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Abstract
Given a system with an uncontrollable linearization at the origin,

we study the relationship between local accessibility and invariants of
a nonlinear system. Simple sufficient conditions in terms of invariants
are proved for local accessibility of systems with an uncontrollable
mode. Necessary conditions of local accessibility are also proved for
systems with a convergent normal form. The result proved in this
paper is an application of invariants of nonlinear control systems, in
addition to the applications to bifurcation control, controllability, and
symmetry of nonlinear systems.
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1 Introduction

Invariants of nonlinear systems are numbers associated with homogeneous
nonlinear terms in a control system. Invariants of any degree of a control
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system cannot be changed by any homogeneous change of coordinates and
feedback of the same degree. It was proved that invariants can be used to
characterize qualitative nonlinear properties of a control system, such as bi-
furcation of equilibrium set, periodic solutions associated with Hopf bifurca-
tion, and controllability. In this paper, we study the relationship between in-
variants and local accessibility of systems with a single uncontrollable mode.
It is proved that a linearly uncontrollable system is locally accessible if an
invariant in the system is nonzero. The same condition is also necessary if
the system and its normal form are both analytic.

This paper is organized as follows. In Section 2, existing results on nor-
mal forms and invariants are briefly introduced without proof. In Section
3, the local accessibility of nonlinear systems is addressed. Results on both
sufficient and necessary conditions based on invariants for local accessibility
are introduced and proved. In Section 4, related results on necessary and
sufficient conditions based on invariants for local controllability and stabiliz-
ability are introduced.

2 Normal Forms of Nonlinear Systems

Normal form is the tool used to prove the main theorem. In this section,
normal form of nonlinear systems is introduced without proof. Details can
be found in [11], [14] and [21]. In this paper, we consider a nonlinear system
with a single input in the following form

ẋ = f(x, u) (2.1)

where x ∈ �n is the state variable, and u ∈ � is the control input. f :
�n+1 → �n is assumed to be Ck for sufficiently large k.

Definition 1 A point xe ∈ �n is an equilibrium or equilibrium point of (2.1)
if and only if ∃ ue ∈ � so that

f(xe, ue) = 0. (2.2)

System (2.1) is said to be linearly controllable at (xe, ue) if its linearization

˙̄x = F x̄ + Gu (2.3)

is controllable where

F =
∂f(x, u)

∂x

∣∣∣
(xe,ue)

, G =
∂f(x, u)

∂u

∣∣∣
(xe,ue)

.
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Without loss of generality, we assume f(0, 0) = 0.

Assumption 1 We assume that f(x, u) is Ck for sufficiently large k. We
also assume that the linearization (F, G) at the origin xe = 0 has one uncon-
trollable mode with eigenvalue λ �= 0.

From Assumption 1, we adopt the following normal form for the lineariza-
tion at xe = 0,

F =




λ 0 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
· · · · · · · ·
0 0 0 0 · · · 1
0 0 0 0 · · · 0




G =




0
0
0
...
0
1




(2.4)

If the original linearization is not in this form, it is well known that it can be
transformed to (2.4) by a linear change of coordinates and linear feedback.
With the linearization (2.4), the nonlinear control system is in the following
form,

ż = λz + f
[2+]
1 (z, x, u)

ẋ1 = x2 + f
[2+]
2,1 (z, x, u)

ẋ2 = x3 + f
[2+]
2,2 (z, x, u)

...

ẋn−1 = u + f
[2+]
2,n−1(z, x, u)

(2.5)

where the superscript in f
[2+]
1 (z, x, u) implies that the Taylor expansion of

the function f1 starts with quadratic or higher degree terms. Or equivalently,

f
[2+]
1 (0, 0, 0) = 0,

∂f
[2+]
1

∂(z, x, u)
(0, 0, 0) = 0 (2.6)

The definition of the superscripts in f
[2+]
2,j is similar.

To find the normal form for the nonlinear part of the system, we use
nonlinear transformations of higher degrees. According to [14] and [21], a
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transformation consists of the following change of coordinates and feedback

[
z̃
x̃

]
=

[
z
x

]
−

d∑
k=2

[
φ

[k]
1 (z, x)

φ
[k]
2 (z, x)

]

ũ = u −
d∑

k=2

α[k](z, x, u)

(2.7)

where φ
[k]
1 and α[k] are homogeneous polynomials of degree k in its arguments,

φ
[k]
2 is a n−1-dimensional vector whose entries are homogeneous polynomials

of degree k. The highest degree d is selected to be large enough so that ade-
quate information about the local performance of a system can be extracted
from the Taylor expansion. It was proved in [11], [14] and [21] that there
exists a transformation under which the system (2.5) can be transformed to

ż = λz +
n∑

j=1

x2
jQj(z, x̄j) + x1S(z) + O(z, x, u)d+1

ẋ1 = x2 +
n∑

j=3

x2
jP1j(z, x̄j) + O(z, x, u)d+1

ẋ2 = x3 +

n∑
j=4

x2
jP2j(z, x̄j) + O(z, x, u)d+1

...

