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Analysis and design

of oscillatory control systems

Sonia Mart��nez, Jorge Cort�es, and Francesco Bullo, Member IEEE

Abstract

This paper presents analysis and design results for control systems subject to oscillatory inputs, i.e.,

inputs of large amplitude and high frequency. The key analysis results are a series expansion character-

izing the averaged system and various Lie-algebraic conditions that guarantee the series can be summed.

Various example systems provide insight into the results. With regards to design, we recover and extend

a variety of point stabilization and trajectory tracking results using oscillatory controls. We present novel

developments on stabilization of systems with positive trace and on tracking for second order underactu-

ated systems.

Keywords
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actuated systems

I. Introduction

The paper investigates the behavior of �nite dimensional analytic systems subject to

oscillatory controls. We present averaging analysis and control design results for systems

described by a di�erential equation of the form

_x = f(t; x) +
1

�
g

�
t

�
; t; x

�
;

where the vector �eld g is periodic in its �rst argument, � is a small positive parameter,

and both vector �elds f and g are analytic in x. Our objective is to provide a rigorous
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and general framework that allows to obtain (1) a coordinate-free expression of the

averaged system, and a series expansion representation for it; (2) control design tools

for point stabilization and trajectory planning in underactuated systems.

Motivation

The study of oscillations in nonlinear di�erential equations is a classic and widespread

research topic. Related research areas include nonlinear dynamical systems [1], nonlin-

ear and geometric control [2], [3], analysis of animal locomotion [4], design of robotic

locomotion and manipulation devices [5], analysis of switching circuit models and power

conversion circuits [6], control of quantum dynamics [7] and chemical reactions [8], anal-

ysis, design, and control of biomineralization and crystallization processes [9], [10], and

so forth.

Furthermore, averaging analysis seems well suited to tackle novel applications in the

�eld of micro-electro mechanical systems and vibrational control is being investigated

within the context of active control of uids and separation control. Examples in-

clude [11] on the scale dependence in oscillatory control of mechanical systems, [12] on

unsteady ow and separation control using oscillatory blowing.

From a control theoretical viewpoint, we study oscillatory controls for the purpose

of stabilization and tracking problems. For classes of nonlinear underactuated systems,

it is interesting to investigate what control objectives can be obtained via the use of

high frequency, high amplitude inputs. Since modern textbooks [13], [14], [15], [16] do

not present a comprehensive approach on perturbation methods in control theory, we

endeavor to develop novel tools and shed further light onto these problems.

Literature review

This work has connections with classic averaging theory (see [17] for a standard treat-

ment), as well as with numerous ongoing research e�orts. First of all, our analysis

complements the study of di�erential equations subject to periodic high frequency, high

amplitude forcing terms; see [18], [19], [20]. In these works, the coupling e�ect between

the input vector �elds plays a key role: typically, Lie brackets between them appear,

and in the averaging approximation the trajectories of the original system converge to
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those of the averaged system. Here we shall focus our attention on systems where the

interaction takes place between the drift and the input vector �elds.

A second set of related results deals with the analysis of high frequency vibrations in

mechanical and other types of systems [21], [22], [23], [24], [25], [26], [27], [28], and more

generally averaging analysis in locomotion, recti�cation and other physical phenomenon

where non-commuting vector �elds play a role; see [29], [30], [31].

Finally, there are three related areas within the context of control design. One of these

is the design of time-varying stabilizing laws for driftless systems, (sometimes referred

to as nonholonomic), see for instance [32], [33], [34], [35], [36]. A second area deals

with the design of oscillatory controls for point stabilization in general nonlinear and

mechanical control systems; see [37], [38], [39], [2], and a third area is devoted to the

design of oscillatory controls for trajectory planning in driftless systems [40], [41], and

for constructive controllability and approximate inversion [42], [43].

Statement of contributions

The �rst contribution of this paper is a general averaging analysis in a coordinate-free

di�erential geometric setting. We give a novel suÆcient condition for general nonlinear

systems based on the commutativity of the input vector �elds which enables us to per-

form the averaging procedure. Exploiting a generalized variation of constants formula,

we provide a new explicit representation of the averaged system for analytic control

systems with two time scales. This representation consists of an in�nite sum of Lie

brackets of the input vector �elds with the drift and iterated integrals of the open-loop

controls. Finally, we particularize our discussion to various classes of systems including

bilinear, Hamiltonian, and second order systems, extending a number of previous results

on approximate descriptions and obtaining new suÆcient conditions that guarantee the

series for the averaged system is summable.

After completing this general analysis, we present various design tools and results for

vibrational control. Regarding point stabilization, we provide suÆcient conditions for

the existence of an equilibrium point for the averaged system, we prove that the order

of linearizing and averaging is non-inuential, and we design oscillatory controls to sta-

bilize the averaged systems. In particular, we recover the known result on stabilization
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of systems with negative linearization trace, and prove a novel result on stabilization

of systems with positive trace (via nonlinear feedback). Regarding trajectory tracking,

we exploit our analysis results on nonlinear systems with two time scales to steer the

averaged system along arbitrary reference paths. We focus on second order underactu-

ated systems and develop a novel controller using oscillatory signals to track a desired

smooth trajectory. We apply the strategy to a second-order nonholonomic integrator

and to the PVTOL system.

Organization

We introduce some preliminary concepts in Section II. Section III presents the main

averaging analysis, and Section IV treats various classes of systems for which the series

expansions assume a particular structure. Section V and Section VI discuss respectively

stabilization and tracking via oscillatory controls. Finally, we present our conclusions

in Section VII.

II. Preliminaries and notation

This section contains some basic de�nitions and results on iterated integrals of scalar

functions and on di�erential geometry.

A. Iterated integrals and their averages

Let N be the set of strictly positive integers and R+ = [0;+1). Let I be the set

of all nontrivial multiindices I = (i1; : : : ; ik), where i1; : : : ; ik take values in f1; : : : ;mg.
Given m bounded measurable functions ui : R+ ! R, de�ne their iterated integrals

fUI : R+ ! R; I 2 Ig by

U(i1;:::;ik)(t) =

Z t

0
uik(tk)

Z tk

0
uik�1

(tk�1) : : :

Z t2

0
ui1(t1)dt1 : : : dtk :

Let S be a set of k1 + � � �+ km elements. Let Ck1;:::;km(S) denote the collection of all

possible ways of takingm classes of members of S, with the ith class having ki elements.

The cardinality of Ck1;:::;km(S) is the multinomial coeÆcient

0
B@k1 + � � �+ km

k1; : : : ; km

1
CA =

(k1 + � � �+ km)!

k1! : : : km!
:
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To each element � 2 Ck1;:::;km(S), we associate a multiindex I(�) of length k1+ � � �+ km
as follows: as i 2 f1; : : : ;mg, place the index i in the ki places corresponding to the ith

class of �.

Given m bounded measurable functions ui : R+ ! R, de�ne their multinomial iter-

ated integrals fUk1;:::;km : R+ ! R; k1 ; : : : ; km 2 Ng according to

Uk1;:::;km(t) =
X

�2Ck1 ;:::;km
(S)

UI(�)(t) : (1)

Furthermore, let U0;:::;0(t) � 1.

Lemma II.1: Let u1; : : : ; um be bounded measurable functions. Their multinomial

iterated integrals satisfy

Uk1;:::;km(t) =
1

k1! : : : km!

�Z t

0
u1(� )d�

�k1
: : :

�Z t

0
um(� )d�

�km
: (2)

The functions Uk1;:::;km are T -periodic if and only if u1; : : : ; um are T -periodic and zero-

mean.

Proof: We prove the result by induction on k = k1+ � � �+ km. For k = 1, we have

that ki = Æij , for some j 2 f1; : : : ;mg. Then, Uk1;:::;km(t) =
R t
0 uj(� )d� = U(j)(t).

Assume the claim is true for k � 1 and let us prove it for k. Using the induction

hypothesis, the derivative of the right-hand side of eq. (2) can be written as,

1

k1! : : : km!

�
k1u1U

k1�1
(1) : : :U

km
(m) + � � �+ kmumU

k1
(1) : : : U

km�1
(m)

�

= u1(t)Uk1�1;:::;km(t) + � � �+ um(t)Uk1;:::;km�1(t) ;

where Ul1;:::;lm(t) � 0 if any of the li is negative. Integrating with respect to time, we

obtain

Z t

0

�
u1(s)Uk1�1;:::;km(s) + � � �+ um(s)Uk1;:::;km�1(s)

�
ds :

The claim now follows by noting that this equation is equivalent to the de�nition of

multinomial iterated integral (1).

Next, we prove the second statement. All functions Uk1;:::;km are T -periodic if and only

if all functions
R t
0 ui(� )d� are T -periodic. Since

Z T+t

0
ui(� )d� =

Z T

0
ui(� )d� +

Z T+t

T
ui(� )d�;
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the functions
R t
0 ui(� )d� are T -periodic if ui are zero-mean and T -periodic. Furthermore,

the ui are T -periodic if their time integrals are T -periodic, and they are zero-mean ifR T
0 ui(� )d� =

R 0
0 ui(� )d� = 0.

In the single-input case, m = 1, u1 = u, we have Uk(t) =
P

�2Ck
UI(�)(t) = U(1;:::;1)(t),

which we will simply denote by Uk(t). Note that U2(t) and U(2)(t) denote di�erent

functions.

