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Summary of Proposed Research 
 

This proposal seeks funding to carry out fundamental research in the area of optimal 
control theory, and its methodology is based on nonsmooth and variational analysis.  
Although we may not always be prescient of its existence, control theory is ubiquitous in 
our daily lives.  There is the presence of “automatic” controllers that are imbedded in 
engineering design, as for example in DC motors, RC circuits, robot control, chemical 
processes, automatic flight controllers, etc., and there are direct control processes 
manifested through human intervention, such as driving an automobile, landing an 
airplane, planning a harvesting effort, etc.  Control theory is eminently placed in 
engineering science, but since applications tend to outpace the development of theoretical 
foundations, there are many mathematical issues that crave further rigorous scrutiny.  The 
intellectual merit of this proposal lies in its approach of rigorously analyzing 
mathematical problems that arise naturally in applied control applications.  Science 
abounds with models describing continuous movement of some sort, and differential 
equations are employed for this purpose.  As science evolves into technology, and human 
concerns and influences become paramount, then certain outcomes are preferred over 
others and more efficient movements are desired.  Hence issues of optimization are 
injected into the model, and dynamic optimization problems arise.  This is optimal 
control theory.  Although optimal control is not so prominent in control engineering, it 
nonetheless has a very high mathematical content with historic roots grounded in the 
calculus of variations.  It straddles the boundary between pure and applied mathematics, 
where on the practical side, it offers the applied engineer insights, philosophical 
approaches, and some of the mathematical tools needed to attack effectively practical 
problems.  However, many control applications do not fit neatly into a classical 
theoretical setting, where differentiability is often a prerequisite.  Thus theoretical 
challenges emerge to provide the requisite foundation, and the mathematical theory of 
nonsmooth and variational analysis has been developed over the previous three decades 
largely motivated by these practical control and optimization problems.  This theory now 
consists of a substantial and complete body of results, and currently is seeking further 
applications.  Indeed, it is being increasingly appreciated and utilized by engineers.  Just 
as the world appears to be truly nonlinear, the world also seems to have many more 
nonsmooth characteristics than previously thought.  The broad impact of this proposal is 
that further nonsmooth tools will become accessible to the control community, and this in 
turn will embolden control engineers to devise more realistic mathematical models. 
 
More specifically, this proposal takes aim at several problem formulations where the 
mathematics is not adequately developed.  The Fully Convex Control problem is a 
generalization of the Linear Quadratic Regulator, the well-known workhorse in control, 
but allows for realistic constraints that are usually discarded for the sake of simplicity.  
State constrained, impulsive, and infinite horizon problems will be studied in this 
framework. Further research problems are described for One-Sided Lipschitz, time-delay, 
and nonlinear impulsive problems, where recent theoretical results obtained in the 
standard problem have yet to be extended.  In particular, the new One-Sided Lipschitz 
theory could lead to a maximum principle that would apply to models with dry friction.  
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1 Results from previous NSF proposals

The PI has been awarded two previous NSF proposals, DMS-9623406 and
DMS-9972241; however, the duration of each was for only two years. There
was no attempt last year to renew this funding because the goals of the
previous proposal had not yet been achieved, and the case for continuing
support at that time would probably not have been competitive. However,
over the last year, not only have many of those goals come to fruition, but
new directions have emerged to significantly expand his proposed research
program. It is hoped that the present proposal justifies a three year award so
that the goals can be obtained under the time-frame of the actual funding.

We shall assume the reviewer is somewhat familiar with the basic concepts
of nonsmooth and variational analysis [13, 42].

1.1 Fully convex problems

The main results from NSF proposal DMS-9623406 were in so-called “Fully
Convex Control” (FCC) problems, and the papers [43, 44] co-authored with
R.T. Rockafellar were the main published outcomes. This research also di-
rectly influenced the research direction of Rockafellar’s last two Ph.D. stu-
dents Grant Galbraith and Rafal Goebel. The PI is presently working with
Goebel on extensions and variants of this topic, and this new research direc-
tion will be described below in §2.4.

The theory of FCC problems is centered around studying a variational
problem of form

P (τ, ξ) min `
(
x(0)

)
+

∫ τ

0

L
(
x(t), ẋ(t)

)
dt

subject to the terminal conditions x(τ) = ξ. The Lagrangian L : IRn×IRn →
(−∞,∞] is extended-valued to incorporate constraints (a now standard tech-
nique in variational analysis) and is assumed to be jointly convex in (x, v).
It is also assumed that `(·) : IRn → (−∞,∞] is convex. The convexity as-
sumptions make the problem somewhat special. On the other hand, FCC
is an important class of problems that roughly resembles the relationship to
general nonlinear control theory that linear analysis plays in classical func-
tional analysis. Strong conclusions that are global and include complete
subgradient characterizations can be drawn in this framework, whereas more
generally, typically only local and partial inclusions are available. But FCC
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also includes the important subclass of Linear Quadratic Control, which is
so prominent in applications, and also less well-known extensions that incor-
porate control constraints. The Lagrangian also satisfies additional technical
assumptions that need not be stated here.

One main result of [43] reveals that the optimal value function V (τ, ξ) is
lower semicontinuous and satisfies the generalized Hamilton-Jacobi equation

(σ,−η) ∈ ∂V (τ, ξ) ⇐⇒ σ = H(ξ, η). (1)

The subgradient is in the so-called regular ([42]) or Dini ([13]) sense, and the
Hamiltonian H : IRn × IRn → IR is given by

H(ξ, η) = sup
v∈IRn

{
〈η, v〉 − L(ξ, v)

}
. (2)

We remark that the important uniqueness issue of whether the value function
is characterized as this solution (plus appropriate boundary conditions) is not
covered by the usual viscosity theory [3, 19], and was proved by Galbraith [27]
using invariance and optimization techniques. The somewhat remarkable and
distinguishing feature of FCC is that (1) is if and only if, whereas typically,
only the (⇒) direction holds. Also +∞ values are admissible that correspond
to infeasibilities.

