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Abstract

Relaxation effects impose fundamental limitations on
our ability to coherently control quantum mechanical
phenomena. In this paper, we solve a new class of op-
timal control problems, which helps establish physical
limits on how closely a quantum mechanical system
can be steered to a desired target state in the presence
of relaxation. In particular, we explicitly compute the
maximum coherence or polarization that can be trans-
ferred between coupled nuclear spins in the presence
of very general decoherence mechanisms that include
cross-correlated relaxation. We give analytical expres-
sions for the optimal control laws (pulse sequences).
Exploitation of cross-correlation effects has recently led
to the development of powerful methods in NMR spec-
troscopy to study very large biomolecules in solution.
We demonstrate that the optimal pulse sequences pro-
vide significant gains over these state of the art meth-
ods, opening new avenues for spectroscopy of much
larger proteins. It is shown that in spite of very large
relaxation rates, optimal control can transfer coherence
without any loss when cross-correlated relaxation rates
are tuned to auto-correlated relaxation rates.

1 Introduction

In this paper, we study some model control problems
which arise in connection with optimal manipulation
of dissipative quantum dynamics. It is shown that the
questions about optimal control of quantum mechani-
cal phenomenon in presence of dissipation are directly
linked to optimization problems associated with a class
of constrained bilinear control systems. These bilinear
systems & = (A + Y7 u;B;)z are characterized by the
fact that the controls can be expressed as smooth func-
tions of fewer parameters, i.e. u; = g;(v1,v2,...,vg)
where g; are polynomials and k < n. A general study
of these class of systems is expected to find immediate
applications in coherent control of quantum mechanical
phenomenon.
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In [5, 6], we studied in detail, the following constrained
bilinear system. Consider the dynamical system

dr | _[-au? —uus |

aln =l St ]n]
Given (r1(0),72(0)) = (1,0), find the optimal control
0 <ui(t) <1, and 0 < us(t) < 1 such that at the
terminal time T, ro(T") is maximized. Problems of this
nature arise naturally in the optimal control of quan-
tum mechanical phenomenon in presence of relaxation.
In this paper, we study a more general class of optimal
control problems which arise in manipulation of cou-
pled spin dynamics in NMR spectroscopy, in the pres-
ence of cross-correlated relaxation (as explained subse-
quently).

According to the postulates of quantum mechanics, the
evolution of the state of a closed quantum system is
unitary and is governed by Schrédinger equation. This
evolution can be controlled by systematically changing
the Hamiltonian of the system. The control of quan-
tum systems has important applications in physics and
chemistry. In particular, the ability to steer the state of
a quantum system (or of an ensemble of quantum sys-
tems) from a given initial state to a desired target state
forms the basis of fields of laser coherent control, quan-
tum computing and spectroscopic techniques such as
nuclear magnetic resonance (NMR) and electron spin
resonance (ESR) spectroscopy. However, in all appli-
cations involving control and manipulation of quantum
mechanical phenomenon, the system of interest is open,
i.e. interacts with its environment (also termed lattice).
This undesirable interaction with an external heat bath
destroys phase correlations in the quantum system and
relaxes the system to its equilibrium state. Manipu-
lating quantum mechanical phenomenon in a manner
that minimizes decoherence effects, is a practical prob-
lem, in the whole field of coherent spectroscopy and
coherent control of quantum mechanical phenomenon.

In the field of NMR spectroscopy, sequence of radio-
frequency (RF) pulses with well defined frequen-
cies, amplitudes, phases, and durations are used
to manipulate ensembles of spin systems. Appli-
cations range from NMR spectroscopy of biological
macro molecules to the experimental implementation
of quantum-computing algorithms. From a control per-
spective, the goal in these applications is to steer the



state of the spin system using the free-evolution Hamil-
tonian of the spin system (representing internal sys-
tem dynamics) and using RF pulse sequences as control
variables. Pulse-sequences should be designed to min-
imize the effects of relaxation or decoherence that are
always present in practice. High relaxation or dissipa-
tion rates is a major bottleneck in NMR spectroscopy
of large proteins. Therefore, developing methods for
optimal control of quantum mechanical systems, which
minimize dissipation effects is expected to have imme-
diate impact on the field of coherent control of quantum
mechanical systems.

The paper is organized as follows. In the following sec-
tion we recapitulate the basics of quantum mechanics
and dissipation in open quantum mechanical systems.
In section 3, we look at the model problem of optimal
control of coupled two spin system in presence of deco-
herence. We develop the main ideas presented in this
paper through this example.