Given a T -periodic function V (t), let us denote

V =
1

T

Z T

0
V (t)dt :

Let kV k
L
1

be the supremum of the absolute value V (t) for all t 2 R+ . Note that, since

V is T -periodic,

kV k
L
1

= sup
t2[0;T ]

jV (t)j :

Lemma II.2: Let u1; : : : ; um be bounded measurable, T -periodic and zero-mean func-

tions. Then

kUk1;:::;kmkL
1

� T
k1+���+km

k1! : : : km!
ku1kk1L

1

: : : kumkkmL
1

;

jUk1;:::;kmj �
T k1+���+km

k1! : : : km!(1 +
Pm

j=1 kj)
ku1kk1L

1

: : :kumkkmL
1

:

Proof: Recall that, under the given assumptions, Uk1;:::;km(t) are T -periodic. For
0 � t � T ,

jUk1;:::;km(t)j �
1

k1! : : : km!

�Z t

0
ju1(� )jd�

�k1
: : :

�Z t

0
jum(� )jd�

�km

� 1

k1! : : : km!
t
k1 ku1kk1L

1

: : : t
km ku1kkmL

1

;

which gives the �rst bound. The second one is proven via the chain of inequalities

jUk1;:::;kmj �
1

T

Z T

0
jUk1;:::;km(t)jdt �

ku1kk1L
1

: : : ku1kkmL
1

k1! : : : km!

1

T

Z T

0
t
k1+���+kmdt :

As an example, consider the functions ui(t) = ai cos!t, ! 2 N . Then,

Uk1;:::;km(t) =
a
k1
1 : : : a

km
m

k1! : : : km!

�
1

!
sin!t

�k1+���+km
;
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From the identity 4m
R 2�
0 (sin t)2mdt = 2�

0
B@2m
m

1
CA in [44], the averages are

Uk1;:::;km =

8>>>><
>>>>:

0 if k is odd

a
k1
1 : : : a

km
m

k1! : : : km!

�
1

2!

�k 0B@ k

k=2

1
CA if k is even

(3)

with k =
Pm

j=1 kj.

B. Elements of di�erential geometry and complex analysis

We refer to [45], [46], [47] for comprehensive references on these topics. Let x; x0 2 R
n ,

t 2 R+ , and let the parameter � vary in the range (0; �0] with �0 � 1. Let f; g : R+�Rn !
R
n be smooth time-varying vector �elds. De�ne their Lie bracket according to

[g; f ] =
@f(t; x)

@x
g(t; x)� @g(t; x)

@x
f(t; x) :

In what follows, we will use the notation ad0g f = f , adg f = [g; f ] and adkg f = adk�1g [g; f ].

Given a di�eomorphism � and a vector �eld f , the pull-back of f along �, denoted by

��f , is the vector �eld

(��f)(x) =

 
@��1

@x
Æ f Æ �

!
(x):

A useful di�eomorphism is given by the ow map �
f
0;T , that assigns to each point x0 the

value at time T of the solution of the initial value problem _x = f(t; x); x(0) = x0.

Given a positive scalar �, de�ne the complex �-neighborhood of x0 in C
n as B�(x0) =

fz 2 C
n : kz�x0k < �g. Let f be a real analytic function on R

n that admits a bounded

analytic continuation over B�(x0). The norm of f is de�ned as

kfk� = max
z2B�(x0)

jf(z)j;

where f denotes both the function over Rn and its analytic continuation. Given a time-

varying vector �eld (q; t) 7! Y (q; t) = Yt(q), let Y
i
t be its ith component with respect

to the usual basis on R
n . Assuming t 2 [0; T ], and assuming that every component

function Y i
t is analytic over B�(x0), we de�ne the norm of Y as

kY k�;T = max
t2[0;T ]

max
i2f1;:::;ng

kY i
t k�:
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In what follows, we shall simplify notation by neglecting the subscript T in the norm of

a time-varying vector �eld.

III. Coordinate-free averaging under oscillatory controls

We study averaging under oscillatory controls, using tools from the standard treatment

on averaging (the �rst-order averaging theorem, see [17]), and from di�erential geometry

(the variation of constants formula and the notion of pull-back vector �eld [47], [45]).

Let x : [0; T ]! R
n be the solution to the initial value problem

dx

dt
= f(t; x) +

1

�
g

�
t

�
; t ; x

�
; x(0) = x0 : (4)

Enlarge the state space by considering x0 = (t; x), denote by � = t=� the fast time scale,

and rewrite equation (4) as

dx0

d�
= �f

0(x0) + g
0(�; x0) ; x

0

0 = (0; x0) ; (5)

where the vector �elds f 0 and g0 are de�ned according to

f
0(x0) = (1; f(t; x)) ; g

0(�; x0) = (0; g(�; t; x)) :

In the extended space, � is the independent variable and (t; x) are dependent variables.

We write the ow of g0 as

�
g0(�;x0)
0;� (t; x) =

�
t;�

g(�;t;x)
0;� (x)

�
;

and de�ne the pull-back vector �eld F
0 as

F
0(�; x0) =

��
�
g0(�;x0)
0;�

�
�

f
0

�
(x0) : (6)

Note that F 0 is of the form

F
0(�; x0) = (1; F (�; x0)) : (7)

Now, we give a novel suÆcient condition to ensure that the pull-back vector �eld F 0

is T -periodic.

Proposition III.1: Assume that the vector �elds in fg� ; � 2 [0; T ]g are uniformly

integrable, analytic admitting bounded analytical continuations over B�(x0), � > 0,
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commutative, T -periodic and zero mean in their �rst argument, i.e., g(� + T; t; x) =

g(�; t; x), and
R T
0 g(�; t; x)d� = 0. Then, the ow �

g0(�;x0)
0;� and the vector �eld F

0 are

T -periodic.

Proof: The assumptions on the family of vector �elds fg� ; � 2 [0; T ]g are auto-

matically veri�ed by the family fg0� ; � 2 [0; T ]g. Let x0(t) be the solution to the initial

value problem

_x0(� ) = g
0(�; x0) ; x

0(0) = x
0

0 : (8)

Note that x0(� ) = �
g0(�;x0)
0;� (x00). Let X

0(� ) = x
0(� + T ). Then

_X 0(� ) = g
0(� + T;X

0) = g
0(�;X 0) ; X

0(0) = x
0(T ) :

Consequently, X 0(� ) = x0(� ) i� x0(T ) = x0(0). To prove the latter statement we use the

Volterra series [45]. The ow of (8) is formally represented by the expansion

x
0(� ) � Id(x00) +

+1X
k=1

Z �

0
ds1

Z s1

0
ds2 : : :

Z sk�1

0
dsk(g

0(sk; x
0

0) Æ � � � Æ g0(s1; x00)) =

x
0

0 +

Z �

0
g
0(s; x00)ds+

Z �

0

Z s1

0
(g0(s2; x

0

0) Æ g0(s1; x00))ds2ds1 + : : : (9)

where the vector �elds g0 are interpreted as derivations of C1(Rn+1). Given the above

hypothesis, the convergence of this series is guaranteed by Proposition 2.1 in [45]. Now,

using integration by parts and the fact that the vector �elds commute, we have

Z �

0

�Z s1

0
g
0(s2; x

0

0)ds2

�
Æ g0(s1; x00)ds1 =�Z �

0
g
0(s; x00)ds

�2
�
Z �

0
g
0(s1; x

0

0) Æ
�Z s1

0
g
0(s2; x

0

0)ds2

�
ds1 ;

and hence

Z �

0

Z s1

0
(g0(s2; x

0

0) Æ g0(s1; x00))ds2ds1 =
1

2

�Z �

0
g
0(s; x00)ds

�2
:

By induction, one can show that

Z �

0
ds1

Z s1

0
ds2 : : :

Z sk�1

0
dsk(g

0(sk; x
0

0) Æ � � � Æ g0(s1; x00)) =
1

k!

�Z �

0
g
0(s; x00)ds

�k
: (10)

Since by hypothesis g0(�; x0) is zero-mean, we conclude from (9) that x0(T ) = x
0(0).
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Given the result in the proposition, we de�ne the averaged vector �eld F 0 as

F 0(x0) =
1

T

Z T

0
F
0(�; x0)d� :

It is straightforward to see that F 0(x0) =
�
1; F (x0)

�
. Finally, let y; z : [0; T ] ! R

n be

solutions to the initial value problems

dz

dt
= F

�
t

�
; t; z

�
; z(0) = x0; (11)

dy

dt
= F (t; y); y(0) = x0: (12)

The following theorem extends Lemma 2.2 in [26] to general nonlinear control systems

with two time scales and presents a re�nement of the approximation result. It is the

�rst of the two main analysis theorems.

Theorem III.2 (Coordinate-free averaging) Under the same hypothesis of Proposi-

tion III.1 we have,

(i) for t 2 R+ , we have

x(t) = �
g(�;t;x)

0;t=� (z(t)) ;

and, as �! 0 on the time scale 1, z(t)� y(t) = O(�),

(ii) additionally, if f and g do not depend explicitly on the slow time scale t, i.e.,

f = f(x) and g = g(t=�; x) and the origin is a hyperbolically stable critical point

for F = F (x), then z(t) � y(t) = O(�) as � ! 0 for all t 2 R+ and the di�erential

equation (11) possesses a unique periodic orbit (which is hyperbolically stable) belonging

to a O(�) neighborhood of the origin,

(iii) if T = O(1), then x(t) = �
g(�;t;x)

0;(t=� modT )(y(t)) + O(�), on the time scale 1, where

bsc denotes the greatest integer less than or equal to s 2 R, and (t=� modT ) denotes

t=�� bt=(�T )cT .

