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Abstract

A convergence criterion for nonlinear systems is presented and can
be viewed as a dual to Lyapunov’s second theorem.

The criterion has a physical interpretation in terms of the stationary
density of a substance that is generated in all points of the state space
and flows along the system trajectories. If the stationary density is
finite everywhere except at a singularity in the origin, then almost all
trajectories tend towards the origin.

The new criterion differs from Lyapunov’s theorem in two important
respects. One is that the statement allows for an exceptional set of zero
measure where the trajectories fail to converge. Another difference is a
convexity property in synthesis of control laws.
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1 Introduction

Lyapunov’s second theorem has long been recognized as one of the most
fundamental tools for analysis and synthesis of nonlinear systems. The
importance of the criterion stems from the fact that it allows stability of a
system to be verified without solving the differential equation explicitly.

The original work of Lyapunov in the late 19th century was devoted
to problems from astronomy and fluid mechanics. In the 1950’s, it was
applied by Chetayev to aeronautical stability problems and by Lur’e and
Letov for nonlinear control problems. The ideas were promoted in the 1960’s
by Kalman, Lefschetz and La Salle and have found widespread applications
since then [3, 8, 16, 7, 5, 11].

Lyapunov functions play a role similar to potential functions and energy
functions. Moreover, when asymptotic stability of an equilibrium has been
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proved using Lyapunov’s theorem, input-output stability can often be proved
using the Lyapunov function as a “storage function” [18].

It is surprising to find that Lyapunov’s second theorem has a natural
dual that has been neglected until present date. This is even more striking
as the same kind of duality has been used since the 1940’s for closely related
problems in calculus of variations [6, 19, 17, 2].

The outline of this paper is as follows. In Section 2, the duality is ex-
plained from an intuitive viewpoint. The new convergence criterion in terms
of a “density function” is then proved in Section 3 and followed by a few ex-
amples. The relationship between Lyapunov functions and density functions
is discussed in Section 4.

In Section 5 we make a connection to more recent work on feedback
control based on Lyapunov functions [4, 9, 10]. Some of the difficulties in
stabilization of nonlinear systems can be associated with the fact that the
set of “control Lyapunov functions” has a difficult structure. For some sys-
tems, it is not even connected. It is therefore interesting to note that the
corresponding set for the new convergence criterion is convex. This convex-
ity property has been the basis for the corresponding literature in calculus
of variations.

The notation

∇V =
[
VV
Vx1

. . . VV
Vxn

]
V : Rn → R

∇ ⋅ f = V f1

V x1
+ ⋅ ⋅ ⋅+ V fn

V xn
f : Rn → Rn

will be used throughout the paper.

2 A viewpoint of duality

One way to interpret a Lyapunov function V for the globally stable dynamical
system ẋ = f (x) is to view V (x0) as the “cost to go” from the initial state x0

to the equilibrium. In fact, existence of a Lyapunov function is often proved
by introducing a penalty function l(x) ≥ 0 and defining V by the formula

V (x0) =
∫ ∞

0
l(x(t))dx

where ẋ(t) = f (x(t)), x(0) = x0. The definition immediately implies that

∇V (x) ⋅ f (x) = −l(x) ≤ 0

Inspired by convexity arguments in optimal control [15, 19, 17], we con-
sider the “flow” of trajectories generated by a system. Given the rate of
generation ψ (x) ≥ 0, the integral∫

X
V (x)ψ (x)dx
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can be viewed as the total stationary cost per time unit, when the substance
flows along the system trajectories towards the equilibrium. If the flow gives
rise to the stationary density ρ(x) in each point, another expression for the
stationary cost per time unit is∫

X
ρ(x)l(x)dt

Equality between the two expressions follows from Gauss’ theorem:

Proposition 1 Given f ∈ C1(Rn, Rn), let ψ , l ∈ C(Rn) and ρ, V ∈ C1(Rn)
satisfy

∇V ⋅ f + l = 0 ∇ ⋅ ( f ρ) =ψ (1)
in X ⊂ Rn while V (x) = 0 for x on the boundary of X . Then∫

X
V (x)ψ (x)dx =

∫
X

ρ(x)l(x)dx

Proof.∫
X
[Vψ − ρl]dx =

∫
X
[V (∇ ⋅ ( f ρ)) + ∇V ⋅ f ρ]dx =

∫
X
∇ ⋅ (V f ρ)dx = 0

where the last equality is due to Gauss’ theorem and the fact that V (x) = 0
on the boundary of X .