2 Control of Dissipative Quantum Dynamics

The state of a closed quantum system, represented by a
vector |¢), evolves unitarily, according to Schrédinger

equation
dy(t))

—g = H®OR®), 1)

where H(t) is the Hamiltonian of the system. In
this paper, we will only be concerned with finite-
dimensional quantum systems. We can split the Hamil-
tonian as H = Hg + Y-, uj(t)H;, where Hy is the
part of Hamiltonian that is internal to the system and
we call it the drift or free evolution Hamiltonian and
> iy wj(t)Hj, is the part of the Hamiltonian that can
be externally changed. H; are the control or RF Hamil-
tonians and w;(t), the control fields. In this paper, we
will focus on optimal control of ensembles of nuclear
spins in NMR spectroscopy. The state of an ensem-
ble of quantum mechanical systems is represented by
its density matrix. Given an ensemble of quantum sys-
tems with the state vectors given by |¢x), k=1,..., N,
respectively, the density matrix p is defined as

1 N
P=x D k)Wl
k=1

where (1| is the conjugate transpose of the vector |y).
The density matrix of a closed quantum system then
evolves as

p=—ilH(t),p),

where [,] is the matrix commutator. We will refer to
the eigenvectors of Hy as the energy eigenstates.

For open quantum systems, the evolution of the system
is no longer unitary. The density matrix of the system

at any time t is related to the initial state p(0) by a
trace preserving map [2]

p(t) =" Ex(t)p(0)EL(t), (2)
k

such that Y, Ex(t)!E;, = I (The operators Ej are
termed as Kraus operators). In general, it is not pos-
sible to write an evolution equation in time for the
Kraus operators and hence the density matrix. How-
ever, in many practical applications of interest, the lat-
tice can be approximated as an infinite thermostat,
whose own state never changes. This assumption is
also called Markovian approximation and under these
assumptions, it is possible to write the evolution of the
density matrix of the system alone in the form (Lind-
blad Form) [3]

p=[—iH(t), p] + L(p), 3)

where the term L(p) models dissipation or relaxation.
The relaxation term L(p) is linear in p and has the
general form

1 1
L(p) = 3 JalVapVd = SVIVap = 5pVIVal,  (4)

where the coefficients J, contains the information
about physical relaxation parameters (lifetimes, relax-
ation rates) and V, denotes operators representing var-
ious relaxation mechanisms(Once a basis is chosen, V,
are just finite dimensional matrices).

Relaxation phenomenon is broadly classified into two
categories. Adiabatic relaxation (decoherence) and
non-adiabatic relaxation(dissipation). Let pp be a den-
sity matrix which is diagonal in the energy eigenstates.
All the super-operators V3 in equation (4) such that

1 1
[VBPDVL,;r - ingBpD - §pDVgV5] =0 (5)

constitutes the adiabatic relaxation or the decoherence
terms. This mode of relaxation doesn’t effect the pop-
ulation of the energy eigenstates as no energy is ex-
changed between the environment and the system, but
phase correlations between energy eigenstates is de-
stroyed ( represented by off diagonal terms in the den-
sity matrix when expressed in energy eigenstates). The
super-operators Vg for which equation (5) is not sat-
isfied, constitute non-adiabatic mode of relaxation in
the system and brings the populations to equilibrium,
while destroying off diagonal terms in the density ma-
trix. Energy is exchanged between the system and the
lattice.

Our focus, in this paper is on the relaxation phe-
nomenon in the liquid state NMR spectroscopy. The
case in which we are interested is well modeled as sys-
tem consisting of two weakly interacting parts: the



spin system consisting of all spin degrees of freedom
of the nuclei, and the lattice consisting of all other de-
grees of freedom of the liquid sample, associated with
the molecular rotations and translations. Molecules
in solution are constantly being bombarded with sol-
vent molecules and undergo random “Brownian” mo-
tion as a result. This stochastic Brownian motion is
the principle mechanism of relaxation in NMR. spec-
troscopy. This small inter-collision time of the order of
10~'4—10~'2 seconds, ensures that the correlations be-
tween the spin system and the bath decay much faster
than the evolution of the spin system and a Markovian
approximation is a valid assumption.

