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Abstract

The aim of this work is to use the methods of geo-
metric nonlinear control theory for studying control-
lability of the Galerkin approximation of the Navier-
Stokes equation, controlled by degenerate (in few low
modes) forcing.
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1 Introduction and preliminary
material

We study 2- and 3- dimensional Navier-Stokes equa-
tion with a controlled (nonrandom) forcing

∂u/∂t + (u · ∇)u +∇p = ν∆u + F, (1)
∇ · u = 0 (2)

We assume the boundary conditions to be periodic,
this means that u(t, ·), p(t, ·) and F (t, ·) are defined
on a 2 or 3-dimensional torus Tk, k = 2, 3.

1.1 3D Navier-Stokes Equation

Consider the 3-dimensional Navier-Stokes equation
(1)-(2).

To reduce this equation to an infinite-dimensional
system of ordinary differential equations we will use
”spectral algorithm” ([8]) invoking Fourier expan-
sion of solution u(t, x) with respect to the basis of
eigenvectors (eigenfunctions) of the Laplacian oper-
ator on T3: u(x, t) =

∑
k q

k
(t)eik·x. Here k is a 3-

dimensional vector with integer components and q
k

is vector-valued function. For u to satisfy the incom-
pressibility condition the coefficients q

k
have to be

orthogonal to respective k : q
k
· k = 0. Similarly
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we introduce the expansions for the pressure and the
forcing:

p(x, t) =
∑

k

p
k
(t)eik·x, F (x, t) =

∑
k

vk(t)eik·x.

We assume that the forcing has zero average (v0 ≡
0) and then changing the reference frame (to the one
uniformly moving with the center of mass) we may
assume

∫
u dx = 0 and therefore q

0
= 0. It is known

that the pressure term can be separated from equa-
tions for q

k
which take form of ODE:

q̇
k

= −i
∑

m+n=k

(q
m
· n)Πkq

n
−

−ν|k|2q
k
(t) + vk(t). (3)

Here Πk stays for the orthogonal projection of R3 onto
the plane k⊥ orthogonal to k. Formally we should
also take the projection Πkvk(t) of the forcing, but
the k-directed component of vk can be taken into ac-
count by the pressure term.

Since u(x, t), F (x, t) are real-valued we have to as-
sume that q

k
= q̄−k

, vk = v̄−k.
Important: in the equations (6) and (7) there is

infinite number of terms under the summation sign
and the components of Q enter these equations for
the observed coordinates.

1.2 2D Navier-Stokes Equation

In the 2D case the reduction to the ODE form is
easier. Introducing the vorticity w = ∇⊥ · u =
∂u2/∂x1 − ∂u1/∂x2 and applying the operator ∇⊥

to the equation (1) we arrive to

∂w/∂t + (u · ∇)w = ν∆w + df/dt, (4)

where f = ∇⊥ · F .
Remark that: i) ∇⊥ · ∇p = 0, ii) ∇⊥ and ∆ com-

mute as long as both are differential operators with
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constant coefficients; iii) ∇⊥ · (u · ∇)u = (u · ∇)(∇⊥ ·
u) + (∇⊥ · u)(∇ · u) = (u · ∇)w, for each u satisfying
(2).

It is known that u satisfying (2) can be recov-
ered in unique way (up to an additive constant) from
w. From now on we will deal with the equation
(4). Introduce again the Fourier expansion w(t, x) =∑

k qk(t)eikx, f(t, x) =
∑

k vk(t)eikx. As far as w and
v are real-valued, we get w̄n = w−n, v̄n = v−n. We
assume w0 = 0, v0 = 0.

Then ∂w/∂t =
∑

k q̇k(t)eikx and after computing
(u·∇)w we arrive to the (infinite-dimensional) system
of equations for qk(k ∈ Z2):

q̇k(t) = (5)

=
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk(t) + vk(t).

2 Navier-Stokes equation con-
trolled by a degenerate forc-
ing. Problem setting

From now on we assume the forcing terms vk in (3)
and vk in (5) to be controls at our disposal. Then (3)
and (5) can be seen as infinite-dimensional control
systems. We are going to study their controllability
properties.