The convexity assumptions on L and `(·) imply the convexity of V (τ, ·)
for each τ > 0. The Legendre-Fenchel conjugate of V (τ, ·) is shown [43]
to be a value function of an FCC problem of the same form (with reversed
time), and its optimal arcs turn out to be the multipliers (or dual arcs) of
the original problem (P (τ, ξ)). Moreover, the pair of optimal/multiplier arcs(
x(·), y(·)

)
satisfy the Hamiltonian inclusion(

−ẏ(t), ẋ(t)
)
∈ ∂H

(
x(t), y(t)

)
a.e. t ∈ [0, τ ], (3)

and the transversality condition y(0) ∈ ∂`(x(0)), and these solutions are
precisely the global characteristics of (1). That is, (σ, η) ∈ ∂V (τ, ξ) if and
only if there exists a solution

(
x(·), y(·)

)
of (3) with y(τ) = −η, x(τ) = ξ,

y(0) ∈ ∂`(x(0)), and σ = H(ξ, η). Again, note the global and if and only if
character of these results that are deducible only in the FCC framework.

The results in [44] show that the HJ equation (1) is not the only way to
get at the value function, and that the envelope formula

V (τ, ξ) = sup
η∈IRn

{
K(τ, ξ, η)− `∗(−η)

}
(4)
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holds, where `∗(·) is the Legendre-Fenchel conjugate of `(·) and K is the so-
called dualizing kernel. The surprising properties of K are explored in [44].
There is an interesting interpretation of (4) via the max-plus algebra theory,
where K can be viewed as a dual object to a Green’s function that is admit-
ting an “integral” formula for a solution to (1). Also, (4) is a generalization
of the well-known Hopf-Lax formulas that hold when L is independent of x.

1.2 Subgradient Formulas for minimal time functions

Funds from DMS-9972241 also provided partial support for the PI to travel
to Padova Italy to collaborate with Giovanni Colombo. We briefly explain
the material of the resulting papers [16, 17, 18]. The continuation of research
in this direction will be described in §2.5 below.

The goal is to describe the subgradients of a particularly simple class of
minimal time functions in terms of the given data, and to derive regularity
properties from these formulas. Suppose X is a Hilbert space and S ⊆ X is
closed and F ⊆ X is closed, bounded, convex, and 0 ∈ int F . The minimal
time function is defined by

TS(x) = inf
{
t : {x + tF} ∩ S 6= ∅

}
. (5)

It is a particularly simple example of a minimal time function from optimal
control theory in which the dynamic data F is a constant set. If F = B̄,
the closed unit ball in X, then TS(x) reduces to the distance function dS(x)
to S, which has been extensively studied over the years by many authors.
Our earlier paper [14] (see also [39]) characterized those sets S around which
dS(·) was differentiable, and our goal here was to find conditions on S and
F for which similar properties would hold. The key result is the following
description of the subgradient of TS(·):

∂TS(x) = NS(r)(x)( ∩ {ζ : ρF ◦(−ζ) = 1},

where ρF ◦ is the gauge function of the polar F ◦ of F , and the subgradient
and normal cone are either both in the proximal or Frechet/contingent sense.
The set S(r) is the r-level set of TS(·), and TS(x) = r in this description.
Conditions are explored in [16, 17] which lead to regularity properties (C1

and semiconvexity) of TS(·).
The broader interest of these results in applications is the understanding

of feedback laws in control engineering, since these are generally constructed
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from the knowledge of the gradient of a Lyapunov function. Our results
illustrate the interplay between the geometries of the target set S and the
dynamic velocity set F .

1.3 Strong Invariance and One-Sided Lipschitz maps

Travel funds from DMS-9972241 brought the PI into contact with Elza
Farkhi, who introduced him to the concept of a One-Sided Lipschitz (OSL)
assumption. We subsequently wrote the paper [26]. The research is continu-
ing in collaboration with Tzanko Donchev and my current graduate student
Vinicio Rios. We wrote [40], and these are followed up by [23, 24, 25]. Pro-
posed research in OSL will be further described in §2.1 below, and here we
give a brief summary of some of our results (only global descriptions are given
for simplicity of exposition; the published results have local versions).

A multifunction F : IR ⇒ IRn is Lipschitz (in the Hausdorf metric) pro-
vided there exists k > 0 so that∣∣H(x, p)−H(y, p)

∣∣ ≤ k
∣∣p∣∣ ∣∣x− y

∣∣ (6)

for all x, y, and p in IRn. Again, H is the maximized Hamiltonian as in
(2) where the Lagrangian L(x, ·) is defined as the indicator of F (x). More
explicitly,

H(x, p) = sup
v∈F (x)

〈v, p〉. (7)

Definition (6) is equivalent to the usual definition involving two set inclusions,
but can be more transparently compared to the property that F is One-Sided
Lipschitz (OSL); the latter requires the existence of k > 0 so that

H(x, x− y)−H(y, x− y) ≤ k
∣∣x− y

∣∣2 (8)

holds for all x and y. Clearly (6) implies (8), but (8) is strictly weaker, as can
be seen by considering F (x) = { 3

√
−x} in dimension one. The extreme case

where k = 0 is when the multifunction F is dissipative (i.e. −F is monotone
[42]), a case that has been extensively studied in the PDE literature (and for
other reasons in optimization). Another special case is where

F (x) = D(x) + G(x) (9)

where D(·) is dissipative and G(·) is Lipschitz, and [40] provides a charac-
terization of strong invariance (see [13]) for this case; [23] contains a nonau-
tonomous version. More details and future research directions are described
below in §2.1.
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1.4 Time Delay variational problems

Another project that was proposed in both previous proposals was to extend
the Clarke decoupling principle to time delay systems. This has now been
fully accomplished in joint work with my graduate student Norma Ortiz
[35, 36], and has led further to the study of neutral variational problems
[37, 38]. There is still much work to be done in this area as well, and future
research is described in §2.2 below.

2 Proposed research

The proposed research is broken into the following five research topics: (1)
theory of One-Sided Lipschitz (OSL) multifunctions, (2) variational problems
with time-delay, (3) impulsive systems, (4) Fully Convex Control (FCC)
extensions and variants, and (5) subgradient formulas and regularity of value
functions.

2.1 One-Sided Lipschitz (OSL) multifunctions

Consider the differential inclusion

(DI)

{
ẋ(t) ∈ F

(
x(t)

)
a.e. t ∈ [0, T ]

x(0) = x0,

and suppose S ⊆ IRn is closed. Differential inclusions are widely studied
[2, 13, 48] as a mathematical model for state-based control systems, and
there is a well-known theory grounded in the concepts and methods of non-
smooth and variational analysis, see [13, 48]. Basic hypotheses typically
include the upper semicontinuity (or outer continuity [42]) and local bound-
edness of F , and that each value F (x) is nonempty, closed, and convex. The
Lipschitz assumption (6) is also invoked at times when stronger conclusions
are sought, such as characterizations of the reachable set, strong invariance,
and necessary conditions in optimal control.

