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MINIMUM TIME OPTIMALITY OF A BANG-BANG TRAJECTORY

LAURA POGGIOLINI AND GIANNA STEFANI

Abstract. We announce a sufficient condition for a bang-bang extremal ξ̂ to be a strong local

optimizer for the minimum time problem with fixed endpoints. Strong local optimizer means

that ξ̂ joins the two given points in time less than the time needed by any other trajectory

belonging to a state-neighborhood of ξ̂.

1. Introduction

We state sufficient conditions for a bang-bang extremal ξ̂ to be a strong local optimizer for
the minimum time problem with fixed endpoints. We underline that the conditions lead that the
optimum is local with respect to the state and not to the time. To be more precise we consider
the minimum time problem for an affine control system with controls in a polyhedron ∆, namely
we consider the problem

minimize T

under the conditions

ξ̇(t) = X0(ξ(t)) +
m∑
k=1

uk(t)Xk(ξ(t)) a.e. t ∈ [0, T ]

ξ(0) = x0 ; ξ(T ) = y0

u ≡ (u1, . . . , um) ∈ L∞ ([0, T ],∆)

The state space is Rn, x0, y0 are given points of Rn and X0, . . . , Xm : Rn → R
n are smooth vector

fields.
We consider an admissible bang-bang trajectory ξ̂ : [0, T̂ ]→ R

n and we want to give conditions
for ξ̂ to be a local optimizer in the sense of the following definition

Definition 1.1. An admissible trajectory ξ̂ : [0, T̂ ]→ R
n is a strong local optimizer for the above

problem if there is an open neighborhood U of {ξ̂(t) : t ∈ [0, T̂ ]} in Rn such that if ξ : [0, T ] → R
n

is any admissible trajectory and {ξ(t) : t ∈ [0, T ]} is contained in U , then T̂ ≤ T .

The result is given in the spirit of the paper [2], see also [1] for partial results, where sufficient
conditions for a Mayer problem in a fixed interval of time are given.

As a matter of fact, applying a suitable time reparametrization our minimum time problem
fits with the results in [2] and we obtain a sufficient condition for a local optimum in the sense of
the graphs of the trajectories, in particular only with respect to the trajectories defined on a time
interval [0, T ] with T near T̂ .

On the contrary, applying directly the Hamiltonian methods we obtain that the reference tra-
jectory is optimal with respect to the trajectories defined on any interval [0, T ].

The sufficient optimality conditions include obviously that ξ̂ satisfies the Pontryagin Maxi-
mum Principle (PMP), contain conditions on the regularity of the maximized Hamiltonian (see
Assumptions 2.2, 2.3 and 2.4 ) and require that a suitable second variation is definite positive.

The second variation is the one relative to the finite dimensional subproblem obtained by moving
the switching times of the reference trajectory.
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2 L. POGGIOLINI AND G. STEFANI

All the conditions are invariant under change of coordinates and they can be stated on any
smooth manifold. Moreover the conditions concern the adjoint covector introduced by the PMP
and the vector fields defining the reference trajectory, so that they result to be feedback invariant.

Here we give only the result, complete proofs and an extension to a more general Bolza problem
will appear elsewhere.

The literature on second order sufficient conditions for the optimality of a bang-bang trajectory
is scarce, we refer to [5] and the reference therein for results based on the existence of a regular
synthesis. In [4] and [3] conditions are given for time optimality local with respect to both state
and time.

2. Basic definitions and assumptions

Let û : [0, T̂ ]→ ∆ be the bang-bang control associated to the reference trajectory ξ̂ and let

0 ≤ τ̂0 < · · · < τ̂r+1 = T̂

be the switching times, i.e. û takes a constant value ûi, which is a vertex of ∆, in each interval
(τ̂i, τ̂i+1), i = 1, . . . , r. We call hi the vector fields that define the reference trajectory ξ̂ in the
interval [τ̂i, τ̂i+1] i.e.

hi = X0 +
m∑
k=1

ûikXk ,

therefore the reference trajectory satisfies the differential equations

ξ̇(t) = hi(ξ(t)) t ∈ [τ̂i−1, τ̂i].

Notice that the vector fields hi need not to be different each other, for example if u is scalar and
∆ = [−1, 1] then hi is either X0 +X1 or X0 −X1.

To each hi we associate an Hamiltonian Hi : (Rn)∗ × Rn → R given by

(p, x)→ 〈p, hi(x)〉 = 〈p,X0(x)〉+
m∑
k=1

ûik〈p,Xk(x)〉.

In the scalar case we have only two different Hamiltonians

H± : (p, x)→ 〈p, hi(x)〉 = 〈p,X0(x)〉 ± 〈p,X1(x)〉.
and the Hi’s are equal either to H+ or to H−.

With the notation stated above, we can make the assumptions concerning the maximum prin-
ciple and the regularity of the maximized Hamiltonian

H : (p, x)→ 〈p,X0(x)〉+ max
u∈∆

m∑
k=1

uk〈p,Xk(x)〉

Notice that in our case H is a Lipschitz function.

Assumption 2.1. The couple (ξ̂, û) is a normal Pontryagin extremal, i.e. it satisfies the PMP in
the normal form.

In our case the PMP can be expressed in the following form: there exists a Lipschitz solution
λ̂ : [0, T̂ ]→ (Rn)∗ of the adjoint equation

λ̇(t) = −〈λ(t), Dhi(ξ̂(t))〉, t ∈ [τ̂i−1, τ̂i], i = 1, . . . , r + 1

such that
Hi(λ̂(t), ξ̂(t)) = H(λ̂(t), ξ̂(t)) = 1, t ∈ [τ̂i−1, τ̂i], i = 1, . . . , r + 1

Assumption 2.2. The couple (ξ̂, û) is a regular bang-bang extremal i.e.

