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Abstract

We present a stability criterion for switched nonlinear systems which involves Lie brackets of the
individual vector fields but does not require that these vector fields commute. A special case of the
main result says that a switched system generated by a pair of globally asymptotically stable nonlinear
vector fields whose third-order Lie brackets vanish is globally uniformly asymptotically stable under
arbitrary switching. This generalizes a known fact for switched linear systems and provides a partial
solution to the open problem posed in [9]. To prove the result, we consider an optimal control problem
which consists in finding the “most unstable” trajectory for an associated control system, and show that
there exists an optimal solution which is bang-bang with a bound on the total number of switches. By
construction, our criterion also automatically applies to the corresponding relaxed differential inclusion.

Keywords: Switched nonlinear system, global asymptotic stability, Lie bracket, optimal control, maxi-
mum principle, differential inclusion.

1 Introduction

A finite family of smooth vector fields f 0,f1, . . . ,fm on R
n gives rise to the switched system

ẋ = fσ(x), x ∈ R
n. (1)

Here σ : [0,∞) → {0, 1, . . . ,m} is a piecewise constant function of time, called a switching signal. A
frequently discussed example, which we will occasionally use for illustration, is when the given vector fields
are linear: f i(x) = Aix, where Ai is an n × n matrix, i = 0, 1, . . . ,m. This yields the switched linear

system

ẋ = Aσx, x ∈ R
n. (2)

Switched systems have numerous applications and represent a subject of extensive ongoing research (see,
e.g., [10] and the many references therein).

By a solution of (1) we understand an absolutely continuous R
n-valued function x(·) which satisfies the

differential equation for almost all t in its domain. In the context of switched systems, one usually assumes
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for simplicity that the switching signal σ has a finite number of discontinuities, or switches, on every
bounded time interval. Our results will in fact automatically apply to measurable switching signals and
also to solutions of the relaxed differential inclusion associated with (1). This is the differential inclusion

ẋ ∈ co{f 0(x),f 1(x), . . . ,fm(x)} (3)

where co denotes the convex hull. Its solutions are absolutely continuous functions x(·) satisfying (3) for
almost all t, and this includes all solutions of the switched system (1) with piecewise constant σ (see, e.g.,
[3] for more information on differential inclusions).

When we refer to stability of the switched system (1), the precise property of interest will be global
asymptotic stability which is uniform over the set of all switching signals, formally defined as follows.
The switched system (1) is called globally uniformly asymptotically stable (GUAS) if there exists a class
KL function1 β such that for every switching signal σ and every initial condition x(0) the corresponding
solution of (1) satisfies

|x(t)| ≤ β(|x(0)|, t) ∀ t ≥ 0 (4)

(here and below, | · | denotes the standard Euclidean norm on R
n). An equivalent definition can be given

in the ε–δ style (cf. [12]). If the function β in (4) takes the form β(r, t) = are−bt for some a, b > 0, then the
switched system (1) is called globally uniformly exponentially stable (GUES). The above definitions reduce
to the usual notions of global asymptotic and exponential stability in the case of a single system. If (4)
holds along all solutions of the differential inclusion (3), then this differential inclusion is called globally

asymptotically stable. This property implies GUAS of the switched system (1) because solutions of (1) are
contained in those of (3).

It is well known and easy to demonstrate that global asymptotic stability of the individual subsystems
ẋ = f i(x), i = 0, 1, . . . ,m is necessary but not sufficient for global asymptotic stability of the switched
system (1) for every possible switching signal, let alone GUAS. In this paper, we are concerned with
the problem of identifying conditions on the individual subsystems—besides the obviously necessary re-
quirement of their global asymptotic stability—which guarantee GUAS of (1). This problem has received
considerable attention in the literature; see [10, Chapter 2] for available results.

