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Abstract

The problem of a rigid body tracking a desired angular velocity trajectory is addressed using
adaptive feedback control. An adaptive controller is developed for a planar rotating body tracking
a desired angular velocity command. Lyapunov analysis is used to show that tracking is achieved
globally. A periodic angular velocity command is then used to identify the inertia parameter. The
adaptive controller is implemented on a triaxial attitude control testbed with fan thrusters. A lack
of convergence of the inertia estimate indicates the presence of an input nonlinearity. To account
for this effect, a piecewise linear approximation of this nonlinearity is inverted to obtain improved
angular velocity tracking and inertia identification. Finally, to eliminate residual tracking error,
an adaptive algorithm is used for improved feedback linearization. Lyapunov analysis is used to
show convergence of the angular velocity and inertia estimate errors. The approach is validated

by experimental implementation.
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1 Introduction

Stabilization of a single free rigid body in three dimensions is a widely studied and fundamental
problem in spacecraft dynamics. Although the problem is trivial in the presence of three control
torques, significant research has been devoted to the cases of two torques [1] - [5] and one torque [2],
[3], [6]. If minimum fuel or minimum time performance is required in addition to stabilization, then
this problem is challenging even in the case of three torque inputs [7], [8]. If rotors are used to provide

control torques, then the problem involves multiple bodies and significantly greater complexity [9],

[10].

The above remarks are based on the assumption that the spacecraft mass distribution is known
and constant. However, in practice there are limitations due to fuel usage, moving appendages, and
complex geometry on the ability to determine the mass distribution. Hence it is of interest to deter-

mine stabilizing controllers that can operate with as little inertia information as possible.

In the present paper we address the inertia-uncertainty problem by deriving an adaptive con-
troller that tracks an angular velocity command without any information concerning the mass dis-
tribution. In addition, the controller we present provides asymptotic tracking of arbitrary angular
velocity commands. For a rotating spacecraft modeled as a rigid body, this controller is effectively a
PI control law involving 6 integrators. The integrator states, which correspond to the entries of the

inertia matrix, converge to the actual spacecraft inertia under sufficiently persistent excitation.

It is important to point out that angular velocity tracking does not provide a guarantee of inertial
spacecraft attitude control. The inclusion of attitude states within an inertia-independent adaptive
controller is given in [11]. The tracking problem considered in the present paper can be viewed as

an extension of [11] to the case in which attitude measurements are not available.

The contents of the paper are as follows. In Section 2 we present an adaptive control scheme
that provides angular velocity tracking for a planar rigid body with unknown inertia. In addition,
we present a method to identify the unknown inertia, and apply the method to a numerical example.
A description of the testbed and control hardware used for experiments is presented in Section 3.
In Section 4 we present experimental results obtained for single-degree-of-freedom rotation. The
lack of convergence of inertia estimate indicates the presence of an input nonlinearity. To account
for this effect, a piecewise linear approximation of this nonlinearity is inverted to obtain improved
angular velocity tracking and inertia identification. Finally, to eliminate residual tracking error,
an adaptive algorithm is used for improved feedback linearization. Lyapunov analysis is used to

show convergence of the angular velocity and inertia estimate errors. The approach is validated by



experimental implementation.

2 Adaptive Control of a Planar Rotating Body

Consider a rigid body constrained to rotate about a fixed axis passing through its center of

mass. For t > 0, the equation of motion is given by
w=—=T (1)

where w is the angular velocity of the body about its rotation axis, J is the moment of inertia of the

body about its rotation axis, and 7 is the applied torque. We assume that J is unknown.

Let v : [0,00) — R denote the desired angular velocity of the body. We assume that v is C!.
Defining the angular velocity error & by & £ w — v, it follows from (1) that & satisfies

. 1

The control objective is to determine 7 such that @ — 0 as ¢ — oo for all initial conditions w(0) and
without knowledge of J. The following result provides an adaptive controller for angular velocity

tracking based on an estimate J(t) of J.

Theorem 1. Assume that » is bounded, let ¥ > 0 and ¢ > 0, and consider the closed-loop

system consisting of (2) and the adaptation control law

A

J = —qa, (3)
T o= —k+ud. (4)

Then & — 0 as t — oo for all w(0) and J(0). Furthermore, J is bounded for all ¢ > 0, and J 5 0as

t — oo.