〈λ̂(t), X0(ξ̂(t))〉+
m∑
k=1

uk〈λ̂(t), Xk(ξ̂(t))〉 < 1

for all t 6= τ̂i and all u ∈ ∆ such that u 6= û(t)
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Assumption 2.3. The couple (ξ̂, û) has simple switching points, i.e. at any switching time τ̂i

〈λ̂(τ̂i), X0(ξ̂(τ̂i))〉+
m∑
k=1

uk〈λ̂(τ̂i), Xk(ξ̂(τ̂i))〉 < 1

for all u ∈ ∆ different from ûi and ûi+1.

From the PMP we can easily deduce for i = 1, . . . , r

〈λ̂(τ̂i), (hi − hi+1)(ξ̂(τ̂i))〉 = 0

〈λ̂(τ̂i), [hi, hi+1](ξ̂(τ̂i))〉 ≥ 0

where [hi, hi+1] denotes the Lie-brackets between the vector fields hi and hi+1. We require that
the above inequality is strict, i.e. we make the following assumption

Assumption 2.4. The reference couple satisfies the strict bang-bang Legendre condition

〈λ̂(τ̂i), [hi, hi+1](ξ̂(τ̂i))〉 > 0 i = 1, . . . , r

Remark 2.5. Assumptions 2.2, 2.3, 2.4, imply that the Hamiltonian system associated to the
maximized Hamiltonian H is piece-wise smooth in a neighborhood of {(λ̂(t), ξ̂(t)) : t ∈ [0, T̂ ]} in
(Rn)∗ × Rn and it has the existence and unicity property for the solutions, see [2].

3. The result

In order to give the main result, we consider the finite dimensional subproblem of the given one
obtained by moving the switching times, namely we define Θ = {θ = (τ1, . . . , τr+1) ∈ Rr+1 : 0 <
τ1 < · · · < τr+1} and we take into account only the piecewise constant controls u such that
u(t) = ûi for t ∈ (τi−1, τi).

For each θ in a neighborhood of θ̂ = (τ̂1, . . . , τ̂r+1) in Θ, we denote by S(θ) the solution at time
τr+1 of the system

ξ̇(t) = hi(ξ(t)) t ∈ [τi−1, τi], i = 1, . . . , r(3.1)

ξ(0) = x0(3.2)

The finite dimensional problem becomes the following problem on Θ

minimize γ(θ) = τr+1 subject to S(θ) = y0,

with reference point θ̂.
The PMP implies that the finite dimensional subproblem satisfies the Lagrange multipliers rule,

namely
Dγ(θ̂) + λ̂(T̂ )DS(θ̂) = 0

We define the second variation at the switching points as the quadratic form of the second
order condition for the finite dimensional subproblem associated to the Lagrange multiplier λ̂(T̂ )
i.e. the quadratic form

λ̂(T̂ )D2S(θ̂)
∣∣∣
kerDS(θ̂)

Theorem 3.1. Assume that the given bang-bang trajectory is a normal Pontryagin extremal
(Assumption 2.1), it is regular (Assumption 2.2), it has simple switching points (Assumption
2.3) and that the strict bang-bang Legendre condition is satisfied (Assumption 2.4). If either
kerDS(θ̂) = {0} or the second variation at the switching points is positive definite then ξ̂ is a
strong local minimizer in the sense of Definition 1.1.

Remark 3.2. Notice that kerDS(θ̂) = {0} means that θ → S(θ) defines locally around θ̂ an
(r + 1)-dimensional sub-manifold of Rn containing y0.

Remark 3.3. Here we consider the normal case for the sake of simplicity, indeed analogous condi-
tions for the abnormal case lead to the conclusion that there is a neighborhood U of Rn such that
ξ̂ is the only admissible trajectory whose values are contained in U .
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4. The second variation

Denoting by Sts(θ, x) the solution at time t of (3.1) with initial condition ξ(s) = x we have

S(θ) = Sτr+1,0(θ, x0) and ξ̂(t) = St,0(θ̂, x0) ,

moreover it is not difficult to prove that

∂τr+1S(θ̂) = hr+1(S(θ̂))

∂τiS(θ) = ∂xSτ̂r+1τ̂i(θ̂, x0)(hi − hi+1)(Sτ̂i0(θ̂, x0)) i = 1, . . . , r .

If we introduce the vector fields

x→ gi(x) = [∂xSτ̂i0(θ̂, x)]−1hi(Sτ̂i0(θ̂, x))

we can write, in a more compact form,

∂τr+1S(θ̂) = DS(θ̂)gr+1(x0)

∂τiS(θ̂) = DS(θ̂)[gi(x0)− gi+1(x0)], i = 1, . . . , r

Remark 4.1. DS(θ̂) is injective if and only if the vector fields gi(x0), i = 1, . . . , r+1, are linearly
independent.

Using a suitable reparametrization of the time we can prove that the positivity of the second
variation at the switching points is equivalent to the positivity of the quadratic form

ε = (ε1, . . . , εr+1)→
r+1∑
i=2

i−1∑
j=1

εiεj〈λ̂(0), [gi, gj ](x0)〉

over ε ∈ Rr+1 such that
r+1∑
i=1

εigi(x0) = 0 .
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