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Abstract: In this paper, we firstly present a tracking-error observer for a class of nonlinear systems based on the input output 

linearization. While the previous result presented observer for nonlinear systems of full relative degree, we proposed a 

procedure for the design of nonlinear tracking-error observer which do not require the hypothesis of full relative degree. 

Assuming that there exists a global tracking-error observer for internal dynamics and that some functions are globally Lipschitz, 

we can design a globally convergent observer with strong robustness. Then, we address the problem of output feedback tracking 

of single-input-single-output nonlinear plants. The proposed approach is based on continuous sliding manifold. The resulting 

controller, a continuously high-gain sliding mode controller, exhibits strong robustness properties, chattering phenomena can be 

avoided. Moreover, the error between plant output and referential signal converges rapidly due to introducing a perturbation 

parameter. 
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1.  Introduction 
In output tracking for nonlinear system, the error and its derivatives up to order r between the plant output 

and referential signal play important roles. The problem of observing the error between the plant output and 
referential signal of a nonlinear system has been considered in the literature. Some sufficient conditions for 
the existence of an observer have been established, and computational algorithms for construction of the 
observer have been presented. The observer problem is to design a dynamical system which asymptotically 
estimates the state of a given plant using the input and output information of the plant. In contrast to the case 
for linear systems, the nonlinear observer problem has not yet been fully solved in the general sense, but 
several design methods have been proposed for particular classes of nonlinear systems. We known the 
well-known approach of linearized error dynamics (Krener & Isidori, 1983; Banaszuk & Sluis, 1997; Hou & 
Pugh, 1999), where the nonlinearities of the plant are canceled out in the error dynamics so that the applicable 
class of systems is quite restricted, While Shim, Seo and Teel (2003) proposed a method directly handles 
those nonlinearities in the plant. Bestle and Zeitz (1983) introduced a nonlinear observer canonical form in 
which system nonlinearities depend only on the input and output of the original system. To broaden the class 
of nonlinear systems for which a state observer exists, Keller (1987) presented an observer design based on a 
transformation into a generalized observer canonical form that depends on the first n time derivatives of the 
input variables. Since afore-mentioned approaches require quite restrictive conditions on coordinate 
transformation, the problem of deriving approximate observers has been also studied (Baumann & Rugh, 1986; 
Nicosia, Tomei & Tornambe, 1989; Zeitz, 1987). On the other hand, a nonlinear observer is not robust in 
general to measurement disturbances in the sense that arbitrarily small disturbance may result in a blowup of 
error state.  

Sliding manifold approaches have been using for years in control application. There are many reasons for 
the successful application of these strategies, among which we cite their ability to deal with the control of 
nonlinear plants and their strong robustness properties, with respect to unmodeled dynamics and exogenous 
unknown disturbances. The key idea is to formulate closed-loop system performances in terms of a desired 
behavior of the system state and to represent this behavior as a set of constraints to satisfied. The method of 
linearization is adopted for nonlinear systems (Sastry, S. S. & A. Isidori.,1989; Byrnes, C. I., & Isidori, A., 
1991), some controlling tools are used thereafter (Chunjiang Qian, & Wei Lin, 2001; V. O. Nikiforov, 2001; 
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Kokotovic, P. & M. Arcak, 2001). Seungrohk OH and Hassan K. Khalil (1997) present a nonlinear output 
feedback tracking using high-gain observer and variable structure control. Usual observers can’t observe the 
external and internal dynamics at the same time. Some sliding mode controllers lead to the phenomenon of 
chattering (C. Edwards, & S.K. Spurgeon, 1998). With the introduction of saturation functions, the 
phenomenon of chattering can be avoided, however, the convergent velocity and precision decrease 
(Kokotovic, P. & M. Arcak, 2001)  