We now review two available directions of attack on the GUAS problem. The difficulty in analyzing
the stability of (1) is that the switched system admits an infinite number of solutions for each initial
condition. A natural idea is to try to characterize the “worst-case” (that is, the “most unstable”) switching
law, and then analyze the behavior of the unique trajectory produced by this law. Pyatnitskiy and
Rapoport [18, 19] developed a variational approach to describe the “worst-case” switching law, and the
corresponding trajectory, for the switched linear system (2). Applying the Maximum Principle, they
derived an implicit characterization of this switching law in terms of a two-point boundary value problem.
More recently, the same variational problem was addressed using a dynamic programming approach [14].
For the particular case of second-order switched linear systems, this approach yields an easily verifiable
necessary and sufficient condition for GUAS [15] (see also [7] as well as the related work [4]).

Another particularly promising research avenue is to explore the role of commutation relations among
the subsystems being switched. We now briefly recall available results, starting with the case of the
switched linear system (2). The commutator, or Lie bracket, is defined as [Ai, Aj ] := AiAj − AjAi. First,
suppose that the matrices commute: [Ai, Aj ] = 0 for all i, j. Then it is well known that the system (2)
is GUES provided that A1, . . . , Am are all Hurwitz. (This is not hard to show by a direct analysis of the

1Recall that a function α : [0,∞) → [0,∞) is said to be of class K if it is continuous, strictly increasing, and α(0) = 0. A
function β : [0,∞) × [0,∞) → [0,∞) is said to be of class KL if β(·, t) is of class K for each fixed t ≥ 0 and β(s, t) decreases
to 0 as t → ∞ for each fixed s ≥ 0.
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transition matrix, or by constructing a quadratic common Lyapunov function via the iterative procedure
proposed in [16].) It was shown in [6] that for m = 1 the above statement remains true if the Lie bracket
condition is relaxed to [A0, [A0, A1]] = [A1, [A0, A1]] = 0. This result was extended in [11] to all nilpotent
and solvable matrix Lie algebras for arbitrary m by using simultaneous triangularization (Lie’s Theorem),
and later in [1] to a more general class of matrix Lie algebras; the latter paper also established that no
further generalization based on the Lie bracket relations alone is possible.

Let us now return to the nonlinear setting described by the switched system (1), which is much less
thoroughly understood. Linearizing the individual subsystems and applying the previous results together
with Lyapunov’s indirect method, it is not difficult to obtain conditions for local asymptotic stability
of (1); this was done in [11, 1]. To tackle the global stability question, one can try to inspect commutation
relations between the original nonlinear vector fields f 0,f1, . . . ,fm. The Lie bracket is now defined as

[f i,f j ](x) :=
∂f j(x)

∂x
f i(x) −

∂f i(x)

∂x
f j(x).

It turns out that if the two vector fields commute, i.e., if [f i,f j ](x) ≡ 0 for all i, j, then global asymptotic
stability of the individual subsystems still implies GUAS of the switched system (1). Similarly to the linear
case, this can be proved either by direct analysis of the flow (see [13]) or by an iterative construction of
a common Lyapunov function in the spirit of [16] (see [21] and [27]). All attempts to formulate global
asymptotic stability criteria valid beyond the commuting nonlinear case have so far been unsuccessful,
as the methods employed to obtain the corresponding results for switched linear systems do not seem to
apply. These issues are explained in [9], where this is proposed as an open problem for which an altogether
different approach seems to be required.

Such a different approach is presented in this paper. It is based on merging the two directions outlined
above; namely, it combines the variational approach with a Lie-algebraic analysis of the “worst-case”
switching law. It is a well-known fact that Lie brackets play an essential role in the Maximum Principle of
optimal control. In the present context, it turns out that the “worst-case” switching law for the switched
nonlinear system (1) is governed by the signs of suitable functions of time ϕij , 1 ≤ i, j ≤ m. The derivatives
of these functions are defined by Lie brackets of f 0,f1, . . . ,fm. We impose conditions on these Lie brackets
which guarantee that each ϕij is a polynomial. This leads to a bound on the total number of switches for
the “worst-case” switching law, and GUAS of the switched system can be deduced from global asymptotic
stability of the individual subsystems.

