Output feedback tracking for nonlinear systems
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Abstract: In this paper, we firstly present a tracking-error observer for a class of nonlinear systems based on the input output
linearization. While the previous result presented observer for nonlinear systems of full relative degree, we proposed a
procedure for the design of nonlinear tracking-error observer which do not require the hypothesis of full relative degree.
Assuming that there exists a global tracking-error observer for internal dynamics and that some functions are globally Lipschitz,
we can design a globally convergent observer with strong robustness. Then, we address the problem of output feedback tracking
of single-input-single-output nonlinear plants. The proposed approach is based on continuous sliding manifold. The resulting
controller, a continuously high-gain sliding mode controller, exhibits strong robustness properties, chattering phenomena can be
avoided. Moreover, the error between plant output and referential signal converges rapidly due to introducing a perturbation
parameter.
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1. Introduction

In output tracking for nonlinear system, the error and its derivatives up to order » between the plant output
and referential signal play important roles. The problem of observing the error between the plant output and
referential signal of a nonlinear system has been considered in the literature. Some sufficient conditions for
the existence of an observer have been established, and computational algorithms for construction of the
observer have been presented. The observer problem is to design a dynamical system which asymptotically
estimates the state of a given plant using the input and output information of the plant. In contrast to the case
for linear systems, the nonlinear observer problem has not yet been fully solved in the general sense, but
several design methods have been proposed for particular classes of nonlinear systems. We known the
well-known approach of linearized error dynamics (Krener & Isidori, 1983; Banaszuk & Sluis, 1997; Hou &
Pugh, 1999), where the nonlinearities of the plant are canceled out in the error dynamics so that the applicable
class of systems is quite restricted, While Shim, Seo and Teel (2003) proposed a method directly handles
those nonlinearities in the plant. Bestle and Zeitz (1983) introduced a nonlinear observer canonical form in
which system nonlinearities depend only on the input and output of the original system. To broaden the class
of nonlinear systems for which a state observer exists, Keller (1987) presented an observer design based on a
transformation into a generalized observer canonical form that depends on the first # time derivatives of the
input variables. Since afore-mentioned approaches require quite restrictive conditions on coordinate
transformation, the problem of deriving approximate observers has been also studied (Baumann & Rugh, 1986;
Nicosia, Tomei & Tornambe, 1989; Zeitz, 1987). On the other hand, a nonlinear observer is not robust in
general to measurement disturbances in the sense that arbitrarily small disturbance may result in a blowup of
error state.

Sliding manifold approaches have been using for years in control application. There are many reasons for
the successful application of these strategies, among which we cite their ability to deal with the control of
nonlinear plants and their strong robustness properties, with respect to unmodeled dynamics and exogenous
unknown disturbances. The key idea is to formulate closed-loop system performances in terms of a desired
behavior of the system state and to represent this behavior as a set of constraints to satisfied. The method of
linearization is adopted for nonlinear systems (Sastry, S. S. & A. Isidori.,1989; Byrnes, C. 1., & Isidori, A.,
1991), some controlling tools are used thereafter (Chunjiang Qian, & Wei Lin, 2001; V. O. Nikiforov, 2001;
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Kokotovic, P. & M. Arcak, 2001). Seungrohk OH and Hassan K. Khalil (1997) present a nonlinear output
feedback tracking using high-gain observer and variable structure control. Usual observers can’t observe the
external and internal dynamics at the same time. Some sliding mode controllers lead to the phenomenon of
chattering (C. Edwards, & S.K. Spurgeon, 1998). With the introduction of saturation functions, the
phenomenon of chattering can be avoided, however, the convergent velocity and precision decrease
(Kokotovic, P. & M. Arcak, 2001).

In this paper, we firstly propose a global nonlinear tracking-error observer that guarantees the estimation
error to converge to zero asymptotically with strong robustness. It is based on the input output linearization
technique and utilizes the error transformation into the normal form, the proposed condition is reduced to that
the zero dynamics have a locally exponentially stable equilibrium at the origin. At the same time, a continuous
sliding controller is designed based on the property of the solution a one-order differential equation reaching
zero in a finite time and keeping invariant, and a perturbation parameter is introduced in the defined sliding
variable, therefore, the controller can make the error between plant output and referential signal converge to
zero rapidly. This paper is organized as follows. In section 2, the problem is precisely formulated. In section 3,
tracking-error observer design and analysis of stability are obtained. In section 4, the sliding mode controller
is designed. In section 5, conclusion is presented, and in section 6, simulation is given.