To demonstrate the basic principles, we examine an
isolated pair of heteronuclear spins I and S (spins that
belong to different nuclear species) with indirect inter-
action (mediated by the surrounding electrons). For
such a system, the Hamiltonian Hy is given by [1]

H;=Hz+ Hipg (6)

where Hy is the Zeeman Hamiltonian for the spins I
and S.
Hz =wil, +wsS, (7)

where I, = 0, ®1 and Sgp =1 ® og, with o, €
{z,y,2}. The matrices o, 0y, 0, are the standard pauli
matrices and 1 is the two dimensional identity matrix.
H;,q is the Hamiltonian for the indirect interaction be-
tween the spins. The general form of H;, 4 for two spins
is

Hipg = Z Ja,52IaSﬂ; (8)

a,B

where 1,53 = 04, ® 0 and o, € {z,y,2}. The only
effective part of this interaction in liquids is its average
over all relative orientations of the spins in space. In
isotropic liquids it is of the form

Hing = 2J{1,S, + I,S, + I.S.}, 9)

where J is the scalar coupling constant. In the weak
coupling limit (J < |wr —ws]), the indirect interaction
Hamiltonian is simplified to the form [1]

Hing = 2JL.S. . (10)

For heteronuclear spins I and S the weak coupling
condition is always satisfied. Thus, the deterministic
Hamiltonian for our system is

Hy = wil, + wsS, +2nJI,S, . (11)

We know look at the various dissipation mechanisms
for this system. In liquid solutions, the most impor-
tant relaxation mechanisms are due to dipole-dipole
interaction (DD) and chemical shift anisotropy (CSA),
as well as their interference effects (e.g. DD-CSA cross
correlation terms). Any magnetic nucleus in a molecule

generates an instantaneous magnetic dipolar field that
is proportional to the magnetic moment of the nucleus.
As the molecule tumbles in solution, this field fluc-
tuates and constitutes a mechanism for relaxation of
nearby spins resulting from DD interaction. Chemi-
cal shifts are reflections of the electronic environment
that modify the local magnetic fields experienced by
different nuclei. These local fields are anisotropic; con-
sequently, the components of the local fields vary as
the molecule re orients as a result of molecular mo-
tion and lead to CSA relaxation mechanism. Cross-
Correlated relaxation refers to interference effects be-
tween these two relaxation mechanisms. The Lindlad
operator which captures these decoherence mechanisms
takes the form,

kpp[2I.S.,[21.S.,p] + kLsall,[I., ]
+ kg’SA[SZJ [Sz,p]] + kJIDD/CSA[2[zSZa [IZ; p]]
+ kf)D/CSA[ZIZSZJ [Sz, Pl (12)

L(p) =

The rates kpp, kL g4, k2 g4 Tepresent auto-correlated
relaxation rates due to DD relaxation, CSA relax-
ation of spin I and CSA relaxation of spin S, respec-
tively. The rates k} josa and k2, Jcsa Tepresent
cross-correlation rates of spin I and S caused by inter-
ference effects between DD and CSA relaxation. The
relaxation rates depend on various physical parameters,
such as the gyromagnetic ratios of the spins, the inter-
nuclear distance, the CSA tensors, the strength of the
magnetic field and the correlation time of the molecular
tumbling [1].

Let the initial density operator be p(0) = A and denote
the density operator at time ¢ by p(¢). The maximum
efficiency of transfer between A and target operator C
is defined as the largest possible value of trace(CTp(t))
for any time t (by convention operators A and C are
normalized to norm 1).

In this paper, we address the problem of finding the
maximum efficiency for the transfers

I, - 2I,8, (13)

This transfer is of central importance for two-
dimensional NMR spectroscopy. Let

ko = kpp + kbsa,

and

ke = kpp/osas
denote the net auto-correlated and cross-correlated re-
laxation rates of spin I respectively.

We now make the following transformation (which cor-
responds to a doubly rotating frame). Let

U(t) = exp(iHzt) = expli(wrl, + wsS,)t],  (14)



and
a(t) = U(t)p()U' (2). (15)

then o(t) evolves as

‘Cll_‘; = —iJ[2L.S,,0] + L(0) . (16)

Now the problem is to steer ¢(0) = I, in equation 16
as close to the final stae 21..5,.

3 Optimal control in the presence of
cross-correlated relaxation

Remark 1 Let

I (t) <IZ>(t)
(1) (L) (t)

.Z'(t) — :L'3(t) — <Iy)(t)
z4(t) (2L,S)() |’
$5(t) <21w5z)(t)
x6(t) (21.5.)(t)

where (I,(t)) = trace(I,o(t)) represents the expecta-
tion value of the operator I, at time t.