The duality between the V and ρ is apparent in Proposition 1. Since
the first equality in (1) with l(x) ≥ 0 is the basis for Lyapunov’s second
theorem, it should come as no surprise that a dual criterion can be stated
based on the second equality in (1) with ψ (x) ≥ 0. This is even more clear
from the interpretation of ρ as stationary density of a substance generated
with rate ψ . For a stable system, a finite stationary density can be achieved
everywhere except at the equilibrium, where the substance will accumulate
and the density will be infinite. Conversely, the existence of a stationary
density indicates that almost all substance must accumulate at x = 0. This
intuitive argument is formalized in the next section.

3 The main result

Theorem 1 Given the equation ẋ(t) = f (x(t)), where f ∈ C1(Rn, Rn), sup-
pose there exists a non-negative ρ ∈ C1(Rn \ {0}, R) such that ρ(x) f (x)/exe
is integrable on {x ∈ Rn : exe ≥ 1} and

[∇ ⋅ (ρ f )](x) > 0 for almost all x �= 0 (2)
Then, for almost all initial states x(0) the trajectory x(t) tends to zero as
t → ∞. Moreover, if x = 0 is a stable equilibrium, then the conclusion
remains valid even if ρ takes negative values.
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Remark 1 The assumptions of continuous differentiability of f and ρ are
convenient, but more restrictive than necessary.

The proof of the theorem relies on the following lemma.

Lemma 1 Let D ⊂ Rn be open and let ρ ∈ C1(D, R) be integrable on
E ⊂ D. For f ∈ C1(D, Rn) and x0 ∈ Rn, let Φ(x0, t) be the solution of
ẋ = f (x), x(0) = x0 and let Φ(X , t) = {

Φ(x, t) ∣∣ x ∈ X
}

. If Φ(X , t) is a
measurable subset of E for every t, then∫

Φ(X ,t)
ρ(x)dx −

∫
X

ρ(z)dz=
∫ t

0

∫
Φ(X ,τ)

[∇ ⋅ (ρ f )] (x)dxdτ

The lemma is proved in the appendix.
Proof of Theorem 1, second statement. Here it is assumed that x = 0 is
a stable equilibrium, while ρ may take negative values. The proof for the
other case is given in the appendix.

Given any x0 ∈ Rn, let Φ(x0, t) be the solution of ẋ(t) = f (x(t)), x(0) = x0.
Assume first that ρ is integrable on {x ∈ Rn : exe ≥ 1} and e f (x)e/exe is
bounded. Then Φ is well defined for all t. Given r > 0, define

X = ∩∞l=1 {x0 : eΦ(x0, t)e > r for some t > l} (3)
Notice that X contains all trajectories with lim supt→∞ ex(t)e > r. The set
X , being the intersection of a countable number of open sets, is measurable.
Moreover, Φ(X , t) = {Φ(x, t) ∣∣ x ∈ X

}
is equal to X for every t. By stability

of the equilibrium x = 0, there is a positive lower bound ε on the norm of
the elements in X , so Lemma 1 with E = {x : exe ≥ ε} gives

0 =
∫

Φ(X ,t)
ρ(x)dx −

∫
X

ρ(z)dz=
∫ t

0

∫
Φ(X ,τ)

[∇ ⋅ (ρ f )] (x)dxdτ (4)

By the assumption (2), this implies that X has measure zero. Consequently,
lim supt→∞ ex(t)e ≤ r for almost all trajectories. As r was chosen arbitrarily,
this proves that limt→∞ ex(t)e = 0 for almost all trajectories.

