition led to
the Pontryagin Maximum Principle (PMP), stated and proved in [1].
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In the five decades since the formulation of the PMP, the result has been
generalized in many directions, incorporating high-order conditions(cf. [7],
[8]) and various types of nonsmoothness (cf. [2], [3], [4], [5], [6], [9],[13]), and
producing intrinsic coordinate-free formulations on manifolds. It is remarkable
and somewhat disappointing, however, that the refraction problem that leads
to Snell’s law does not fit within the framework of any of these generalizations,
because even the non-smooth versions of the PMP require Lipschitz conditions
on the system vector fields, and for the refraction problem the vector fields
are actually discontinuous. A similar phenomenon occurs with the “reflected
brachistochrone problem” (RBP), a very natural optimization problem with
a Hölder continuous right-hand side.

The purpose of this note is to present a generalization of the PMP that
applies to problems such as refraction1 and the RBP. This result—of which
a preliminary announcement was made in 2004 in [12]—is a special case of
several far-reaching extensions of the PMP proved by us in other papers (cf.
[10, 11, 12]) that are much longer and more technical. We choose to isolate
this particular aspect of the general results and present it separately because
it lends itself to a relatively simple and self-contained treatment.

In our version of the PMP, the usual adjoint equation, which contains
derivatives with respect to the state, is replaced by an integrated form,
containing only differentials of the reference flow maps. In this form, the
conditions of the maximum principle make sense for a number of control
dynamical laws whose right-hand side can be nonsmooth, nonlipschitz, and
even discontinuous. The “adjoint vectors” that are solutions of the “adjoint
equation” no longer need to be absolutely continuous, and could even be
discontinuous and unbounded. In both the refraction problem and the RBP,
the state space is R2, and the system vector fields are smooth everywhere,
except along the x axis. For the refraction problem, the system vector fields
are discontinuous, and the adjoint vector turns out to be discontinuous as well,
but bounded, having a jump discontinuity at the point where the trajectory
crosses the x axis. axis. For the RBP, the system vector fields are Hölder
continuous with exponent 1/2, and—somehwat surprisingly, considering that
the RBP vector fields are less irregular than those of the refraction problem—
the adjoint vector turns out to be discontinuous with a worse singularity:
at the point where the trajectory crosses the x axis, the adjoint vector
becomes infinite. And for both problems, the adjoint vector cannot possibly
be characterized as a solution of an ordinary differential equation.

1 Some readers may object to our inclusion of the refraction example here, on
the grounds that the solution can easily be found by elementary means. Our
motivation is identical to that of many authors of calculus of variations textbooks,
who choose to include, as an application of the Euler-Lagrange equations, the
derivation of the fact that the shortest path joining two points is a straight line
segment, even though this can also be proved by completely trivial arguments. In
both cases, the purpose is to show that the new necessary condition applies to a
very old problem that played a key role in the early history of the subject.
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2 Preliminaries on sets, maps, and flows

Sets and maps. If S is a set, then IS will denote the identity map of S. If A, B
are sets, then the notations f : A ↪→ B, f : A 7→ B will indicate, respectively,
that f is a possibly partially defined (abbr. “ppd”) map from A to B and
that f is an everywhere defined map from A to B. If A ⊆ B and f : B ↪→ C,
then fdA is the restriction of f to A, so fdA : A ↪→ C, and fdA : A 7→ C if
f : B 7→ C.

Totally ordered sets. If E is a totally ordered set, with ordering �, we use
E�,2 to denote the set of all ordered pairs (s, t) ∈ E ×E such that s � t, and
write E�,3 to denote the set of all ordered triples (r, s, t) ∈ E × E × E such
that r � s � t. A subinterval of E is a subset I of E such that, whenever
x � y � z, x ∈ I, z ∈ I, and y ∈ E, it follows that y ∈ I. If a ∈ E, b ∈ E, and
a � b, then the E-interval from a to b is the set [a, b]E

def= {x ∈ E : a � x � b}.
Manifolds, tangent and cotangent spaces. “Manifold” will mean “smooth man-
ifold”, “smooth” means “of class C∞,” and TxM , T ∗xM denote, respectively,
the tangent and cotangent spaces to a manifold M at a point x of M .

Set separation. Let S1 and S2 be subsets of a Hausdorff topological space
T , and let p be a point of T . We say that S1 and S2 are separated at p if
S1 ∩ S2 ⊆ {p}, i.e. if S1 and S2 have no common point other than p. We say
that S1 and S2 are locally separated at p if there exists a neighborhood V of
p such that S1 ∩ V and S2 ∩ V are separated.

Flows and their trajectories. Every sufficiently well-behaved vector field gives
rise to a flow, but flows are typically less well-behaved than the vector fields
that generate them. This is a reason for studying flows independently from
their generators, as we now do.

Definition 1. Let E be a totally ordered set with ordering �, and let Ω be
a set. A flow on Ω with time set E (or, more simply, a flow on (Ω,E)) is a
family Φ = {Φt,s}(s,t)∈E�,2 of ppd maps from Ω to Ω that satisfy the identities
(F1) Φt,s ◦ Φs,r = Φt,r whenever (r, s, t) ∈ E�,3, and (F2) Φt,t = IΩ whenever
t ∈ E.

