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A TOWER OF GENUS TWO CURVES RELATED TO THE

KOWALEWSKI TOP

FRANCK LEPREVOST AND DIMITRI MARKUSHEVICH

Abstract. Several curves of genus 2 are known, such that the equations of motion

of the Kowalewski top are linearized on their Jacobians. One can expect from tran-
scendental approaches via solutions of equations of motion in theta-functions, that

their Jacobians are isogeneous. The paper focuses on two such curves: Kowalewski’s

and that of Bobenko–Reyman–Semenov-Tian-Shansky, the latter arising from the
solution of the problem by the method of spectral curves. An isogeny is established

between the Jacobians of these curves by purely algebraic means, using Richelot’s

transformation of a genus 2 curve. It is shown that this isogeny respects the Hamil-
tonian flows. The two curves are completed into an infinite tower of genus 2 curves

with isogeneous Jacobians.

Introduction

Several authors writing on the Kowalewski top remarked that there are a few ap-
parently different curves of genus 2 arising in the problem of integrating the equations
of motion of the top. The one classically known is Kowalewski’s curve [8]; see also a
modern exposition of her approach in [1] or [2]. The remarkable property of this curve
C1 is that the flow of solutions of the equations of motion is linearized on its Jacobian
J1, and so, the solutions can be expressed in terms of theta-functions of two variables.
Bobenko–Reyman–Semenov-Tian-Shansky [3] constructed another curve of genus 2 C2

with the same property, but arising in a different way, namely, from the Lax represen-
tation for the equations of motion of the top. Their construction leads to a genus 2
curve only in the case when the angular momentum l of the top is orthogonal to the
gravity vector g. So, in this case, there are two different genus 2 curves associated to
the Kowalewski top. It is interesting to study more closely the relation between the two
curves.

The authors of [3] claim that the Jacobians of the two curves are isogeneous. They do
not give an explicit proof, but write out the solutions of the equations of motion in terms
of theta-functions on the Jacobian J2 of their curve C2. The formulas for the solutions
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define, in fact, a map from J2 onto the corresponding Liouville torus T . The knowledge
of the smallest periods of the solutions would give an information on the nature of this
map. The authors claim that this map is an isogeny. It is known also that solutions
of the equations of motion on the Jacobian of Kowalewski’s curve J1 yield an isogeny
from J1 onto T . Thus, J1 and J2 are isogeneous to the same abelian surface T , hence
isogeneous to one another. It is a natural problem to search for an algebraic expression
for such an isogeny, avoiding cumbersome formulas with theta-functions. An elegant
and purely algebraic solution to this problem is given in the present paper.

To our knowledge, sofar only two more curves of genus 2, related to the Kowalewski
top and different from the curve of Kowalewski have been mentioned in the literature.
They are introduced in [6]. The authors establish the existence of an isogeny between
the Jacobians of these curves and of Kowalewski’s. Their analytic approach is com-
pletely different from the one purely algebraic applied in the present paper, and they
do not address the question on the relation of their curves to that of [3].

In the present paper, we show that the curve C1 of Kowalewski is obtained from the curve
C2 of Bobenko–Reyman–Semenov-Tian-Shansky by Richelot’s transformation ([10],[11])
inducing an isogeny of degree 4 between their Jacobians. Furthermore, we show, that in
iterating Richelot’s construction in a convenient way, one can obtain a tower of count-
ably many curves of genus 2, whose Jacobians are all isogeneous to that of the curve of
Kowalewski. Thus, this approach gives an infinity of Jacobians, on which the Hamil-
tonian flow of the Kowalewski top is linearized.

In Section 1, we describe briefly the equations of motion of the Kowalewski top and the
procedures leading to C1 and C2. We explain, why the flow of solutions of the equations
is linearized on the Jacobians of the two curves. This certainly provides a linear map
between the universal covers of the Jacobians, but still does not explain, why they are
isogeneous.

In Section 2, we describe Richelot’s construction, and apply it to obtain a (2,2)-correspondence
between the curves of Bobenko–Reyman–Semenov-Tian-Shansky and of Kowalewski.
We show that this correspondence induces an isogeny of the Jacobians with kernel
Z/2Z⊕Z/2Z, and that the isogeny transforms the solutions of the Lax equations on J2

into Kowalewski’s solutions of the equations of motion of the top on J1.