Proof: Recall the variation of constants formula (cf. [45]) to express the ow of

the initial value problem _x = f(t; x) + g(t; x), x(0) = x0 at time T > 0,

x(T ) = �
g
0;T (z(T )); with _z(t) =

��
�
g
0;t

�
�

f

�
(z); z(0) = x0:
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Applying it to (5), we get

dx
0

d�
= g

0(�; x0) ; x
0(0) = z

0(� ) ; (13)

dz
0

d�
= �F

0(�; z0) ; z
0(0) = x

0

0 :

Averaging this last system in z0, we obtain

dy
0

d�
= �F 0(y0) ; y

0(0) = x
0

0 :

By the theorem of �rst order averaging(cf. [17], pages 39 and 71, and [48], page 168), we

know that z0(� )�y0(� ) = O(�) over the time scale � = 1=�. Now, if we write y0 = (v; y),

we get from the previous equation that v = t and, changing the time scale back to

t = �� ,

dy

dt
= F (t; y) ; y(0) = x0 ;

which is the de�nition of equation (12). Putting z0 = (u; z), we also deduce that u = t

and z(t)� y(t) = O(�) over the time scale 1. In addition, we recover equation (11)

dz

dt
= F

�
t

�
; t; z

�
; z(0) = x0 ;

and from (13) we get x(t) = �
g(�;t;x)

0;t=� (z(t)).

As for the second statement, in case f = f(x) and g = g(t=�; x), if the origin is a

hyperbolically stable critical point for F , then the result follows from the theorem of

�rst order averaging [17].

Finally, since g is T -periodic and zero-mean,

Z t=�

0
g(s; t; x)ds =

Z (t=� modT )

0
g(s; t; x)ds+

Z t=�

(t=� modT )
g(s; t; x)ds =

Z (t=� modT )

0
g(s; t; x)ds;

and, using the Volterra series expansion for the ow �
g(s;t;x)

0;t=� (see [45]) and eq. (10),

�
g(�;t;x)

0;t=� (z(t)) = z(t) +
+1X
k=1

1

k!

 Z t=�

0
g(�; z(t))ds

!k

= z(t) +
+1X
k=1

1

k!

 Z t=� modT

0
g(�; z(t))ds

!k
= �

g(�;t;x)

0;(t=� modT )(z(t)) :
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Recall that z(t) = y(t) + O(�) on the time scale 1. Since (t=� modT ) = O(1) and since

the ow along g depends continuously on its initial condition we have

x(t) = �
g(�;t;x)

0;t=� (z(t)) = �
g(�;t;x)

0;(t=� modT )(y(t) +O(�)) = �
g(�;t;x)

0;(t=� modT )(y(t)) + O(�):

Now, we develop novel series expansions for the averaged system for multiple input

systems of the form,
dx

dt
= f(x) +

1

�

mX
i=1

ui

�
t

�
; t

�
gi(x): (14)

Accordingly, we shall consider the (multinomial) iterated integrals U(i1;:::;ik)(�; t) and

their averages U (i1;:::;ik)(t) with respect to the �rst variable of the inputs ui(�; t). The

following theorem is the second main analysis result.

Theorem III.3 (Multiple input system) Let (�; t) 7! u1(�; t); : : : ; um(�; t) be bounded

functions, T -periodic and zero-mean in � , continuously di�erentiable in t. Let g1; : : : ; gm

be commuting vector �elds. Then,

(i) the pull-back vector �eld F de�ned in eq. (7) satis�es

F (�; t; x) = f(t; x) +
+1X
k=1

X
(i1;:::;ik)2I

U(i1;:::;ik)(�; t) adgi1 : : :adgik f(t; x)

�
mX
i=1

@U(i)

@t
(�; t)gi(x) (15a)

=
+1X

k1;:::;km=0

Uk1;:::;km(�; t) adk1g1 : : : ad
km
gm
f �

mX
i=1

@U(i)

@t
(�; t)gi(x); (15b)

and its average F satis�es

F (t; x) = f(t; x) +
+1X
k=1

X
(i1;:::;ik)2I

U (i1;:::;ik)(t) adgi1 : : :adgik f(t; x)�
mX
i=1

dU (i)

dt
(t)gi(x) (16a)

=
+1X

k1;:::;km=0

Uk1;:::;km(t) ad
k1
g1
: : : adkmgm f �

mX
i=1

dU (i)

dt
(t)gi(x): (16b)

(ii) if f and g1; : : : ; gm, are analytic admitting bounded analytical continuations over

B�(x0) and

T

mX
j=1

kujkL
1

kgjk� <
� � �0
4n

: (17)
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for 0 < �
0
< �, where kuk

L
1

denotes the supremum of the absolute value of u(�; t) for

�; t 2 R+ , then the series expansions (15) and (16) converges absolutely and uniformly

for x 2 B�0(x0) and t 2 R+ .

Proof: We �rst prove the result for the single input case. Let us compute F 0 as

in equation (6), where we let f 0 = f 0(x0) be � -invariant and g0 = g0(�; x0) be � -varying.

The following statement is proved in [47, Theorem 4.2.31]

d

d�

��
�
g0

0;�

�
�

f
0

�
(�; x0) =

�
�
g0

0;�

�
�

[g0(�; x0); f 0(x0)]:

At �xed x0 2 R
n+1 , we integrate the previous equation from time 0 to � to obtain

��
�
g0

0;�

�
�

f
0

�
(�; x0) = f

0(x0) +

Z �

0
(�

g0

0;s)
�[g0(s; x0); f 0(x0)]ds:

Iteratively applying the previous equality, we get

��
�
g0

0;�

�
�

f
0

�
(�; x0) = f

0(x0) +
+1X
k=1

Z �

0
: : :

Z sk�1

0

�
adg0(sk;x0) : : : adg0(s1;x0) f

0(x0)
�
dsk : : : ds1

Now, it can be proven by induction that

adg0(s1;t;x) f
0 =

 
0; u(s1; t) adg(x) f �

@u

@t
(s1; t)g(x)

!
;

adg0(sk;x0) : : : adg0(s1;x0) f
0 =

�
0; u(sk; t) : : : u(s1; t) ad

k
g(x) f

�
:

with k � 2. Finally,

F (�; t; x) = f(t; x) +
+1X
k=1

Uk(�; t) ad
k
g f(t; x)�

@U1

@t
(�; t)g(x);

and the result follows. In the multiple input case, the series expansions (15a) and (16a)

can be deduced in the same way. As for (15b) and (16b), the fact that g1; : : : ; gm

commute implies

adgi�(1) : : : adgi�(k) f = adgi1 : : : adgik f ;

for any � 2 �k. Then, for each k,

X
(i1;:::;ik)2I

U(i1;:::;ik)(�; t) adgi1 : : : adgik f(t; x) =
X

k1;:::;km�0
k1+���+km=k

Uk1;:::;km(�; t) adk1g1 : : : ad
km
gm
f(t; x) :



14 SUBMITTED AS A REGULAR PAPER TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL

As for the convergence of the series, from Lemma II.2 and Proposition 3.1 in [45],

Uk1;:::;km(�; t) adk1g1 : : : adkmgm f

�0
�
�

4nT

� � �0

�k
ku1kk1L

1

: : :kumkkmL
1

kg1kk1� : : : kgmk
km
� kfk�

�
�

4nT

� � �0

�k0@ mX
j=1

kujkL
1

kgjk�

1
A
k

kfk� ;

where k = k1 + � � �+ km. As a consequence, equation (17) implies that the series in F

is convergent. This also implies the convergence of the series expansions of F :

Note that in the single-input case, m = 1, both series in (15) (resp. (16)) coincide.

IV. Extensions and applications

In this section we investigate classes of di�erential equations for which the series

expansions in Section III assume a particular structure. By doing so, we recover and

extend a variety of earlier results on bilinear, polynomial and Hamiltonian systems.

Before proceeding, we summarize the averaging procedure from Theorem III.2 as

x(t) = �
g(t;x)

0;(t=� modT )(y(t)) + O(�) ; _y = F (y); y(0) = x0 :

For simplicity, we will pay special attention to single input systems with a single time

scale, i.e., g(�; t; x) = u(� )g(x).

A. Homogeneous systems

Here we focus on homogeneous systems. Let f be a vector �eld on R
n . We say that

f is homogeneous of degree i if each of its components with respect to the usual basis

of Rn is a homogeneous function of degree i. The set of homogeneous vector �elds of

degree i is denoted by Hi. We have, for instance, that H0 is the set of constant vector

�elds and H1 is the set of linear vector �elds. By convention, Hi = f0g, for i � �1. If
f 2 Hi and g 2 Hj, then [f; g] 2 Hi+j�1.

It is straightforward to obtain the relevant quantities from Theorems III.2 and III.3
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2

1

3 421

(1; 0)

(0; 1)

(0; 0)

(1; 1)

(i; 0) deg(f)

deg(g) (0; j) (i; j)

Fig. 1. Table of degrees of the drift vector �eld f and the input vector �eld g for homogeneous systems.

