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Abstract

In this paper, we study some model control problems
which arise in connection with optimal manipulation
of dissipative quantum dynamics. It is shown that
the problem of optimal control of quantum mechani-
cal phenomenon in presence of dissipation can be re-
duced to the study of optimization problems associ-
ated with a class of constrained Bilinear control sys-
tems. These Bilinear systems & = (A + > u;B;)z
are characterized by the fact that the controls can be
expressed as polynomial functions of fewer parameters,
ie. u; = g;(v1,va,...,v;) where g; are polynomials and
k < n. A general study of these systems is expected
to find immediate applications in coherent control of
quantum mechanical phenomenon.

1 Introduction

Consider the dynamical system

d [rl]_[—au'f’ —uluQ][rl]_

dt | r2 | | wiue —au ry |’
Given (r1(0),72(0)) = (1,0), find the optimal control
0 < ui(t),u2(t) < 1, such that at the terminal time
T, ro(T) is maximized. Problems of this nature arise
naturally in the optimal control of quantum mechanical
phenomenon in presence of dissipation. These systems
are linear in the state and controls can be expressed
as polynomial functions of fewer parameters. In this

paper we study some optimal control problems related
to these systems.

According to the postulates of quantum mechanics, the
evolution of the state of a closed quantum system is
unitary and is governed by Schrédinger equation. This
evolution can be controlled by systematically changing
the Hamiltonian of the system. The control of quan-
tum systems has important applications in physics and
chemistry. In particular, the ability to steer the state of
a quantum system (or of an ensemble of quantum sys-
tems) from a given initial state to a desired target state
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forms the basis of spectroscopic techniques such as nu-
clear magnetic resonance (NMR) and electron spin res-
onance (ESR) spectroscopy and in the field of laser co-
herent control and quantum computing. However, in
all applications involving control and manipulation of
quantum mechanical phenomenon, the system of inter-
est is open, i.e. interacts with its environment (also
termed lattice). This undesirable interaction with an
external heat bath destroys phase correlations in the
quantum system and relaxes the system to its equi-
librium state. Manipulating quantum mechanical phe-
nomenon in a manner that minimizes decoherence ef-
fects, is a practical problem, in the whole field of co-
herent spectroscopy and coherent control of quantum
mechanical phenomenon.

In this paper, we study some model control prob-
lems which arise in connection with optimal manip-
ulation of dissipative spin dynamics in NMR spec-
troscopy. In the field of NMR spectroscopy, sequences
of radio-frequency (RF) pulses with well defined fre-
quencies, amplitudes, phases, and durations are used
to manipulate ensembles of spin systems. Appli-
cations range from NMR spectroscopy of biological
macro molecules to the experimental implementation
of quantum-computing algorithms. From a control per-
spective, the goal in these applications is to steer the
state of the spin system using the free-evolution Hamil-
tonian of the spin system (representing internal sys-
tem dynamics) and using RF pulse sequences as control
variables. Pulse-sequences should be designed to min-
imize the effects of relaxation or decoherence that are
always present in practice. High relaxation or dissipa-
tion rates is a major bottleneck in NMR spectroscopy
of large proteins. Therefore, developing methods for
optimal control of quantum mechanical systems, which
minimize dissipation effects is expected to have imme-
diate impact on the field of coherent control of quantum
mechanical systems.

The paper is organized as follows. In the following sec-
tion we recapitulate the basics of quantum mechanics
and dissipation in open quantum mechanical systems.
In section 3, we look at the model problem of optimal
control of coupled two spin system in presence of deco-
herence. We develop the main ideas presented in this
paper through this example.



2 Control of Dissipative Quantum Dynamics

The state of a closed quantum system, represented by a
vector |¢), evolves unitarily, according to Schrédinger

equation
dy(t) _ .
= —iHO(), M

where H(t) is the Hamiltonian of the system. In
this paper, we will only be concerned with finite-
dimensional quantum systems. We can split the Hamil-
tonian as H = Hg + Y_7°, uj(t)H;, where Hy is the
part of Hamiltonian that is internal to the system and
we call it the drift or free evolution Hamiltonian and
> iy uj(t)Hy, is the part of the Hamiltonian that can
be externally changed. It is called the control or RF
Hamiltonian. In this paper, we will focus on optimal
control of ensembles of nuclear spins in NMR spec-
troscopy. The state of an ensemble of quantum me-
chanical systems is represented by its density matrix.
Given an ensemble of quantum systems with the state
vectors given by |¢r), k = 1,..., N, respectively, the
density matrix p is defined as

1
P=N Z |tk ) (r
k=1

where (| is the conjugate transpose of the vector |1)y).
The density matrix of a closed quantum system then
evolves as

p=—i[H(t), ],

where [,] is the matrix commutator. We will refer to
the eigenvectors of Hy as the energy eigenstates.