In Section 3, we describe briefly Richelot’s algorithm which leads to a tower of isoge-
neous abelian surfaces, and apply it to our situation; we obtain a tower whose ending
segment is the Jacobian of the curve of Bobenko et al. followed by that of the curve of
Kowalewski.
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1. Kowalewski’s top

We will follow the notations of [3]. In fact, the integrable system introduced there
is Kowalewski’s top in constant electric and gravitational fields, called Kowalewski’s
gyrostat. As soon as we are interested in the classical situation, we will specialize all
the formulas to the case when the electric field is zero. The motion of the top can be
described by the following system:

dl
dt

= [l, ω] + [c, g],
dg
dt

= [g, ω]
ω = J l

(1)

Here [., .] is the vector product in R3, l is the angular momentum, g the gravity vector,
c the vector of the center of mass, ω the angular velocity, and J = I−1 the inverse of
the inertia tensor I = (Iij)1≤i,j≤3, everything in a moving frame (e1, e2, e3), attached
to the solid. This system is Hamiltonian, with Hamiltonian

H =
1

2
(J l, l) − (g, c).

In Kowalewski’s integrable case, the inertia tensor is I = diag(1, 1, 1/2), and c lies in
the plane spanned by e1, e2. If we choose the moving frame so that the center of mass
is the endpoint of e1, then

H =
1

2
(l21 + l22 + 2l23) − g1,

and there are two additional integrals of motion

I1 = (l, g)2, I2 =
(
l1

2 − l2
2 + 2 g1

)2
+ 4 (l1l2 + g2)

2
.

The equations of motion admit a Lax representation

dL

dt
= [L,M ] (2)

with Lax matrix

L(λ) =




g1
λ

g2
λ

−l2 + g3
λ

−l1
g2
λ

−g1
λ

l1 −l2 − g3
λ

l2 + g3
λ

−l1 −2λ− g1
λ

−2 l3 + g2
λ

l1 l2 − g3
λ

2 l3 + g2
λ

2λ+ g1
λ



,

where [L,M ] = LM − ML for some matrix M , which we will not explicitize here.
One can verify, that the invariants H, I1 and I2 belong to the algebra generated by the
coefficients of λ−2 and λ0 in the Laurent expansions of Tr(L(λ)2) and Tr(L(λ)4). Since
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these coefficients are invariant under the flow of (2), the spectral curve P (λ, µ) = 0 is
also invariant, where

P (λ, µ) = det (L(λ) − µ).

Let Γ be the non-singular compactification of the spectral curve, and L(t) a solution of
(2). Then we have the line bundle Et of eigenvectors of L(t) on Γ (it is defined a priori
on a Zariski open subset of Γ, but it is uniquely extended to all of Γ as a line subbundle
of a fixed vector bundle, namely, of the trivial one C4 × Γ). It is proved in [9] that the
evolution of the class of Et on the Jacobian of Γ is linear, and the velocity V = d[Et]/dt
is given by

ω(V ) =
∑

p:λ(p)=∞

resp(
1

2
µω) ∀ ω ∈ H0(Γ,Ω1

Γ). (3)

Moreover, the flow is confined to the Jacobian of the curve C2 = Γ/ < τ1 > and parallel
to the Prym variety P (C2/E), where E = Γ/ < τ1, τ2 >, and τ1 : (λ, µ) 7→ (−λ, µ) ,
τ2 : (λ, µ) 7→ (λ,−µ) .

From the physical point of view, it is natural to think of |g|2 and I1 as of trivial constants
of motion. The slices |g|2 = γ, I1 = κ represent 4-dimensional symplectic manifolds
Mγκ (see (1.3) of [3] for corresponding Poisson brackets), and the remaining first inte-
grals (H, I2) yield the complete integrability of the Hamiltonian system on Mγκ in the
sense of Liouville. They define the moment map µ : Mγκ−→C2, whose (compactified)
fibers are disjoint unions of Liouville tori, and the Hamiltonian flow linearizes on their
universal cover. It turns out, that the Liouville tori can be identified with the Prym va-
riety P (C2/E), if κ 6= 0; in this case, C2 is of genus 3, E elliptic, and dimP (C2/E) = 2.
If κ = 0, the genus of C2 (resp. E) goes down to 2 (resp. 0), and P (C2/E) becomes
simply the Jacobian of C2.