When e f (x)e/exe is unbounded, there may not exist any nonzero t such
that Φ(z, t) is well defined for all z. We then introduce

ρ0(x) =
[

e−exe

1+ eρ(x)e +
e f (x)e
exe

]
ρ(x) f0(x) = f (x)ρ(x)

ρ0(x)
Then e f0(x)e/exe is bounded and ρ0 is integrable on {x ∈ Rn : exe ≥ 1},
so the argument above can be applied to f0 together with ρ0 to prove that
limt→∞ ex(t)e = 0 for almost all trajectories of the system ẋ = f0(x). However,
these trajectories are identical to the trajectories of the original system,
modulo a transformation of the time axis

τ =
∫ t

0

ρ0(x(s))
ρ(x(s)) ds

so the proof is complete.
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Figure 1: Phase plane plot for Example 3

Example 1 For scalar x, define

f (x) = x ρ(x) = − 1
x4

Then [∇ ⋅ ( f ρ)](x) = 3/x4 > 0, so all conditions of Theorem 1 hold except for
non-negativity of ρ and stability of x = 0.

Example 2 With

f (x) = (x2 − 1)x ρ(x) = 1
x2

we have [∇ ⋅ (ρ f )](x) = 1 + x−2 > 0, so all conditions of Theorem 1 hold
except for the integrability of ρ f /exe. In this case, all trajectories starting
outside the interval [−1, 1] have finite escape time.

Example 3 The system [
ẋ1

ẋ2

]
=
[−2x1 + x2

1 − x2
2

−2x2 + 2x1x2

]
has two equilibria (0, 0) and (2, 0). See Figure 1. Let f (x) be the right hand
side and let ρ(x) = exe−α . Then

[∇ ⋅ (ρ f )](x) = ∇ρ ⋅ f + ρ(∇ ⋅ f )
= −α exe−α−2xT f + exe−α(4x1 − 4)
= −α exe−α−2(x1 − 2)exe2 + exe−α (4x1 − 4)
= exe−α

[
(4−α )x1 + 2α − 4

]

5



−4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

x1

x2

Figure 2: Phase plane plot for Example 4

With α = 4 all conditions of Theorem 1 hold, so almost all trajectories tend
to (0, 0) as t → ∞. The exceptional trajectories turn out to be those that
start with x1 ≥ 2, x2 = 0.

Example 4 The system [
ẋ1
ẋ2

]
=
[−2x1 + x2

1 − x2
2

−6x2 + 2x1x2

]
(5)

has four equilibria (0, 0), (2, 0) and (3,±√3). See Figure 2. In this case,
ρ(x) = exe−4 gives

[∇ ⋅ (ρ f )](x) = −4exe−6xT f + exe−4(4x1 − 8)
= −4exe−6

[
(x1 − 2)exe2 − 4x2

2

]
+ exe−4(4x1 − 8)

= 16x2
2exe−6

so again Theorem 1 shows that almost all trajectories tend to (0, 0) as t →∞.
The exceptional trajectories are the three unstable equilibria, the axis x2 = 0,
x1 ≥ 2 and the stable manifold of the equilibrium (2, 0), that spirals out from
the equilibria (3,±√3).

4 Relation to Lyapunov functions

The fact that Lyapunov’s theorem has a stronger implication than the con-
vergence criterion of Theorem 1, suggests the possibility to derive a density
function ρ from a Lyapunov function V . This can generally be done in the
following way.
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Proposition 2 Let V (x) > 0 for x �= 0 and

∇V ⋅ f < α−1(∇ ⋅ f )V for almost all x

for some α > 0. Then ρ(x) = V (x)−α satisfies the condition (2).
In particular, if P is a positive definite matrix satisfying

AT P + PA < (α−1 trace A)P
then ρ(x) = (xT Px)−α satisfies the condition (2) for the system ẋ = Ax.