We will be specifically interested in the case where
the controlled forcing is degenerate. This means that
all but few vk vanish identically, while these few
can be chosen freely. From now on we fix a set of
controlled modes K1 ⊂ Zj , j = 2, 3 and assume
vk ≡ 0, ∀k 6∈ K1.

Further on we follow the dynamics of selected or ob-
served modes indexed by a finite set Kobs. We assume
Kobs ⊃ K1 and as we will see nontrivial controllability
issues arise if K1 is a proper subset of Kobs. We iden-
tify the space of observed modes with RN and denote
by Πobs the operator of projection of solutions onto
the space RN .

We can represent the 2D NS equation, controlled
by degenerate forcing, in the following way:

q̇k(t) =
∑

m+n=k

(m ∧ n)|m|−2qmqn −

−ν|k|2qk(t) + v̇k(t), k ∈ K1, (6)

q̇k(t) =
∑

m+n=k

(m ∧ n)|m|−2qmqn

−ν|k|2qk(t), k ∈ Kobs \ K1, (7)
Q̇(t) = B2(q, Q; q, Q)− νA2Q. (8)

In the latter equation −νA2Q stays for the dis-
sipative term and B2(q, Q; q, Q) stays for nonlinear
(bilinear) term.

Analogously 3D NS equation, controlled by degen-
erate forcing, can be written in the form:

q̇
k

= −i
∑

m+n=k

(q
m
· n)Πkq

n
−

−ν|k|2q
k
(t) + vk(t), k ∈ K1, (9)

q̇
k

= −i
∑

m+n=k

(q
m
· n)Πkq

n
−

−ν|k|2q
k
(t), k ∈ Kobs \ K1, (10)

Q̇(t) = B3(q, Q; q, Q)− νA3Q, (11)

Let us introduce the Galerkin approximations of
the 2D and 3D Navier-Stokes systems projecting
these equations onto RN .

A simple way to see the Galerkin approximation
of the 2D (respectively 3D) Navier-Stokes equation is
just to eliminate the equation (8) (respectively (11))
and to put Q = 0 in (6)-(7) (resp. (9)-(10)). What
results from this are the systems (6)-(7) (resp. (9)-
(10)) under additional restriction on the modes:

k, m, n ∈ KG = Kobs. (12)

The systems (6)-(7)-(12) (resp. (9)-(10)-(12)) are
control systems for ODE in finite-dimensional space
of the observed modes.

Definition 2.1 The Galerkin approximation of 2D
(resp. 3D) Navier-Stokes equation is globally con-
trollable if for any two points q̃, q̂ in RN there exists
T > 0 and a control which steers in time ≤ T the solu-
tion of the system (6)-(7)-(12) (resp. (9)-(10)-(12))
from q̃ to q̂. The system is time-T globally control-
lable if one can choose T the same for all q̃, q̂, ϕ̃.

In the next section we formulate sufficient condi-
tions of global controllability for the Galerkin approx-
imations of 2D and 3D Navier-Stokes systems.

Another question we are interested in is: under
what conditions the NS equation is globally control-
lable in its observed component?

Definition 2.2 The (2D or 3D) Navier-Stokes equa-
tion is globally controllable in its observed compo-
nent if for any two points q̃, q̂ in RN and any
ϕ̃ ∈ (Πobs)−1(q̃) there exist T > 0 and a control
which steers in time ≤ T the solution of the con-
trolled Navier-Stokes equation from ϕ̃ to some ϕ̂ with
Πobs(ϕ̂) = q̂. The system is time-T globally control-
lable if one can choose T the same for all q̃, q̂, ϕ̃.
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This question is much more difficult because one
has to study finite-dimensional projection of an
infinite-dimensional dynamics.

We are able to prove that in 2D case the sufficient
controllability condition for the Galerkin approxima-
tion is also sufficient for controllability in observed
component of the (2D) Navier-Stokes equation.