An immediate and continuing goal of this proposal is to develop a com-
plete theory for OSL multifunctions (see (1.3) above), which has important
applications for modeling dry friction and other mechanical systems that can
have sudden “downward” shifts in the admissible velocity sets. As a simple
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motivation for this theory, consider the problem of finding necessary condi-
tions for controlling the movement of a book on a desktop. The friction force
impedes any movement until a significantly large control force is applied, and
then “jerks” once a threshold is reached. The dependence of this force is not
Lipschitz (or even continuous) on the state variable, and to our knowledge,
there is no maximum principle available for this type of data. Although a
new theory is being developed by Hector Sussmann [47] that applies to not
necessarily Lipschitz data, it apparently does not cover the case of OSL. Nev-
ertheless, our approach is quite different, and is based on the proximal theory
of nonsmooth analysis [13] that has been successfully applied elsewhere.

Modeling friction is a subject of active research, and has obvious impor-
tant applications. However, dry (or Coulomb) friction is difficult to model
accurately, and is often described (see e.g. [20], p. 193) by the equation

ẍ(t) = g(ẋ)− µ sgn (ẋ) + f(x) + g(t). (10)

The term µ sgn (ẋ) is discontinuous, and renders the equation outside clas-
sical ODE theory. One approach is to consider sgn (·) as the multivalued
map

sgn (v) =


1 if v > 0

[−1, 1] if v = 0

−1 if v < 0,

and treat (10) as a differential inclusion (after performing the usual device of
introducing a new state variable as the velocity). If one now adds a control
variable into the equation, since the velocity set is not Lipschitz (or even
continuous) in the state component ẋ, the extant versions of the maximum
principle do not apply. However, there is a structural “dissipative” character
to the equation (10), and in fact it has the form (9) mentioned earlier. Thus
we propose to prove a maximum principle for OSL data, and there is evidence
that the recent state-of-the-art necessary conditions in dynamic optimization
of F.H. Clarke [10] can be extended to OSL systems. We briefly describe some
further technical details.

Clarke’s new monograph [10] on necessary conditions in dynamic opti-
mization is, in my view, the most important work in dynamic optimization
in the past ten years. It contains methods of wide applicability, and more-
over is the culmination of a decade of results by many authors. One of these
experts have related their opinion to me that these results are “definitve”
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in the sense that they are what everyone has been looking for. In any case,
one of the key components invoked in the proof in [10] is the so-called “Mor-
dukhovich criterian” (see [42, 13]) that says the Lipschitz property (actually a
pseudo-Lipschitz property that in some sense localizes the data) is equivalent
to

w ∈ DF (x, v)(y) ⇒ |w| ≤ k|y|, (11)

where DF is the coderivative of F . Recall that for v ∈ F (x), the coderiva-
tive multifunction DF (x, v)(·) is described by w ∈ DF (x, v)(y) if and only
if (−w, y) ∈ NP

gr F (x, v), where NP
gr F (x, v) denotes the proximal normal cone

(see [13]) of the graph gr F of F at (x, v). The constant k in (11) is the
Lipschitz constant, and gives a crucial handle to pass to the limit of the
“forerunner” of the adjoint arcs obtained from decoupling. The “definitive-
ness” remark is based on that it seems impossible to say much more, except,
however, perhaps one can pass to the limit in a slightly different manner,
which is what we propose here. The idea is similar as in ODE theory, where
typically a linear growth hypothesis

|f(x)| ≤ c(1 + |x|) (12)

is assumed to preclude any potential finite time blow-up; that is, (12) is
invoked to bound the absolute value of a solution x(t) to ẋ(t) = f(x(t)) by
(|x0|+ ct) + c

∫ t

0
|x(t′) dt′)|. Then one can apply Gronwall’s inequality to get

a bound on |x(t)|. But the above reasoning can be applied to bound |x(t)|2
under the weaker assumption

|〈f(x), x〉| ≤ c(1 + |x|2).

(i.e.
∣∣ d
dt
|x(t)|2

∣∣ = 2|〈ẋ(t), x(t)〉| ≤ 2c(1 + |x(t)|2), etc). A major step of this
proposed research is to show that a variant of the Mordukhovich criterian
(11) characterizes the OSL property (8). We reveal our claim that (8) is
equivalent to

w ∈ DF (x, v)(y) ⇒ |〈w, y〉| ≤ k|y|2. (13)

This is not yet proven and to do so will require some new ideas, however
the main prototypical examples of OSL multifunctions satisfy it. Once (13)
is proven, then the road to necessary conditions for an OSL multifunction
lies open (although it will still be lengthy and full of potential pitfalls). The
reasoning behind governing the passing to the limit in [10] is analogous to
that sketched above in showing the non-blow up of ODE solutions.
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As described in §1.3, we have already obtained results in invariance theory
for OSL multifunctions that were previously thought to hold only under
Lipschitz assumptions. We next plan to develop a Hamilton-Jacobi theory
for OSL systems. Preliminary results [25] on the minimal time function have
been written out, but more needs to be done here. The role of weak and
strong invariance is well understood in HJ theory [13] (since HJ inequalities
characterize these notions), and in view of our recent new results on strong
invariance [23, 24], further progress seems likely.

We also are working on infinite dimensional versions, and plan to extend
the results of Clarke, Ledyaev, and Radulescu [11] to the OSL setting. There
is already substantial progress in this direction which will open potential
applications to PDEs.

2.2 Variational problems with time delay

Time delays of one form or another are present throughout most mechan-
ical and electrical systems, but are often ignored in the modeling process
for technical simplicity. Often this has no major effect on the engineering
design; however, there are many situations where delays play a crucial role,
and others where it may be desirable to use the time delay as a device for in-
creasing stability (cf. [29]). The mathematical difficulty in treating delays is
that the problem essentially becomes infinite dimensional, and finding appro-
priate compactness conditions and convergence schemes becomes necessarily
more complicated.

As mentioned above in §1.4, we have made some progress toward treat-
ing time-delay problems with the new tools of nonsmooth analysis that are
prevalent throughout this proposal. The joint paper [36] is the first step to
modernizing extant necessary conditions (e.g. see[15] and references therein)
to incorporate the recent advances of [10], but there are still many details
and technical issues to resolve. The main issue remaining is determining
precisely the right assumptions to make the limiting arguments work.