A trajectory of a flow Φ on (Ω,E) is a map ξ : I 7→ Ω, defined on a
subinterval I of E, such that ξ(t) = Φt,s(ξ(s)) whenever (s, t) ∈ I�,2. ♦

Real augmentation of sets. If Ω is a set, then we will write Ω# = R×Ω. If
Ω is a smooth manifold, then Ω# is obviously a smooth manifold as well. In
that case, if x# = (x0, x) ∈ Ω#, the tangent space Tx#Ω# and the cotangent
space T ∗x#Ω

# will be identified with the products R×TxΩ and R×T ∗xΩ using
the canonical identification maps.

Augmented flows and their trajectories. In optimal control theory, it is often
customary to “add the cost variable to the state of a system,” thus trans-
forming the optimization problem into a set separation problem in one higher
dimension. This augmentation procedure can be carried out directly for flows.
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Definition 2. If Φ is a flow on (Ω,E), a real augmentation of Φ is a family
c = {ct,s}(s,t)∈E�,2 of ppd functions from Ω to R such that

(RA) ct,r(x) = cs,r(x) + ct,s(Φs,r(x)) whenever x ∈ Ω and (r, s, t) ∈ E�,3.

A flow-augmentation pair (abbr. F-A pair) on (Ω,E) is a pair (Φ, c) such
that Φ is a flow on Ω with time set E and c is a real augmentation of Φ. ♦

(Notice that (RA) implies, in particular, that ct,t(x) = 0, since we can always
take r = s = t and use the fact that Φt,t(x) = x.)

To any F-A pair (Φ, c) on (Ω,E) we can associate a family of map-
pings Φ#,c

t,s : Ω# ↪→ Ω#, by letting Φ#,c
t,s (x0, x)=(x0 +ct,s(x), Φt,s(x)) for each

(s, t) ∈ E�,2. It is then clear that Φ#,c = {Φ#,c
t,s }(s,t)∈E�,2 is a flow on Ω#.

A flow Ψ such that Ψ = Φ#,c for some Φ, c is called a real-augmented flow. It
is easy to see that a flow Ψ = {Ψt,s}(s,t)∈E�,2 on R × Ω is a real-augmented
flow if and only if—if we write Ψt,s(x0, x) = (ψ0,t,s(x0, x), ψt,s(x0, x))—the
maps ψ0,t,s, ψt,s are such that the point ψt,s(x0, x) ∈ Ω and the number
ψ0,t,s(x0, x)− x0 ∈ R do not depend on x0. In that case, the pair (Φ, c) such
that Ψ = Φ#,c is uniquely determined by Ψ as follows: Φt,s(x) = ψt,s(x0, x)
and ct,s(x) = ψ0,t,s(x0, x)− x0 if (x0, x) ∈ Ω#.

Definition 3. An augmented trajectory of an F-A pair (Φ, c) on a pair (Ω,E)
is a trajectory of the flow Φ#,c, i. e., a map I 3 t 7→ ξ#(t) = (ξ0(t), ξ(t)) ∈ Ω#,
defined on a subinterval I of E, such that ξ(t) = Φt,s(ξ(s)) and ξ0(t) =
ξ0(s) + ct,s(ξ(s)) whenever (s, t) ∈ I�,2. ♦

Differentiability of flows. Given a trajectory ξ of a flow Φ, it makes sense to
talk about differentiability of Φ along ξ.

Definition 4. Assume that Ω is a manifold, Φ = {Φt,s}(s,t)∈E�,2 is a flow on
(Ω,E), I is a subinterval of E, and ξ : I 7→ Ω is a trajectory of Φ. We call Φ

(1) continuous near ξ if for each (s, t) ∈ I�,2 the map Φt,s is continuous
on a neighborhood of ξ(s).

(2) differentiable along ξ if for each (s, t) ∈ I�,2 the flow map Φt,s is
differentiable at ξ(s). ♦

The above definition can be applied to an augmented flow Φ#,c. If
Φ#,c is differentiable along an augmented trajectory ξ# = (ξ0, ξ), then the
differentials DΦ#,c

t,s (ξ#(s)) have a special structure, reflecting the special
structure of the maps Φ#,c

t,s . Indeed, if we write M#
t,s = DΦ#,c

t,s (ξ#(s)) (so that
M#
t,s is a linear map from Tξ#(s)Ω

# to Tξ#(t)Ω
# ), then it is easy to see that

the result M#
t,s| · (v0, v) of applying the linear map DΦ#,c

t,s (ξ#(s)) to a tangent
vector (v0, v) ∈ Tξ#(s)Ω

# ∼ R × Tξ(s)Ω is the vector (v0 + mt,s · v,Mt,s · v),
which belongs to Tξ#(t)Ω

# ∼ R× Tξ(t)Ω, where

mt,s = Dct,s(ξ(s)) , Mt,s = DΦt,s(ξ(s)) , (1)

so that mt,s ∈ T ∗ξ(s)Ω and Mt,s is a linear map from Tξ(s)Ω to Tξ(t)Ω.
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Variational fields. The differentials DΦt,s(ξ(s)), DΦ
#
t,s(ξ#(s)), can be used to

propagate tangent vectors forwards and cotangent vectors backwards.