The (i; j)th position refers to the case when f 2 Hi and g 2 Hj .

for the lower triangular cases (0; 0), (0; 1) and (1; 0) in Figure 1. Indeed, we have that

Case (0,0): _x = a+ 1
�
u

�
t
�

�
b ; x(0) = x0 ;

�
u(t)b

0;(t=� modT )(x0) = b
R (t=� modT )
0 u(� )d� + x0; F = a :

Case (0,1): _x = a+ 1
�
u

�
t
�

�
Bx ; x(0) = x0 ;

�
u(t)Bx

0;(t=� modT )(x0) = eB
R (t=� modT )

0
u(�)d�

x0 ; F = a+
P+1

k=1 Uk(�B)ka :
Case (1,0): _x = Ax+ 1

�
u

�
t
�

�
b ; x(0) = x0 ;

�
u(t)b

0;(t=� modT )(x0) = b
R (t=� modT )
0 u(� )d� + x0 ; F = Ax+ U1Ab :

In the following sections, we consider the cases of bilinear and polynomial systems.

B. Bilinear systems

We refer the reader to [14, Section 2.4] for a treatment on bilinear systems. Let

_x = Ax+
1

�
u

�
t

�

�
Bx; x(0) = x0: (18)

Note that this system corresponds to the case (1; 1) in Figure 1. Lie brackets between

linear vector �elds are expressed in terms of matrix commutators

adBxAx = (adB A)x; where adB A = AB � BA:

One can compute

�
gu(t)

0;(t=� modT )(x0) = eB
R (t=� modT )

0
u(�)d�

x0 ; F (x) =

 
A+

+1X
k=1

Uk ad
k
B A

!
x:

The following proposition shows a particular structure of the series expansion (16)

and extends a result in [23].
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Proposition IV.1: Consider the bilinear control system

_x = Ax+
1

�

mX
i=1

ui

�
t

�
; t

�
Bix ;

and assume BiBj = 0 for all i; j. Consider also

_y =

0
@A+

mX
i=1

U (i)(t) adBi
A+

mX
i;j=1

U (i;j)(t) adBi
adBj

A�
mX
i=1

 
d

dt
U (i)(t)

!
Bi

1
A y ;

with initial condition y(0) = x(0). Then,

x(t) = e
Pm

i=1
Bi

R (t=� modT )

0
ui(�;t)d�y(t) + O(�) :

The result follows from equation (16) by noting that adBi
adBj

adBk
A = 0 for all i; j; k.

C. Polynomial systems

Consider the system

_x = f(x) +
1

�
u

�
t

�

�
g; x(0) = x0; (19)

where the components of the vector �eld f are polynomials in x of degree at mostM , and

where the vector �eld g(x) = g is constant. This system is the combination of a �nite

number of (i; 0) cases in Figure 1. This structure leads to the following simpli�cations.

The degree of adkg f is M � k, and only the �rst M Lie brackets are non-vanishing.

Accordingly, we have that

�
gu(t)

0;(t=� modT )(x0) = x0 +

 Z (t=� modT )

0
u(� )d�

!
g ; F (x) = f(x) +

MX
k=1

Uk

@kf

@xk
(g; : : : ; g| {z }

k times

)(x) :

Note that F is a �nite sum of polynomial vector �elds.

D. Second order systems

We next focus on control systems described by second order di�erential equations.

This setting is representative of interesting examples and very instructive. Consider the

second order system on R
n

�x =
1

�
u

�
t

�

�
g(x) : (20)
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To write the equation in the standard (�rst order) form (14), de�ne the vector �elds

on R
2n

f(x; _x) =

2
64 _x
0

3
75 ; g(x; _x)lift =

2
64 0

g(x)

3
75 ;

and compute the relevant Lie brackets as

adglift f =

2
664

g

� @g
@x _x

3
775 ; ad2glift f = �hg : gilift ; adkglift f = 0 ;

for k > 2 and where we de�ne the operation of symmetric product between vector �elds

ga, gb on R
n as

hga : gbi =
@ga

@x
gb +

@gb

@x
ga :

From Theorems III.2 and III.3, we have

�
g(x; _x)liftu(t)
0;t

0
B@x0
_x0

1
CA =

0
B@x0
_x0

1
CA+

2
64 0�R t

0 u(� )d�
�
g(x0)

3
75 ;

F = f + U1 adglift f + U2 ad
2
glift f =

2
64 _x
0

3
75+ U1

2
664

g

� @g
@x _x

3
775� U2

2
64 0

hg : gi

3
75 ;

so that, using the variables (y1; y2) for the averaged system, we write

_y1 = y2 + U1g(y1) ; _y2 = �U 1

@g

@x
(y1)y2 � U 2hg : gi(y1)

with initial conditions (y1(0); y2(0)) = (x(0); _x(0)). It is instructive to compute the

second time derivative of y1, and write the averaged system again as an equation of

second order. Some straightforward simpli�cations lead to

�y1 =

�
1

2
U

2

1 � U2

�
hg : gi(y1); (21)

with initial conditions (y1(0); _y1(0)) = (x(0); _x(0) + U1g(x(0))). In summary, we have

x(t) = y1(t) + O(�) ; _x(t) = _y1(t) + g(y1(t))

 Z (t=� modT )

0
u(s)ds� U1

!
+ O(�):

Remark IV.2: Analogues to the result in equation (21) and their physical meaning

have been long studied; e.g., see [21], [22], [24], [25], [26]. In particular, if g is a potential
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�eld, g = @V=@x, then one can compute hg : gi = @W=@x, where W = (@V=@x)
2
is the

classical Kapitsa's potential [21], [24] (also called the averaged potential). It is easy to

see that every isolated critical point of V is a minimum of W . Using H�older inequality,

we obtain

1

2
U

2

1 � U2 =
1

2T

0
@ 1

T

 Z T

0
U1(s)ds

!2

�
Z T

0
U

2
1 (s)ds

1
A

<
1

2T

0
B@ 1

T

0
@
 Z T

0
U

2
1 (s)ds

!1
2
 Z T

0
1ds

!1
2

1
A
2

�
Z T

0
U

2
1 (s)ds

1
CA = 0 ;

and hence every isolated equilibrium point of the original system is a Lyapunov-stable

equilibrium point for the averaged system [25].

Reasoning as before, one can prove the following more general result.

Proposition IV.3: Consider the control system

�x+ f1(x) _x+ f0(x) =
1

�

X
i

ui

�
t

�
; t

�
gi(x) ;

and the initial value problem

�y + f1(y) _y + f0(y) =
1

2

X
i;j

�
U (i)(t)U (j)(t)� U (i;j)(t)� U (j;i)(t)

�
hgi : gji(y)

with initial conditions y(0) = x(0), _y(0) = _x(0) +
P

i U (i)(0)gi(x(0)). Then, we have

x(t) = y(t) +O(�) ; _x(t) = _y(t) +
X
i

gi(y(t))

 Z (t=� modT )

0
ui(�; t)d� � U (i)(t)

!
+ O(�) :

E. Hamiltonian control systems

Second order systems as in equation (20) are examples of Lagrangian control systems,

and the analysis presented above can be generalized to a coordinate-free setting on

manifolds; e.g., the result in equation (21) agrees with the results in [26]. We present

here a coordinate-free based treatment for Hamiltonian control systems as described for

example in [49], [13]. Consider the control system

_x = XH +
mX
i=1

1

�
ui

�
t

�

�
XHi

; x(0) = x0 ;

where x = (q; p) 2 T
�
R
n , H, Hi 2 C

1(T �
R
n), and XH , XHi

denote the corresponding

Hamiltonian vector �elds with respect to the canonical symplectic form 
Rn on T �
R
n .



MART��NEZ, CORT�ES AND BULLO: ANALYSIS AND DESIGN OF OSCILLATORY CONTROL SYSTEMS 19

Let f�; �g denote the Poisson bracket associated with 
Rn. Assume that the vector �elds

XH1
; : : : ; XHm commute, or equivalently, that the Poisson bracket fHi; Hjg is constant

for any i; j 2 f1; : : : ;mg.
The pull-back vector �eld F in Theorem III.3 is again Hamiltonian with respect to

H
� = H +

+1X
k=1

(�1)k
X

(i1;:::;ik)2I

U(i1;:::;ik)fHi1 ; fHi2; : : : ; fHik ; Hgg : : :g :

In particular, let '1; : : : ; 'm be functions de�ned on R
n and consider their natural

lift, 'lift
i = 'i Æ �Rn, where �Rn : T �

R
n ! R

n is the canonical projection. Then, it is

straightforward to verify that f'lift
i ; '

lift
j g = 0, and we can consider a control system

with input Hamiltonian functions Hi = 'lift
i . If the Hamiltonian H has a polynomial

dependence on the momentum variables p, say of order l, then one can see that the

series for H� is �nite,

H
� = H +

lX
k=1

(�1)k
X

(i1;:::;ik)2I

U(i1;:::;ik)f'lift
i1
; f'lift

i2
; : : : ; f'lift

ik
; Hgg : : :g :

This is the case, for instance, of the so-called simple mechanical systems, where the

Hamiltonian corresponds to kinetic plus potential energy, H = 1
2
pTM�1(q)p + V (q),

with M the mass matrix. Indeed, one gets f'lift
i ; f'lift

j ; f'lift
k ; Hggg = 0.