Proof. With ρ(x) = V (x)−α , we get

∇ ⋅ ( f ρ) = (∇ ⋅ f )ρ +∇ρ ⋅ f

= (∇ ⋅ f )V−α −α V−(α+1)∇V ⋅ f

= α V−(α+1) [α−1(∇ ⋅ f )V −∇V ⋅ f
]

> 0

With V (x) = xT Px and f (x) = Ax the second statement follows since

∇V ⋅ f = xT (AT P + PA
)

x

∇ ⋅ f = trace A

Transfer in the opposite direction, from density function to Lyapunov
function, is generally not possible. The simple reason is that a density func-
tion may exist even if the system is not globally asymptotically stable. This
was the situation in Example 3 and Example 4. However, with an additional
assumption that ∇ ⋅ f ≤ 0, the following construction can be used.

Proposition 3 Suppose for x �= 0 that

∇ ⋅ ( f ρ) > 0 ∇ ⋅ f ≤ 0 ρ > 0

Then V (x) = ρ(x)−1 satisfies ∇V ⋅ f < 0.

Proof.

∇V ⋅ f = −ρ−2∇ρ ⋅ f = −ρ−2[∇ ⋅ ( f ρ) − (∇ ⋅ f )ρ] < 0

5 Convexity in nonlinear stabilization

An important application area for Lyapunov function is the synthesis of
stabilizing feedback controllers. For a given system, the set of Lyapunov
functions is convex. This fact is the basis for many numerical methods, most
notably in computation of quadratic Lyapunov functions using linear matrix
inequalities [1]. However, when the control law and Lyapunov function are
to be found simultaneously, no such convexity property is at hand. In fact,
the following example suggested by [13, 14] shows that the set of “control
Lyapunov functions” (functions that can be used as Lyapunov functions for
some stabilizing control law) may not even be connected.
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Example 5 Every continuous stabilizing control law u(x) for the system[
ẋ1

ẋ2

]
= f (x, u) =

[−(x2)2x1
u(x)

]
must have the property that u(x) has constant sign along the half line x1 > 0,
x2 = 0. The reason is that a zero crossing would create a second equilibrium.
A strictly decreasing Lyapunov function satisfies

0 > ∇V ⋅ f (x, u) = VV
V x2

u(x) for x1 > 0, x2 = 0

so also VV/V x2 must have constant non-zero sign along the same half line.
The control law ul(x) = −x2 + x1 is stabilizing with strictly decreas-

ing Lyapunov function Vl(x) = 2(x1)2 − x1x2 + (x2)2/2+ (x2)4. Apparently
VVl/V x2 is negative along the half line.

Similarly, the control law uk(x) = −x2 − x1 is stabilizing with Lyapunov
function Vk(x) = 2(x1)2+ x1x2+(x2)2/2+(x2)4, with VVk/V x2 positive along
the half line.

In particular, we see that the two control Lyapunov functions Vl and
Vk can not be connected by a continuous path without violating the sign
constraint on VV/V x2.

Given this negative example, it is most striking to find that a convexity
result is easily available when instead of Lyapunov’s theorem we consider
the new convergence criterion. To make formal statement, we introduce

C = { f ∈ C1(Rn \ {0}, Rn) : f (x)/exe is bounded near x = 0}

and state a modification of Theorem 1, relaxing the assumption on differen-
tiability of f at x = 0.

Theorem 2 Given the equation ẋ = f (x), where f ∈ C , suppose there exists
a non-negative ρ ∈ C1(Rn \ {0}, R) such that ρ(x) f (x)/exe is integrable on
{x ∈ Rn : exe ≥ 1} and

[∇ ⋅ (ρ f )](x) > 0 for almost all x �= 0 (6)

Then, for almost all initial states x(0) the trajectory x(t) tends to zero as
t →∞.