Proof. Define the error J in the inertia estimate by J 2 J — J. Using (2) and (3), we obtain

the linear time-varying system

s oA k.o v
w Jw+ JJ, (5)
J = —qa. (6)

Note that [@ J] = [0 0] is an equilibrium of (5), (6).

To prove asymptotic tracking, consider the positive-definite Lyapunov candidate
~ =t ]- ~92 ]_ ~2
V(w,J) =3 Jo*+-=-J%), (7)
q

3



which does not depend explicitly on time and is radially unbounded. The time derivative of V' along

the trajectories of the closed-loop system is given by
. ~ ~ 1~z
V(@,J) = —k@® +vJo + =JJ = —ki&?, (8)
q
which shows that V is negative semi-definite and is not an explicit function of time. Hence V (& (t), J(t)) <
V(@(0), J(0)) for all ¢ > 0, and, since V is radially unbounded, it follows that @ and J, and hence J

are bounded.

Next, to show that @ — 0 as t — oo, note that the time derivative of V along the trajectories of
the system is given by
2k&

V(@,J,t) = =2 (ke = o(t) ). 9)

Since @, J and © are bounded and J is constant, it follows that V (@(¢), J(t),t) is bounded for all
t > 0. It now follows from Theorem 5.4 of [12] that @ — 0 as ¢t — oco. Since @ — 0 as t — oo and ¥

is bounded, it follows from (6) that J =0 and thus J — 0 as ¢ — oco. O

Note that the control law given by (3) does not require knowledge of the inertia J of the body.
Although J converges to zero, J does not necessarily converge, and, if it does converge, it does not
necessarily converge to the actual inertia J. The following result gives a sufficient condition under

which J converges to J.

Proposition 1. Assume that v is not constant and periodic. Then, under the control and

adaptation law given by (3) and (4), J — J as t — oo.

Proof. Consider the Lyapunov candidate V' defined by (7) so that V is given by (8), and define
E2V-10) ={[@ J]: @ =0}. Let M be the largest invariant set in F, and let [& J] be a trajectory
in M. Then & = 0 and & = 0. Now (6) implies that J= 0, and (5) implies that (¢)J = 0. Hence J
is constant and, since v(t) is not constant, it follows that J = 0. Consequently, M = {(0,0)}. Since
v(t) is periodic, it now follows from Theorem 2.8 of [13] (p. 58) that [& J] — M as t — oo, and thus

j—)O,orf—)J,ast—>oo. ]

Proposition 2. Assume that » is periodic, and assume there exist a > 0 and T' > 0 such that,

for all ¢ > 0,

t+T
/ 2(s)ds > a (10)

Then, under the control and adaptation law (3) and (4), J — 0 as t — co exponentially.



Proof. Since v is C!, © is continuous and periodic, and hence bounded. The result now follows

from Corollary 4.3.1 of [14]. O

To illustrate Theorem 1 and Proposition 1, consider the sinusoidal angular velocity command

v(t) = (1 — cos(wot)),
Wo

where a = 1.2 rad?/sec? and wp = 1.0 rad/sec. The inertia of the planar rotating body is taken to
be J = 1.0 kg-m? /rad?, and its initial estimate is J(0) = 0.7 kg-m? /rad?. The gains are k = 4.8 kg-
m? /rad?-sec and ¢ = 2.8 kg-m2-sec? /rad*. The initial angular velocity error is given by @(0) = 0.35
rad/s. The angular velocity tracking error, inertia estimate error, and applied input torque are shown
in Figure 1. It can be seen that @ converges to zero and J converges to J within 15 seconds. The

torque is seen to have an initial transient with 7(0) = —k@(0) + ©(0)J(0) = —1.68 N-m/rad, where
7(0) = 0 rad/sec?.
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Figure 1: Angular Velocities, Inertia Estimate and Control Torque for the Planar Rotating Body
Tracking a Sinusoidal Angular Velocity Command