2. Problem statement
We consider a class of nonlinear systems, represented by

{x—f () + glxhu

(1)
y = h(x)

where, x € R" is state variable,u € R'is input, y = h(x) € R' is output, f{x) and g(x) are smooth vectors.

Assumption 1: System (1) has uniform relative degree r <n,i.e.,

LI h(x)=0,i=1,,r—1
L,L'h(x)#0 )
There exist n-r functions 77, (x),l <i<n-r,suchthat
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is a global diffeomorphism with )((x(O)) =0, and it transforms (1) into
¢ = A&+ Blal(g,n)+ b(&,mu]
7 =4q(&.n) (4)
y=C"¢
where,
alén) = L Emhblean) = L1 W ) #0 o
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Yy»Vgs't» Yy are measurable.

Here, we introduce an item of disturbance d (t) Therefore, the error system between plant output and

referential signal is written as

{é: Ae+B[a(e+Yd,77)—y£") +b(e+Yd,77)u+d(t)]

) (7
n=qle+Y,.n)

where, |d (t) <l1,, I, isapositive constant.

(n—rpe(n—r)

Assumption 2: There exist a positive definite matrix P, € R and a positive constant k, such that

a 4 -r n—r
v'P, {a—q(e +7Y, ,n)}v < -k, ||v||2 V(e+Y,,n,v)e R" xR"" xR ()
n
If the zero dynamics of (1) are locally exponentially stable, then Assumption 2 is fulfilled at least locally. In
fact, suppose that the origin of system
7=4(0,7)
is locally exponentially stable. Then, it follows from Lyapunov converse theorem (Hahn, 1967) that

84(0.,0)
on

is a Hurwitz matrix. Thus, there exist a positive constant & and a positive definite matrix P such that
0
1L(0,0) by = =k
8n

By the continuity of (6(] / 677)(6 +Y,, 7]), there existsa ¢ > 0 such that

Rn—r

B

VTPZ{S_Z(6+ Yd,n)}v < —%k”v 2

Assumption 3: The functions a(e +Y,, 7]) and b(e +Y,, n)are globally Lipschitzian, and u is bounded, i.e.,

there exist positive constant /; and /; such that

||a(rl+Yd,Ul)+b(rl+ Ul)u (rz+ )—b(r2+Yd,uz)u||Sll||rl—r2||+12||ul—z)2|| 9)



forall 7,,7, € R",0,,0, € R"".

Assumption 4: q(e +7Y, ,77) is globally Lipschitz in (e +7, ), uniformly in 77, i.e., there exists a positive

constant /5 such that

, Vr,,7,€eR",neR"" (10)

||Q(Tl +Yda’7)_‘I(72 +Yd”7l| S13”“'1 -7,

3. Error observer design and analysis of stability
Theorem 1: If the tracking-error observer for the system (7) is selected as

{é = de+Bla(e+Y,.7)- 0 +be +7,. 7]+ K(e)e, - Ce) "
ﬁ = Q(é +7Y, sﬁ)
then, there exists &, forall 0 <& < & , such that
~ - 4
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0
where
g —min( ! ky J (13)
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P, is the solution of
Alrpl +h4 =-1, (15)
-k 1 0 0
_kz 0 . o ) . '
4, =] . o s 8" +ks" +---+k, =0 isaHurwitz polynomial.
-k 0 0 0
Proof:
Define
z,=e—ez,=N-17 (16)
Then, it follows from (7) and (11) that
Z.l = (A_K(E)CT)Zl +B[a(é+Yd9ﬁ)+b(é+Yd9ﬁ)u _a(e+Yd:n)_b(e-i_yd:n)u_d(t)]
Z,= q(é-i-Yd,ﬁ)—q(e-i-Yd,n)
which can be written as
2, =A(e)z, + Blale +Y,,7)+ble +Y,,7u—ale+Y,,n)-ble+Y,,n—d()] .