The curve C2 is that of [3] mentioned in the introduction, and our aim is to compare it
to the curve of Kowalewski. So, we will suppose from now on that I1 = κ = 0, and C2

is of genus 2. We can also normalize the constants so that |g|2 = γ = 1. We have for Γ
the equation

µ4 − 2d1(λ
2)µ2 + d2(λ

2) = 0,

where

d1(z) = z−1 − 2H + 2z , d2(z) = z−2 − 4Hz−1 + I2,

and the equations of C2, E are obtained by substituting λ2 = z, resp. µ2 = y. One can
check that the 1-forms

ω0 =
dz

µz(µ2 − d1(z))
, ω1 =

1

2

(
µ2 − 1

z

)
ω0 (4)

yield a basis of H0(C2,Ω
1
C2

). Applying (3), we obtain the following statement:
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Proposition 1. The coordinates of the velocity vector V in the basis ω0, ω1 are (0,−1).
Hence, the equation d[Et]/dt = V induces on Sym2(C2) the following system:

∑

i=1,2

dzi/dt

µizi(µ
2
i − d1(zi))

= 0 ,

∑

i=1,2

1

2

(
µ2
i −

1

zi

)
dzi/dt

µizi(µ2
i − d1(zi))

= − 1 .
(5)

Following [3], where the analogous system is written out for the case when C2 is of genus
3, we will call (5) the Dubrovin form of the equations of the motion of the top.

The change of variables x = 1
2
(µ2−z−1), u = µ√

2
(x2+2Hx−1+ 1

4
I2) brings the equation

of C2 to the canonical form:

u2 = x(x2 + 2Hx+
1

4
I2)(x

2 + 2Hx− 1 +
1

4
I2),

and the basis (4) of H0(C2,Ω
1
C2

) becomes

ω0 =
dx√
2u

, ω1 =
xdx√

2u
.

So, the Dubrovin equations can be rewritten as follows:

dx1/dt

u1
+
dx2/dt

u2
= 0 ,

x1dx1/dt

u1
+
x2dx2/dt

u2
= −

√
2 . (6)

The linearized equations of Kowalewski have the same form, but on another curve of
genus 2. We will write out her solution in omitting details of calculations. We are using
formulas from Audin [1]. Some differences in coefficients are explained by the choice of
different dimensionless parameters: I33 = 1/2, |c| = |g| = 1 here, and I33 = |c| = |g| = 1
in [1]. When comparing solutions, we should keep in mind that the corresponding times

are related by the equation t̃ =
√

2t, where t is the time of Bobenko et al. ([3]) and t̃
Audin’s ([1]).

Let x = l1 + il2, y = l1− il2. Considering them as independent complex variables, define
the new variables ξ1, ξ2 by

ξ1 = H +
R(xy)−

√
R(x2)R(y2)

(x− y)2
, ξ2 = H +

R(xy) +
√
R(x2)R(y2)

(x− y)2
,

where

R(x) = −x2 + 2Hx+ 1 − 1

4
I2.

Then the equations (1) are reduced to the following system

dξ1/dt̃

η1
+
dξ2/dt̃

η2
= 0 ,

ξ1dξ1/dt̃

η1
+
ξ2dξ2/dt̃

η2
= i (7)
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on Sym2(C1), where C1 is the genus 2 curve defined by the equation

η2 = 2ξ((ξ −H)2 + 1 − 1

4
I2)((ξ −H)2 − 1

4
I2).

Like (6), these equations describe a linearized flow on the Jacobian of the hyperelliptic
curve. Its velocity vector with respect to the time t is V1 = (0,

√
−2). It is a natural

question to ask whether the two flows can be transformed into each other by a holomor-
phic (and hence algebraic) map between the Jacobians. Considering the differentials
of the first kind as coordinate functions on the universal covering of the Jacobian of a
curve, we can represent such a map in the form ν0 = aω0, ν1 = bω0 +

√
−2ω1, where

ν0 = dξ/η, ν1 = ξdξ/η, and a, b ∈ C. The question is whether it can be realized for some
a, b by an algebraic correspondence between C1 et C2. The answer can be obtained by
expressing both solutions in terms of theta functions, but there is also a beautiful purely
algebraic construction of such a correspondence, using only the equations of the curves.
It is described in the next section.

2. Richelot Isogeny

In this section, we apply Richelot’s construction ([10], [11]). We follow the approaches
of [5], p. 89 and of [4]. Let C be a genus 2 curve defined over the ground field K by an
equation

u2 = f(x) = G1(x)G2(x)G3(x),

where
Gj(x) = gj2x

2 + gj1x+ gj0 ∈ K[x].

Let Ĉ be the genus 2 curve defined by the following equation

∆Y 2 = F (X) = L1(X)L2(X)L3(X),

where
L1(X) = [G2, G3] = G′

2(X)G3(X) −G2(X)G′
3(X)

and so on, cyclically, and ∆ = det(gij). A (2, 2)-correspondence between C and Ĉ is

defined by the curve Z given over C × Ĉ by the equations
{
G1(x)L1(X) +G2(x)L2(X) = 0,
G1(x)L1(X)(x−X) = yY.