The proof Theorem 1 also gives Theorem 2. The convexity property can
now be stated as follows.

Theorem 3 Given f0 ∈ C1(Rn \{0}, Rn) and k0 ∈ C1(Rn \{0}, Rn�m) define
F to be the set of all f ∈ C that have the form f = f0 + k0u with u ∈
C1(Rn \ {0}, Rm). Let R be the set of all ρ such that the conditions of
Theorem 2 hold for some f ∈ F . Then R is convex.
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Proof of Theorem 3. Suppose that ρ1 , ρ2 ∈ R , while θ ∈ [0, 1]. Then there
exist f1 = f0+k0u1 and f2 = f0+k0u2 that satisfy the conditions of Theorem 2
together with ρ1 and ρ2 respectively. Let

ρ(x) = θ ρ1(x) + (1− θ )ρ2(x)

u(x) = θ ρ1(x)u1(x) + (1− θ )ρ2(x)u2(x)
ρ(x)

f (x) = f0(x) + k0(x)u(x)

Then e f e ≤ e f1e + e f2e, so f ∈ F . Furthermore,

f ρ = θ f1ρ1 + (1− θ ) f2ρ2

so both condition (6) and the integrability condition follow from the corre-
sponding conditions for f1ρ1 and f2ρ2. Hence ρ ∈ R and the convexity is
proved.

It is natural to ask what the implications of this result are in a case like
Example 5, where the set of stabilizing controllers is known to be discon-
nected. Suppose that the controllers ul and uk have corresponding density
functions ρl and ρk that prove convergence to the equilibrium in the two
cases. The argument used in Theorem 3 connects ρl and ρk by a contin-
uous path of control laws corresponding to convex combinations of ρl and
ρk . In a case like Example 5, these controllers can not all be globally stabi-
lizing. Nevertheless, by Theorem 3, they do give rise to systems such that
limt→∞ ex(t)e = 0 for almost all initial conditions.

6 Concluding remarks

The new convergence criterion differs from Lyapunov’s theorem in several
important respects and therefore allows for new applications. In particular,
it applies to examples where the system is not globally stable in the sense
of Lyapunov.

Another important difference is a convexity property that appears in syn-
thesis of stabilizing control laws. This convexity property is identical to the
one that has been exploited for optimal control problems [19, 17].

In spite of the differences, many extensions to Lyapunov’s theorem have
analogs in terms of density functions. This includes convergence criteria for
non-autonomous systems, inverse theorems and criteria for convergence to
invariant sets. We hope to return to some of these issues in later publica-
tions.
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Appendix — Proofs

Proof of Lemma 1 The differentiability of f gives that Φ is of class C1 in z
and C2 in t [12, page 40]. The matrix function M (t) = VΦ

V z (z, t) satisfies

d
dt

det M (t)
∣∣∣∣
t=0
= d

dt
exp(trace(log M (t)))

∣∣∣∣
t=0

= exp(trace(log M (t))) ⋅
d
dt

trace(log M (t))
∣∣∣∣
t=0

= det M (t) ⋅ trace
d
dt
(log M (t))

∣∣∣∣
t=0

= det M (t) ⋅ trace[M (t)−1M ′(t)]
∣∣∣∣
t=0

= trace[M ′(0)] = trace
[ V2Φ
V tV z

(z, t)
]∣∣∣∣∣

t=0

= trace
V f
V z

=
[
∇ ⋅ f

]
(z)

Hence, with the notation ρt(z) = ρ(Φ(z, t)) ∣∣VΦ
V z (z, t)∣∣

V
V t

ρt(z)
∣∣∣
t=0
=
[ V
V t

ρ(Φ(z, t))
∣∣∣∣VΦ
V z
(z, t)

∣∣∣∣+ ρ(Φ(z, t)) d
dt

det M (t)
]

t=0

= ∇ρ ⋅ f + ρ(∇ ⋅ f )
=
[
∇ ⋅ ( f ρ)