3 Main results

The controllability criterion, we are going to formu-
late, is based on the evolution of the ”sets of excited
modes” Kj along the integer lattices Z2 or Z3 respec-
tively.

Definition 3.1 Let K1 be the set of forced modes.
Define the sequence of sets Kj ⊂ Zi, (i = 2 or 3; j =
2, . . .), as:

Kj = {m + n |
m,n ∈ Kj−1

∧
‖m‖ 6= ‖n‖

∧
m ∧ n 6= 0 } , (13)

Remark 3.2 The sets Kj are in general not disjoint.

Theorem 1 Let K1 be the set of controlled modes.
Define sequence of sets Kj , j = 2, . . . according to
the Definition 3.1 and assume that

⋃M
j=1Kj contains

all the modes:
⋃M

j=1Kj ⊃ KG = Kobs. Then for
any T > 0 the Galerkin approximations of the 2D
and 3D Navier-Stokes equations are time-T globally
controllable. �

Though there is an extensive literature regarding
controllability of the NS systems we are not aware
of any results on controllability by means of degener-
ate forcing. We would like to mention a publication
of Weinan E and J.C.Mattingly [7] on ergodicity of
Navier-Stokes system under degenerate forcing. From
the control-theoretic viewpoint in [7] bracket generat-
ing property for finite-dimensional Galerkin approxi-
mation of the corresponding control system is estab-
lished. This property guarantees accessibility prop-
erty, which is nonvoidness of the interior of attainable
set, but in general does not guarantee controllability.

Now we formulate the controllability-in-observed-
component criterion for 2D Navier-Stokes equation.

Theorem 2 Assume the conditions of the Theorem 1
to be fulfilled for a 2D Navier-Stokes system controlled
by degenerate forcing. Then this system is globally
controlled in observed component.

4 Sufficient sets of forcing
modes

We will call a set K1 of controlled forced modes suf-
ficient if it satisfies the controllability criterion es-
tablished by the Theorem 1, and moreover ∀R >

0 ∃j(R) ≥ 1 such that the union
⋃j(R)

j=1 Kj of the sets,
defined by the recurrent equation (13), contains the
R-cube in Z2 (resp. Z3). An example of sufficient set
is provided in the following Proposition.

Proposition 4.1 The subset K1 = {k| |kα| ≤
3}, α = 1, 2, (resp. α = 1, 2, 3,) of Z2 (resp. Z3)
is sufficient.

5 Tools from geometric nonlin-
ear control theory: controlla-
bility via reduction and com-
pletion

In this section we refer to some global controllability
criteria obtained in the scope of geometric nonlinear
control theory. We will be interested in criteria of
global controllability.

We treat a real-analytic nonlinear control system
ẋ = f(x, u), u ∈ U as a collection F of real-analytic
vector fields f(·, u) parameterized by u ∈ U . We will
employ measurable essentially bounded functions of
time as admissible controls.

Definition 5.1 A point x̃ is attainable from x̂ in
time T for the system ẋ = f(x, u) if there exists
an admissible control ũ(·) such that the corresponding
trajectory starting in x̂ at t = 0 exists on the interval
[0, T ] and attains x̃ at t = T . A point x̃ is attainable
from x̂ if it is attainable in some time T ≥ 0. The set
of points attainable from x̂ in time T is called time-
T attainable set from x̂ and denoted by AT

x̂ (F); the
set of points attainable from x̂ is called attainable set
from x̂ and denoted by Ax̂(F). We say that the sys-
tem is globally controllable from x̂ (in time T ) if its at-
tainable set Ax̂(F) (attainable set in time T AT

x̂ (F))
from x̂ coincides with the whole state space.

We describe (loosely following terminology of [10,
Ch. 3]) some methods of completion or extension or
saturation for control systems.

Definition 5.2 The family F ′ of real analytic vector
fields is an extension of F if F ′ ⊃ F and the closures
of the attainable sets AF (x̃) and AF ′(x̃) coincide.
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The inclusion AF (x̃) ⊂ AF ′(x̃) is obvious as is the
following

Lemma 5.3 If an extension F ′ of a system F is
globally controllable, then the attainable set Ax̃(F) of
the original system is dense in the state space.