Next, to see how the adaptive controller of Theorem 1 performs on a command signal that is

not differentiable, consider the triangle wave angular velocity command

t—2|th, if 2n<t<2n+1,

v(t) =
2—t+2th], if 2n4+1<t<2n+2,

where n is a nonnegative integer. The initial conditions and gains are the same as in the previous

example. The angular velocity tracking error, inertia estimate error, and applied input torque are



shown in Figure 2. This figure shows that the adaptive controller (3) and (4) is effective even when

the angular velocity signal is not C*.
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Figure 2: Angular Velocities, Inertia Estimate and Control Torque for the Planar Rotating Body
Tracking a Triangle Angular Velocity Command

3 Triaxial Attitude Control Testbed

3.1 Mechanical Setup

The testbed used for experiments in this paper is based on a spherical air bearing manufactured
by Space Electronics, Inc., Berlin, CT. The aluminum sphere of diameter 11 inch floats on a thin
film of air that exits holes located in the surface of the cup. Air at 70 psi is supplied to the cup by

means of a hose that passes through the center of the vertical support.

A one-piece 32 inch stainless steel shaft passes through the center of the sphere and extends
between a pair of 24-inch circular mounting plates. This shaft is designed to withstand stresses that
might otherwise distort the sphere. All mounting plates are made from 1/4-inch aluminum alloy with
1/4-20 holes tapped in a 1 inch grid. The 14-inch aluminum extension shafts connect the circular
mounting plates to the 30-inch x 30-inch square mounting plates. The distance between the square
plates is thus 5 feet. All shafts have hollow interior to allow wiring through the sphere and between
any two points. Access holes of size 1 inch X 2 inch are cut into the plates and shafts to allow cable
jacks and plugs to be passed between connection points. The total weight of the levitated components
described thus far is 180 1b. At 70 psi air pressure, the air bearing can support an additional 180 Ib

of components.



Figure 3: Triaxial Air Bearing Testbed. This testbed, which is based on a spherical air bearing,

allows low friction, three-dimensional motion with unrestricted roll and yaw and £45° pitch.

The spherical air bearing allows unrestricted motion in yaw (motion about the vertical axis) and
roll (motion about the longitudinal shaft axis). The plates and shafts are designed to allow +45°

pitch (motion about a horizontal axis) at all roll and yaw angles.

Once the main components are mounted, additional masses can be added to modify the final
mass distribution. For 1-dimensional experiments, the center of mass is located in the vertical line
that passes through the rotational center. When the center of mass is not located at the rotational
center, this mass distribution balances pitch motion, provides pendulum dynamics in roll, and yields
predominantly yaw dynamics for the 1-dimensional experiments. For 3-dimensional experiments, the

center of mass can be located at the rotational center to balance the system in both roll and pitch.

3.2 Control Hardware

For attitude control experiments, the triaxial attitude control testbed uses on-board sensors.
A three-axis magnetometer determines the direction of the Earth’s magnetic north; a three-axis
accelerometer measures gravitational and centripetal acceleration; and a three-axis gyro measures

angular velocity. For the present paper only the gyros are needed.

The three-axis gyro is comprised of three Gyrochip Horizon rate sensors manufactured by Systron
Donner, Concord, CA. The input range of these sensors is £90 deg/sec and, according to specifica-
tions, their bandwidth is greater than 18 Hz. Under static conditions, that is, w = 0, we measured the
rms gyro noise to be about 1.3 mV, which corresponds to .06 deg/sec. Since the gyro measurement
range is 0 V to 5 V, the sensor dynamic range is found to be 71.7 dB, or 12 analog-digital conversion

bits. Operation of fan thrusters does not affect the gyro noise significantly.



For real-time on-board processing, we use an embedded processor developed by Quanser Consult-
ing. This processor is based on a 586 processor with 4 GByte solid state hard disk and Multi-Q I/O
boards allowing up to 24 A/D channels, 24 D/A channels, and 16 encoder channels. The A/D and
D/A channels have a resolution of 13 bits over a +5 V range. The A /D sampling occurs sequentially
with an acquisition time of 20 usec per channel, while the D/A conversion also occurs sequentially with
a latency of 5 usec per channel. The operating system is based on the Quanser Consulting WinCon
real-time controller, which is compatible with the MathWorks Real-Time Workshop for implementing
controllers programmed in Simulink. Communication with the host PC for experiment monitoring,

parameter modification, and data acquisition is accomplished through a wireless ethernet connection.