In this paper, we firstly propose a global nonlinear tracking-error observer that guarantees the estimation 
error to converge to zero asymptotically with strong robustness. It is based on the input output linearization 
technique and utilizes the error transformation into the normal form, the proposed condition is reduced to that 
the zero dynamics have a locally exponentially stable equilibrium at the origin. At the same time, a continuous 
sliding controller is designed based on the property of the solution a one-order differential equation reaching 
zero in a finite time and keeping invariant, and a perturbation parameter is introduced in the defined sliding 
variable, therefore, the controller can make the error between plant output and referential signal converge to 
zero rapidly. This paper is organized as follows. In section 2, the problem is precisely formulated. In section 3, 
tracking-error observer design and analysis of stability are obtained. In section 4, the sliding mode controller 
is designed. In section 5, conclusion is presented, and in section 6, simulation is given.  
2.  Problem statement 
We consider a class of nonlinear systems, represented by 
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where, ( ) 4ltd ≤ ,  is a positive constant.   4l
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If the zero dynamics of (1) are locally exponentially stable, then Assumption 2 is fulfilled at least locally. In 
fact, suppose that the origin of system 
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for all . rnr RR −∈∈ 2121 ,,, υυττ

Assumption 4: is globally Lipschitz in , uniformly in ( η,dYeq + ) )( dYe + η , i.e., there exists a positive 

constant l3 such that 

( ) ( ) 21321 ,, ττητητ −≤+−+ lYqYq dd ,         (10) rnr RR −∈∈∀ ηττ ,, 21

3.  Error observer design and analysis of stability  
Theorem 1: If the tracking-error observer for the system (7) is selected as  
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4.  Design of controller 
Consider the differential equation below. 
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5.  Simulation 
Consider the nonlinear system as follow. 

( )wxMu
x

xx
x

x
xxx

x +


















+

+





















+
−

−

=

0
0
22

0

3

2
2
1

3

1

3
121

&  

( ) 4xxhy == ,  is gain function of disturbance.  ( )xM

We can obtain 

[ ]1000=
∂
∂

x
h

, , , , ( ) 0=xhLg ( ) 2
2
1 xxxhL f += ( ) ( )312 xxhLL fg +=

( ) 1
4
12

2
1

2 22 xxxxxhL f +−=  

The relative degree is 2. 

Let , . In addition, we have ( ) 41 xxh ==ξ ( ) 2
122 xxxhL f +==ξ 31 x=η , 12 x=η . 

 9 



So the Jaccio matrix ( )


















=
∂
∂

0001
0100
0012
1000

1x
x

x
χ  is not singular, and conserve transformation is  

21 η=x , , ,  2
222 ηξ −=x 13 η=x 14 ξ=x

The referential output , ttey t
d cos5.0sin2 05 += − ( ) 02.0≤td . let .The error system is  dyyee −== 1

( )( ) ( ) ( ) ( )













+−=

−=
+−++−−+=

=

22
3
22

11

2
1

3
2

2
222222

21

2

22

ηηη

ηη
ηηηηηη

e

tdyuee

ee

d

&

&

&

&

 

Observer is selected as  

( )( ) ( ) ( )[ ]





















+−

−
=






































−








+++−−−+








+
















=









22
3
2

1

2

1

2

1
121

23
2

2
22222

2

1

2

1

2

0
1

01.02
01.01

22
1
0

00
10

ηη
η

η
η

ηηηηηη

)))

)

&)
&)

)

)
)))))))

)

)

&)
&)

e

e
e

euye
e
e

e
e

T

d

 

Sliding variable is selected as . Sliding surface is adopted as (12).where, , k  ( ) 12 eet )) +=σ 2=αk 5.0=β

7,3 == pq . The controller designed is  

( ) ( ) ( )

( ) ( ) ( )( ) 
++−





+−






 ++














 −−++−=
∧

−

7
3

2

112
3
2

2
22222

1
1

5.02

01.0
1

01.0
222

ttye

eeeu

r
d σσ

ηηηηηη

)

)))))))

 

The curve of error between factual output and referential output is shown is figure 1. 
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Fig. 1 The curve of the error and the its derivate between the output and the referential signal 
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6.  Conclusion 
The problem of designing global tracking-error observer for a class of nonlinear systems has been discussed. 

We proposed a procedure for the design of nonlinear tracking-error observer which do not require the 
hypothesis of full relative degree. As far as local observation problem is concerned, the exponential stability 
of zero dynamics is sufficient to guarantee that the output of the proposed observer converges to true error. 
Moreover, the tracking-error observer designed has a strong robustness. From the analysis above, the sliding 
mode controller designed has a strong robustness and rapidly convergent velocity. 
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