The previous paragraph refers only to problems where the delay is in the
state argument, and the theory there can proceed by and large along the lines
of the undelayed case. It is another story altogether when delays appear
in the velocities or the control variables (usually called neutral problems).
Only recently, have Mordukhovich and Wang [32] proven for the first time
necessary conditions for a class of differential inclusions with delays in the
velocity variable. Even the existence theory here can be troublesome, but we
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tackled that issue in [37] for the generalized Bolza problem. We have sketched
the decoupling technique in this setting as well, although the details are not
yet published, and so we have hope and plans to derive necessary conditions
for these class of problems (which will include the main results of [32]).

It is still not entirely clear if our methods will apply to problems with
delays in the control variables, although it seems unlikely that they will.
Such problems are very challenging and cause major problems in existence
theory [45, 49] and generic well-posedness [30]. The wide-spread technique
of “infinite penalization” that equivalently embeds optimal control problems
into a nonclassical calculus of variations framework does not work with such
problems, and so it is not clear how one can proceed using our methods.

Another broad research area that nonsmooth methods have recently been
successfully applied is stabilization. I have closely been following the ISS
(Input-to-State Stability) developments by Sontag and his school, and plan
to extend these Lyapunov approaches to time-delay problems. This is not
a major theme of this proposal, but is nonetheless an auxiliary research
direction in which much work needs to be done. Nonsmooth methods have
had a major impact on nondelay systems theory; for example, [12] resolved
a major open issue regarding the equivalence of asymptotic stability and
the existence of feedback, and has been influential for the acceptance of
discontinuous feedback by control engineers. The nonsmooth groundwork
seems to be in place to tackle stability issues of time-delays, which is an
active area of engineering research [29] in which nonsmooth methods have
yet to play much of a role.

2.3 Impulsive control and variational systems

Impulsive systems arise in a variety of applications where states can move at
different time scales. The “slow” movement can be thought of as the usual
time progression infinitesimally incremented by dt, and the “fast” movement
occurs in a small interval that resembles the effect of a point-mass measure.
We adopt the mathematical formalism used by Silva and Vinter [46], in which
the controlled dynamic inclusion is the sum of a slow time velocity belonging
to a set F (x) and a fast time contribution coming from another set G(x)dµ,
where dµ is a vector valued measure.{

dx ∈ F
(
x(t)

)
dt + G

(
x(t)

)
dµ(dt)

x(0) = x0.
(14)
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There is a nontrivial and immediate issue as to whether the system (14)
is well-defined. Bressan and Rampazzo [5, 6, 4] emphasized this point and
introduced a solution concept based on the “graph completion” of the dis-
tribution function u(t) = µ([0, t]). Independently, Murray [34] discovered
this phenomenum by making “proper” extensions of Bolza-type functionals
with Lagrangians that are not necessarily coercive (and therefore may have
extended-valued Hamiltonians). This work is perhaps not as well-known as
[5, 6, 4], but grew naturally from Rockafellar’s earlier work in the context of
full convexity [41], which will be mentioned again in §2.4. From the nons-
mooth viewpoint that uses “infinite penalization” routinely, the dynamical
system is a special case of the variational paradigm since it can be refor-
mulated in those terms. Another goal of this proposal is to unite the two
approaches under a common framework; this is not trivial since assumptions
in one framework does not carry over well to the other.

The Bressan-Rampazzo solution concept is given in terms of the usual
solution concept of a reparameterized problem in which the impulses or sin-
gularities of the measure µ are “blown-up” and so can be treated as if the
“pause button” was held during time proportional to the total variation of
the measure and the dynamics involving G could act. Although this method
effectively resolves well-posedness and other issues involving solutions of (14),
it is still natural to ask if a direct solution concept could be framed without
recourse to the full time-reparameterization, and how “discrete-time” ap-
proximations to the solutions could be framed. These two issues have been
addressed by my graduate student Stanislav Zabic and I [51], and it naturally
opens the gateway for extending the standard theory [13] to impulsive sys-
tems. One of the difficulties of working with time reparameterizations is that
sampling methods are buried in the new time, and is difficult to unearth when
studying issues like invariance, equilibria, or asymptotic stability. A major
goal of this proposal is to follow this trail where it clearly points; however,
there are a lot technical details that still need to be resolved. Nonetheless, we
have proven a sampling method [50, 51] that could open the way for recently
developed nonsmooth methods to be applied here.

There appears to be many engineering applications in which a deeper un-
derstanding of impulsive systems would be helpful. For example, the study
of hybrid systems is a very active area of current research [31], but these
models often ignore the state-transition during jumps, which in many situ-
ations seems overly simplified. Another application area has recently been
proposed by Artstein [1] related to singularly perturbations. I believe the
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completion and full achievement of the goals sketched above could lead to
advances in these other areas (a similar viewpoint is expressed in [1]).

2.4 FCC systems

We introduced in §1.1 the Fully Convex Control (FCC) variational prob-
lem, which contains the Linear Quadratic Regulator (LQR) as a very special
case. Of course LQR is the workhorse in applications of optimal control, but
FCC extends well beyond LQR to incorporate “hard” constraints on control
variables and general convex costs, situations where classical methods (typi-
cally involving the Ricatti equation) no longer apply. FCC deserves special
treatment because it offers a broad class of problems that appear frequently
in applications, and moreover, these problems can usually and actually be
solved. By this, I refer to the hallmark property of convesity that local nec-
essary conditions are also globally sufficient, and thus one “knows” when a
solution is obtained since there are no local solutions that are not global.
An underlying theme propounded by Rockafellar over many years (and es-
poused in Stephen Boyd’s plenary talk at the last IEEE-CDC conference
in Las Vegas) is that the practical, numerical, and theoretical difficulties in
applications of a variational nature arise not between linear and nonlinear
problems (as is the case in Dynamical Systems and PDE theory), but be-
tween convex and nonconvex problems. Convexity roughly plays the role in
optimization that linearity enjoys in classical functional analysis. In fact,
this is precisely true (in the appropriate sense) from the viewpoint of the
Max-Plus algebra theory. However, it appears that this view is not prevalent
or appreciated among most practical engineers, and there is still the need for
theoretical work in the control context.