Global asymptotic stability of the individual subsystems ẋ = f i(x), i = 0, 1, . . . ,m implies forward
completeness of the switched system (1) for σ having finitely many switches on finite time intervals. This
implication in general does not hold for the differential inclusion (3). We actually need to impose an even
stronger property, namely, both forward and backward completeness of (3).

Assumption 1 The differential inclusion (3) is complete, i.e., its solutions are globally defined in both
forward and backward time.

Various sufficient conditions for this property are available. For example, it is well known that Assumption 1
holds if f 0,f1, . . . ,fm satisfy suitable growth conditions, such as |f i(x)| ≤ r(|x| + c), r, c > 0 (see, e.g.,
[26, p. 92]). Other results on this topic can be found in [20, 24]. See also Remark 4 in Section 4 for a
discussion of how Assumption 1 can be relaxed.

We are now ready to formally state our main result. We denote by (adf)r, r = 0, 1, . . . the operators
defined by (adf)0(g) := g and (adf)r(g) := [f , (ad f)r−1(g)] for r ≥ 1, where f and g are smooth vector
fields on R

n. The analyticity assumption in the theorem can be relaxed, as explained in Remark 5 in
Section 4. See also Remark 1 in Section 2 for a different version of this result.
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Theorem 1 Suppose that the systems ẋ = f i(x), i = 0, 1, . . . ,m are globally asymptotically stable,

f0,f1, . . . ,fm are analytic vector fields on R
n, and Assumption 1 holds. Suppose that there exist a positive

integer r and an index l ∈ {0, 1, . . . ,m} such that we have

(ad f l)
r(f i)(x) = 0 ∀x ∈ R

n, ∀ i 6= l (5)

and

[fk − f l, (ad f l)
s(f i − f l)](x) = 0 ∀x ∈ R

n, ∀ i, k 6= l, s = 0, . . . , r − 1. (6)

Then the differential inclusion (3) is globally asymptotically stable, and in particular the switched system (1)
is GUAS.

For example, it is easy to check that for r = 1, the conditions (5) and (6) are equivalent to [f i,f j ](x) ≡ 0

for all i, j, and we recover the known result for the commuting case from [13]. The first interesting situation
is when r = 2. It is not difficult to verify that the conditions (5) and (6) then reduce to

[f i, [f j ,fk]](x) = 0 ∀x ∈ R
n, ∀ i, j, k ∈ {0, 1, . . . ,m}

and
[fk − f l,f i − f l](x) = 0 ∀x ∈ R

n, ∀ i, k 6= l.

Note that in the particular case when m = 1 (i.e., the case of two subsystems) the last condition is trivially
satisfied because we must have i = k, and we arrive at the following nonlinear extension of the result
proved in [6].2

Corollary 1 Let m = 1. Suppose that the systems ẋ = f i(x), i = 0, 1 are globally asymptotically stable

and f0,f1 are analytic vector fields on R
n satisfying

[f0, [f0,f1]](x) = [f 1, [f0,f1]](x) = 0 ∀x ∈ R
n. (7)

Suppose that Assumption 1 holds. Then the differential inclusion (3) is globally asymptotically stable, and

in particular the switched system (1) is GUAS.

The remainder of the paper is devoted to proving Theorem 1. In the next section we formulate the
“worst-case” optimal control problem associated with (1) and note some of its basic properties. In Section 3
we establish a key bound on the total number of switches, which is used in Section 4 to establish the main
result. Section 5 contains some concluding remarks.

2 Optimal control approach

Permuting the vector fields f 0,f1, . . . ,fm if necessary, we henceforth assume for notational convenience
that the value of l in (5) and (6) is 0. Our starting point is to replace the differential inclusion (3) by the
control system

ẋ = f0(x) +
m

∑

k=1

gk(x)uk, u = (u1, . . . , um)T ∈ U (8)

where
gk(x) := fk(x) − f0(x), i = 1, . . . ,m (9)

2Leonid Gurvits has pointed out to us that he recently also obtained a generalization of his original result to nonlinear
systems, using a technique different from ours.
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and U is the standard simplex

U :=
{

u ∈ R
m : uk ≥ 0,

m
∑

k=1

uk ≤ 1
}

.