For open quantum systems, the evolution of the system
is no longer unitary. The density matrix of the system
at any time ¢ is related to the initial state p(0) by a
trace preserving map [1]

p(t) = > Ex(t)p(0)EL(t), (2)
k

such that Y, Ex(t)'Ex = I (The operators Ej, are
termed as Kraus operators). In general, it is not pos-
sible to write an evolution equation in time for the
Kraus operators and hence the density matrix. How-
ever, in many practical applications of interest, the lat-
tice can be approximated as an infinite thermostat,
whose own state never changes. This assumption is
also called Markovian approximation and under these
assumptions, it is possible to write the evolution of the
density matrix of the system alone in the form (Lind-
blad Form) [2]

p=[—iH(t), p] + L(p), ®3)

where the term L(p) models dissipation or relaxation.
The relaxation term L(p) is linear in p and has the

general form
1 1
Lip) = t_ Zyt _ Z oyt 4
(p) Ea JalVapVa = SVaVap = 5pVaVal,  (4)

where V,, are the relaxation super-operators and rep-
resent various relaxation mechanisms (Once a basis is
chosen, V,, are just finite dimensional matrices.)

Relaxation phenomenon is broadly classified into two
categories. Adiabatic relaxation (decoherence) and
non-adiabatic relaxation(dissipation). Let pp be a den-
sity matrix which is diagonal in the energy eigenbasis.
All the super-operators V3 in equation (4) such that

1 1
[VﬂpDVBJr - §V5VﬁpD - §pDV[}V5] =0 (5)

constitutes the adiabatic relaxation or the decoherence
terms. This mode of relaxation doesn’t effect the pop-
ulation of the energy eigenstates as no energy is ex-
changed between the environment and the system, but
phase correlations between energy eigenstates is de-
stroyed ( represented by off diagonal terms in the den-
sity matrix when expressed in energy eigenstates). The
super-operators Vj for which equation (5) is not sat-
isfied, constitute non-adiabatic mode of relaxation in
the system and brings the populations to equilibrium,
while destroying off diagonal terms in the density ma-
trix. Energy is exchanged between the system and the
lattice.

Let us write equation (3) in a more control theoretic
notation. We choose energy eigensates as the basis for
our Hilbert space. Observe equation (3) is linear in p.
We expand p, as a vector of length n? and call it z,
with the first n entries of z as the diagonal entries of
p. Let e; denote the vector of length n? which is one in
the it* position and zero everywhere else. In this repre-
sentation, e, és, ..., e, correspond to density matrices
corresponding to energy eigenstates. In this represen-
tation we can write the Lindblad equation (3) in the
form (Note, the following equation is not the most gen-
eral form, as we assume that relaxation doesn’t couple
the diagonal and off diagonal terms of density matrix)

= p]rSu] b 2] ©

. k3
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Where the n x n matrix A arises due to the spin-lattice
relaxation in the system and is responsible for bringing
the populations to equilibrium. In general A is a @
matrix for a continuous time markov chain (columns of
A sum to zero and all off diagonal elements are non-
negative). In systems, where there is no spin-lattice
relaxation, the term A is zero. The term D can further
be decomposed as D = D; + D,. Where D; = DT is
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Figure 1:

a negative semi-definite matrix and arises due to de-
coherence and dissipation. The term Dy, = —DZ and
arises due to Hy, the drift Hamiltonian of the system.

The terms
0 B;
-B] Ci |’

where C; = —C}, correspond to control Hamiltonians.
The model problem addressed in the paper is: starting
from initial population state x = e;, what is the largest
achievable value of < z,e;, > for k € 2,...,n in both
infinite and some prescribed finite time T'.

3 Optimal Control of Spin Dynamics in
Presence of Decoherence

Our focus, in this paper is on the relaxation phe-
nomenon in the liquid state NMR, spectroscopy. The
case in which we are interested is well modeled as sys-
tem consisting of two weakly interacting parts: the
spin system consisting of all spin degrees of freedom
of the nuclei, and the lattice consisting of all other de-
grees of freedom of the liquid sample, associated with
the molecular rotations and translations. Molecules
in solution are constantly being bombarded with sol-
vent molecules and undergo random “Brownian” mo-
tion as a result. This stochastic Brownian motion is
the principle mechanism of relaxation in NMR. spec-
troscopy. This small inter-collision time of the order of
1014 —10'2 seconds, ensures that the correlations be-
tween the spin system and the bath decay much faster
than the evolution of the spin system and a Markovian
approximation is a valid assumption.