We sketched in §1.1 the results from [43, 44] that developed the basic
FCC Hamilton-Jacobi theory, and here we propose extensions to (i) state-
constrained problems, (ii) impulsive systems, and (iii) infinite horizon prob-
lems. These projects are presently taking shape in collaboration with Rafal
Goebel, and in the case of (iii), also with Alain Rapaport.
(i) State Constraints are omnipresent in applications, but typically are
ignored (when possible) or are handled by a variety of ad hoc methods.
Even in the classical LQR case, state constraints pose challenging issues that
classical methods cannot handle systematically. Engineers have expressed the
need for a state constraint theory for LQR problems. Rockafellar developed
optimality conditions (in the form of generalized Hamiltonian and Euler-
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Lagrange equations) and a duality framework in the rather obscure paper
[41]. Given the progress in nonsmooth analysis and Hamilton-Jacobi theory
since then, the time is ripe to revisit this topic. The papers [43, 44] provide
a clear road map for the type of results one can expect, but state constraints
are always technically more challenging due largely to the lack of finiteness
of the Hamiltonian. We mention there is significant work in Hamilton-Jacobi
theory for systems with state constraints (by Soner, Vinter, Bardi, Clarke,
Stern, and others), but the properties that hold on account of additional
convexity assumptions has not yet been explored.

A related issue in this context is (ii) impulsive systems, since the dual
arcs that appear in necessary conditions for problems with state constraints
will typically be only of bounded variation; this observation was the moti-
vation for Rockafellar’s duality theory [41] in this context. As previously
mentioned in §2.3, Murray [34] studied this approach and extended it to
nonconvex systems, but as of yet, the Hamilton-Jacobi theory has not been
developed here. We propose to develop an extension of LQR to allow im-
pulsive and state-constraints in the problem formulation. Classical methods
based on the Ricatti equation offer little guidance here, but it seems likely
that the Hamilton-Jacobi approach will bear a full harvest of results. It
might also be mentioned that the state interaction during the jump that was
emphasized in §2.3 and which needs particular attention in that generality
is not an issue under the FCC assumptions (which is yet another illustration
of the special nature of FCC).

Finally, (iii) infinite horizon optimal control problems will be stud-
ied in the FCC framework. Rafal Goebel [28] has recently obtained some
Hamilton-Jacobi related results in this context, and opens the way for addi-
tional research and extensions. We point out that infinite horizon problems
are extremely important in economics and many engineering models, but
is still rather mathematically undeveloped compared to the finite horizon
case. For example, the excellent book by Carlson, Haurie, and Leizarowitz
[8] contains little Hamilton-Jacobi theory and virtually no nonsmooth anal-
ysis. Furthermore, FCC problems have a rather prominent position in this
book, but only under rather restrictive assumptions; there is no duality or
utilization of value function techniques. Alain Rapaport has also worked con-
siderably on infinite horizon problems in the context of renewable resources,
and we are presently collaborating on developing and extending the turn-
pike properties worked out in [8] to multiple turnpikes in higher dimension.
A nonsmooth approach based on value function analysis is very promising
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here.

2.5 Subgradient calculations and regularity properties
of value functions

As mentioned in §1.2, we will continue to collaborate with Giovanni Colombo
on finding explicit formulas for the subgradients of value functions in terms
of the data. The motivation for this research stems from the enormous prac-
tical interest of finding feedback laws constructed from Lyapunov functions.
It has become clear that nonsmooth analysis is a valuable tool for such con-
structions, but we shall not try to summarize here the large body of work in
this area, except only to mention that the seminal paper [12] demonstrated
the theoretical power of nonsmooth analysis to shape the direction of non-
linear control: discontinuous feedback laws are sometimes necessary. In this
work and in subsequent innovative and substantial improvements by Rifford,
Clarke, Ledyaev, Stern, and others, a key feature in the feedback construc-
tion makes use of the subgradients of the Lyapunov function. Since one of
the main (theoretical) methods to construct Lyapunov functions is through
a value function, it is useful to know more about the nature of these subgra-
dients. The value functions being considered in this proposed research are
relatively simple, but nonetheless the analysis is not so simple. Recall the
value function (5) that has been studied in [16, 17], where explicit formulas
have been derived. It is natural to continue our investigations into more com-
plicated systems, and our subsequent investigations include new results for
linear systems (that is, the dynamic equation is ẋ(t) = Ax(t) + Bu(t)) and
where the target is convex. We need to finish and polish this result, and also
perhaps include running costs, other side constraints, etc. These are related
to a series of papers (e.g. [7]) by Cannarsa and his collaborators. Another
closely related problem is to find the appropriate assumptions for which the
minimal time function is prox-regular ([42]), a property well-understood for
the distance function [39]. Semiconcavity now plays a fundamental role in
stability theory (due to Rifford’s result on the existence of semiconcave Lya-
punov functions), and it is envisioned that prox-regularity will also, since it
is a more general property that could be present in the absence of controlla-
bility.
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3 Conclusion

3.1 Summary of activity

This proposal describes research problems in optimal control theory in five
main categories: (1) One-sided Lipschitz multifunctions, (2) variational prob-
lems with time-delay, (3) impulsive systems, (4) fully convex control, and (5)
subgradient formulas for value functions. Our methodology is based on non-
smooth and variational techniques that have been developed over the past
three decades for general nonlinear control systems. Nonsmooth concepts and
methods are now being used in control engineering design and is likely to ex-
pand much further. This proposal seeks to broaden and deepen the scope
of these applications in other problem types under various non-standard as-
sumptions.

A theory for One-Sided Lipschitz multifunctions, that if successfully es-
tablished, would bring problems with dry friction under the purlieu of op-
timal control. Presently, to my knowledge, there is no maximum principle
for such problems, although clearly many applied problems have such fea-
tures. Variational problems with time-delays or with impulse behavior are
two problem types that await the full onslaught of modern nonsmooth tech-
niques in order to establish invariance characterizations, develop necessary
conditions for optimality and a Hamilton-Jacobi theory, construct feedback
maps, etc. The fully convex control problem is a generalization of the Linear
Quadratic Regulator but allows for realistic constraints. There are natu-
ral mathematical models in this framework that involve state constraints,
impulsive behavior, and infinite horizons, and these all pose mathematical
challenges that are engaged in this proposal. Finally, there is the problem
of calculating subgradients directly in terms of the data for new classes of
value functions, an issue that has surfaced perhaps only because nonsmooth
analysis has developed so completely. Such calculations, however, could be
quite valuable in constructing feedback laws and for providing insight for the
design of velocity and target sets.