Definition 5. A field of tangent vectors I 3 s 7→ v(s) ∈ Tξ(s)Ω such that
v(t) = Mt,s · v(s) whenever (s, t) ∈ I�,2—where Mt,s is defined by (1)—is
called a variational vector field of (Φ, c) along ξ. ♦

Definition 6. A field of vectors I 3 s 7→ v#(s) = (v0(s), v(s)) ∈ Tξ#(s)Ω
#

such that v0(t) = v0(s) + mt,s · v(s) and v(t) = Mt,s · v(s) whenever
(s, t) ∈ I�,2—where mt,s, Mt,s are defined by (1)—is called an augmented
variational vector field of (Φ, c) along ξ. ♦

Adjoint fields. The dual maps Λ#
t,s

def=
(
DΦ#,c

t,s (ξ(s))
)†

: T ∗ξ#(t)Ω
# 7→ T ∗ξ#(s)Ω

#

(where, naturally, we use the canonical identification T ∗ξ#(r)Ω
# ∼ R× T ∗ξ(r)Ω

for every r) are given (if we write the maps as acting on the right on augmented
covectors) by (ω#(t) · Λ#

t,s) · v#(s) = ω#(t) ·M#
t,sv

#(s)), so that, if we write
ω#(t) = (ω0(t), ω(t)), we see that

(ω0(s), ω(s)) · (v0(s), v(s)) =
(

(ω0(t), ω(t)) · Λ#
t,s

)
· (v0(s), v(s))

= ω0(t)v0(s)+ω0(t)mt,s · v(s)+(ω(t) ◦Mt,s) · v(s) ,

and then ω0(s) = ω0(t) and ω(s) = ω0mt,s + ω(t) ◦Mt,s.

Definition 7. A field of covectors I 3 s 7→ ω#(s) = (ω0(s), ω(s)) ∈ T ∗ξ#(s)Ω
#

such that ω0 is a constant function, and ω satisfies

ω(s) = ω0mt,s + ω(t) ◦Mt,s whenever (s, t) ∈ I�,2 , (2)

is called an augmented adjoint field of covectors (or augmented adjoint vector)
of (Φ, c) along ξ. ♦

The constant −ω0 is the abnormal multiplier, and the identity (2) is the
integrated adjoint equation.

Approximating cones. A cone in a real linear space X is a nonempty subset
of X which is closed under multiplication by nonnegative scalars, i.e., such
that if c ∈ C, r ∈ R, and r ≥ 0, it follows that rc ∈ C. (It then
follows automatically that 0 ∈ C.) The polar of a cone C in X is the set
C† = {λ ∈ X† : λ(c) ≤ 0 whenever c ∈ C}, where X† is the dual space2 of X.

Definition 8. If M is a smooth manifold, S ⊆ M , and s ∈ S, a Boltyanskii
approximating cone to S at s is a convex cone C in TsM having the property
that there exist m, U , D,F , L, such that

2 In all cases occurring in this paper, X is finite-dimensional, so we do not need to
distinguish between algebraic and topological duals.
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(1) m ∈ N, U is a neighborhood of 0 in Rm, and D is a convex cone in
R
m,

(2) F : U ∩D 7→M is a continuous map such that F (U ∩D) ⊆ S,
(3) L : Rm 7→ TsM is a linear map,
(4) F (v)− s− L · v = o(‖v‖) as v → 0 via values in U ∩D,
(5) L ·D = C.

3 The main theorem

We consider optimal control problems arising from an augmented flow system
Ψ = {ηΨ}η∈U , indexed3 by a “class of admissible controls” U . We assume that
a fixed totally ordered set E is specified, such that the time set Eη of each ηΨ
is equal to E.

The state space of the system is a smooth manifold Ω. Each ηΨ is a flow
on the real-augmented space Ω# = R × Ω, given by ηΨ =ηΦ

#, ηc, where the
pair (ηΦ, ηc) is a real-augmented flow on Ω with time set E. We use � to
denote the ordering of E. We assume we are given an initial state x̂ ∈ Ω, a
terminal set S, which is a subset of Ω, and initial and terminal times â ∈ E,
b̂ ∈ E, such that â � b̂.

The objective is to minimize the cost ηcb̂,â(x̂) in the class A of all η ∈ U
such that the terminal point ηΦb̂,â(x̂) belongs to S. Equivalently, we want to
minimize the cost ξ0(b̂) − ξ0(â) in the class Ã of all pairs (η, ξ#) such that
η ∈ U , ξ# = (ξ0, ξ) is an augmented trajectory of (ηΦ, ηc), ξ(â) = x̂ and
ξ(b̂) ∈ S.

We assume that we are given data

D = (n,Ω,E,�,U , Φ, c, Ψ, â, b̂, x̂, S) , (3)

so that Ψ = {ηΨ}η∈U , Φ = {ηΦ}η∈U , c = {ηc}η∈U , and ηΨ =ηΦ
#, ηc for every

η ∈ U . We define Î = {t ∈ E : â � t � b̂}.
Precisely, we will assume that D satisfies

(A1) n ∈ N, and Ω is a smooth manifold of dimension n;
(A2) E is a totally ordered set, with partial ordering �;
(A3) U is a set;
(A4) Ψ = {ηΨ}η∈U is an augmented flow system on Ω with time set E;
(A5) ηΨ =ηΦ

#, ηc, where (ηΦ, ηc) is a flow-augmentation pair on Ω with
time set E;

(A6) x̂ ∈ Ω, â ∈ E, b̂ ∈ E, and â � b̂;
(A7) â ∈ E, b̂ ∈ E, and â � b̂.