We analyze an optimization problem related to optimal
control of two coupled spins under relaxation [3]. The
control theoretic issues are captured by the following
problem. Consider the control system

T 0 0 Uu 0 T
i Ty | 0 0 0 v 9 %
dt | z3 —-u 0 —-d -c T3

T4 0 —v ¢ —d T4

The objective is to find out that starting with the state
el = (1,0,0,0), what is the maximum achievable value
of x5 and what are the optimal controls u and v that
achieve this value. Observe if u and v are set to 0 then
the initial state e; doesn’t evolve at all and there is no
build up of z2. However by switching on w it is possible
to rotate 21 to x3 which evolves to 24 under the skew

symmetric matrix _OC and dissipates under the
—-d 0
term 0 —dl- The state x4 can then be rotated to

9 by switching the controls v. The goal is to find the
optimal 4 and v as a function of time which produce
the maximum value of z5.

By switching on the control u, the initial state e; can be
transformed to any state of the form e; sin ¢ + e3 cos ¢
in almost no time. Let r?(t) = z%(t)+23(t) and r3(¢) =
x2(t) + x3(t). Using the control u, we can exactly con-
trol the angle ¢ in the term r1(t) cos ¢ e3+71(t) sin ¢ e;.
Now observe the vector e; doesn’t evolve but the vec-
tor e3 evolves to e4 under the coupling ¢ and also dis-
sipates. As the vector e, is produced, its magnitude
begins to decay too. By use of control v we can rotate
e4 to ey and exactly control the angle 8 in the term
ro(t) sin 8 es + 72(t) cos B es (See Fig. 1). We can now
write an equation for 7 (t) and r2(t) and it takes the
form

d[r@t)] [ —dcos®¢ —ccospcosf 71 (t)
dt [ ro(t) ] - [ ccos ¢ cos B — dcos? B ] [ ra(t) ]

(8)
where ¢ and 8 can be explicitly controlled using con-
trols 4 and v. Denoting u; = cos ¢ and us = cos 3, and
dilating time by a factor of ¢, we can rewrite the above
equations as

d [n(t) ] _ [ —ou}  —urus ] [ ri(t) ] )

dt | ra(t) uruy  —oul ra(t)

Here u; and wus are control parameters, which take
there values between —1 and 1 and o = d/c. For the
dynamical system in equation (9), how should wu, (%)
and ua(t) be chosen so that starting from r1(0) = 1 we
achieve the largest value for r2. To understand quali-
tativly the optimization problem here, observe if & = 0
(no decoherence), then by putting uq(t) = uz(t) = 1,
we get m2(3) = 1, and we get the full transfer. How-
ever if a # 0, then it is not the best strategy to keep
u1(t) and us(t) both 1, because although this rotates
the vector (r1,7r2) from (1,0) to (0,1) rapidly, it in-
creases dissipation in the system. This is depicted in
trajectory a in the figure 2. Using maximum princi-
ple, we will obtain analytical expression for the largest
achievable value of r, and the optimal values of wu;(t)
and ws(t). Curve b in figure 2 shows the optimal tra-
jectory if wi(t) and wua(t) are chosen optimally. This
leads to higher transfer efficiency from r; to r2.



Figure 2: The curve a shows the trajectory of dynamical
system 9 when u; = u2 = 1 and @ = 1. Curve
b showns the trajectory of dynamical system
9 for optimal choice of 1 and u2 and o = 1.
The optimal trajectory approaches the r» axis
at the point (r1,72) = (0,2 —1).

Problem 1 Consider the dynamical system

d|r | _ —au?  —uiug |

dt [ o ] - [ uruz  —oul ry |’ (10)
Given (r1(0),72(0)) = (1,0), find the optimal control

(ui(t),us(t)), 0 < wug,up <1, t € [0,00), such that ry
is maximized.

Theorem 1 For the control system described in prob-

lem 1, let

n=vVa2+1l-—a.
Then the optimal feedback control
(uf(ri,m2), ud(ry, o)) satisfy

ui(ri,r2) _ 12 1)

us(ri,m2)  nr1

and the optimal return function V(ry,rs) is

V(ri,ra) = 1/r2+1r2n2. (12)

Proof: We use maximum principle of pontryagin. The
Hamiltonian of the system takes the form

H = A\ (—auir) — uiuars) + A (urusrs — auirs),

where A\ = g—x and Ay = g—:: are the costate variables.