3.2 Broader impact

Direct applications of control theory are omnipresent in our daily lives, and
control engineering is having a momentous impact in the development of
modern technology. The simple phrase “things move, let’s move them better”
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could be the motto for enhancing economic development through increasing
efficiency. Of interest, then, is (1) to understand how things move, and (2)
the dependence on parameters to improve performance. The former relies
upon the laws of nature, but can be circumscribed in the modeling phase by
the existing mathematical theory (as it is with dry friction). The latter is op-
timization, an area that classical differentiability concepts are not well-suited
(the min or max of differentiable functions will not in general be differen-
tiable). Nonsmooth and variational analysis has largely been developed to
fill this void, and it is not surprising that control engineers are increasingly
discovering and using these powerful mathematical tools.

Nonetheless, despite its high mathematical content and challenges, math-
ematical control theory is not a subject well-represented in most US mathe-
matical departments (LSU is somewhat of an exception). Its influence on the
general mathematical curriculum is thus not particularly strong, although it
continues to challenge existing mathematical theories and has a high over-
all mathematical content. The LSU Mathematics Department was recently
awarded additional university support to build a program of excellence. This
means the department’s research faculty and graduate student support will
expand by roughly one third over the next four years (from 44 to 60 research
faculty and from 60 to 100 graduate students). The PI has for several years
been involved in curriculum reform, and has developed interdisciplinary math
graduate courses that are taken by both math and graduate students from
other departments. He envisions going much further by requesting that some
of the new resources be allocated to creating a “Mathematical Control Cen-
ter” at LSU, in which an intensive mathematical program will be devised
with interdisciplinary components to train and to provide additional math-
ematical support for other control theorists on campus. The new university
support was obtained at least in part by PI’s activity in applied math areas,
and the department is generally supportive in these efforts. The funding of
the present proposal will provide resources to keep the PI’s research pro-
gram active and broaden his exposure to engineering applications that will
be incorporated into the larger educational platform at LSU.

As mentioned in the narrative, the PI has three advanced graduate stu-
dents who have already co-authored papers and are expected to graduate in
the spring 2006. A fourth unfortunately ran into visa problems and will be
delayed. The PI has a recent record on attracting good graduate students,
and will teach a graduate course on the calculus of variations and optimal
control in the fall 2004 semester to recruit new ones into this exciting field.
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R.T. Rockafellar (Ph.D. adviser), R.B. Vinter (post-graduate adviser), F.H. Clarke (post-
graduate adviser) 
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 *ELECTRONIC SIGNATURES REQUIRED FOR REVISED BUDGET 

1YEAR

1

Louisiana State University & Agricultural and Mechanical College

Peter

Peter

Peter

 R

 R

 R

 Wolenski

 Wolenski

 Wolenski - Professor  0.00  0.00  2.00 15,351

   0   0.00   0.00   0.00        0
1  0.00  0.00  2.00    15,351

0 0.00 0.00 0.00 0
0 0.00 0.00 0.00 0
1 15,000
0 0
0 0
0 0

   30,351
3,454

   33,805

       0
1,500

0

0
0
0
0

0        0

1,000
0

2,000
0
0
0

    3,000
   38,305

18,003
MTDC (Rate: 47.0000, Base: 38305)

   56,308
0

   56,308
Not Shown

James bates
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PROPOSAL BUDGET
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proposer

Funds
granted by NSF

(if different)
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NSF Funded
Person-months

FOR NSF USE ONLY
ORGANIZATION PROPOSAL NO. DURATION (months)

Proposed Granted

PRINCIPAL INVESTIGATOR / PROJECT DIRECTOR AWARD NO.

A.  SENIOR PERSONNEL: PI/PD, Co-PI’s, Faculty  and Other Senior Associates
          (List each separately with title, A.7.  show number in brackets) CAL ACAD SUMR

$ $1.

2.

3.

4.

5.

6. (        ) OTHERS (LIST INDIVIDUALLY ON BUDGET JUSTIFICATION PAGE)

7. (        ) TOTAL SENIOR PERSONNEL (1 - 6)

B.  OTHER PERSONNEL (SHOW NUMBERS IN BRACKETS)

1. (        ) POST DOCTORAL ASSOCIATES

2. (        ) OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.)

3. (        ) GRADUATE STUDENTS

4. (        ) UNDERGRADUATE STUDENTS

5. (        ) SECRETARIAL - CLERICAL (IF CHARGED DIRECTLY)

6. (        ) OTHER

   TOTAL SALARIES AND WAGES (A + B)

C.  FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS)

   TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A + B + C)

D.  EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING $5,000.)

   TOTAL EQUIPMENT

E.  TRAVEL 1.  DOMESTIC (INCL. CANADA, MEXICO AND U.S. POSSESSIONS)

2.  FOREIGN

F.  PARTICIPANT SUPPORT COSTS

1. STIPENDS         $

2. TRAVEL

3. SUBSISTENCE

4. OTHER

   TOTAL NUMBER OF PARTICIPANTS       (          )                         TOTAL PARTICIPANT COSTS

G.  OTHER DIRECT COSTS

1. MATERIALS AND SUPPLIES

2. PUBLICATION COSTS/DOCUMENTATION/DISSEMINATION

3. CONSULTANT SERVICES

4. COMPUTER SERVICES

5. SUBAWARDS

6. OTHER

   TOTAL OTHER DIRECT COSTS

H.  TOTAL DIRECT COSTS (A THROUGH G)

I.  INDIRECT COSTS (F&A)(SPECIFY RATE AND BASE)

TOTAL INDIRECT COSTS (F&A)

J.  TOTAL DIRECT AND INDIRECT COSTS (H + I)

K.  RESIDUAL FUNDS (IF FOR FURTHER SUPPORT OF CURRENT  PROJECTS SEE GPG II.C.6.j.)

L.  AMOUNT OF THIS REQUEST (J) OR (J MINUS K) $ $

M. COST SHARING PROPOSED LEVEL $ AGREED LEVEL IF DIFFERENT $

PI/PD NAME FOR NSF USE ONLY
INDIRECT COST RATE VERIFICATION

ORG. REP. NAME*

 *ELECTRONIC SIGNATURES REQUIRED FOR REVISED BUDGET 

2YEAR

2

Louisiana State University & Agricultural and Mechanical College

Peter

Peter

Peter

 R

 R

 R

 Wolenski

 Wolenski

 Wolenski - none  0.00  0.00  2.00 15,965

   0   0.00   0.00   0.00        0
1  0.00  0.00  2.00    15,965

0 0.00 0.00 0.00 0
0 0.00 0.00 0.00 0
1 15,000
0 0
0 0
0 0

   30,965
3,592

   34,557

       0
1,500
2,000

0
0
0
0

0        0

3,000
0

2,000
0
0
0

    5,000
   43,057

20,237
MTDC (Rate: 47.0000, Base: 43057)