3 We put the subscript η on the left because we will want to write formulas such
as ηΨ =ηΦ

#,ηc, ηΨ = {ηΨt,s}(s,t)∈E�,2 and ηΦ
#,ηc = {ηΦ#,ηc

t,s }s,t∈Eη .
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We let Ã be the class of all pairs (η, ξ#) such that η ∈ U , ξ# = (ξ0, ξ) is
an augmented trajectory of (ηΦ, ηc), ξ(â) = x̂, and ξ(b̂) ∈ S.

We assume that we are given a candidate control η∗ and candidate
augmented trajectory ξ#

∗ = (ξ∗,0, ξ∗), such that

(A8) (η∗, (ξ∗,0, ξ∗)) = (η∗, ξ
#
∗ ) ∈ Ã.

Clearly, then, the three maps ξ∗ : Î 7→ Ω (the “reference trajectory”),
ξ0,∗ : Î 7→ R (the “reference running cost”), ξ#

∗ : Î 7→ Ω# (the “reference
augmented trajectory”), satisfy, for all t ∈ Î,

ξ∗(t) =ηΦt,â(x̂∗) , ξ0,∗(t) =ηct,â(x̂∗) , ξ#
∗ (t) =ηΦ

#, ηc
t,a (0, x̂∗) ,

as well as ξ#
∗ (t) = (ξ0,∗(t), ξ∗(t)).

Our key assumption is that the pair (η∗, ξ
#
∗ ) is a solution of our optimal

control problem, that is, that

(A9) ξ∗,0(b̂)− ξ∗,0(â) ≤ ξ0(b̂)− ξ0(â) for all (η, (ξ0, ξ)) ∈ Ã.

In addition, we make the crucial technical assumption that

(A10) The reference flow η∗Ψ is continuous near the reference trajectory ξ#
∗ ,

and differentiable along ξ#
∗ .

We define an impulse vector for the data 12-tuple D and the reference
control-augmented trajectory pair (η∗, ξ

#
∗ ) to be a pair (v#, t) such that t ∈ Î

and v# ∈ Tξ#
∗ (t)Ω

#. We use Vmax(D, (η∗, ξ#
∗ )) to denote the set of all impulse

vectors for D, (η∗, ξ
#
∗ ).

Let v# = ((v#
1 , t1), . . . , (v#

m, tm)) be a finite sequence of members of
Vmax(D, (η∗, ξ#

∗ )), and assume that (A10) holds. We then define linear maps

L
D,η∗,ξ#

∗ ,v
#

0 : Rm × Tx̂Ω 7→ R, LD,η∗,ξ
#
∗ ,v

#

: Rm × Tx̂Ω 7→ Tξ∗(b̂)Ω, and

L#,D,η∗,ξ#
∗ ,v

#

: Rm × Tx̂Ω 7→ Tξ#
∗ (b̂)Ω

#, by first writing v#
j = (v0,j , vj), with

v0,j ∈ R, vj ∈ Tξ∗(t)Ω, and then letting

L
D,η∗,ξ#

∗ ,v
#

0 (ε1, . . . , εm, w) = mb̂,â · w +
m∑
j=1

εj(v0,j +mb̂,tj
· vj) ,

LD,η∗,ξ
#
∗ ,v

#

(ε1, . . . , εm, w) = Mb̂,â · w +
m∑
j=1

εjMb̂,tj
· vj ,

L#,D,η∗,ξ#
∗ ,v

#

(ε1, . . . , εm, w) =

(LD,η∗,ξ
#
∗ ,v

#

0 (ε1, . . . , εm, w), LD,η∗,ξ
#
∗ ,v(ε1, . . . , εm, w)) .

In the following definition, Rm+ denotes the nonnegative orthant of Rm,
that is, the set {(h1, . . . , hm) ∈ Rm : h1 ≥ 0, . . . , hm ≥ 0}. Furthermore, for
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any a, b ∈ E such that a � b, and any x ∈ Ω, R#
a,b(x) denotes the “reachable

set from x for the augmented system over the interval from a to b,” so that

R#
a,b(x) def=

{
(r, y) : (∃η ∈ U)

(
y =ηΦb,a(x), and r =η cb,a(x)

)}
.

Definition 9. A set V of impulse vectors is variational for D, η∗, ξ
#
∗ if for

every finite sequence v# = ((v#
1 , t1), . . . , (v#

m, tm)) of members of V it follows
that there exist neighborhoods P , Q of 0, x̂, in Rm+ , Ω, respectively, and a
continuous map F : P ×Q 7→ Ω#, such that

(1) F is differentiable at (0, x̂) with differential L#,D,η∗,ξ#
∗ ,v

#

(in the
precise sense of Remark 1 below). ♦

(2) F (P × {x}) ⊆ R#

â,b̂
(x) for every x ∈ Q.