Throughout the rest of the paper, admissible control inputs for (8) will be measurable functions of time
taking values in U (i.e., the control u(t) = (u1(t), . . . , um(t))T belongs to U for all t). The equivalence
between the control system (8) and the differential inclusion (3) is revealed by the result stated next, which
is well known as Filippov’s Selection Lemma (see, e.g., [3, Section 14, Corollary 1] or [26, Theorem 2.3.13]).

Lemma 1 The set of solutions of the control system (8) coincides with the set of solutions of the differential

inclusion (3).

Note that trajectories of the original switched system (1) correspond to piecewise constant controls
taking values in the set of m+1 vertices of U . In particular, ẋ = f0(x) results by setting u ≡ 0 in (8), while
each ẋ = f i(x), i = 1, . . . ,m results by setting ui ≡ 1 and uj ≡ 0, j 6= i. We also remark that the switched
linear system (2) is associated in this way with the bilinear control system ẋ = A0x+

∑m
k=1(Akx−A0x)uk.

Fix an arbitrary point p ∈ R
n. Let x(·;p,u) denote the solution of the system (8) with initial condition

x(0) = p corresponding to an admissible control u. Picking a final time tf > 0, we define

J(tf ,p,u) := |x(tf ;p,u)|2.

We pose the following optimal control problem in terms of the cost functional J .

Problem 1 Find a control u that maximizes J along the solutions of (8).

We note that this problem is well posed, i.e., an optimal control does exist.

Lemma 2 Problem 1 admits a solution for every pair (p, tf ).

Proof. By Lemma 1, solutions of the control system (8) coincide with solutions of the differential inclu-
sion (3). We can thus apply [5, §7, Theorem 3] and conclude that the set of these solutions with x(0) = p

for 0 ≤ t ≤ tf is compact with respect to the topology of uniform convergence. The functional J represents
a continuous functional on this set. Therefore, its maximum is well defined.

The intuitive interpretation of Problem 1 is clear: find a control that “pushes” the state as far away
from the origin as possible (from a given initial condition in a given amount of time). If we can show that
the resulting closed-loop system is stable, then the same property should hold for all other controls, and
stability of the original switched system—as well as the differential inclusion—will be established. This
program will be formally carried out in what follows.

Consider an optimal control ũ = (ũ1, . . . , ũm)T and the corresponding optimal trajectory x̃. We will
study properties of ũ using the Maximum Principle (see, e.g, [8] for background on the Maximum Principle
of optimal control, in a geometric framework suitable for our subsequent developments). The Hamiltonian
for Problem 1 is

H(x,u,λ) := λT f0(x) +

m
∑

k=1

λT gk(x)uk (10)

where λ : [0, tf ] → R
n is a costate satisfying the adjoint equation

λ̇ = −
∂H

∂x
= −

(

∂f0

∂x

)T

λ −
m

∑

k=1

(

∂gk

∂x

)T

λuk. (11)
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More precisely, λ is identified with the linear functional on R
n defined via the inner product 〈λ(t), ξ〉 =

λT (t)ξ. (In the more general formulation of the Maximum Principle for manifolds, λ(t) is a linear functional
on the tangent space at x(t); its evolution is described by the adjoint equation, which can be defined
intrinsically and is given by (11) in local coordinates.) The necessary condition for optimality provided
by the Maximum Principle states that H must be pointwise maximized along the optimal trajectory. For
1 ≤ i, j ≤ m, let us define the switching functions ϕij : [0, tf ] → R by

ϕij(t) :=

{

λT (t)gi(x̃(t)) if i = j

λT (t)
(

gi(x̃(t)) − gj(x̃(t))
)

if i 6= j
(12)

Then the optimal control must satisfy the following condition: for each i,

ũi(t) = 0 if ϕij(t) < 0 for some j (13)

ũi(t) = 1 if ϕij(t) > 0 for all j

If ϕij(t) = 0 for some i, j, then the Maximum Principle does not yield enough information to uniquely
determine ũi(t).