   63,294
0

   63,294
Not Shown

James bates
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Funds
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(if different)

Date Checked Date Of Rate Sheet Initials - ORG

NSF Funded
Person-months

FOR NSF USE ONLY
ORGANIZATION PROPOSAL NO. DURATION (months)

Proposed Granted

PRINCIPAL INVESTIGATOR / PROJECT DIRECTOR AWARD NO.

A.  SENIOR PERSONNEL: PI/PD, Co-PI’s, Faculty  and Other Senior Associates
          (List each separately with title, A.7.  show number in brackets) CAL ACAD SUMR

$ $1.

2.

3.

4.

5.

6. (        ) OTHERS (LIST INDIVIDUALLY ON BUDGET JUSTIFICATION PAGE)

7. (        ) TOTAL SENIOR PERSONNEL (1 - 6)

B.  OTHER PERSONNEL (SHOW NUMBERS IN BRACKETS)

1. (        ) POST DOCTORAL ASSOCIATES

2. (        ) OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.)

3. (        ) GRADUATE STUDENTS

4. (        ) UNDERGRADUATE STUDENTS

5. (        ) SECRETARIAL - CLERICAL (IF CHARGED DIRECTLY)

6. (        ) OTHER

   TOTAL SALARIES AND WAGES (A + B)

C.  FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS)

   TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A + B + C)

D.  EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING $5,000.)

   TOTAL EQUIPMENT

E.  TRAVEL 1.  DOMESTIC (INCL. CANADA, MEXICO AND U.S. POSSESSIONS)

2.  FOREIGN

F.  PARTICIPANT SUPPORT COSTS

1. STIPENDS         $

2. TRAVEL

3. SUBSISTENCE

4. OTHER

   TOTAL NUMBER OF PARTICIPANTS       (          )                         TOTAL PARTICIPANT COSTS

G.  OTHER DIRECT COSTS

1. MATERIALS AND SUPPLIES

2. PUBLICATION COSTS/DOCUMENTATION/DISSEMINATION

3. CONSULTANT SERVICES

4. COMPUTER SERVICES

5. SUBAWARDS

6. OTHER

   TOTAL OTHER DIRECT COSTS

H.  TOTAL DIRECT COSTS (A THROUGH G)

I.  INDIRECT COSTS (F&A)(SPECIFY RATE AND BASE)

TOTAL INDIRECT COSTS (F&A)

J.  TOTAL DIRECT AND INDIRECT COSTS (H + I)

K.  RESIDUAL FUNDS (IF FOR FURTHER SUPPORT OF CURRENT  PROJECTS SEE GPG II.C.6.j.)

L.  AMOUNT OF THIS REQUEST (J) OR (J MINUS K) $ $

M. COST SHARING PROPOSED LEVEL $ AGREED LEVEL IF DIFFERENT $

PI/PD NAME FOR NSF USE ONLY
INDIRECT COST RATE VERIFICATION

ORG. REP. NAME*

 *ELECTRONIC SIGNATURES REQUIRED FOR REVISED BUDGET 

3YEAR

3

Louisiana State University & Agricultural and Mechanical College

Peter

Peter

Peter

 R

 R

 R

 Wolenski

 Wolenski

 Wolenski - none  0.00  0.00  2.00 16,604

   0   0.00   0.00   0.00        0
1  0.00  0.00  2.00    16,604

0 0.00 0.00 0.00 0
0 0.00 0.00 0.00 0
1 15,000
0 0
0 0
0 0

   31,604
3,736

   35,340

       0
1,500
2,000

0
0
0
0

0        0

3,000
0

2,000
0
0
0

    5,000
   43,840

20,605
MTDC (Rate: 47.0000, Base: 43840)

   64,445
0

   64,445
Not Shown

James bates
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Funds
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proposer

Funds
granted by NSF

(if different)

Date Checked Date Of Rate Sheet Initials - ORG

NSF Funded
Person-months

FOR NSF USE ONLY
ORGANIZATION PROPOSAL NO. DURATION (months)

Proposed Granted

PRINCIPAL INVESTIGATOR / PROJECT DIRECTOR AWARD NO.

A.  SENIOR PERSONNEL: PI/PD, Co-PI’s, Faculty  and Other Senior Associates
          (List each separately with title, A.7.  show number in brackets) CAL ACAD SUMR

$ $1.

2.

3.

4.

5.

6. (        ) OTHERS (LIST INDIVIDUALLY ON BUDGET JUSTIFICATION PAGE)

7. (        ) TOTAL SENIOR PERSONNEL (1 - 6)

B.  OTHER PERSONNEL (SHOW NUMBERS IN BRACKETS)

1. (        ) POST DOCTORAL ASSOCIATES

2. (        ) OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.)

3. (        ) GRADUATE STUDENTS

4. (        ) UNDERGRADUATE STUDENTS

5. (        ) SECRETARIAL - CLERICAL (IF CHARGED DIRECTLY)

6. (        ) OTHER

   TOTAL SALARIES AND WAGES (A + B)

C.  FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS)

   TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A + B + C)

D.  EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING $5,000.)

   TOTAL EQUIPMENT

E.  TRAVEL 1.  DOMESTIC (INCL. CANADA, MEXICO AND U.S. POSSESSIONS)

2.  FOREIGN

F.  PARTICIPANT SUPPORT COSTS

1. STIPENDS         $

2. TRAVEL

3. SUBSISTENCE

4. OTHER

   TOTAL NUMBER OF PARTICIPANTS       (          )                         TOTAL PARTICIPANT COSTS

G.  OTHER DIRECT COSTS

1. MATERIALS AND SUPPLIES

2. PUBLICATION COSTS/DOCUMENTATION/DISSEMINATION

3. CONSULTANT SERVICES

4. COMPUTER SERVICES

5. SUBAWARDS

6. OTHER

   TOTAL OTHER DIRECT COSTS

H.  TOTAL DIRECT COSTS (A THROUGH G)

I.  INDIRECT COSTS (F&A)(SPECIFY RATE AND BASE)

TOTAL INDIRECT COSTS (F&A)