Remark 1. The precise meaning of the assertion that “F is differentiable at
(0, x̂) with differential L#,D,η∗,ξ#

∗ ,v
#

” is as follows. Let ŷ = ξ∗(b̂), ŷ0 = ξ0,∗(b̂),
ŷ# = (ŷ0, ŷ), so ŷ# = F (0, x̂). Let P̃ , Q̃, R, J be open neighborhoods
of 0, x̂, ŷ0, ŷ, in R

m, Ω, R, Ω, respectively, such that P̃ ⊆ P , Q̃ ⊆ Q,
F ((P̃ ∩ Rm+ )× Q̃) ⊆ J ×R, Q̃ is the domain of a coordinate chart κ : Q̃ 7→ R

n

for which κ(x̂) = 0, and R is the domain of a coordinate chart ζ : R 7→ R
n for

which ζ(ŷ) = 0. Use κ and ζ to identify the sets Q̃ and R with their images
κ(Q̃), ζ(R), so Q̃ and R are now open subsets of Rn. Then

F (ε1, . . . , εm, w) = L#,D,η∗,ξ#
∗ ,v

#

(ε1, . . . , εm, w) +o(ε1 + . . .+ εm+‖w‖) (4)

as (ε1, . . . , εm, w) goes to 0 via values in (P̃ ∩ Rm+ )× Q̃.

Our last two assumptions are

(A11) V is a variational set of impulse vectors for D, η∗, ξ
#
∗ .

(A12) C is a Boltyanskii approximating cone to S at ξ∗(b̂).

The following is then our main result.

Theorem 1. Assume that we are given a data 12-tuple D as in (3), as well
as η∗, ξ

#
∗ , V, C, such that Assumptions (A1) to (A12) hold. Write

Φ∗t,s = η∗Φt,s , c
∗
t,s = η∗ct,s , Mt,s = DΦ∗t,s(ξ∗(s)) , mt,s = Dc∗t,s(ξ∗(s)) ,

(so that mt,s = ∇c∗t,s(ξ∗(s))). Then there exist a map Î 3 t 7→ ω(t) ∈ Rn and
a real constant ω0 such that

(1) ω0 ≥ 0,
(2) (ω0, ω(t)) 6= (0, 0) for all t ∈ I,
(3) ω(s) = ω(t) ·Mt,s − ω0mt,s whenever s, t ∈ E and s ≤ t,
(4) 〈ω(t), v〉 − ω0v0 ≤ 0 whenever (v#, t) = ((v0, v), t) ∈ V,
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(5) the transversality condition −ω(b̂) ∈ C† holds.

Proof. Fix a norm ‖ · ‖ on the tangent space Tξ∗(b̂)Ω. Let K be the set of all
pairs (ω̃0, ω̄) ∈ R × Tξ∗(b̂)Ω such that ω̃0 ≤ 0, |ω̃0| + ‖ω̄‖ = 1, and −ω̄ ∈ C†.
Then K is clearly compact. For each subsetW of V, let K(W) be the subset of
K consisting of all (ω̃0, ω̄) ∈ K such that, for all ((v0, v), t) ∈ W, the identity〈
ω̄ ·Dη∗Φb̂,t(ξ∗(t)) + ω̃0∇cb̂,t(ξ∗(t)), v

〉
+ ω̃0v0 ≤ 0 holds.

It clearly suffices to prove that the set K(V) is nonempty. Indeed, if a pair
(ω̃0, ω̄) belongs to ∈ K(V), we may define ω0 = −ω̃0 and then, for for t ∈ I,
let ω(t) = ω̄ ·Mb̂,t + ω̃0mb̂,t (that is, ω(t) = ω̄ ·Mb̂,t−ω0mb̂,t) for t ∈ I. Write
ω# = (ω0, ω). A simple calculation shows that ω# is an augmented adjoint
vector that satisfies all our conclusions.

Furthermore, it is evident from the definition of the sets K(W) that if a
subset W of V is the union ∪λ∈ΛWλ of a family of subsets V, then

K(W) = ∩λ∈ΛK(Wλ) .

Hence it suffices to prove that K(W) is nonempty whenever W is a finite
subset of V.

So let W be a finite subset of V. Let v# = ((v#
1 , t1), . . . , (v#

m, tm)) be a
finite sequence that contains all the members of W, and write v#

j = (v0,j , vj)
for j = 1, . . . ,m. Since V is variational, Definition 3 enables us to pick
neighborhoods P , Q, R of 0, x̂(= ξ∗(â)), ξ#

∗ (b̂), in Rm+ , Ω, Ω#, respectively,
and a continuous map F : P × Q 7→ R, which is differentiable at (0, x̂) with
differential L#,D,η∗,ξ#

∗ ,v
#

, so that F satisfies—relative to coordinate charts
near x̂, ξ∗(b̂) for which x̂ = 0 and ξ∗(b̂) = 0—the condition

F (ε1, . . . , εm, w) = L#,D,η∗,ξ#
∗ ,v

#

(ε1, . . . , εm, w) + o(ε1, . . . , εm + ‖w‖) (5)

as (ε1, . . . , εm, w) goes to (0, 0) via values in Rm+ ×Q, as well as the property
that F (P × {x}) ⊆ R#

â,b̂
(x) for every x ∈ Q.