For control actuation the triaxial attitude control testbed uses six reaction wheels and propeller
thrusters. Each reaction wheel actuator is based on a 100 W brushless DC motor manufactured by
Maxon (model 118896). This motor allows 2.8 A max continuous current at 5000 rpm, 729 mN-m
stall torque, and 38.2 mN-m/A torque constant. Mounted on the shaft of each motor is a 1/8-inch
thick steel disk of radius 7 inch. Maximum measured spin rate is 8500 rpm. Each motor is driven
by a brushless (current-regulated) PWM amplifier manufactured by Copley (Model 5121V). This
trapezoidally commutated amplifier is capable of 10 A continuous and 20 A peak. Electric power for
a pair of motors and a pair of amplifiers is provided at 36 V by three 12-V lead acid batteries each
rated at 1.3 A-hr. A total of six reaction wheels and six amplifiers have been mounted on the triaxial
air bearing to provide a pair of reaction wheels for each axis. The amplifiers are operated in current

mode to provide commandable torque to the wheels.

While each motor is equipped with a 500-line encoder giving a resolution of 360° /2000, the wheel
angle is used only for modeling and diagnostic purposes. For experiments, we use the frequency
converter feature of the Model 5121 amplifier to obtain a synthesized tachometer signal from each

motor’s Hall sensor. This allows us to monitor each motor’s spin rate and stored angular momentum.

The experiments described here use the four propeller thrusters. These thrusters are based on the
same Maxon motors and Copley amplifiers used by the reaction wheels without encoders. Without
the encoders mounted, these motors have a dual protruding shaft to which a pair of propellers is
mounted to obtain direction-symmetric thrust. Unlike the reaction wheels, however, the Copley

amplifiers for the thrusters are operated in velocity mode to provide a commandable torque.



4 Experimental Results

4.1 Preliminary Analysis

The adaptive control algorithm described in Section 2 was tested on the triaxial attitude control
testbed. In this section, we detail our experimental results and touch upon some practical imple-
mentation issues. As already mentioned we consider only yaw motion of the testbed with thrusters

used for actuation.

First, we have

w = Kgyngym, T = Kfaanana (11)

where Vgyro is the voltage output of the gyro, Kgyro is the conversion coefficient from Vgyyro in volts to

w in deg/sec, Vi is the voltage input to the thruster amplifiers, and K, is the conversion coefficient

from Vg, in volts to the control torque 7 in N-m. From equation (1) we see that ngro = Vian/J',
A

where the scaled inertia J' = JK, gyro /Ktan. Note that the units of J' are sec. We define V¢ £y /K, gyro

and V £ Veyro — Viet. We can thus rewrite (3) as
Vian = —k'V + Vit J', (12)
where k' £ kKgyroKfan and J' is the estimate of J'. The adaptive law (4 can be written as
T = VeV, (13)

where ¢’ £ qu’ym /Kfan. Comparing (4) and (5) with (12) and (13), it follows that the conversion
coefficients are incorporated within the constants ¢’ and k’. It can be seen that k' is dimensionless
and ¢’ has units of V/sec?. Hence, we can apply the adaptive control algorithm of Section 2 without
further calibration. However, to relate our results to physical motion, we calibrated the gyro voltage
and found Kgyo = 45.5 deg/V-sec. For the remainder of this section we view Vg, as the control

signal.

4.2 Control Experiments
When v is constant, the adaptive controller specializes to the proportional controller
Vian = —k'V. (14)
Since the plant (1) is an integrator, the closed-loop system with the proportional controller (14)

yields zero steady-state error for step commands.

The angular velocity w(t) for the sinusoidal command v(t) = 10sin.2¢ and a proportional gain

of k'= 20 sec/V? is shown in Figure 4. The angular velocity w(t) converges to a periodic signal with
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Figure 4: Angular Velocities w(t) and v(t) Using the Proportional Controller for v(¢) = 10sin .2t
deg/sec

rms value of about 2.6 deg/sec.

Now we use the adaptive controller for the same command v(¢) = 10sin.2¢t deg/sec. Figure 5
shows w(t) and v(t) for k' = 3, ¢’ = 1000 sec/V?, and initial scaled inertia estimate J(0) = 0 sec.
The angular velocity error @(¢) shown in Figure 6 converges to a periodic signal with rms value of
about .25 deg/sec and mean value of 0.0061 deg/sec. Figure 7 gives the scaled inertia estimates
obtained with J’(0) = 100 sec and J'(0) = 0 sec. The scaled inertia estimate converges to a periodic
signal with mean value about 37.9 sec and a peak-to-peak amplitude of about 4.5 sec. Simulations
and experiments (not shown) indicate that the value of the inertia estimate varies with the frequency

of the command signal.