]
(z)

and

V
V t

ρt(z)
∣∣∣
t=τ
= V
Vh

{
ρh(Φ(z,τ ))

∣∣∣∣VΦ
V z
(z,τ )

∣∣∣∣}
∣∣∣∣∣
h=0

=
[
∇ ⋅ ( f ρ)

]
(Φ(z,τ ))

∣∣∣∣VΦ
V z
(z,τ )

∣∣∣∣
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Let χ (⋅) be the characteristic function of X . Then∫
Φ(X ,t)

ρ(x)dx −
∫

X
ρ(z)dz=

∫
Rn

ρ(x)χ (Φ(x,−t))dx−
∫

X
ρ(z)dz

=
∫

Rn
ρ(Φ(z, t))χ (z)

∣∣∣∣VΦ(z, t)
V z

∣∣∣∣ dz−
∫

X
ρ(z)dz

=
∫

X
[ρt(z) − ρ(z)]dz

=
∫

X

∫ t

0
[∇ ⋅ (ρ f )] (Φ(z,τ ))

∣∣∣∣VΦ
V z
(z,τ )

∣∣∣∣dτ dz

=
∫ t

0

∫
Φ(X ,τ)

[∇ ⋅ (ρ f )] (x)dxdτ

Proof of Theorem 1, first statement. Here, x = 0 need not be a stable
equilibrium, but ρ is assumed to be non-negative.

As in the previous case, we may assume without restriction that ρ is
integrable for exe ≥ 1 and e f (x)e/exe is bounded by some constant C so Φ(x, t)
is well defined for all x, t. The notation Φ(Z, T) = {Φ(z, t) : z ∈ Z, t ∈ T}
will be used.

Given any r > 0, define

X = ∩∞l=1 {x0 : ex0e > r, eΦ(x0 , t)e > r for some t > l}
Compared to (3), the condition ex0e > r has been added to guarantee a
positive lower bound on the norm of the elements in X . Because of this
difference, Φ(X , t) may be different from X for every t > 0, so the first
equality in (4) does not hold. We will therefore make a partition of X into
disjoint subsets Xk such that Φ(Xk, t) is approximately equal to Xk for some
value of t.

Given any ε > 0, define for integers k > 1/ε
Xk = {x ∈ X : sup

t∈[1,kε ]
eΦ(x, t)e ≤ r, sup

t∈[kε ,(k+1)ε ]
eΦ(x, t)e > r}

Yk = Φ(Xk, [0, ε ])
These sets are all measurable, so Lemma 1 shows that∫

Φ(Yk,kε)
ρ(x)dx =

∫
Yk

ρ(z)dz+
∫ kε

0

∫
Φ(Yk,τ)

[∇ ⋅ (ρ f )] (x)dxdτ

≥
∫

Xk

ρ(z)dz+
∫ 1

0

∫
Φ(Xk ,τ)

[∇ ⋅ (ρ f )] (x)dxdτ

Note that Φ(Yk, kε) are disjoint subsets of Φ(X , [−ε , ε ]) and ∪k Xk = X .
Summing over k therefore gives∫

Φ(X ,[−ε ,ε ])
ρ(x)dx −

∫
X

ρ(z)dz≥
∫ 1

0

∫
Φ(X ,τ )

[∇ ⋅ (ρ f )] (x)dxdτ
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All elements of Φ(X , [−ε , ε ]) that are outside X must have a norm in the
interval [re−Cε , r]. Hence∫

re−Cε≤exe≤r
ρ(x)dx ≥

∫ 1

0

∫
Φ(X ,τ)

[∇ ⋅ (ρ f )] (x)dxdτ

This holds for arbitrarily small ε , so X must, by assumption (2), have zero
measure. Consequently, lim supt→∞ ex(t)e ≤ r for almost all trajectories. Also
r was arbitrary, so limt→∞ ex(t)e = 0 for almost all trajectories and the proof
is complete.
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