In particular, if we let G : P 7→ Ω# be the map given by

G(ε1, . . . , εm) = F (ε1, . . . , εm; 0) ,

then G is a continuous map into R#

â,b̂
(x̂) which is differentiable at 0 with

differential Ľ#,D,η∗,ξ#
∗ ,v

#

, where Ľ#,D,η∗,ξ#
∗ ,v

#

is the map

(ε1, . . . , εm) 7→
( m∑
j=1

εj(v0,j +mb̂,tj
· vj) ,

m∑
j=1

εjMb̂,tj
· vj
)
,

and Mt,s, mt,s, are defined by

Mt,s = DΦt,s(ξ∗(s)) , mt,s = ∇ct,s(ξ∗(s)) for s, t ∈ I, s � t .
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Let w#
j = Ľ#,D,η∗,ξ#

∗ ,v
# · emj , where emj = (δ1

j , . . . , δ
m
j ), and the δkj are

the Kronecker symbols. Then w#
j = (v0,j + mb̂,tj

· vj , Mb̂,tj
· vj) and and

Ľ#,D,η∗,ξ#
∗ ,v

#

(ε1, . . . , εm) =
∑m
j=1 εjw

#
j .

It is then clear (by applying Definition 8, withD = R
m
+ , L = Ľ#,D,η∗,ξ#

∗ ,v
#

)
that, if we write C to denote the convex cone C generated by the vectors w#

j

(so that C = Ľ#,D,ξ#
∗ ,η∗,v

#

(Rm+ )), then C is a Boltyanskii approximating cone
to the augmented reachable set R#

â,b̂
(x̂) at ξ#

∗ (b̂).

Now, let S# = {(x0, x) ∈ Ω# : x ∈ S and x0 ≤ ξ0,∗(b̂) − ξ0,∗(â) − ψ(x)},
where ψ is a smooth function on Ω that vanishes at ξ∗(b̂) and is strictly
positive everywhere else. Let C# = ] −∞, 0] × C. Then C# is a Boltyanskii
approximating cone to S# at ξ#

∗ (b̂). Furthermore, it is easy to see that the
optimality of (η∗, ξ

#
∗ ) implies that R#

â,b̂
(x̂) at ξ#

∗ (b̂) and S# are separated at

ξ#
∗ (b̂). Then standard set separation theorems tells us that the cones C and
C# are not strongly transversal. Since C# is not a linear subspace, the cones
C and C# are in fact not transversal. This implies that there exists a nonzero
covector ω̄# = (ω̃0, ω̄ ∈ Tξ#

∗ (b̂)Ω
# such that 〈ω̄#, z〉 ≥ 0 whenever z ∈ C#,

and 〈ω̄#, z〉 ≤ 0 whenever z ∈ C. It follows that −ω̄ ∈ C†, and also that
ω̃0 ≤ 0. ω(t) = ω̄ · Dη∗Φb̂,t(ξ∗(t)) + ω̃0∇cb̂,t(ξ∗(t)) for t ∈ I. If j = 1, . . . ,m,
then

0 ≥ 〈ω̄#, w#
j 〉 =

〈(
ω̃0, ω̄), (v0,j +mb̂,tj

· vj , Mb̂,tj
· vj)

)〉
= ω̃0v0,j + ω̃0mb̂,tj

· vj + ω̄ ·Mb̂,tj
· vj

= ω̃0v0,j +
(
ω̃0mb̂,tj

+ ω̄ ·Mb̂,tj

)
· vj

= ω̃0v0,j + ω(tj) · ·vj .

This shows that ω̄# ∈ K(W), so K(W) 6= ∅, completing our proof. ♦

4 Variable time problems

A minimum time problem is, by its very nature, a variable time-interval
problem. Hence such a problem does not fit the framework of our main
theorem, if we require that the time set E be a subset of R, and that the time
from s to t be precisely t− s. It is possible, however, to apply Theorem 1 to
minimum time problems, and to more general variable time-interval problems,
by means of a simple device. Assume that we start with a situation in which
E is a subset of R and our flow-augmentation pairs (ηΦ, ηc) are such that that
ηct,s(x) = t−s whenever (s, t) ∈ E�,2. We want to change our point and think
of E as representing a “pseudotime” which is no longer physical time, although
it will correspond to physical time along the reference trajectory—for example,
in the form of a clock that displays at each t ∈ E the value t. For this purpose,
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we allow “insertion variations” in which the reference augmented flow map
η∗Φ

#, η∗c

b̂,â
is replaced by the map η∗Φ

#, η∗c

b̂,t ηΦ
#, ηc
t+ε,t η∗Φ

#, η∗c
t,â still regarded mas a

transition map from “time” â to “time” b̂, even though the true physical time
ξ0(b̂) − ξ0(â) during which this transition occurs is b̂ − â + ε. We also allow
“deletion variations” in which the reference augmented flow map η∗Φ

#, η∗c

b̂,â
is

replaced by the map η∗Φ
#, η∗c

b̂,t ηΦ
#, η∗c
t−ε,â , again regarded as a transition map

from “time” â to “time” b̂, even though the true physical time ξ0(b̂) − ξ0(â)
of this transition is b̂− â− ε. (Naturally, for this to be possible, we need, for
example, to be able to regard η∗Φ

#, η∗c

b̂,t
as a “time t+ε to time b̂+ε” map. The

key condition needed for all this to work is to have a time-translation invariant
system, that is, a system for which ηΦt,s = ηΦt+α,s+α for all α ∈ R.)