ẋi = xi+1 +

n∑
j=i+2

x2
jPij(z, x̄j) + O(z, x, u)d+1

...
ẋn−2 = xn−1 + x2

nPn−2,n(z, x̄n) + O(z, x, u)d+1

ẋn−1 = u + O(z, x, u)d+1

(2.8)

where x̄j = (x1, x2, . . . , xj)
T (we also denote x̄n−1 = x and x̄1 = x1), and

Qj(z, x̄j) = Q
[0]
j + Q

[1]
j (z, x̄j) + · · ·+ Q

[d−2]
j (z, x̄j)

S(z) = S [1](z) + S [2](z) + · · ·+ S [d−1](z)

Pij(z, x̄j) = P
[0]
ij + P

[1]
ij (z, x̄j) + · · ·+ P

[d−2]
ij (z, x̄j).

(2.9)
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Once again, the variable xn in (2.8) represents the control input u. To sim-
plify the notation, we use (z, x) and u instead of (z̃, x̃) and ũ as the state
variable and the input in the normal form. According to [10], the computa-
tion of the normal form for a given system is equivalent to solving systems of
linear algebraic equations. So, there is no fundamental obstacle toward the
computation of the normal form. Therefore, the computation of the normal
form can be carried out using the software equipped with linear algebraic
equation solvers such as MAPLE, Mathematica, and Matlab.

Given a normal form up to degree k − 1, the coefficients in the normal
form of degree k can be computed by Lie bracket between the vector fields
in the control system. It can be proved that these Lie bracket formulae are
invariant under transformation of degree k. Therefore, the coefficients, Q

[k]
j ,

S [k](z), and P
[k]
ij are called invariants of degree k (see [11] and [14]).

3 Local Accessibility

Controllability and accessibility are fundamental properties of nonlinear con-
trol systems. It is proved that the accessibility of a control system is closely
related to the dimension of the accessibility distribution. However, for sys-
tems with uncontrollable linearization, the computation of the dimension of
the accessibility distribution is not straightforward, if it is possible. In this
section, we prove a simple relationship between the normal form and its local
accessibility for systems with a single nonzero uncontrollable mode. Based
on this result, it is easy to check the local accessibility for systems in normal
form.

In this section we consider affine systems of the following form

Σ : ẋ = f(x) + g(x)u, x(·) ∈ �n, u(·) ∈ U , (3.1)

where U is the space of piecewise continuous functions also called admissible
inputs. The vector fields f and g are either smooth or analytic or of class
Ck for sufficiently large k. Given a state x0. Let V be a neighborhood of
x0. From [17], we denote RV (x0, T ) the reachable set from x0 at time T > 0,
following trajectories which remain for t ≤ T in V , and denote

RV
T (x0) = ∪τ≤T RV (x0, τ).
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Definition 3.1 ([17]). The system Σ is locally accessible from x0 if RV
T (x0)

contains a non-empty open set of �n for all neighborhood V of x0 and all
T > 0.

Denote by C the smallest Lie algebra of vector fields on �n containing f
and g. Let ∆ be the involutive distribution generated by C, that is,

∆(x) = span {X(x), X ∈ C} for any x ∈ M.

It is well-known that Σ is locally accessible from x0 if dim∆(x0) = n.
In the following, we assume that (3.1) is in the normal form defined by

(2.8). Because (3.1) is affine in control, xn do not appear in the nonlinear
part of (2.8) (see [11]). In this section, the nonlinear normal form of degree
less than or equal to m0 is used, where m0 is an integer to be specified later.
Thus, (3.1) has the following form,

ż = f1(z, x) + g1(z, x)u = λz +

m0∑
m=0

f
[m]
1 (z, x) + O(z, x, u)m0+1

ẋ = f2(z, x) + g2(z, x)u = Ax + Bu +

m0∑
m=0

f
[m]
2 (z, x) + O(z, x, u)m0+1,

(3.2)
where

f
[m]
1 (z, x) =

n−1∑
j=1

x2
jQ

[m−2]
j (z, x̄j) + x1S

[m−1](z)

f
[m]
2,i (z, x) =

n−1∑
j=i+2

x2
jP

[m−2]
i,j (z, x̄j).

for m ≥ 2 and 1 ≤ i ≤ n − 3.