We say that a control u is bang-bang if it takes values in the set of vertices of U and has a finite number
of switches on every bounded time interval. We also say that the control system (8) has the bang-bang

property (with respect to Problem 1) if for every optimal solution, there exists a bang-bang control that
transfers the same initial state to the same final state at time tf (and thus achieves the same cost J). If, in
addition, there is an upper bound N (independent of tf ) on the total number of switches of this bang-bang
control, then we say that (8) has the bang-bang property with N switches.

It follows from the previous discussion that if each switching function ϕij has isolated zeros, then we have
the bang-bang property (because in this case every optimal control is bang-bang, modulo a modification
on the set of measure 0 which does not change the trajectory). On the other hand, it may happen that
some ϕij identically vanishes on some time interval and gives rise to a singular trajectory, i.e., an optimal
trajectory not obtained from a bang-bang control.

The connection between the bang-bang property and Lie brackets comes from the fact that the deriva-
tives of the switching functions ϕij , 1 ≤ i, j ≤ m are expressed in terms of iterated Lie brackets of
f0, g1, . . . , gm. This is revealed in the proof of the next lemma, which will be crucial in establishing a
bound on the total number of switches for bang-bang optimal controls.

Lemma 3 Under the hypotheses of Theorem 1, all functions ϕij, 1 ≤ i, j ≤ m are polynomial functions

of time, with degrees not exceeding r − 1.

Proof. Pick arbitrary indices i, j. We know from (12) that ϕij is absolutely continuous. Differentiating
it and using (8) and (11), we find that the derivative is given (almost everywhere) by

ϕ̇ij(t) =















λT (t)[f 0, gi](x̃(t)) +
m
∑

k=1

λT (t)[gk, gi](x̃(t))uk if i = j

λT (t)[f 0, gi − gj](x̃(t)) +
m
∑

k=1

λT (t)[gk, gi − gj](x̃(t))uk if i 6= j
(14)

Recall the definition (9) and our convention that the conditions (5) and (6) hold with l = 0. Applying (6)
with s = 0, we see that [gk, gi](x) ≡ 0 for all i, k. Thus (14) simplifies to

ϕ̇ij(t) =

{

λT (t)[f 0, gi](x̃(t)) if i = j

λT (t)[f 0, gi − gj](x̃(t)) if i 6= j
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It follows from this expression that ϕ̇ij is absolutely continuous. Differentiating it, we obtain

ϕ̈ij(t) =















λT (t)[f 0, [f 0, gi]](x̃(t)) +
m
∑

k=1

λT (t)[gk, [f0, gi]](x̃(t))uk if i = j

λT (t)[f 0, [f 0, gi − gj]](x̃(t)) +
m
∑

k=1

λT (t)[gk, [f0, gi − gj ]](x̃(t))uk if i 6= j

Applying (6) again, this time with s = 1, we see that the summation terms involving the control vanish as
before. Proceeding in this fashion, we finally have

ϕ
(r)
ij (t) =















λT (t)(ad f 0)
r(gi)(x̃(t)) +

m
∑

k=1

λT (t)[gk, (adf0)
r−1(gi)](x̃(t))uk if i = j

λT (t)(ad f 0)
r(gi − gj)(x̃(t)) +

m
∑

k=1

λT (t)[gk, (ad f0)
r−1(gi − gj)](x̃(t))uk if i 6= j

Now, the summation terms vanish by virtue of (6) applied with s = r− 1, and the remaining terms vanish

because of (5). This means that ϕ
(r)
ij (t) ≡ 0, and the claim follows (in view of absolute continuity of ϕij).

Remark 1 With the help of the Jacobi identity, it is possible to arrive at sharper conditions guaranteeing
that ϕij , 1 ≤ i, j ≤ m are polynomial functions of time. For example, consider the case when r = 2
and m = 1, so that we have a single switching function, ϕ11. In the notation of the present section, the
condition (7) of Corollary 1 translates to

[f0, [f0, g1]](x) = [g1, [f 0, g1]](x) = 0.