J.  TOTAL DIRECT AND INDIRECT COSTS (H + I)

K.  RESIDUAL FUNDS (IF FOR FURTHER SUPPORT OF CURRENT  PROJECTS SEE GPG II.C.6.j.)

L.  AMOUNT OF THIS REQUEST (J) OR (J MINUS K) $ $

M. COST SHARING PROPOSED LEVEL $ AGREED LEVEL IF DIFFERENT $

PI/PD NAME FOR NSF USE ONLY
INDIRECT COST RATE VERIFICATION

ORG. REP. NAME*

 *ELECTRONIC SIGNATURES REQUIRED FOR REVISED BUDGET 

Cumulative

C

Louisiana State University & Agricultural and Mechanical College

Peter

Peter

Peter

 R

 R

 R

 Wolenski

 Wolenski

 Wolenski - none  0.00  0.00  6.00 47,920

 0.00  0.00  0.00 0
1  0.00  0.00  6.00    47,920

0 0.00 0.00 0.00 0
0 0.00 0.00 0.00 0
3 45,000
0 0
0 0
0 0

   92,920
10,782

  103,702

       0
4,500
4,000

0
0
0
0

0        0

7,000
0

6,000
0
0
0

   13,000
  125,202

58,845
 

  184,047
0

  184,047
Not Shown

James bates



Budget Justification Page

  

A.  Senior Personnel

1.  The PI requests two months summer salary for each year to work on this project.  Base
salary is $69,080; anticipated salary increases of 4% are included for Years 2 and 3.
 
B.  Other Personnel

3. The PI requests $15,000 each year to support one graduate student to assist with the
project.  There is currently three Ph.D. students that will complete their degree
requireents in May, 2005, and there are new students interested working with the PI.  He
will choose the most qualified student for the support.

C. Fringe benefits are included at 22.5% of PI salary request.

E.  Travel

1. Domestic Travel: The PI requests $1500 in Years 1-3 to attend conferences.  Typically,
he attends the annual IEEE-CDC held in the second week of December, and plans to organize
sessions and present his research there.  He also plans to attend other control theory
conferences.

2.  Foreign Travel:  The PI requests $2000 in each of Years 2 and 3 to support travel to
conferences and visits to collaborators in France (Clarke, Rapaport), Italy (Colombo), and
Bulgaria (Donchev)

G.  Other Direct Costs

1.  The PI requests $1000 in year 1 and $3000 in years 2 and 3 to purchase books, renew
Matlab and other software licenses, and other project related supplies.

3.  The PI requests $2000 each year to support visitors to collaborate on this research. 
Visitors will likely include R.J. Stern, F.H. Clarke, A. Rapaport, G. Colombo, T. Donchev,
and R. Goebel.

I.  Indirect Costs are calculated at LSU’s federally negotiated rate of 47% of MTDC.



Current and Pending Support
(See GPG Section II.D.8 for guidance on information to include on this form.)

The following information should be provided for each investigator and other senior personnel.  Failure to provide this information may delay consideration of this proposal.

Investigator:
Other agencies (including NSF) to which this proposal has been/will be submitted.

Support: Current Pending Submission Planned in Near Future *Transfer of Support

Project/Proposal Title:

Source of Support:
Total Award Amount:  $ Total Award Period Covered:
Location of Project:
Person-Months Per Year Committed to the Project. Cal: Acad: Sumr:

Support: Current Pending Submission Planned in Near Future *Transfer of Support

Project/Proposal Title:

Source of Support:
Total Award Amount:  $ Total Award Period Covered:
Location of Project:
Person-Months Per Year Committed to the Project. Cal: Acad: Sumr:

Support: Current Pending Submission Planned in Near Future *Transfer of Support

Project/Proposal Title:

Source of Support:
Total Award Amount:  $ Total Award Period Covered:
Location of Project:
Person-Months Per Year Committed to the Project. Cal: Acad: Sumr:

Support: Current Pending Submission Planned in Near Future *Transfer of Support

Project/Proposal Title:

Source of Support:
Total Award Amount:  $ Total Award Period Covered:
Location of Project:
Person-Months Per Year Committed to the Project. Cal: Acad: Sumr:

Support: Current Pending Submission Planned in Near Future *Transfer of Support

Project/Proposal Title:

Source of Support:
Total Award Amount:  $ Total Award Period Covered:
Location of Project:
Person-Months Per Year Committed to the Project. Cal: Acad: Summ:

*If this project has previously been funded by another agency, please list and furnish information for immediately preceding funding period.

USE ADDITIONAL SHEETS AS NECESSARYPage G-

Peter Wolenski

Interdisciplinary education, outreach, and research in
Control Theory at LSU

Louisiana State Board of Regents
103,000 06/01/02 - 06/30/04

Louisiana State University
0.00 0.00 0.00

Enhancement of interdisciplinary, industrial, and applied
mathematics education and outreach at LSU

Louisiana Board of Regents
214,271 06/01/02 - 06/30/04

Louisiana State University
0.00 0.00 0.00

Nonsmooth mathods in optimal control theory

NSF
184,047 06/01/04 - 07/31/07

Louisiana State University
0.00 0.00 2.00

11



FACILITIES, EQUIPMENT & OTHER RESOURCES

FACILITIES: Identify the facilities to be used at each performance site listed and, as appropriate, indicate their capacities, pertinent

capabilities, relative proximity, and extent of availability to the project. Use "Other" to describe the facilities at any other performance

sites listed and at sites for field studies. USE additional pages as necessary.

Laboratory:

Clinical:

Animal:

Computer:

Office:

Other:               

MAJOR EQUIPMENT: List the most important items available for this project and, as appropriate identifying the location and pertinent

capabilities of each.

OTHER RESOURCES: Provide any information describing the other resources available for the project. Identify support services

such as consultant, secretarial, machine shop, and electronics shop, and the extent to which they will be available for the project.

Include an explanation of any consortium/contractual arrangements with other organizations.

 

The PI and his graduate students are well-equipped with computer hrdware
and software, thanks to recent Louisiana Board of Regents grants obtained
by the PI.