4.3 Actuator Nonlinearity

The oscillation of J’ suggests the possible presence of an actuator nonlinearity. We therefore
plotted ngm V/sec (obtained by numerically differentiating the measured ngm) versus Vian V as
computed by the adaptive algorithm during an experiment. From this plot, shown in Figure 8, we

find that ngm is a nonlinear function of the computed moment V,,, that is,
Veyro = N (Vian)- (15)
The data was fit by the cubic polynomial

N(z) = 0.16772® 4+ 0.0117z2 4 0.6747x + 0.0078, (16)

10
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Figure 5: Angular Velocities w(t) and v(¢) Using the Adaptive Controller for v = 10sin .2¢ deg/sec

0.5

-15 4

L
0 50 100 150 200
Time [sec]
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Figure 7: Scaled Inertia Estimate Using the Adaptive Controller for v(t) = 10sin.2¢ deg/sec, J(0)
= 0 sec, and J(0) = 100 sec

as shown in Figure 8. From (15), (4), (11), we have

ki +0J
D= Ky il 17
w ayroN ( Koo ) (17)
Hence, from (1) the moment input is given by
ko + v
T = JKgmo N (L ik ) . (18)
Ktan

To check whether the nonlinearity (16) could cause the oscillations shown in Figure 7, the cubic
nonlinearity (16) is included in a simulation of the adaptive closed-loop system for the command
v(t) = 10sin.2t deg/sec. From Figures 9 and 10 it is seen that this nonlinearity could indeed cause
oscillations similar to those observed from the testbed. The angular velocity error &, shown in Fig-
ure 9, converges to a periodic signal with rms value of about .14 deg/sec and mean value of 0.0066
deg/sec. The scaled inertia estimate converges to a periodic signal with value of about 39 sec and a

peak-to-peak amplitude of about 3 sec.

Noting the difficulty involved in inverting the cubic, we obtain a piecewise linear approximation
of the cubic nonlinearity, and invert this piecewise linear function. The cubic nonlinearity and the

inverse of the piecewise linear approximation are shown in Figure 11.

The simulated response of the closed-loop system is shown in Figures 12 and 13. From these

plots it can be seen that the inverse function approximately linearizes the nonlinearity and reduces

12
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Figure 12: Simulated Angular Velocity Error with Inverted Actuator Nonlinearity

oscillations in the angular velocity error and scaled inertia estimate. The rms value of & is about
.02 deg/sec and the mean value is 0.01 deg/sec, which is below the noise level of the gyro. The
mean value of the scaled inertia estimate is about 40.5 sec with a peak-to-peak amplitude of about
.9 sec. Furthermore, simulations show that the scaled inertia estimates converge to the same value

for different values of the frequency of v(t).

The inverted actuator nonlinearity with the adaptive controller is implemented on the triaxial
testbed. The results are shown in Figures 14 to 16. The rms value of & is about .15 deg/sec and
the mean value is 0.011 deg/sec. The mean value of the scaled inertia is about 39.6 sec and the
peak-to-peak amplitude of oscillation is about 2.5 sec. Note that while oscillations in the angular
velocity error and inertia estimates are reduced, they are not entirely eliminated. Sensor noise may

account for some part of the oscillations seen in Figure 14.

4.4 Real Inertia of the Triaxial Testbed

To determine the actual inertia in kg-m?/rad?, test masses are added at known distances from
the rotational axis. Let AJ, J' and J” denote the change in inertia, the scaled inertia and the scaled

inertia from an experiment with added test masses, respectively. Hence

Kgyr
J"'=(J+ AJ) Kgfy 2, (19)
an
and the inertia in kg-m?/rad? is given by
—J'AJ



45

0 I I I I
0 50 100 150 200

Time [sec]

Figure 13: Simulated Scaled Inertia Estimate with Inverted Actuator Nonlinearity
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Figure 14: Experimental Angular Velocity Error with Inverted Actuator Nonlinearity
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Figure 16: Experimental Control Signal with Inverted Actuator Nonlinearity
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A total mass of 5.11 kg is added to the two square mounting plates of the testbed, each at a
distance of 0.75 m from the rotational axis. Hence, AJ = 2.87 kg-m?/rad?. Since the scaled inertia
estimate J" is about 39.6 sec, the real moment of inertia is found to be J = 66.6 kg-m?/rad? using

equation (20).