Problem 1 Consider a control system

—’U(t) 0 _ka _kc J

0 )
0 k. —J 0 =k, —u(t)
0 0 0 w(t) u(®) 0

Here u(t) and v(t) are the control terms corresponding
to the rf field and k,, k. and J are positive constants.
k. represents the auto-correlation rate, k. represents
the cross-correlation rate and J represents strength of
Hamiltonian coupling as described in previous section.
Starting from (z1, 2,3, T4, T5,26) = (1,0,0,0,0,0) ,
what is the largest achievable value of x4 and what is
the optimal rf field w(t) and v(t) which achieves this
transfer.

The main result of the paper is as follows.

Theorem 1 For the control system in problem 1, let

k2 — k2
¢= k2 +J?
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Figure 1: Representation of the system variables r1, r2,
their transverse components 1, I, the angles
B1, B2, and of the control parameters ui =
cos B1, uz = cos Ba.

Starting from (z1, 29, z3,24,%5,26) = (1,0,0,0,0,0) ,
the largest achievable value of zg is

1= VITE-C.

Let R((1,0,0,0,0,0)) denote the closure of the
reachable set of the point (1,0,0,0,0,0). All
(21, %2, 23,24, T5,26) belonging to this set satisfy

\/nz’(x% +x3 +a3) + (2 + 22 +23) <.

We develop the proof of this result in the remaining
part of the paper.

Remark 2 We use i1(¢) and l5(t) to denote the two
dimensional vectors (z2(t),z3(t)) and (z5(t), z4(t)) re-
spectively, as depicted in figures (1, 2). Let ri(t) =
z3(t) + 23(t) + 2%(t) and 13(t) = 23(t) + 23(t). As
shown in the figure (1), let cosf, = iy Using rf
fields (controls u and v in equation 17 ), we can con-
trol the angle ;. Similarly let 13(t) = z3(t) + z2(t),
and r3(t) =13 + z2(t) with B2 = cos™! fq—i (see Fig. 1).
We can excercise control on the angle 85 and we define
cos B2 as a second control parameter us.

Remark 3 We superimpose the transverse planes de-
fined by z2 and z3 with the plane defined by x5 and
x4 such that z, is aligned with z5 (Fig. 2). Let v(t)
denote the angle between /1 (t) and I5(t). Let

7

Cc

6 = tan 1 (

In absence of control fields v and v, we have from Eq.
(17),

% L) = —[kali(t) — /E2 + J2 cos(6 +7) Ix(t)]
% h(t) = —[kala(t) — VEZ+ J2cos(0 — ) Li(t)].
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Figure 2: The figure shows the transverse planes defined
by x2 and x3 superimposed on the plane defined
by x5 and x4 such that 2 is aligned with x5
and x4 aligned with z3. Vectors l1(t) and l2(t)
make an angle (t) as shown in the figure.

This can be rewritten as % [ 28 ] —
—£ x cos(@+7) 1 [ L)
x cos(8 — ) _¢ ] [ l;(t) ] . (18)
where
f = ka/J
and

k\2
=14/1 — ] .
X +(J>

For a fixed value of 8, and (5, we get

%1‘1 (t) = cos(B1) %ll (t)
d d
e (t) = cos(B2) 512 (t).

r1(t) ] _

Substituting in 18, we then get % [ ra(t)
2

—&u? X u1us cos(f + ) ri(t)
X u1uz cos(f — ) —&u3 ra(t) |-

)
(19)

Remark 4 By use of controls u and v, we can change
u1,us and v, however we donot have independent con-
trol over these parameters. We for now relax this con-
strint and assume that u;,us and « are independent
controls. We will show that the optimal solution of
this relaxed problem can also be achieved by appro-
priate choice of u(t) and v(t) in the original problem.
We therefore first solve the following optimal control
problem.

Problem 2 Given the dynamical system in equation
(19), find the optimal control uq(t), ua2(t), and ~(¢),
so that starting from (r(0),72(0)) = (1,0), we achieve
the largest value for ro.

As remarked in the introduction, these are optimal con-
trol problems where the state enters linearly, whereas
the controls can be expressed as smooth functions of
fewer parameters.