Theorem 3.1 The system (3.1) is locally accessible at the origin if its nor-
mal form (3.2) satisfies

f
[m]
1 (0, x) �= 0 (3.3)

for some positive integer m ≥ 2.

Condition (3.3) is equivalent to the condition

Q
[m−2]
j (0, x̄) �= 0
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for some positive integer m ≥ 2 and 1 ≤ j ≤ n − 1. From the normal
form (3.2), the condition (3.3) is equivalent to the existence of nonnegative
integers i1, · · · , in, with i1 + · · ·+ in ≥ 2, such that

∂i1+···+inf1

∂xi1
1 · · ·∂xin

n

(0, 0) �= 0. (3.4)

Let m0 = i1 + i2 + · · ·+ in be the smallest positive integer that satisfies the
condition (3.4). Following differential geometry, the vector fields f and g are
also denoted by

f(z, x) = f1(z, x)
∂

∂z
+

∂

∂x
· f2(z, x)

g(z, x) = g1(z, x)
∂

∂z
+

∂

∂x
· g2(z, x),

where
∂

∂x
=

[
∂

∂x1

∂

∂x2
, · · · , ∂

∂xn−1

]
.

In f
[m0]
1 (z, x), the terms independent of z form a new function, denoted by

f
[m]
1 (x), i.e.,

f
[m]
1 (x) = f

[m]
1 (z, x)|z=0.

Let Ox(z) be any function of (z, x) satisfying Ox(0) = 0. Then, the function
f1(z, x) has the following form

f1(z, x) = f
[m0]
1 (x) + Ox(z) + O(z, x)m0+1. (3.5)

Because

f
[m0]
1 (x) =

n−1∑
j=1

x2
jQ

[m0−2]
j (0, x̄j) �= 0,

let s be the largest positive integer so that Q
[m0−2]
s (0, x̄j) �= 0. Therefore,

∂f
[m0]
1 (x)

∂xj

= 0, if j > s. (3.6)

To prove Theorem 3.1, we must derive the formulae for the vectors adk
f(g).

Given

f = (f
[m0]
1 (x) + Ox(z) + O(z, x)m0+1)

∂

∂z
+

∂

∂x
· (Ax + O(z, x)2)

g =
∂

∂xn−1
+ O(z, x)m0+1 ∂

∂z
+

∂

∂x
· O(z, x)m0+1

(3.7)
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and the equation (3.6), it is straightforward to prove the following equation

(−1)adf(g)
= [g, f ]

= (Ox(z) + O(z, x)m0)
∂

∂z
+

∂

∂xn−2
+

∂

∂x
· O(z, x)

(3.8)

if s < n − 1. Once again, based on (3.8) and (3.6), it can be proved that

ad2
f(g)

= [−adf (g), f ]

= (Ox(z) + O(z, x)m0)
∂

∂z
+

∂

∂xn−3
+

∂

∂x
· O(z, x)

provided s < n − 2. In general, if k < n − s, we have

(−1)kadk
f(g)

= (Ox(z) + O(z, x)m0)
∂

∂z
+

∂

∂xn−k−1
+

∂

∂x
· O(z, x), for k < n − s.

(3.9)

When k = n − s − 1, the vector field adn−s−1
f (g) has a term

∂

∂xs

. By the

definition of s,

∂f
[m0]
1 (x)

∂xs
�= 0.

Therefore, if k = n − s, we have

(−1)n−sadn−s
f (g)

= (
∂f

[m0]
1 (x)

∂xs
+ Ox(z) + O(z, x)m0)

∂

∂z
+

∂

∂xs−1
+

∂

∂x
· O(z, x).

(3.10)

In general, for any positive integer k satisfying n − 2 > k > n − s,

(−1)kadk
f(g)

= (O(x)[m0−1] + Ox(z) + O(z, x)m0)
∂

∂z
+

∂

∂xn−k−1
+

∂

∂x
· O(z, x).