The idea is to proceed with a series of extensions
of a control system in order to come at the end to a
system which is evidently controllable. It looks like
we only may conclude ”approximate controllability”,
which means that the closure of the attainable set
of the original system coincides with the whole state
space RN . In few moments we will indicate the con-
ditions under which the approximate controllability
implies controllability.

There are different ways of extension of a control
system; we refer to [10] and the references therein for
some of them. Here we will employ two methods:
the first one is classical and underlies the theory of
relaxed controls (see [9, 11]).

Let coF be the convex hull of F , i.e. the set of
vector fields of the form

∑m
i=1 βifi, fi ∈ F , βi ≥

0,
∑m

i=1 βi = 1, i = 1, . . . ,m.

Proposition 5.4 For the systems coF and F the
closures of their time-T attainable sets coincide. �

Another method arises from our previous work (see
[4]) where it was called reduction of a control-affine
system. Reduction sounds like something opposite to
extension, but in fact it is the state space not the
system which is reduced.

Consider control-affine nonlinear system:

q̇ = f(q) + G(q)v(t), q ∈ RN , v ∈ Rr, (14)

where G(q) =
(
g1(q), . . . , gr(q)

)
, and

f(q), g1(q), . . . , gr(q) are complete real-analytic
vector fields in RN ; v(t) = (v1(t), . . . , vr(t)) is the
control of the system.

The following result holds (see [2, 1] for the nota-
tion of chronological calculus used in its formulation):

Proposition 5.5 Assume that the vector fields
g1(q), . . . , gr(q) are mutually commuting:

[
gi, gj

]
=

0, ∀i, j. Then the flow of the system (14) can be rep-
resented as a composition of flows:

−→
exp

∫ t

0

(f(q) + G(q)v̇(τ)) dτ =

−→
exp

∫ t

0

ead(GV (τ))fdτ ◦ eGV (t), (15)

where V (t) =
∫ t

0
v(s)ds.

When studying the forced Navier-Stokes equa-
tion, we deal with constant controlled vector fields
g1, . . . , gr, for which the commutativity assumption
holds automatically. From the Proposition 5.5 and
the results of [4] it follows that one can reduce the
study of the system 14 to the study of the control
system

ẋ = ead(GV (τ))f(x), (16)

on the quotient space RN/G, where G is the lin-
ear span of the values of the constant vector fields
g1, . . . , gr.

The following result (see [4, Propositions 1 and 1’]),
based on the formula (15) will be instrumental in our
reasoning.

Proposition 5.6 Let πG be the canonical projection
of the quotient space RN → RN/G and Ared(πG(x̃) be
the attainable set of the reduced system (16). Then
the closures of the sets A(x̃) and π−1

G (Ared(πG(x̃)) in
RN coincide. �

One notices that the fact of system being control-
affine is important for the validity of the formula (15)
and therefore of the Proposition 5.6.

To eliminate the gap between almost controllability
of a system (meaning that the closure of the attain-
able set coincides with the state space RN ) and we
invoke the well known necessary condition of accessi-
bility which is a corollary of Nagano-Sussmann orbits
theorem (see [10, 3]).

Proposition 5.7 (Lie rank necessary condition)
The following condition is necessary for the real-
analytic system (14) to be globally controllable: the
Lie rank of the system of vector fields f, g1, . . . , gr

evaluated at each point x ∈ RN must be complete, i.e.
(iterated) Lie brackets of these vector fields evaluated
at x0 must span the whole RN .

Under this additional condition ”almost controlla-
bility” implies controllability (see [10, Ch.3, §1.1]).

Proposition 5.8 If a system satisfies the Lie rank
necessary condition holds at each point of the state
space RN and its attainable set is dense in RN , then
this attainable set coincides with RN . �

6 Reduction+convexification
for the controlled Navier-
Stokes equation

6.1 2D case

We shall use the reduction and the convexification
techniques surveyed in the previous section to estab-
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lish controllability.
Let us start with the reduction of the control-affine

system (6)-(7).
Consider the set K1 of controlled forcing modes.