Z, = Q(5+Yd=ﬁ)—Q(5+Ydaﬂ)+4(5+Ydﬂ7)—Q(€+Ydﬂi)
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A(e)=A-K(e)CT = 2:/8 (18)
k./e" 0 0 0
Define
0 0
0O ¢ --- 0
2e)=|. | ., (19)
00 - g
Then, we can obtain that
A(e)=¢"2(e)" 4,2(¢) (20)
From (15), we define
R (e)=2() PE(s) @1)
therefore, we have
Al (e)P(s)+ P (e)4,(s) = e "'E(e) E(e) (22)
Define Lyapunov function candidate
V(z,,z,)= g(z_zr)er(g)zl +z, Pz, (23)

where, P, is given by (8). Then, taking (8) and (22) into consideration, we have

V=t T4l (6) + B [ale +Y,,7) + be + Y, Au—ale+ Y,,m) = ble+ Y, pu—d()]P(e)z,
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Set ¢, = E(E,‘)Z1 , using HBTE(EX‘ =&’ together with (9) and (10), we have



y<—gl)

_ g(l—Zr)

el + s+ 1) Kol + 21 12
LRl o+ 22" LRl ] - Kolla] + 2l 12|

¢ "2 ) g(Z—Zr) g(r—l

P||||€1||||21||+28“")

S, ||2 +2171,

|| , which leads to

(e)| =" and z, =E(e) g, it follows that [z, < &

pe—gt LRl + 26" Rl o] + 22"

LRl - kol

g1|| + 25 2—2r
LIAlsill=.|

Since ¢ < 1/(411 ||P1 ||), we have

20

. o o 1 —r —r
V<—gl?) g1||2 +26%72 )ll m"glﬂz +2¢" )lz |Pl ""gl ""Zzu +2s" )14 |Pl ""gl " _ko"Zz"2
1

+26" Ll = |

. )
==l + 26 Rl + LR lleo] Kol + 26 LR ]

2

3 2
-2k - 2 4 el

1 —2r 4 r -
(B ol Jaf 25l

0

3 | . r 4 r r

L A R T A T
Moreover, since & < K > » we have
16|+ 1|
. 3 1
Vs=2hlal ~ e el + 2| Rlle | el
therefore, we can transform (24) into
.3 I o, 5
ve-2nlef oo - 2

||§1|| > 8l ||P|| then V < 0. Therefore, ||g1||<88 [ ||P|| as t — 0. Since ||Zl||<8 ||g1|| we have

2| =[e - ¢ <8¢ LR as £ —co.

At the same time, we can rewrite (24) by another wayj, i.e.,

S || —4g'l,

s P +4e-ZIRJ - es)
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If ”22 ” > —l4||Pl|| ,then V < 0. Therefore, ”22 " = ”ﬁ - 77” < —14||P1 ” as t — 0.

Ny N

Which can conclude the proof. [l
Remark:

From the theorem above, we can find that if & is sufficiently small, then”é - e” —0, ||ﬁ - 77” —0 as
t— o,

On the other hand, if d (t) =0, then /, =0, and from (24), we have
. 3 1 (1,
Vs—hlel el @

min : L
44 |R I 16| B+ 1B

Therefore, when 0 < & < g R g = , We can obtain

le—¢| — o,

ﬁ—?]”—)O as t —
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If y,,-+-,y; are not measurable, we estimate y,,---,», by a linear observer (see for example, Khalil,

1994) as follow.

Y, =Ale)Y,, +Lis)y, (28)
where
R R P | 29)
~Ije 1 0 - 0 e
Als)= _12:/82 ? 1 ? , Lig)=| (31)
SLLJE 00 e 0 hafe”
s +1s" +--+1_, =0 isaHurwitz polynomial. [J
4. Design of controller
Consider the differential equation below.
6(t)=~k,0()~k,o(0) (32)

Where, k,,k; >0, p>g>0,and p,q areall odd numbers. The solution of (32) is

kaa(t)% thy = cexp(—wtj.
p



P=q
Where, ¢c= kaﬁ(l‘o) p +kﬂ. When O'(ts ) =0, we can obtain that , =

k.(p—a) g o
A conclusion can be drawn that =0 for 127 .
By the conclusion above, let the sliding variable be
O-(t): e, +a, e+ -+ae +ae (33)

where, s +a, s +--+a,s+a, =0 is Hurwitz with respect to s, and sliding surface is selected as

(32). We give a theorem in the following.