(3.11)
The formula of the vector field adk

f(g) is summarized in the following lemma.
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Lemma 3.1 Define the vector fields hk = (−1)kadk
f(g), for k = 1, 2, · · · , n−

2, then

hk = (−1)kadk
f(g)

= (Ox(z) + O(z, x)m0)
∂

∂z
+

∂

∂xn−k−1
+

∂

∂x
· O(z, x), k < n − s,

hn−s = (−1)n−sadn−s
f (g)

= (
∂f

[m0]
1 (x)

∂xs
+ Ox(z) + O(z, x)m0)

∂

∂z
+

∂

∂xs−1
+

∂

∂x
· O(z, x),

hk = (−1)kadk
f(g)

= (O(x)m0−1 + Ox(z) + O(z, x)m0)
∂

∂z
+

∂

∂xn−k−1
+

∂

∂x
· O(z, x), k > n − s.

(3.12)

Proof of Theorem 3.1. Define the vector field f̂ by the following equation,

f̂ = [hn−s−1, hn−s]
= [(−1)n−s−1adn−s−1

f (g), (−1)n−sadn−s
f (g)].

(3.13)

From Lemma 3.1, we have

f̂ = (
∂2f

[m0]
1 (x)

∂x2
s

+ Ox(z) + O(z, x)m0−1)
∂

∂z
+

∂

∂x
· V (z, x), (3.14)

where V (z, x) is any vector field, which is not important for the derivation
that follows. Suppose i1, i2, · · · , is is a sequence of nonnegative integers so
that i1 + i2 + · · ·+ is = m0 and

∂m0f
[m0]
1 (x)

∂xi1
1 ∂xi2

2 · · ·∂xis
s

�= 0. (3.15)

From the definition of m0 and the structure of normal form, we know that the
sequence {i1, i2, · · · , is} exists and is ≥ 2. From Lemma 3.1 and the equation
(3.14), it is straightforward to derive the following equation,

adhn−j−1
(f̂)

= [(−1)n−j−1adn−j−1
f (g), f̂ ]

= (
∂3f

[m0]
1 (x)

∂xj∂x2
s

+ Ox(z) + O(z, x)m0−2)
∂

∂z
+

∂

∂x
· V (z, x),

(3.16)
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where V (z, x) is any vector field. It is a different function from the vector V
in (3.14). However, because its value is not important for the derivation, we
keep the same notation, V , for the reason of simplicity.

In general, we have

adi1
hn−2

(adi2
hn−3

(· · · (adis−2
hn−s−1

(f̂)) · · ·))
= (

∂m0f
[m0]
1 (x)

∂xi1
1 ∂xi2

2 · · ·∂xis
s

+ Ox(z) + O(z, x)m0)
∂

∂z
+

∂

∂x
· V (z, x),

(3.17)

Denote this vector by hn−1. At the origin (z, x) = (0, 0), the vectors hn−1,
hn−2, · · ·, h1, and g are

∂m0f
[m0]
1 (x)

∂xi1
1 ∂xi2

2 · · ·∂xis
s

∂

∂z
+

∂

∂x
· V (0, 0),

∂

∂x1
,

∂

∂x2
, · · · , ∂

∂xn−1
,

respectively. From (3.15) and the definition of hk, the dimension of the
distribution ∆ is n at the origin. therefore, the system is locally accessible
from (z, x) = (0, 0). ✷

The following remark is a partially converse result of Theorem 3.1.
Remark. Given a system in the form of

ż = f1(z, x)
ẋ = Ax + Bu + O(z, x)2.

(3.18)

Suppose
f1(z, x)|z=0 = 0.

Then the system (3.18) is not locally accessible from the origin. &

The proof of the remark is straightforward. If the initial condition satisfies
z = 0, then the trajectory, (z(t), x(t)), of the system satisfies z(t) = 0 for all
t ≥ 0. Therefore, RV

T (0, 0) is a subset of the subspace {(z, x)|z = 0}, which
does not contain an open set of �n. Therefore, the system is not locally
accessible from the origin.

As we know that the normal form (3.2) will have the form of (3.18) if we
let m → ∞. In this case, the normal form is a series with infinite number
of terms. The result in the remark can be considered as a converse result
of Theorem 3.1 only for analytic systems whose normal form is a convergent
formal series.

10



As an illustrative example, let us consider the following system

ż = z + a01x1z + (a12x1 + a22x2)x
2
2

ẋ1 = x2 + x2
3

ẋ2 = x3

ẋ3 = u.

In this example m0 = 3 and the integer s = 2. If a2
12 + a2

22 �= 0, then (3.3)
is satisfied for m = 3. Therefore, the system must be locally accessible from
the origin, although the system is not linearly controllable at the origin.