F. Systems with recurrence relations

Next, we investigate a summing method based on recursive Lie bracket relationships

and generating functions [50]. Let hg jfi be the smallest g-invariant distribution con-

taining f . Let the distribution hg jfi be �nite-dimensional. Note that any pair of linear

vector �elds satis�es this assumption because of the Cayley-Hamilton theorem.

Lemma IV.4: Assume adpg f = � adqg f for some integers p > q � 0, where � : Rn ! R

belongs to ker g. Then

F (x) =
q�1X
k=0

Uk ad
k
g f +

 
+1X
k=0

U q+(p�q)k�
k

!
adqg f + � � �+

 
+1X
k=0

U (p�1)+(p�q)k�
k

!
adp�1g f :

Let (m)H(n) be the generalized hypergeometric function [44] of indexes m, n 2 N . If

u(t) = a sin!t, the generating function is

+1X
k=0

Umk+n�
k =

1

�n!
�(

1

2
;
1

2
+ n)

�
2a

!

�n
(m+1)H(2m)

0
@
2
41; 1

2m
+ n

m
; 3
2m

+ n
m
; : : : ; 2m�1

2m
+ n

m

1+n
m

; 1+n
m

; 2+n
m

; 2+n
m

; : : : ; m+n
m

; m+n
m

3
5 ; �� 2a

!m

�m1A :
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If u(t) = a cos!t, the generating function for m even is

+1X
k=0

Umk+n�
k = 0 ;

+1X
k=0

Umk+n�
k =

1

�
�
1 + n

2

�2 � a

2!

�n
(1)H(m)

0
@
2
4 1

2+n
m

; 2+n
m

; 4+n
m

; 4+n
m

; : : : ; m+n
m

; m+n
m

3
5 ; �� a

m!

�m1A ;

for n odd and even respectively; and for m odd we compute

+1X
k=0

Umk+n�
k =

1

�
�
1 + m+n

2

�2�� a

2!

�m+n

(1)H(2m)

0
@
2
4 1

2+m+n
2m

; 2+m+n
2m

; : : : ; 3m+n
2m

; 3m+n
2m

3
5 ; �2 � a

2m!

�2m1A ;

+1X
k=0

Umk+n�
k =

1

�
�
1 + n

2

�2 � a

2!

�n
(1)H(2m)

0
@
2
4 1

2+n
2m

; 2+n
2m

; 4+n
2m

; 4+n
2m

; : : : ; 2m+n
2m

; 2m+n
2m

3
5 ; �2 � a

2m!

�2m1A ;

for n odd and even respectively.

The simplest example of Lemma IV.4 is (p; q) = (1; 0). Accordingly,

F sin(x) = f(x)

 
e(

a�
! )I0

 
a�

!

!!
; F cos(x) = f(x) I0

 
a�

!

!
;

where I0 denotes the modi�ed Bessel function of the �rst kind. Another case which we

will use later is (p; q) = (4; 2),

F sin(x) = f(x) +
a

!
adg f +

1

�
ad2g f

 
�1 + I0

 
a
p
�

!

!
cosh

 
a
p
�

!

!!

+
1

�
p
�
ad3g f

 
�a
!

p
�+ I0

 
a
p
�

!

!
sinh

 
a
p
�

!

!!
;

F cos(x) = f(x) +
1

�
ad2g f

 
�1 + I0

 
a
p
�

!

!!
:

V. On stabilization via oscillatory controls

In this section we discuss the problem of stabilization of the nonlinear system _x = f(x)

by means of highly oscillatory controls of the form (1=�)u (t=�) g(x). The starting point

is the result in Theorem III.2 about the existence of hyperbolically stable periodic orbits

for _x = f(x) provided the origin is a hyperbolically stable equilibrium for F . In some

cases, we shall prove asymptotic stability for the original equilibrium point (this is

what was termed as t-stabilizability in [38]) and in some others we shall prove that

the equilibrium bifurcates to an asymptotically stable periodic orbit contained in an

O(�)-neighbor (v-stabilizability in [38]).
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We start by studying whether the origin is an equilibrium point for the averaged

system. We say that a vector �eld h : Rn ! TR
n , h(x) = (x; ~h(x)) is odd (resp. even)

i� ~h(x) = �~h(�x) (resp. ~h(x) = ~h(�x)).
Lemma V.1 (Equilibrium points) The origin is an equilibrium point of the averaged

system, F (0) = 0, if either of the following conditions are satis�ed:

(i) f(0) = g1(0) = � � � = gm(0) = 0,

(ii) f(0) = 0 and f is odd, gj is even for all 1 � j � m, there exists i such that gi(0) 6=
0, and the odd multinomial iterated averages of the inputs vanish, i.e., Uk1;:::;km = 0

whenever k1 + � � �+ km is odd.

Proof: In case (i), one can prove recursively that

adk1g1 : : :ad
km
gm
f(0) = 0 ; k1; : : : ; km � 0 ;

and hence F (0) = 0. To see (ii), consider the (k1; : : : ; km)-th term Uk1;:::;km adk1g1 : : :ad
km
gm
f

in the expansion of F . If f is odd and gj is even for all j, the vector �eld adk1g1 : : :ad
km
gm
f

is odd whenever k1 + � � �+ km is even. Accordingly, each term Uk1;:::;km adk1g1 : : : ad
km
gm
f is

either odd or it vanishes. Therefore, F is an odd function, and F (0) = 0.

Next, we study the linearization of the averaged system.

Proposition V.2: Assume f(0) = g1(0) = � � � = gm(0) = 0. At the origin, the lin-

earization of the averaged system equals the average of the linearized system.

Proof: We prove it for the single input setting. Let f =
P+1

i=1 f
[i], g =

P+1
i=1 g

[i] be

the Taylor expansions around x = 0 of f and g. Accordingly, f [i]; g[i] 2 Hi and

adkg f =
+1X
j=1

i1;:::;ik=1

adg[i1] : : : adg[ik] f
[j] = adkg[1] f

[1] + h ;

where h is an in�nite sum of homogeneous polynomials of degree � 2. Consequently,

@

@x

�
adkg f

�
(0) = adk@g

@x
(0)

@f

@x
(0) ;

where one adjoint operator is a Lie bracket and the other a matrix commutator. This

implies that the linearization of the averaged system is equal to

@F

@x
(0) =

@f

@x
(0) +

+1X
k=1

Uk ad
k
@g
@x

(0)

@f

@x
(0) ;
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which is the average of the linearized system (see Section IV-B on bilinear systems).

Note that the setting of bilinear systems is very important as it represents the lin-

earization of the average of any nonlinear system with f(0) = g1(0) = � � � = gm(0) = 0.

Corollary V.3: Let f(0) = g1(0) = � � � = gm(0) = 0. If the trace of the linearization of

the drift vector �eld f is positive, then the averaged system is unstable for any oscillatory

control law.

Proof: Since tr(adC D) = 0 for any matrix C, D, we have that

tr

 
@F

@x
(0)

!
= tr

0
@ +1X
k1;:::;km�0

Uk1;:::;km adk1@g1
@x

(0)
: : : adkm@gm

@x
(0)

@f

@x
(0)

1
A = tr

 
@f

@x
(0)

!
> 0 ;

and therefore the averaged system is unstable.

The corollary is a generalization in two directions of the result in [38] about the stabi-

lizability of the system (18) by linear multiplicative vibrations. First, we do not require

@f
@x
(0) to be nonderogatory. Recall that a matrix is nonderogatory if its eigenvalues

have geometric multiplicity equal to one [51]. Second, we consider general nonlinear

systems and vibrations. Next, we present a classical result on stabilization by means of

oscillatory controls.

Proposition V.4: Consider the nonlinear system _x = f(x), with f(0) = 0. If A =

@f=@x(0) is nonderogatory and trA < 0, then there exist commuting linear vector

�elds fg1; : : : ; gn�1g and oscillatory controls fu1; : : : ; un�1g such that x = 0 is locally

asymptotically stable for

_x = f(x) +
1

�

n�1X
i=1

ui

�
t

�

�
gi(x) : (22)

Proof: The proof goes along the lines of [37], [38]. Assume A is in companion

form (otherwise, we �rst perform a change of coordinates). This means that

A =

0
BBBBBBBBBBB@

0 1 0 : : : 0

0 0 1 : : : 0
...

0 : : : : : : 0 1

an an�1 : : : a2 a1

1
CCCCCCCCCCCA
= Comp(an; : : : ; a2; a1) :
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Let i 2 f1; : : : ; n� 1g and consider the linear vector �elds

gi(x) = Enix ;

where Eni is the matrix which has a 1 in the row n and column i and zero otherwise.

Since EniEnj = 0, for all i; j 2 f1; : : : ; n� 1g, the input vector �elds commute and the

result in Proposition IV.1 applies. Furthermore, the only non-vanishing second order

commutators are

ad2En(n�1)
A = �2En(n�1) ; adEnj

adEn(n�1)
A = �Enj ; (23)

for j < n� 1 and therefore the linearized averaged system is again in companion form.