We introduce the following notation. Let

G—A—l, b—/rl.

The Hamiltonian can then be written as

H=—X\ir1]a ab ui + (b— a)ujus + aud],

The pontryagin’s maximum principle states that if
uf,us are optimal control laws then

(ui,uy) = arg (max) H(w1 ,uz) (13)

H(uy,u3) = 0 (14)

Since a,b > 0, if (a — b) < 0, then the only solution to
equations (13, 14) is the trivial solution u} = uj = 0.
Therefore (a — b) > 0. Also note, when (a — b)? <
4a’ab, the only solution to equations (13, 14) is again
the trivial solution. Suppose (a — b)? > 4a’ab , i.e.

(@=b)* _ 4b+ k for & > 0. Then

402

(a—1b)
2V

and hence maxH > 0. Therefore the only case for
which (13, 14) can be satisfied is

H= —)\17'1[

Uy — \/au1]2 + f:)\lrlu%,

(b —a)? = 4aba’, (15)
implying
\/g =V1+a?2-a. (16)
In this regime, maximizing H, we get

*
u _a-b

; (17)

=
u; 2a

and from (15,16) that

uy b
uy Vit -a

Integrating using the optimal control law, we get the
optimal return function V(ry,re) = /72 + rn2.

Remark 1 It is important to note that the point
(r1,72) = (0,7m), is only reached in the limit of infinite

time. Let R((1,0)), denote the closure of the reach-

able set of the point (1,0). Then (0,n7) € R((1,0)).
The optimal control policy can be realized as

T2 T2

uy =1 ; uyj=—; 0<—=<np;
nri 1

* . x«_ N1 T2

uy=1 5 uy=-—; —2>n.
ro T

Remark 2 Observe that the initial point (1,0) is a
stationary point of the optimal control policy. This
optimal policy in the infinite case should then be in-
terpreted as the limit of optimal control policy for the
finite time problems as the terminal time T' approaches
infinity. In theorem 3 we explicitly compute the opti-
mal policy for finite terminal time.
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Remark 3 It is now possible to explicitly characterize

the set, R((1,0)). In the first quadrant, the closure of
the reachable set has the form

R((1,0)) = {r1 > 0,75 > 0]y/r3 +rin? < n}.
This is depicted in figure 2. This in turn explicitly
characterizes the closure of the reachable set for the

control system, described by equation (7) as described
in the following theorem.

Theorem 2 For the control system

T 0 0 u 0 T

d |z | _ 0 0 0 v To

dt | zs | | =« 0 —-d —c x3 |’
Ty 0 —v ¢ —d T4

let @« =d/c and n = /1 + a? — a. Then the closure of
the reachable set R((1,0,0,0)) is given by

{($1,$2,$3,3}4)|\/(x% +x421) + 772('7;% + .flf%) S 77}

We now consider a finite time version of problem 1.

Problem 2 We now consider a finite time version to
the problem 1. For the control system in problem 1,
given (r1(0),72(0)) = (1,0), find the optimal control
(u(t),us(t)), t € [0,T], such that ro(T) is maximized.

Remark 4 We first describe qualitatively the nature
of optimal trajectoy and optimal control. For given T
there is a 7 (function of T'), such that for 0 < ¢t < 7,
uz(t) = 1 while uq(t) is increased gradually from a
value u1(0) < 1 to u(r) = 1 as described in following

e (A J0). A {0))

T

r
2

Figure 4:

theorem. Then for time 7 < ¢t < T — 7, the optimal
control ui(t) = 1 and u2(¢t) = 1. Finally for t > T — 7,
we have ui(t) = 1 and wua(t) is decreased from 1 to
u2(T) = u1(0). The optimal control always satisfies
u1(t) = ua(T —t). This is depicted in Figure 3. If
tanT < i, then 7 = 0. Figure 4, depicts the optimal
trajectory. At time 7, the optimal trajectory makes an
angle 0, with the r; axis and at time 7' — 7 the optimal
trajectory makes an angle #; with the r; axis, where
01 and 65 depend only on T'.

Definition 1 For the control system in problem 2, we

define n(t) = 1+2a2 —2av/1 + a2 coth(v/1 + a2t +20),
where sinh(8) = a. Further define 6, (t) = tan~! 1_2—’(71('5)

and 0, (t) = tan~! %

Theorem 3 For the control system in problem 2, the
optimal control u}(t) = u5(T —t). If tanT < 5, then
uf(t) = ui(t) = 1 and ro(T) = exp(—aT)sin(T'). For
tanT > i, there exists 7 < %, satisfying

T =27+ 01(1) — 05(7). (18)

The optimal control then satisfies

wyt) = 1; t<T—r7 (19)
. Q=T —t))r(t).
uy(t) 22 (D) ; t>T —1 (20)

The optimal cost

_exp(—a(T —27))(1 — asin 26, (7))
r2(T) = Sin(0: (1) + 02(1)) )

Proof: As in theorem 1, the Hamiltonian is expressed
as
H = —\i7r1[au? — (a — b)ugus + aabu3].