Theorem 2 For the dynamical system in equation
(19), the function

V(T15r2) = V 7127“% + 7’%,

is constant along the optimal trajectory and represents
the optimal return function for the above problem with
71 as defined in theorem 1. The optimal trajectory has
two invariants of motion. Along the optimal trajectory

lg(t) _ UQ(t)TQ(t) _
L) wm@m@) "

and the angle 7(¢) is maintained constant at

1 1_772

*=—tanl ——— .
i an (14 n?)coté

Proof: We use the maximum principle of pontryagin
to compute the optimal control. The Hamiltonian H of
the optimal control problem takes the form

A1 (=&u2ry +xuruars cos(B47))+ A2 (x cos(0—)uruara—Euirs),

where u1,u2,y are the control variables and Ay and As
are the costate variables. We introduce the following
notation. Let
N, m
a= YRR

The Hamiltonian can then be written as
H = —\i71[€ ab u2+x(bcos(8+7)+a cos(—))uua+Eul],

The pontryagin’s maximum principle states that if
ui,us,v* are the optimal control laws then

(ULU;’Y*) = arg max H(ulau%’)l) (20)

(u1,u2,7)

H(ui, u3,7*) = 0 (21)

If V is the optimal return function for the problem,
then

ov oV
(A1 (1), A2(t) = (6_n’ 8—7,2)|(r;(t),r;(t));

where (r(t),r3(t)) is the optimal trajectory. Therefore
for this problem, A\;(¢) > 0 and A2(t) > 0. Let

B = x(acos(§ —v) + bcos(d +7)).

Since a,b > 0, if B < 0 then the only solution to
equations (20, 21) is the trivial solution u} = uj = 0.
Therefore B > 0. Also note, when B? < 4£2ab, the



only solution to equations (20, 21) is again the trivial
2

solution. Suppose B? > 4£2ab , i.e. f? = ab + & for
k > 0. Then

B
H = —Al’l“l [m Uy — \/EU1]2 + KZ/\11"1U%7

and hence maxH > 0. Therefore the only case for
which (20, 21) can be satisfied is

B? = 4ab¢?, (22)
implying
1 €
—cos(f — ) +ncos(@ +v) =2, (23)
n X
where n = \/g . Maximizing H with respect to choice

of v gives that the optimal ~ satisfies

nsin(d +v) — % sin(6 — ) = 0, (24)

Solving Eq (23, 24), then leads to

n=v¢+1-g, (25)

1 1—n?
(1+n2)cot 6"

k2—k2

where C = TErE2

and optimal v = tan™

Also maximizing H, with respect to u; and us, we get

uw B
ko Rt 26
= 2 (26)

and from (22,23) that

UsT: _ T (27)

uiry

Using the optimal control law in eq (27) and (19), it is
easily verified that V(ry,rs) = /73 + r?n? is constant
along the system trajectories and is the optimal return
function for the problem.

Remark 5 Observe, the optimal control law has two
invariants of motion. Along the optimal trajectory
I>(t)

I (D) R

and the angle ~(¢) is maintained constant at
2

tan—1 mﬁﬁ. Consider the two dimentional vector

(v(t),u(t)) in equation (17). Let A%(t) = u?(t) + v%(t),
represent the amplitude of the rf field and let ¢(t) de-
note the angle this vector makes relative to vector A
(v — ¢ relative to Iz ). We now determine expression
for A(t) and ¢(t) from the invariants. Let dli- denote
the change in vector l-i in direction perpendicular to

the vector i1 by application of the rf-field in small time
dt. Then observe

dii- = Az, (t) cos(¢)dt.
Similarly
dly = Axg(t) cos(y — @)dt.

If é—f is maintained at n then the angle v does not change
due to the evolution equation (18). Therefore we only
need to consider the change in 7, due to the rf field. If
v is constant, then

dit _ dij

Lo Iy’

This gives tan(f1) cos(¢) = tan(B2) cos(v* — @) because
?—11 =tan f; and “;—2@ = tan B>. This then implies that

t
¢:mn4<—4ﬁﬁL——an¢).
tan B9 sin y*

The amplitude can be determined from the condition
that 5?8 is maintained constant. This implies that

‘%1 = ‘i—l;. Substituting
dly ;
o —&Jly + xJ cos(8 + v)la + Az sin(¢)
and
dly ;
== —&Jly + xJ cos(8 — 7)1y — Azgsin(y — ¢),
we get

(cos(§ —v*) —n* cos(6 +v*)) xJ
(tan B; sin ¢ + tan e sin(v* — ¢))

The expressions of optimal A and ¢ are expressed in
terms of the state of the system (angle 81 and 3») and
we have a optimal feedback control law.
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