The controlled vector fields gk = ∂/∂qk, k ∈ K1 are
constant. Due to it for any vector field Y (q) there
holds: ead(Vkgk)Y = Y (q + Vkek), where ek is the
(constant) value of gk. Passing to the quotient space
RN/G, where G = span{gk| k ∈ K1} means that we
can move freely along the directions ek, k ∈ K1.

In the case of (6)-(8) the ”drift” vector field f is
quadratic+linear:

f =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk.

Then the reduced system has form

q̇k = −ν|k|2 (qk + χ(k)Vk) + (17)

+
∑

m+n=k

m ∧ n

|m|2
(qm + χ(m)Vm) (qn + χ(n)Vn)

where χ(·) is the characteristic function of K1 : χ ≡ 1
on K1 and vanishes outside K1.

The right-hand side of the reduced system (17) is a
polynomial map with respect to (the components) of
V with coefficients depending on q. Let us represent
this polynomial map as V(V ) = V(0)+V(1)V +V(2)(V )
where V(0),V(1),V(2) are the free, the linear and
the quadratic terms respectively. Evidently V(0) is
the right-hand side of the projection of the unforced
Navier-Stokes equation onto the quotient space.

We are not able to apply again the reduction to
the system (17) as we would wish, because it is not
control-affine anymore. Still we will be able to extend
it and then extract from this extension a control-affine
subsystem which is similar to (6)-(8).

First we establish that certain constant vector fields
are contained in the image of the control-quadratic
term V(2).

Proposition 6.1 Let K(2) be the set of k ∈ Z2 for
which there exist m,n ∈ K such that m ∧ n 6=
0

∧
‖m‖ 6= ‖n‖

∧
m + n = k. Then the image

of V(2) contains all the vectors {±ek| k ∈ K(2)} from
the standard base. �

Proof. The projection of the vector-valued
quadratic form V(2)(V ) onto ek equals (see (17))
V(2)

k (V ) =
∑

m+n=k
m∧n
|m|2 χ(m)χ(n)VmVn. Grouping

the coefficients of VmVn and of VnVm we can rewrite
it as

V(2)
k (v) =

∑
m+n=k, ‖m‖<‖n‖, m,n∈K1

γmnVmVn. (18)

where γmn = (m ∧ n)
(

1
‖m‖2 −

1
‖n‖2

)
. Note that for

‖m‖ = ‖n‖ the corresponding coefficient γmn van-
ishes and the term VmVn is lacking in the sum.

If k 6∈ K(2) then there are no non-vanishing terms
in the expression for V(2)

k (V ), and hence V(2)
k ≡ 0. If

k ∈ K(2), let us pick any m,n ∈ K such that m+n = k
and (‖m‖ < ‖n‖). Construct two vectors V +, V − by
taking V ±

s = 0 for s 6= k
∧

s 6= m, and then taking
Vm = Vn = 1 for V + and Vm = −Vn = 1 for V −.

A direct calculation shows that

V(2)(V +) = −V(2)(V −) =
(m ∧ n)

(
|m|−2 − |n|−2

)
ek.

Corollary 6.2 The convex hull of the image of
V(1) + V(2) contains the (independent of q) linear
space E2 spanned by {ek| k ∈ K(2)}.

Proof. Indeed for each k ∈ K(2) there exists v such
that V(2)(V ) = ek, . Obviously V(2)(−V ) = ek, while
V(1)(V ) = −V(1)(−V ). Hence

1
2

((
V(1) + V(2)

)
(V ) +

(
V(1) + V(2)

)
(−V )

)
= ek.