5 Approximate Feedback Linearization

5.1 Preliminary Analysis

The single degree of freedom spacecraft dynamics with nonlinear actuation is modeled by

W= %h(u), (21)

where w is the spacecraft angular velocity, u is the control signal, J is the moment of inertia, and
h: R — R is an unknown one-to-one nonlinear input mapping. With these definitions, the torque

applied to the spacecraft axis is 7 = h(u).

Let A : R — R be a one-to-one approximation of h with inverse h~!. For example, h may denote
the inverted piecewise linear approximation of the cubic nonlinear fit of h as shown in Figure 11. An

approximately linearizing feedback control law is then given by
wu=h"Yv), or wv=h(u). (22)

Define A : R — R by

so that A(h™1(v)) = h(h~(v)) — v and 7 = h(u) = A(u) + v. Then

b= Zh(h ) = S+ AG @) (24)
Now choose v = v, — v, so that
o = Log + A (0)) = v, (25)

J

Here v, is the torque specified by the adaptive algorithm (4),(5) for the system (1), and v, is the
torque used to cancel A(h~1(v)).

5.2 Adaptive Feedback Linearization Control

Assumption 5.1 There exists a known function o: R — R! and an unknown vector M € R'
such that, for all v € R,
A(h™(v)) = MTo(v). (26)

18



Using (26), (24) can be written as
.1 T
w= j[va + M o(v) — v (27)

To approximately cancel MTo(v) in (25) we use an estimate of MTo(v) given by v, = MTo(v),

where M is an estimate of M. Hence, from (27) we have

.1 .
w= j[v“ + (M — M)To(v)).

The vector M is updated according to the adaptation law
M = Gao(v), (28)

where G € RY¥! is a positive-definite adaptation gain matrix. Defining the error M £ M — M, (28)
can be written as

M = Goo(v). (29)

5.3 Stability Analysis

Theorem 2. Assume that v(t) is C1, © is bounded, and o(v) is bounded for all v € R. Let
k > 0. Consider the system (21), the control (22) and the adaptation law (3), (4) and (28). Then J

and M are bounded and @& — 0 as t — oo.

Proof. From (25), we have & = —v + Llva + A(h~'(v)) — v]. Since v, = —k& + ©J and
A(h~1(v)) — v, = MTo(v), we obtain

. 1 ~ ~
© o= Sl-ko+v] - M7 o(v)], (30)
J = —qd, (31)
M = Gioov), (32)
where v is the solution of the equation v + MT o (v) = —k& + iJ.

Next, consider the radially unbounded, positive-definite Lyapunov candidate

~ J 1~ 1- ~
Vg, J,M) =&+ —J2+-M*G™'M. 33
(@,7.00) = 55" + 5 T 4 5 (33)
Then along the trajectories of the system,

. ~ ~ . 1-= ~ B
V(©,J, M) = Joi + aJJ + MG M. (34)

Substituting (30), (31) and (32) into (34), we obtain
V(w,J,M)=—k&?* <O0.

19



Hence, V (&(t), J(t), M(t)) < V((0),J(0), M(0)) for all ¢ > 0. Since V is radially unbounded, it

,J
follows that @, J, M are bounded.
To show that & — 0 as ¢ — oo, we need only show that V is uniformly continuous with respect

to time along the state trajectories. To see this, notice that along the state trajectories,

.= - 2k _ - .z 7

V@, J, M) = —7w( k@4 M a(v)).
Since @, J, M, i, and o(v) are bounded, V (&(t), J(t), M(t),t) is bounded. Hence, V is uniformly
continuous with respect to time along the state trajectories. Consequently, it follows from Theorem

5.4 of [12] that @ — 0 as t — oo. O
The following result presents a method for identifying the inertia J and the coefficients M.