For the finite horizon problem max,, ., H > 0. This
implies (a — b)? > 4a?ab. We consider three separate
cases for the problem

1. Case I: If (a — b) < 2a, then the maximum of H

is obtained for us = 1 and u; = azij-

2. Case II: If (a — b) > 2a and %32 > 20, then the
maximum of H is obtained for u; = 1 and uy = 1.

3. Case III: If “a—_bb < 2a, then the maximum of H

is obtained for u; = 1 and uy = 2“;3,

The adjoint variables (A1, A2) satisfy the equations,

d /\1 _ auf —Ui1U2 /\1

% [ /\2 :| - [ Ui1Ug aug /\2 ’ (22)
where (A1 (T),A2(T)) = (0,1). Observe V = Air1 +
Aory is a constant for optimal trajectory and equals

the optimal cost 72 (T") = A1(0). Writing the equation
for adjoint variables backward in time, let ¢ =T — ¢

then

d [ x]_[-aud —uu A2

do | M | | wus —au% A’
where (A2(0), A1 (0))s=0 = (1,0). This is exactly the
same optimization problem as in equation (10), where
A1 takes the role of o and A, replaces r; and the roles of
uy and ug have been switched. Again u; and uy should

be chosen to maximize A\; (¢)|,=r. From symmetry, we
then have

wilt) = wy(T—1)
1 (t) = /\2(T — t) H Ta (t) = /\1 (T - t)
T T T
ab(E) =1 H V= 27’1(5)7‘2(5)
Observe from (10,22), ab(t) is monotonicaly increasing
and since ab(0) = 0 and ab(%) = 1, we have ab(t) < 1
for t < L. Therefore uj(t) = 1 for t < Z. Since

2
b(0) = 0, depending on a(0) we have two cases.

Case A In this case “2(—? > 1. Then we start in the
case II discussed above and verify that in this case a—b
is increasing for ab < 1. Therefore we stay in this case
for all ¢ € [0, 2] and therefore u} = u3(t) = 1 for all ¢.

Since b(0) = 0, we have b(%) = tanT. Similarly,

(Z) _a(0) + tan(%)
“2) T T a(0) tan(Z)

If ab(L) = 1 then it implies that tan(T) < 5-.

2a

Case B If %% < 1, then u}(0) = 4% and the system
begins in case I. Let 7(t) satisfy

dg _ n’=2p+1

— 2 =0.
o o +2am, 7(0) =0

The solution to this equation is given by 7(t) = 1
202 —2aV/1 + a? coth(V1 + a?t+2p), where sinh(J)

a. In this case, the optimal trajectory satisfies g =

n(t). After time 7, 22 becomes equal to 1 and the
system switches to case II. Putting 2= = 1 and &
n(t), we get

I+

ra(r) _ 2am(r)

ri(r)  1—=n(r)
Then again by symmetry at time T'— 7 we have 5—( —
1) =1 and the system switches from case II to case III.
In case ITI, verify b = an(T—t) and the switching to this

case occurs at :—f = FQLOET) Thus the system spends
T — 27 in region II. Then we have

— tan_l M_

L —mn(7)

Thus providing result (18). The optimal control w3 (t)
then satisfies (19) and (20).

1—
T 27 = tan—! L2100

We now derive an explicit expression for ro(T"). For
t>T —,

V() = \/ri(0) + 0T — r3(0),

is constant along the system trajectories and equals the
optimal return function r5(T). At t =T — 7, we have

1—n(r
% and therefore

Ty = tanth =

V(t) = Ry \/sin2 01 + cos? 01 — 2asin 0 cos by, (23)

where Ri = /r?(T—7)+r3(T —7). Also note
V(L) = 2r1(Z)ra(L). At time ¢t = £, we then have
2 = ta,n(olgg ) (see Fig 4) and therefore

T1

V(Z) = Bsin(6: +62) (24)

where Ry = 1/r3(£) +r3(£). Note between Z and

2 2
T —7, the system evolves under u; = uy = 1. Therefore
Ry = Ryexp(—(% — 7)). Equating (23) and (24), we

get equation (21).
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