Theorem 2 For system (7), if the observer is selected as (11), and the controller is

uZ—b(§+Yd,ﬁ)_l{a(é+Yd,ﬁ)+(§: +a,1%+---+azlg—i+a1 %j(el —e )+
(34)
(aHé, +-+a,e, + aléz)—yf,’) + kaa(t)+ kﬂ (O'(t))ﬂ
Then,
le@)| <k, e as 1o (35)

where, k , 18 apositive constant.

Proof:

6=e, +a, e,  +---+a,e, +ae

- - o - r kr - -~ kr* -
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kolt,) s +k
” t.)pr +
P In 0 s +2, such that o =0 for ¢>¢, then

Therefore, there exists £, =

k,(p=q) ky
e +a, e  +--+ae,+ae =0 (37)
From (7), (37), and let z, = [ZL1 »*"*» 2y, ] » wehave

er—l = er =€~ er = _(ar—ler—l teeet a262 + alel )_ Zl,r
= _{al etz )"' eta, (erfl +Z,. )}_ Zy (38)
=—ae ——a e — Az a2y T2,



Therefore, from (7) and (38), we have

?zZE—i—HZI (39)
0 1 0 0 0 0
4 —a, -~ -a —a, o —a 1

Because 4 and A—K (8)C T are Hurwitz, for given matries Q,, (0, , there exist positive-defined matries

Ps, P, such that

PA+A"P,=-0Q,,P,A+A"P, = -0, (40)

Define ®(2,z, )= &" P& + z, P,z,, and taking derivative along the solutions of (17) and (39) for ®(&,z,),
we have

D(e,z,)<—nd(E,z), ®E,z)>re (41)

where, 77,7, are positive constants. Let 7, > 7;, and define
Q={2,z)0@,z)< e 42)
Therefore, the exists a finite time ,, for £ > 1;, such that ®(&,z,)€ Q. From (38) and |z, <8¢ -1,|A| in

(12), we have lim”e(tm <k, Je , where k, is apositive constant, which can conclude the proof. [
t—0

5. Simulation
Consider the nonlinear system as follow.

XX, = X; 0
) X 2+2x
X= ! + ’ u+M(x)w
— X 0
x; + X, 0

y= h(x) =x,, M (x) is gain function of disturbance.

‘We can obtain

%:[o 0 0 1),L,a(x)=0,L,h(x)=x] +x,,L,L h(x)=2(1+x;),

Lf‘-h(x) =2x7x, —2x] +x,
The relative degree is 2.

Let & =h(x)=x,, & = th(x): x, +x; . In addition, we have 7, = x;, 77, = X,.



0 0 0 1
. .0 2 1O O} -
So the Jaccio matrix — ¥ (x) = is not singular, and conserve transformation is
Ox 0 010
1 00O

_ _ 2 _ _
X, =1, X, =6, -1, X3=1,, X, =&

The referential output y, = 2e " sin 0.5¢ + cos?, |d(t] <0.02.let e=e, =y—y, .The error system is

e =e,
€, =11, +772(772(e2 —7722)—77§)+(2+2771)u—yf,2) +d(t)
m=-n

772 = _2775 +e,1,

Observer is selected as

S ) ewite oot s B

_ﬁl :|: - ﬁl :|
_ﬁz - 27?23 + éz ﬁz

Sliding variable is selected as O'(t) = e, + ¢, . Sliding surface is adopted as (12).where, k, =2,k, =05

q =3, p = 7. The controller designed is

u=—(2+27, )‘{(ﬁz +ﬁ2(;72(52 —ﬁf)—ﬁfj}r{ 2 +ﬁj(el —e)+

0.01°
e, -y +20(1)+ O.S(J(t))j}

The curve of error between factual output and referential output is shown is figure 1.
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Fig. 1 The curve of the error and the its derivate between the output and the referential signal
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6. Conclusion
The problem of designing global tracking-error observer for a class of nonlinear systems has been discussed.

We proposed a procedure for the design of nonlinear tracking-error observer which do not require the

hypothesis of full relative degree. As far as local observation problem is concerned, the exponential stability

of zero dynamics is sufficient to guarantee that the output of the proposed observer converges to true error.

Moreover, the tracking-error observer designed has a strong robustness. From the analysis above, the sliding

mode controller designed has a strong robustness and rapidly convergent velocity.
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