Proposition 3. Consider the system (21). Assume that & > 0, v(t) is C, v(t) and ©(t) are
bounded, periodic with period T, but not constant, and o(v) is bounded for all v € R. Let v(t) satisfy
v(t) + MTo(v(t)) = ©(t)J, where J € R and M € R'. Furthermore, assume that, for all positive
integers k, there exist [+1 time instants t1,ts, ..., ¢4 satisfying kT < t; <ty < ... < t;y1 < (k+1)T
such that the (I + 1) x (I 4+ 1) matrix

(t1) v(te) - (ti)
—o(v(t1)) —o(v(t)) -+ —o(v(tit1))

is nonsingular for all J # 0 and all M € R'. Then, under the adaptive control law (3), (4) and (28),
J— Jand M — M as t — co.

Proof. Consider the Lyapunov function V defined by (33) and V defined by (34). Let E £
V-10) = {(@,J,M) : @ = 0}, and let M be the largest invariant set in E. Consider a solution
(@,J, M) in M. Since @ = 0, it follows from (31)-(32) that J = 0 and M = 0. Therefore, J, M, and

hence J, M, are constant. Moreover, @ = 0 implies @ = 0. By (30), this leads to
v(t)J — MTo(v(t)) =0, (35)
where v(t) satisfies v(t) + MTo(v(t)) = (t)J, and J, M are constant.
We now show that J cannot be zero. In fact, if J = 0, then J = —J # 0 and v satisfies
v + MTo(v) = 0, which implies that v is constant. Hence, (35) implies —&(t)J — MTo(v) = 0.

Note that MTo(v) is constant, but #(¢t)J # 0 and is time varying. This leads to a contradiction.

Consequently, it is sufficient to consider the case J # 0.
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Figure 17: Simulated Angular Velocity Error & with Adaptive Feedback Linearization

In any period, we can write (35) at the time instants 1, ts,...,#;; in the matrix form
- - v(ty U(to s v(t;
[J MT} (t1) (t2) (ti1) :[00'_'0_
—o(v(t1)) —o(v(tz)) -+ —o(v(tit1))
P
Since P is nonsingular for all J # 0 and all M, it follows that J =0and M =0 as required. U

5.4 Example and Simulation

In this example, we assume J = 1 and h(u) = 0.2u*, h(u) = u and we choose 11 spline functions
for o. The control signal is selected as v(t) = sin0.25¢, and the control parameters in the adaptive
control law are

k= 1, q:4.8, G:80111><11.

The simulation results are shown in Figures 17-18. It is clear that & converges to zero and J is
bounded as expected. For comparison, we show the angular velocity error @ and the estimated
inertia J without the adaptive law in Figures 19 and 20. It can be seen that the adaptive law

improves responses of the angular velocity tracking and inertia identification.

6 Conclusions

An adaptive feedback control algorithm has been developed to provide global tracking of com-
manded spacecraft angular velocity signals. The algorithm assumes no knowledge of the inertia of

the spacecraft and is thus unconditionally robust with respect to this parametric uncertainty. It
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Figure 18: Simulated Estimated Inertia J with Adaptive Feedback Linearization
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Figure 19: Simulated Angular Velocity Error & without Adaptive Feedback Linearization
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Figure 20: Simulated Estimated Inertia J without Adaptive Feedback Linearization

was shown using a Lyapunov argument that the angular velocity tracking error converges to zero.
Furthermore, the control algorithm was used to identify the spacecraft inertia matrix when the com-
manded spacecraft angular velocity signals were continuously differentiable and periodic. Numerical

simulations demonstrate tracking and identification of the inertia matrix under such periodic signals.

The one-degree-of-freedom adaptive control algorithm has been implemented on a triaxial at-
titude control testbed. Experimental results are found to be consistent with simulations. Angular
velocity tracking is achieved for constant and sinusoidal signals. Inertia estimates are obtained using
the adaptive controller, using sinusoidal commands. An actuator nonlinearity is identified and its
effects studied. A piecewise linear approximation of this nonlinearity was inverted and this inverse
was found to improve angular velocity tracking by 37.5 percent and inertia identification by 33.3

percent for sinusoidal commands on the testbed.

Finally, an approximate feedback linearization technique was developed, and Lyapunov stability
analysis carried out to demonstrate ultimate boundedness of the angular velocity error and inertia

estimate error. The focus of current work is in testing and implementation of this technique.
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