Taking the input functions ui = ri cos(!t), the �rst averages U (i) vanish, and from

Proposition IV.1 we have that A = @F
@x
(0) equals

A� 2U (n�1;n�1)En(n�1) �
n�2X
i=1

(U (i;n�1) + U (n�1;i))Eni

= Comp

 
an �

r1rn�1

2!2
; : : : ; a2 �

r2n�1

2!2
; a1

!
;

where in the last equality we have used the result in Lemma II.1 and the equality (3).

By assumption tr(A) = a1 < 0. Let �i denote the ith eigenvalue of A, de�ne

��i =
a1

n
+ jIm�i ;

and the Hurwitz polynomial (x� ��1) : : : (x� ��1) = xn+�a1x
n�1+ � � �+�an�1x+�an. Note

that �a1 = a1 and �a2 � a2. Now, it is clear that there exists an appropriate selection

of the amplitudes ri that makes A = Comp(�an; : : : ; �a2; a1). Therefore y = 0 is locally

asymptotically stable for the averaged system. From Theorem III.2, we know that

equation _z(t) = F (t=�; z) possesses a unique (asymptotically stable) periodic orbit zp(t)

in a O(�)-neighbourhood of the origin. Since z = 0 is trivially periodic, we deduce that

zp(t) = 0, and �nally x = �
g(t;x)

0;t=� (0) = 0 is a locally asymptotically stable equilibrium

point for equation (22).

An interesting observation is that systems with positive trace may be stabilized by

means of vibrations g with g(0) 6= 0: the example in [52] is a linear system _x = Ax,
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with tr(A) > 0 and a control input g = g
[0]+ g[2], g[0] 2 H0, g

[2] 2 H2. Here, we give the

following result.

Proposition V.5: Consider the linear system _x = Ax, and let A be a nonderogatory

matrix with trA > 0. Then, there exist a nonlinear vector �eld gnl, commuting vector

�elds fg1; : : : ; gn�1g and controls fu1; : : : ; un�1g such that the equilibrium x = 0 of

the linear system becomes an asymptotically stable periodic orbit contained in an O(�)

neighborhood of the origin for the equation

_x = Ax+ gnl(x) +
1

�

n�1X
i=1

ui

�
t

�

�
gi(x) :

Proof: Assume A is in companion form. Let

gnl(x) = f
[3](x) = (0; : : : ; 0; bx31 + cx

2
1xn) 2 H3:

For i 2 f2; : : : ; n� 1g, de�ne the commuting vector �elds

g1(x) = (1; 0; : : : ; 0) 2 H0 ; gi(x) = Enix 2 H1 ;

and the controls ui = ri cos(!t). The averaged system is

F (x) =
+1X

k1;:::;km=0

Uk1;:::;km adk1g1 : : : ad
km
gm
(Ax+ f

[3])

We �rst verify that the origin is an equilibrium point for the averaged system. Because

of homogeneity arguments, the 0th order term in F is

F (0) =
+1X

k2;:::;km=0

�
U 1;k2;:::;km adk2g2 : : :ad

km
gm

(adg1 Ax) + U 3;k2;:::;km adk2g2 : : : ad
km
gm

�
ad3g1 f

[3]
��

x=0
:

Since adgi adg1 Ax = 0 and adgi ad
3
g1
f
[3](x) = 0 for all i; j 2 f2; : : : ; n� 1g,

F (0) = U1;0;:::;0 adg1 Ax+ U3;0;:::;0 adg1 f
[3] = 0 ;

where in the last equality we have used equation (3). With regards to the linearization

of F , we have that

A =
@F

@x
(0) =

+1X
k2;:::;km=0

�
U 0;k2;:::;km adk2g2 : : : ad

km
gm
Ax +U 2;k2;:::;km adk2g2 : : : ad

km
gm

�
adg1 f

[3]
��

x=0
:
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The �rst term is computed as in the previous proposition via equation (23). As for the

second one, note that for i; j 2 f2; : : : ; n� 1g,

ad2g1 f
[3] = (0; : : : ; 6bx1 + 2cxn) ; adgi ad

2
g1
f
[3] = (0; : : : ; 2cxi) ; adgi adgj f

[3] = 0 :

Using again equation (3), we conclude that the linearized averaged system is also in

companion form. Indeed, A equals

Comp

 
an +

3br21
2!2

; an�1 �
r2rn�1

2!2
; : : : ; a2 �

r2n�1

2!2
; a1 +

cr21

2!2

!
:

Selecting c < �a1!2=r21, we have that trA < 0. Finally, an appropriate selection of

the coeÆcients b; r1; : : : ; rn�1 makes the linearization of the averaged system a Hurwitz

matrix. As before, this implies that y = 0 is asymptotically stable for the averaged

system. The application of Theorem III.2 concludes the proof.

Remark V.6: In summary, stabilization has been achieved building on strong nilpo-

tency assumptions of the type BiBj = 0. In the following, we show that the less

restrictive nilpotency properties discussed in Section IV-F may also be instrumental to

provide alternative stabilization schemes. The interesting observation in this case is that

the full series expansion is taken into account, not just a truncated version. Consider

the bilinear system _x = Ax + (1=�)u(t=�)Bx with x 2 R
2 . Assume A is diagonal and

tr(A) < 0. Write A = A1 +A2, where

A1 =

0
B@ tr(A)=2 0

0 tr(A)=2

1
CA ; A2 =

0
B@ � 0

0 ��

1
CA :

Note that A1 is a stable matrix. Let B =

0
B@ 0 1=2

�1=2 0

1
CA, and compute

ad2B A = �A2 ; ad4B A = A2 = � ad2B A :

Let u = a cos!t and, following Lemma IV.4 with (p; q) = (4; 2), compute

F (x) = (A1 +A2)x� ad2B A

�
�1 + I0

�
a

!

p
�1
��

x =

�
A1 + A2I0

�
a

!

p
�1
��

x :

The modi�ed Bessel function with imaginary arguments possesses an in�nite number of

positive zeros. The smallest z1 2 R+ such that I0(z1
p
�1) = 0 is an irrational number

belonging to the interval [2:424; 2:425]. Therefore, the averaged system is asymptotically

stable provided the input parameters satisfy a = z1!.
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VI. On tracking via oscillatory controls

We present an application of our averaging analysis to the problem of trajectory

tracking via oscillatory controls. We consider the tracking problem for second order

systems, and we design control laws inspired by the inversion algorithm in [53]. In what

follows, let i; j; k take values in f1; : : : ;mg unless otherwise stated.

Consider the control system

�x+ f1(x) _x+ f0(x) =
X
i

wi gi(x) ; (24)

and the following tracking problem: given a smooth desired curve xd : [0; T ]! R
n with

initial conditions xd(0) = x(0), _xd(0) = _x(0), �nd controls laws wi : R
2n � [0; T ] ! R

m

such that the solution x to equation (24) approximates xd up to an error of order �.

We make the following controllability assumption:

(A) The distribution spanfgi ; hgj : gkig is full rank, and hgj : gji belongs to spanfgig.

Accordingly,

(i) there exist functions zdi ; z
d
jk : [0; T ]! R, for j < k, such that

�xd + f1(x
d) _xd + f0(x

d) =
X
i

z
d
i gi(x

d) +
X
j<k

z
d
jkhgj : gki(xd) ;

(ii) there exist smooth functions �ij : R
n ! R such that

hgi : gii(x) =
X
j

�ij(x)gj(x) ; 8x 2 R
n
:

There are N = m(m � 1)=2 pairs of integers (j; k), with j < k. Let (j; k) 7! a(j; k) 2
f1; : : : ; Ng be a enumeration of these pairs, and de�ne the scalar functions

 a(j;k)(t) =
p
2 a(j; k) cos(a(j; k)t) :

Proposition VI.1: Let xd : [0; T ] ! R
n be a desired curve with initial conditions

xd(0) = x(0), _xd(0) = _x(0). The solution x to equation (24) equals xd up to an error of
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order � over the time scale 1 when the control laws wi are

wi = vi(t; x) +
1

�
ui

�
t

�
; t

�
;

vi(t; x) = z
d
i (t) +

1

2

X
j

�ji(x)

0
@j � 1 +

mX
`=j+1

(zdj`(t))
2

1
A ;

ui(�; t) = �
i�1X
`=1

 a(`;i)(� ) +
mX

`=i+1

z
d
i`(t) a(i;`)(� ) :

Proof: The control system (24) is written as

�x+ f1(x) _x+ f0(x) =
X
i

vi(t; x)gi(x) +
1

�

X
i

ui

�
t

�
; t

�
gi(x) ;

and, according to Proposition IV.3, its averaged system is

�y + f1(y) _y + f0(y) =
X
i

vi(t; y)gi(y) +
X
i

�
1

2
U

2

(i)(t)� U (i;i)(t)

�
hgi : gii(y)

+
X
i<j

�
U (i)(t)U (j)(t)� U (i;j)(t)� U (j;i)(t)

�
hgi : gji(y) ;

with initial conditions (y(0); _y(0)) = (x(0); _x(0) +
P

i U (i)(0)gi(x(0)). We compute the

iterated integrals of the given oscillatory inputs ui as

U (i)(t) =
1

T

Z T

0
ui(�; t)d� = 0 ;

U (i;j)(t) + U (j;i)(t) = U(i)U(j)(t) =
1

T

Z T

0

�Z �

0
ui(s; t)ds

��Z �

0
uj(s; t)ds

�
d� = �zdij(t) ;

for i < j, so that the averaged system reads

�y + f1(y) _y + f0(y) =
X
i

vi(t; y)gi(y)�
X
i

U (i;i)(t)hgi : gii(y) +
X
i<j

z
d
ij(t)hgi : gji(y) :

Next, we examine the de�nition of the vi inputs. Note that

U (j;j)(t) =
1

2T

Z T

0

�Z �

0
uj(s; t)ds

�2
d� =

1

2

0
@j � 1 +

mX
`=j+1

(zdj`(t))
2

1
A

and therefore

X
i

vi(t; y)gi(y) =
X
i

z
d
i (t)gi(y) +

X
i;j

U (i;i)(t)�ij(y)gj(y)

=
X
i

z
d
i (t)gi(y) +

X
i

U (i;i)(t)hgi : gii(y)
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where we have exploited the property of the functions �ij. In summary, we have shown

�y + f1(y) _y + f0(y) =
X
i

z
d
i gi(y) +

X
i<j

z
d
ijhgi : gji(y) ;

with initial conditions y(0) = xd(0) ; _y(0) = _xd(0). Since y and xd are the solution to

the same initial value problem, they are identical. Finally, from Proposition IV.3, we

conclude that x(t) = y(t) +O(�) = xd(t) + O(�).