4 Conclusion

Given a system with an uncontrollable linearization at the origin, we study
the relationship between local accessibility and invariants of a nonlinear sys-
tem. Simple sufficient conditions in terms of invariants are proved for local
accessibility of systems with an uncontrollable mode. Necessary conditions
of local accessibility are also proved for systems with a convergent normal
form. The result proved in this paper is an application of invariants of non-
linear control systems, in addition to the applications to bifurcation control,
controllability, and symmetry of nonlinear systems.

References

[1] V. I. Arnol’d. Geometrical Methods in the Theory of Ordinary Differential
Equations. Springer-Verlag, Berlin, 1988.

[2] D. E. Chang, W. Kang, and A. J. Krener. Normal forms and bifurca-
tions of control systems. Proc. of 39th IEEE Conference on Decision and
Control, Sydney, pp. 1602-1607, 2000.

[3] J. Carr. Applications of Centre Manifold Theory. Springer-Verlag, 1981.

[4] S. Celikovsky and E. Aranda-Bricaire, Constructive nonsmooth stabiliza-
tion of triangular systems, Syst. Control Lett., vol. 36, pp. 21-37, 1999.

[5] J. M. Coron and L. Praly, Adding an integrator for the stabilization
problem, Syst. Control Lett., vol. 17, pp. 89-104, 1991.

11



[6] W. P. Dayawansa, C. F. Martin, and G. Knowles, Asymptotic stabi-
lization of a class of smooth two dimensional systems, SIAM J. Control
Optim., vol. 28, pp. 1321-1349, 1990.

[7] B. Hamzi, J.-P. Barbot, S. Monaco, and D. Normand-Cyrot (2001). Non-
linear Discrete-Time Control of Systems with a Naimark-Sacker Bifurca-
tion, Systems and Control Letters, 44, 4, pp. 245-258.

[8] H. Hermes, Homogeneous coordinates and continuous asymptotically sta-
bilizing feedback controls, in Differential Equations: Stability and Con-
trol, S. Elaydi, Ed. New York: Marcel Dekker, 1991, pp. 249-260.

[9] A. Isidori, Nonlinear Control Systems, 3rd edition, Springer-Verlag Lon-
don, 1995.

[10] W. Kang. Extended controller form and invariant of nonlinear systems
with a single input. Journal of Mathematical Systems, Estimation, and
Control, 6, pp. 27-51, 1996.

[11] W. Kang. Bifurcation and normal form of nonlinear control systems,
Part I and II. SIAM J. Control and Optimization, 1(36), 1998, pages
193-212 and 213-232.

[12] W. Kang. Bifurcation control via state feedback for systems with a single
uncontrollable mode. SIAM J. Control and Optimization, 38, (2000),
1428-1452.

[13] W. Kang and A. J. Krener. Extended quadratic controller normal form
and dynamic feedback linearization of nonlinear systems. SIAM J. Con-
trol and Optimization, 30, pp. 1319-1337, 1992.

[14] A. J. Krener, W. Kang, and D. E. Chang. Control bifurcations. IEEE
TAC, to appear.

[15] M. Kawski, Homogeneous stabilizing feedback laws, Control Theory Adv.
Technol., vol. 6, pp. 497-516, 1990.

[16] C. Qian and W. Lin, A continuous feedback approach to global strong
stabilization of nonlinear systems, IEEE Transactions on Automatic Con-
trol, Vol. 46, No. 7, pp. 1061-1079, 2001.

12



[17] H. Nijmeijer and A. J. Van der Schaft, Nonlinear Dynamical Control
Systems, Springer-Verlag New York, 1990.

[18] L. Rosier, Homogeneous Lyapunov function for homogeneous continuous
vector field, Syst. Control Lett., vol. 19, pp. 467-473, 1992.

[19] E. D. Sontag, Feedback stabilization of nonlinear systems, in Robust
Control of Linear Systems and Nonlinear Control, M. K. Kaashoek et
al., Eds. Boston, MA: Birkhäuser, 1990, pp. 61-81.

[20] I. A. Tall and W. Respondek. Feedback Classification of Nonlinear
Single-Input Control Systems with Controllable Linearization: Normal
Forms, Canonical Forms, and Invariants. To appear in SIAM J. Control
and Optimization.

[21] I. A. Tall and W. Respondek. Normal Forms and Invariants of Nonlinear
Single-Input Nonlinear Systems with Noncontrollable Linearization. Proc.
of the 5th IFAC Nonlinear Control Systems Design Symposium, Saint-
Petersburg, Russia, 2001.

[22] J. Zabzcyk, Mathematical Control Theory: An Introduction, SCFA,
Birkhauser, 1992.

13