The variational impulses (v#, t) that occur in our main theorem are, in
general, of a special form. First of all, for each t ∈ E that occurs in one of the
members (v#, t) ∈ V, there exists a vector v#

del(t), depending on t but not on
v#, that corresponds to the “deletion of the reference control on intervals of
legth ε.” Second, for each v# ∈ V[t]—where V[t] = {v# : (v#, t) ∈ V}—the
vector v# corresponds to the “deletion of the reference control on intervals
of legth ε followed by an insertion of some other control on an interval of
lentgh ε, ” so that v#

ins
def= v# − v#

del(t) corresponds to an insertion without
deletion, and then v# = v#

ins + v#
del(t). If we allow the insertions to be carried

out without a corresponding deletion we get, in addition to the inequalities
〈ω#(t), v#〉 ≤ 0 that occur in (4) of the statement of Theorem 1, the new
inequalities 〈ω#(t), v#

ins〉 ≤ 0. If we also allow deletions to be carried out
without a corresponding insertion, we get the inequalities 〈ω#(t), v#

del(t)〉 ≤ 0.
On the other hand, one of the controls that can be used in an insertion is the
reference control itself, and this insertion corresponds to the vector −v#

del(t),
yielding the inequality 〈ω#(t),−v#

del(t)〉 ≤ 0. So 〈ω#(t), v#
del(t)〉 = 0. and

〈ω#(t),−v#
del(t)〉 = 0. In other words,

(%) for a variable time interval problem where the impulses (v#, t) admit
the decomposition v# = v#

ins + v#
del(t) as above, the conclusion of

Theorem 1, that 〈ω#(t), v#〉 ≤ 0—which is equivalent to the inequality
〈ω#(t), v#

ins〉 ≤ 〈ω#(t),−v#
del(t)〉—can be strengthened to

〈ω#(t), v#
ins〉 ≤ 〈ω

#(t),−v#
del(t)〉 = 0 . (6)

5 The reflected brachistochrone

As a our firt example of a nontrivial application of Theorem 1, we briefly
outline the results on the “reflected brachistochrone problem” (RBP), studied
in detail in [12].
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The RBP is the minimum time problem for the dynamical law ẋ = u
√
|y|,

ẏ = v
√
|y|, with state (x, y) ∈ R

2 and control (u, v) ∈ S1 where S1 is
the unit circle {(u, v) ∈ R2 : u2 + v2 ≤ 1}. The goal is to characterize the
minimum-time trajectory from A to B, for any two given points A = (xA, xB),
B = (xB , yB) in R2.

The result is as follows. If yAyB ≥ 0, then the optimal trajectory from
is obtained by solving the classical (1696-7) brachistochrone problem (BP) of
Johann Bernoulli. The solution is an arc of cycloid if xA 6= xB , and a straight-
line segment when xA = xB . The most interesting case is when yAyB < 0.
The classical results on the BP tell us that the solution consists of an arc of
cycloid ξ1 from a to a point C in the x axis, followed by another arc of cycloid
ξ2 from C to B. The point C is determined by applying Theorem 1, and has
to be such that the rolling circles that generate the ξ1 and ξ2 have equal radii.

6 Snell’s law of refraction

We consider the minimum time problem for the two-dimensional system
ẋ = c(x, y)u, ẏ = c(x, y)v, where the control (u, v) takes values in the unit
circle S1, and the function c (the “speed of light”) is given by c(x, y) = c+ if
y ≥ 0 and c(x, y) = c− if y < 0. Here c+ and c− are two fixed positive constants
such that c+ > c−. We will focus on the problem of finding a time-minimizing
arc from a point A = (xA, yA) such that yA > 0 to a point B = (xB , yB) such
that yB < 0.

The solution of this problem—Snell’s law of refraction—is well known, and
can be derived by very elementary means: first, one shows that the solution
must consist of a straight segment from A to a point C lying on the x axis,
followed by the segment from C to B; finding C then becomes a rather simple
first-year calculus exercise. Here we will show how our version of the Maximum
Principle applies to this problem, and leads to Snell’s law.

We take our control set U to be the product S1 × S1, and then define,
for each z = (u+, v+, u−.v−) ∈ U , a discontinuous vector field Xz by letting
Xz(x, y) = (c+u+, c+v+) if y > 0, and Xz(x, y) = (c−u−, c−v−) if y ≤ 0. We
let G be the subset of U consisting of those (u+, v+, u−.v−) ∈ U such that
v+ < 0 and v− < 0. We use L to denote the x axis.