Remark VI.2 (Lagrangian systems on manifolds)

Proposition VI.1 can be extended to a large class of Lagrangian control systems and

written in a coordinate-free setting within the so-called aÆne connection formalism [26],

[54]. Let q be the system's con�guration on the n-dimensional manifold Q, and let

f�a
bc; a; b; c 2 f1; : : : ; ngg be the n3 Christo�el functions associated to the system's kinetic

energy. De�ne the operation of symmetric product between the vector �elds gi; gj on Q

according to

hgi : gjia =
@gai

@qb
g
b
j +

@gaj

@qb
g
b
i + �a

bc

�
g
b
ig

c
j + g

c
ig

b
j

�
;

and de�ne the quantity (r _q _q)
a
= �qa + �a

bc(q) _q
b _qc. Then, the Euler-Lagrange equations

read

r _q _q + f1(q) _q + f0(q) =
X
i

wigi(q) :

Under the controllability assumption as (A), the result in Proposition VI.1 holds verba-

tim.

We end this section by considering two examples.

A second-order nonholonomic integrator

There are many interesting dynamical extensions of Brockett's nonholonomic integra-

tors [55] (see the discussion in [43]). We consider

�x1 = w1 ; �x2 = w2 ; �x3 = w1x2 + w2x1 ;

and note that this system ful�lls the controllability assumption (A). We design control

inputs to track a desired trajectory, (xd1(t); x
d
2(t); x

d
3(t)), following Proposition VI.1,

w1 = �xd1 +
1p
2�

�
�xd3 � �xd1x

d
2 � �xd2x

d
1

�
cos

�
t

�

�
; w2 = �xd2 �

p
2

�
cos

�
t

�

�
(25)
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An illustration of the performance of these controls is shown in Figure 2.
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Fig. 2. Tracking for the modi�ed nonholonomic integrator with the controls de�ned in equation (25) and

with � = :05.

A PVTOL model

We consider the model of a simple planar vertical takeo� and landing aircraft model

based upon that of [56] with added viscous damping forces; see Figure 3. We parametrize

its con�guration and velocity space via the state variables (x; z; �; vx; vz; !). We let x

and z be the horizontal and vertical displacement of the aircraft, and � be its roll angle.

The angular velocity is ! and the linear velocities in the body-�xed x (respectively z)

axis are vx (respectively vz). The equations are written as:

_x = cos �vx � sin �vz _vx = (�k1=m)vx � g sin � + vz! + (1=m)w2

_z = sin �vx + cos �vz _vz = (�k2=m)vz � g(cos � � 1)� vx! + (1=m)w1

_� = ! _! = (�k3=J)! + (h=J)w2

(26)

Control w1 corresponds to the body vertical force minus gravity, while w2 corresponds

to coupled forces on the wingtips with a net horizontal component. The other forces

depend upon the constants ki, which parameterize a linear damping force, and g, the

gravity constant. The constant h is the distance from the center of mass to the wingtip,

while m and J are mass and moment of inertia, respectively.

Equations (26) can be written as a second order system in the variables (x; z; �) and

the model ful�lls the controllability assumption (A). We design control inputs to track



30 SUBMITTED AS A REGULAR PAPER TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL
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4

Fig. 3. Diagram of the PVTOL model.
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Fig. 4. Tracking for the PVTOL model with the controls de�ned in equation (27) and with � = :01.

a desired trajectory (xd(t); zd(t); �d(t)) as

w1 =
J

h

��d +
k3

h

_�d �
p
2

�
cos

�
t

�

�

w2 =
h

J
� f1 sin �

d + f2 cos �
d � J

p
2

h�

�
f1 cos �

d + f2 sin �
d
�
cos

�
t

�

�
; (27)

where we let c = J
h
��d + k3

h
_�d and

f1 = m�xd +
�
k1 cos

2
�
d + k2 sin

2
�
d
�
_xd +

sin(2�d)

2
(k1 � k2) _zd +mg sin �d � c cos �d;

f2 = m�zd +
sin(2�d)

2
(k1 � k2) _xd +

�
k1 sin

2
�
d +k2 cos

2
�
d
�
_zd +mg(1� cos �d)� c sin �d:

The simulations are run with m = 20, J = 10, h = 5, k1 = 12, k2 = 11, k3 = 10, g =
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Fig. 5. Illustration of the tracking errors for the PVTOL model at t = 10 with the controls de�ned in

equation (27).
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Fig. 6. Illustration of the tracking in the horizontal displacement of the PVTOL model with the controls

de�ned in equation (27).

9:8. Figure 4 shows an example of the behavior of the controls (27). Figure 5 illustrates

the linear decay of the tracking error. Finally, Figure 6 shows how the convergence to

the desired trajectory improves as � decreases.

VII. Conclusions

We have presented a novel and comprehensive coordinate-free averaging analysis for

control systems subject to oscillatory inputs. Based on the analysis, we have devel-

oped design methodologies for stabilization and trajectory tracking in certain classes of

nonlinear systems.
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Future directions of research include deriving extensions of these results to the case

of higher-order averaging, distributed parameter systems, time-delayed systems, and

systems with resonances.

Acknowledgments

The �rst two authors' work was funded by FPI and FPU grants from the Spanish

Ministerio de Ciencia y Tecnolog��a and Ministerio de Educaci�on y Cultura. The third

author's work has been supported by NSF grants IIS-0118146 and CMS-0100162.

References

[1] J. K. Hale, Oscillations in Nonlinear Systems. New York: Dover Publications, Inc., 1992.

[2] J. Baillieul and B. Lehman, \Open-loop control using oscillatory inputs," in CRC Control Handbook (W. S.

Levine, ed.), pp. 967{980, Boca Raton, FL: CRC Press, 1996.

[3] M. Fliess, J. L�evine, P. Martin, and P. Rouchon, \Flatness and defect of non-linear systems: Introductory

theory and examples," International Journal of Control, vol. 61, no. 6, pp. 1327{1361, 1995.

[4] M. Golubitsky, I. Stewart, P.-L. Buono, and J. J. Collins, \Symmetry in locomotor central pattern generators

and animal gaits," Nature, vol. 401, no. 6754, pp. 693{5, 1999.

[5] S. Hirose, Biologically inspired robots: snake-like locomotors and manipulators. Oxford, UK: Oxford

University Press, 1993.

[6] S. R. Sanders, J. M. Noworolski, X. Z. Liu, and G. C. Verghese, \Generalized averaging method for power

conversion circuits," IEEE Transactions on Power Electronics, vol. 6, no. 2, pp. 251{259, 1991.

[7] W. S. Warren, H. Rabitz, and M. Dahleh, \Coherent control of quantum dynamics - the dream is alive,"

Science, vol. 259, no. 5101, pp. 1581{1589, 1993.

[8] G. K. Paramonov, \Coherent control of linear and nonlinear excitation of molecular vibrations," Chemical

Physics, vol. 177, no. 1, pp. 169{180, 1993.

[9] L. Addadi and S. Weiner, \Control and design principles in biological mineralization," Angewandte Chemie,

vol. 31, no. 2, pp. 153{169, 1992.

[10] D. V. Lyubimov, T. Lyubimova, S. Meradji, and B. Roux, \Vibrational control of crystal growth from liquid

phase," Journal of Crystal Growth, vol. 180, no. 3-4, pp. 648{659, 1997.

[11] J. Baillieul and S. Weibel, \Scale dependence in the oscillatory control of micromechanisms," in IEEE Conf.

on Decision and Control, (Tampa, FL), pp. 3058{30, Dec. 1998.

[12] A. Seifert and L. G. Pack, \Oscillatory control of separation at high Reynolds numbers," AIAA Journal,

vol. 37, no. 9, pp. 1062{71, 1999.

[13] H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems. New York, NY: Springer

Verlag, 1990.

[14] A. Isidori, Nonlinear Control Systems. New York, NY: Springer Verlag, third ed., 1995.

[15] H. K. Khalil, Nonlinear Systems. Englewood Cli�s, NJ: Prentice Hall, second ed., 1995.