The correspondence Z induces the isogeny ϕ : J −→ Ĵ between J and Ĵ , the Jacobians

of C and Ĉ respectively, given by the formula ϕ([
∑
niPi]) = [

∑
nip2p

−1
1 Pi] for all divi-

sor
∑
niPi of degree zero, where p1 (resp. p2) is the restriction to Z of the projection

of C × Ĉ to C (resp. to Ĉ). The kernel of ϕ is an abelian group of type (2, 2), whose
non-zero elements are explicitly given in terms of the roots of the Gi’s (see [4], p. 52).
In other words, ϕ is a (2, 2)-isogeny of abelian surfaces, the so-called Richelot isogeny,

and it factors the multiplication by 2 on Ĵ .
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Now let C1 be Kowalewski’s curve, C = C2 the curve obtained by Bobenko et al.,
and denote by J1 and J2 their Jacobians respectively. These curves are defined over
K = Q(H, I2) and, with the notations of the current section, the equation of C2 is given
by

u2 = G1(x)G2(x)G3(x)

where

G1(x) = x,
G2(x) = x2 + 2Hx+ 1

4I2,
G3(x) = x2 + 2Hx+ 1

4I2 − 1.

It is worthwhile to compute ∆ and the Li’s. It follows that Ĉ2 is given by the equation

W 2 = −2(X +H)[X2 + 1 − 1

4
I2][X

2 − 1

4
I2].

By the translation X̃ = X +H, it is transformed into

W 2 = −2X̃[(X̃ −H)2 + 1 − 1

4
I2][(X̃ −H)2 − 1

4
I2].

We see that Ĉ2 is isomorphic to C1 via the map ν : (X̃,W ) 7→ (ξ, η) = (X̃, iW ). So,
the Jacobians J2 and J1 are isogeneous via the composition ψ = ν∗ ◦ ϕ, where ϕ is
Richelot’s isogeny, defined above.

There are several ways to prove that J1 and J2 are generically non-isomorphic. One of
them is to compute their Igusa invariants [7] and to check that they are different. We
used this procedure to complete the proof of the following result.

Theorem 1. J1 and J2 are isogeneous over Q(H, I2)(i) via the isogeny ψ, and are
generically non-isomorphic.

Corollary 1. The curves C1 and C2 are not isomorphic. Moreover there are no non-
constant morphisms between C1 and C2.

Although it directly follows from the previous theorem, the first part of the above
corollary could be proved directly. The second part is obvious, for a morphism between
curves having the same genus ≥ 2 should be an isomorphism.

Corollary 2. The isogeny ψ transforms the flow of solutions of Dubrovin equations (6)
on J2 into that of Kowalewski’s equations (7) on J1.

Proof follows from the calculation of the differential of Richelot’s isogeny. Its adjoint

δ = (d0ϕ)∗ can be understood as a linear map δ : H0(Ĉ2,Ω
1

Ĉ2

)−→H0(C2,Ω
1
C2

), and it

follows from definitions that δ = p1∗p
∗
2 (p1∗ being the trace map for the double covering
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p1). This map δ is computed in [4]: δ
(
S(X)dX

W

)
= S(x)dx

u
for S a polynomial of degree

≤ 1. As d0ν∗ is the multiplication by −i, we obtain:

(d0ψ)∗ :
dξ

η
7→ −idx

u
, (d0ψ)∗ :

ξdξ

η
7→ −ixdx

u
− iH

dx

u
.

This implies that d0ψ transforms the generating vector (0,−
√

2) of Dubrovin’s flow
(with respect to the basis dx

u
, xdx
u

) into (0,
√
−2). This ends the proof.

3. A tower of abelian surfaces

As explained in [4], Richelot’s method allows to construct a tower of (2, 2)-isogenies of
abelian surfaces:

· · · −→ Jn+1
ϕn−→ Jn −→ · · · −→ J2

ϕ1−→ J1,

where Jn is the Jacobian of a genus 2 curve Cn defined by an equation y2 = Fn(x). The
algorithm takes as input a suitable factorisation of Fn−1(x) = Pn−1(x)Qn−1(x)Rn−1(x)
in real polynomials of degree 2, applies Richelot’s construction on it, and outputs the
polynomial Fn(x) as a product Pn(x)Qn(x)Rn(x) of real polynomials of degree 2: see
[4] for a more complete description and for some applications.

By applying the above method with J1 = J1 the Jacobian of Kowalewski’s curve C1,
one obtains the following tower of isogenous Jacobians of computable curves of genus 2

· · · −→ Jn+1
ψn−→ Jn −→ · · · −→ J2

ψ1=ψ−→ J1,

whose ending segment is the Jacobian of the curve of Bobenko et al. followed by the
Jacobian of the curve of Kowalewski.
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