Therefore we come to the conclusion of the corollary.
Therefore the convex hull of the right-hand side

(evaluated at q) of the reduced system (17) contains
the affine space V(0)(q) + E2. We consider this affine
space as the right-hand side (evaluated at q) of a new
control-affine system, which can be written as:

q̇k(t) =
∑

m+n=k

(m ∧ n)|m|−2qmqn −

−ν|k|2qk(t) + vk(t), k ∈ K2, (19)

q̇k(t) =
∑

m+n=k

(m ∧ n)|m|−2qmqn −

−ν|k|2qk(t), k ∈ Kobs \
(
K1

⋃
K2

)
. (20)

Recall that we can move freely in the directions
ek, k ∈ K1.

If the image of the attainable set of this latter sys-
tem under the canonical projection RN → RN/G co-
incides with RN/G or, in other words, the (linear)
sum of this attainable set with G coincides with RN ,
then according to the Proposition 5.6 the attainable
set the original system will be dense in the state space
and hence by Lemma 5.8 will coincide with the state
space.

Therefore we managed to reduce the study of con-
trollability of the system (6)-(8) to the study of a
similar system with smaller (reduced) state space.
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6.2 3D case.

We now consider the control system (9)-(11)

q̇
k

= −i
∑

m+n=k

(q
m
· n)Πkq

n
− ν|k|2q

k
(t) + vk(t),

with v(·) vanishing for k 6∈ K1.
We use the same techniques as in the 2-dimensional

case (see the previous section) to extend the set of
controlled modes along the integer lattice Z3. The
reasoning is the same as in 2D case.

7 Comments on the proofs of
the main results

For the lack of space we are not able to provide proofs;
let us just give some hints.

What for the controllability of the Galerkin approx-
imations then proofs for the 2D and the 3D cases
almost coincide. One proceeds by induction on M ,
where M is a number of sets Kj of modes appearing
in the formulation of the Theorem 1.

If M = 1 then controllability of the Galerkin ap-
proximation is almost trivial fact. Actually we are
not only able to attain arbitrary points but even to
design arbitrary Lipschitzian trajectories.

Assume that we have proven the statement for all
M ≤ M̄ − 1. Then the transfer to M = M̄ is ful-
filled by application of the arguments of the Subsec-
tions 6.1,6.2 and by application of the Proposition 5.8.

What for the proof of the Theorem 2 then one
has to proceed with the induction steps regarding
the complete (nontruncated) 2D NS system. This
requires rather heavy analytic estimates. The proof
will be presented in a forthcoming paper [5].

8 Acknowledgements

We would like to express our gratitude to S.B.Kuksin
for inspiring discussions on the subject.

References

[1] A.A.Agrachev, R.V.Gamkrelidze, A.V.Sarychev,
Local Invariants of Smooth Control Systems, Acta
Aplicandae Mathematica, v.14(1989),191-237.

[2] A.A.Agrachev, R.V.Gamkrelidze, Exponential
representation of flows and chronological calculus,
Math. USSR Sbornik, v. 35(1979), 727-785.

[3] A.A.Agrachev, Yu.L.Sachkov, Lectures on Geo-
metric Control Theory, SISSA, Trieste, 2001.

[4] A.A. Agrachev, A.V.Sarychev, On reduction of
smooth control system, Math. USSR Sbornik, v.
58(1987), 15-30.

[5] A.A.Agrachev, A.V.Sarychev, Navier-Stokes
Equation Controlled by Degenerate Forcing:
Approximate Controllability (in preparation).

[6] P.Constantin, C.Foias, Navier-Stokes equations,
The University of Chicago Press, 1989.

[7] W. E, J.C. Mattingly, Ergodicity for the Navier-
Stokes Equation with Degenerate Random Forc-
ing: Finite Dimensional approximation, Preprint,
2000.

[8] G.Gallavotti, Foundations of Fluid Mechanics,
Springer Verlag, Berlin, Heidelberg, 2002.

[9] R.V.Gamkrelidze, Principles of Optimal Control
Theory, Plenum Press,N.Y., 1978.

[10] V.Jurdjevic, Geometric Control Theory, Cam-
bridge University Press, 1997.

[11] J.Warga, Optimal Control of Differential and
Functional Equations,New York, Academic Press,
1972.

Page 6