[16] S. S. Sastry, Nonlinear Systems: Analysis, Stability and Control. Interdisciplinary Applied Mathematics,

New York, NY: Springer Verlag, 1999.



MART��NEZ, CORT�ES AND BULLO: ANALYSIS AND DESIGN OF OSCILLATORY CONTROL SYSTEMS 33

[17] J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems. New York, NY:

Springer Verlag, 1985.

[18] J. Kurzweil and J. Jarnik, \Iterated Lie brackets in limit processes in ordinary di�erential equations," Results

in Mathematics, vol. 14, pp. 125{137, 1988.

[19] W. Liu, \An approximation algorithm for nonholonomic systems," SIAM Journal on Control and Opti-

mization, vol. 35, no. 4, pp. 1328{1365, 1997.

[20] W. Liu and H. J. Sussmann, \Continuous dependence with respect to the input of trajectories of control-aÆne

systems," SIAM Journal on Control and Optimization, vol. 37, no. 3, pp. 777{803, 1999.

[21] P. L. Kapitsa, \Dynamical stability of a pendulum when its point of suspension vibrates," in Collected Papers

by P. L. Kapitsa, vol. II, (London), pp. 714{725, Pergamon, 1965.

[22] J. Baillieul, \Stable average motions of mechanical systems subject to periodic forcing," in Dynamics and

Control of Mechanical Systems: The Falling Cat and Related Problems (M. J. Enos, ed.), vol. 1, pp. 1{23,

Field Institute Communications, 1993.

[23] J. Baillieul, \Energy methods for stability of bilinear systems with oscillatory inputs," International Journal

on Robust and Nonlinear Control, vol. 5, no. 4, pp. 285{301, 1995.

[24] M. Levi, \Geometry of Kapitsa's potentials," Nonlinearity, vol. 11, no. 5, pp. 1365{8, 1998.

[25] M. Levi, \Geometry and physics of averaging with applications," Physica D, vol. 132, no. 1-2, pp. 150{64,

1999.

[26] F. Bullo, \Averaging and vibrational control of mechanical systems," SIAM Journal on Control and Opti-

mization, vol. 41, no. 2, pp. 542{562, 2002.

[27] A. V. Sarychev, \Stability criteria for time-periodic systems via high-order averaging techniques," in Nonlin-

ear control in the year 2000, vol 2 (A. Isidori, F. Lamnabhi-Lagarrigue, and W. Respondek, eds.), vol. 259

of Lecture Notes In Control and Information Sciences, pp. 365{377, New York, NY: Springer Verlag, 2001.

[28] A. V. Sarychev, \Lie- and chronologico-algebraic tools for studying stability of time-varying systems," Systems

& Control Letters, vol. 43, no. 1, pp. 59{76, 2001.

[29] J. P. Ostrowski and J. W. Burdick, \The geometric mechanics of undulatory robotic locomotion," Interna-

tional Journal of Robotics Research, vol. 17, no. 7, pp. 683{701, 1998.

[30] R. W. Brockett, \On the recti�cation of vibratory motion," Sensors & Actuators, vol. 20, no. 1-2, pp. 91{6,

1989.

[31] P. S. Krishnaprasad and D. P. Tsakiris, \Oscillations, SE(2)-snakes and motion control: a study of the roller

racer," Dynamics and Stability of Systems, vol. 16, no. 4, pp. 347{397, 2001.

[32] R. W. Brockett, \Asymptotic stability and feedback stabilization," in Geometric Control Theory (R. W.

Brockett, R. S. Millman, and H. J. Sussmann, eds.), (Boston, MA), pp. 181{191, Birkh�auser, 1983.

[33] J.-M. Coron, \Global asymptotic stabilization for controllable systems without drift," Mathematics of Con-

trol, Signals and Systems, vol. 5, pp. 295{312, 1992.

[34] J.-B. Pomet, \Explicit design of time-varying stabilizing control laws for a class of controllable systems

without drift," Systems & Control Letters, vol. 18, pp. 147{158, 1992.

[35] I. Kolmanovsky and N. H. McClamroch, \Developments in nonholonomic control problems," IEEE Control

Systems Magazine, vol. 15, no. 6, pp. 20{36, 1995.

[36] P. Morin, J.-B. Pomet, and C. Samson, \Design of homogeneous time-varying stabilizing control laws for

driftless controllable systems via oscillatory approximation of Lie brackets in closed loop," SIAM Journal on

Control and Optimization, vol. 38, no. 1, pp. 22{49, 1999.



34 SUBMITTED AS A REGULAR PAPER TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL

[37] S. M. Meerkov and M. Y. Tsitkin, \The e�ectiveness of the method of vibrational control for the dynamic

systems of the order n," Automation and Remote Control, vol. 36, pp. 525{529, 1975.

[38] R. E. Bellman, J. Bentsman, and S. M. Meerkov, \Vibrational control of nonlinear systems: Vibrational

stabilization," IEEE Transactions on Automatic Control, vol. 31, no. 8, pp. 710{716, 1986.

[39] J. Bentsman, \Vibrational control of a class of nonlinear systems by nonlinear multiplicative vibrations,"

IEEE Transactions on Automatic Control, vol. 32, no. 8, pp. 711{716, 1987.

[40] H. J. Sussmann, \New di�erential geometric methods in nonholonomic path �nding," in Systems, Models, and

Feedback: Theory and Applications (A. Isidori and T. J. Tarn, eds.), pp. 365{384, Boston, MA: Birkh�auser,

1992.

[41] W. Liu, \Averaging theorems for highly oscillatory di�erential equations and iterated Lie brackets," SIAM

Journal on Control and Optimization, vol. 35, no. 6, pp. 1989{2020, 1997.

[42] R. W. Brockett and L. Dai, \Non-holonomic kinematics and the role of elliptic functions in constructive

controllability," in Nonholonomic Motion Planning (Z. Li and J. F. Canny, eds.), pp. 1{22, Boston, MA:

Kluwer Academic Publishers, 1993.

[43] K. A. Morgansen and R. W. Brockett, \Nonholonomic control based on approximate inversion," in IEEE

American Control Conference, (San Diego, CA), pp. 3515{3519, June 1999.

[44] R. M. Spiegel, Mathematical handbook of formulas and tables. New York, NY: McGraw-Hill, 1991.

[45] A. A. Agra�chev and R. V. Gamkrelidze, \The exponential representation of ows and the chronological

calculus," Math. USSR Sbornik, vol. 35, no. 6, pp. 727{785, 1978.

[46] A. A. Agra�chev and R. V. Gamkrelidze, \Chronological algebras and nonstationary vector �elds," Journal

Soviet Mathematics, vol. 17, no. 1, pp. 1650{1675, 1979.

[47] R. Abraham, J. E. Marsden, and T. S. Ratiu, Manifolds, Tensor Analysis, and Applications, vol. 75 of

AMS. New York, NY: Springer Verlag, second ed., 1988.

[48] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector

Fields, vol. 42 of Applied Mathematical Sciences. Springer Verlag, 1990.

[49] P. E. Crouch and A. J. van der Schaft, Variational and Hamiltonian Control Systems, vol. 101 of Lecture

Notes in Control and Information Sciences. New York, NY: Springer Verlag, 1987.

[50] H. S. Wilf, Generatingfunctionology. New York, NY: Academic Press, second ed., 1994.

[51] G. H. Golub and C. F. van Loan, Matrix Computations. London, UK: Johns Hopkins University Press,

third ed., 1996.

[52] B. Shapiro and B. T. Zinn, \High-frequency nonlinear vibrational control," IEEE Transactions on Automatic

Control, vol. 42, no. 1, pp. 83{90, 1997.

[53] F. Bullo, N. E. Leonard, and A. D. Lewis, \Controllability and motion algorithms for underactuated La-

grangian systems on Lie groups," IEEE Transactions on Automatic Control, vol. 45, no. 8, pp. 1437{1454,

2000.

[54] A. D. Lewis and R. M. Murray, \Con�guration controllability of simple mechanical control systems," SIAM

Journal on Control and Optimization, vol. 35, no. 3, pp. 766{790, 1997.

[55] R. W. Brockett, \Control theory and singular Riemannian geometry," in New Directions in Applied Math-

ematics (P. Hilton and G. Young, eds.), (New York, NY), pp. 11{27, Springer Verlag, 1982.

[56] J. E. Hauser, S. S. Sastry, and G. Meyer, \Nonlinear control design for slightly nonminimum phase systems:

application to V/STOL aircraft," Automatica, vol. 28, no. 4, pp. 665{679, 1992.



MART��NEZ, CORT�ES AND BULLO: ANALYSIS AND DESIGN OF OSCILLATORY CONTROL SYSTEMS 35

List of Figures

1 Table of degrees of the drift vector �eld f and the input vector �eld g for

homogeneous systems. The (i; j)th position refers to the case when f 2 Hi

and g 2 Hj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Tracking for the modi�ed nonholonomic integrator with the controls de�ned

in equation (25) and with � = :05. . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Diagram of the PVTOL model. . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Tracking for the PVTOL model with the controls de�ned in equation (27)

and with � = :01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Illustration of the tracking errors for the PVTOL model at t = 10 with the

controls de�ned in equation (27). . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Illustration of the tracking in the horizontal displacement of the PVTOL

model with the controls de�ned in equation (27). . . . . . . . . . . . . . . . 31