An elementary argument shows that an optimal trajectory ξ∗ must consist
of a segment from A to C followed by a segment from C to B, where C ∈ L.
That is, we can confine ourselves to a trajectory ξ∗ : [0, T ] 7→ R

2 such that
(i) ξ∗(0) = A, (ii) ξ∗T ) = B, (iii) ξ∗(τ) ∈ L for some τ such that 0 < τ < T ,
(iv) if ξ∗(t) = (x∗(t), y∗(t)) for t ∈ [0, T ], then y∗(t) > 0 for 0 ≤ t < τ and
y∗(t) < 0 for τ < t ≤ T , and (v) the curve ξ∗ is a trajectory of a constant
control z∗ ∈ U .

All that is left now is to find a condition that will determine C. With our
choice of U , constant controls have two degrees of freedom, but one is removed
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when we stipulate that ξ∗, starting at A, has to go through B, so we need to
find an extra constraint on z∗.

Let us compute the flow of Xz for a z ∈ G. It suffices to compute the maps
ΦXzt,0 , since ΦXzt,s = ΦXzt−s,0.

If y > 0, t > 0, and we let (x̃, ỹ) = ΦXzt,0 (x, y), then y > ỹ and, in
addition, ỹ > 0 as long as t < τz(x, y), where τz(x, y) is the time for which
ΦXzτz(x,y),0(x, y) ∈ L. It is clear that τz(x, y) = − y

c+v+
, and also that

ΦXzt,0 (x, y) = (x+ tc+u+ , y + tc+v+) if 0 < t < τz(x, y) ,

ΦXzτz(x,y)+t,0(x, y) = (x+ τz(x, y)c+u+ + tc−u− , tc−v−) if t > 0 .

In particular, given a t such that t 6= τz(xA, yA), the flow map ΦXzt,0 is of class
C1 near A, and is given, for (x, y) in some neighborhood N(t) of A, by

ΦXzt,0 (x, y) = (x+ tc+u+, y + tc+v+) if 0 < t < τz(xA, yA) ,

ΦXzt,0 (x, y) = (x+ τz(x, y)c+u+ + (t− τz(x, y))c−u− , (t− τz(x, y))c−v−)

=
(
x− y

v+
u+ + (t+

y

c+v+
)c−u− , (t+

y

c+v+
)c−v−

)
=
(
x+

c−u−−c+u+

c+v+
y+tc−u−,

c−v−
c+v+

y+tc−v−
)

if t>τz(xA, yA) .

It follows from this that the differential Dz(t) of ΦXzt,0 at A is given by
Dz(t) = IR2 if t < − yA

c+v+
and Dz(t) = Mz if t > − yA

c+v+
, where Mz is the

matrix

[
1 c−u−−c+u+

c=v+

0 c−v−
c+v+

]
.

We now let D̂(t) denote the differential of the flow map ΦXz∗T,t at ξ∗(t), where
ξ∗ : [0, T ] 7→∈ R2 is our reference trajectory z∗ = (u∗,+, v∗,+, u∗,−.v∗,−) is our
constant reference control, and It is then clear that D̂(t) = Dz∗(T )Dz∗(t)−1,
and then D̂(t) = IR2 if t > − yA

c+v∗,+
, and D̂(t) = Mz∗ if t < − yA

c+v∗,+
.

To apply our flow version of the Maximum Principle, we take the time set
E to be [0, T ]\{τz∗(A)}. Then each flow map ΦXz∗t,s is of class C1 (and, in fact,
real analytic) on a neighborhood of ξ∗(s), as long as s, t ∈ E and s ≤ t.

Let ω be the adjoint vector given by the Maximum Principle. Then
ω(t) = ω̄− if t > − yA

c+v∗,+
, and ω(t) = ω̄+ if t < − yA

c+v∗,+
, where ω̄− = (ω̄x, ω̄y),

ω̄+ = (ω̄x, ω̂y), and ω̂y = 1
c+v∗,+

(
(c−u∗,− − c+u∗,+)ω̄x + c−v∗,−ω̄y

)
. The

Hamiltonian maximization condition of the Maximum Principle implies that
ω− must be a scalar multiple of (u∗,−, v∗,−), and ω+ has to be a scalar multiple
of (u∗,+, v∗,+). This means that ω̄x = k−u∗,− = k+u∗,+, ω̄y = k−v∗,−, and
ω̂y = k+v∗,+ for some positive constants k−, k+.

It follows that k−
k+

= u∗,+
u∗,−

. Let ω0 be the abnormal multiplier. Then

0 = 〈ω̄−, c−(u∗,−, v∗,−)〉 − ω0 = 〈ω̄+, c+(u∗,+, v∗,+)〉 − ω0 ,
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so 〈ω̄−, c−(u∗,−, v∗,−)〉 = 〈ω̄+, c+(u∗,+, v∗,+)〉.
Furthermore, ω̄− = k−(u∗,−, v∗,−), ω̄+ = k+(u∗,+, v∗,+), and both

(u∗,−, v∗,−), and (u∗,+, v∗,+) are unit vectors. It follows that k−c− = k+c+.
Hence k−

k+
= c+

c−
. Therefore u∗,+

u∗,−
= c+

c−
.

Let θi be the “angle of incidence,” that is, the angle between the line AC
and the y axis. Let θr be the “angle of refraction,” that is, the angle between
the line CB and the y axis. It is then clear that u∗,+ = sin θi and u∗,− = sin θr.
Then

sin θi
sin θr

=
c+
c−

, (7)

which is precisely Snell’s law.
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