Let us instead impose the weaker condition

[f0, [f0, [f0, g1]]](x) = [g1, [f 0, g1]](x) = 0. (15)

Using the Jacobi identity and (15), we have

[g1, [f0, [f 0, g1]]](x) = [f0, [g1, [f0, g1]]](x) + [[f 0, g1], [f 0, g1]](x) = 0.

By the same argument as in the above proof, we conclude that ϕ
(3)
11 (t) ≡ 0, hence ϕ11 is a polynomial of

degree at most 2 (note that here the maximal degree is r, as opposed to r − 1 in Lemma 3). Generalizing
this technique to arbitrary r and m and expressing the resulting conditions in terms of the original vector
fields, we arrive at an alternative version of Theorem 1 in which the condition (5) is replaced by

(adf l)
r+1(f i)(x) = [(adf l)

r−1(f i), [f l,fk]](x) = 0 ∀x ∈ R
n, ∀ i, k 6= l.

Note that this condition in general does not appear to be weaker than (5).

The main difficulty that remains is the possibility of singular optimal trajectories. As we show next,
this problem can be overcome with the help of a construction due to Sussmann [22].

3 Bang-bang property

In this section we first summarize the basic steps of the construction given by Sussmann in [22], adopted
to our context, and then show that the present assumptions lead to a more specific result which will play
an important role in the proof of Theorem 1. We note that [22] is concerned with the time-optimal control
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problem. However, the relevant arguments from [22] carry over to the present setting with no significant
changes. In fact, the Hamiltonians for Problem 1 and for the time-optimal problem are the same (modulo
an additive constant), which makes their analysis quite similar. The reader is referred to [22] as well as [8]
for more details on the terminology and concepts involved.

Let L denote the Lie algebra generated by the vector fields f 0, g1, . . . , gm (or, equivalently, the vector
fields f0,f1, . . . ,fm). Under the assumption that these vector fields are analytic, R

n is partitioned into
maximal integral manifolds of L, whose tangent spaces are given by L. Let us again consider Problem 1
for some initial state p ∈ R

n and final time tf . Let ũ be an optimal control and x̃ be the corresponding
state trajectory. Then this trajectory is entirely contained in the maximal integral manifold S of L passing
through p. For each x ∈ S, the tangent space to S at x is L(x). The Maximum Principle applied to the
restriction of the system (8) to S asserts the existence of a costate function t 7→ λ(t) which satisfies the
adjoint equation and is nontrivial on L(x̃(t)) for all t ∈ [0, tf ).

Next, let L0 be the ideal in L generated by g1, . . . , gm and let S0 be the maximal integral manifold of
L0 passing through p. According to [22], a trajectory x of (8) is called strongly extremal if it maximizes
the Hamiltonian (10) for some costate function t 7→ λ(t) which satisfies the adjoint equation and has a
nontrivial restriction to the subspace L0(x(t)). The dimension of L0(x(t)) is constant and equal to either
dimL(x(t)) or dimL(x(t)) − 1. We see that unless dimL0(x̃(t)) = dimL(x̃(t)), our optimal trajectory
x̃ is not necessarily strongly extremal. However, it turns out that x̃ can be replaced by a concatenation
of a strong extremal and a trajectory corresponding to an arbitrary constant control, such that the final
state at t = tf remains the same. In fact, we have the following result, which is essentially a global version
of [22, Lemma 2].

Lemma 4 Assume that the hypotheses of Theorem 1 hold. Consider an arbitrary trajectory x(t), t ∈ [0, tf ]
of the system (8) with x(0) = p, and let q := x(tf ). Take an arbitrary fixed vector u0 = (u0

1, . . . , u
0
m)T ∈ U .

Then there exists a time T̄ ≤ tf and an admissible control v̄ : [0, T̄ ] → U with the following properties:

1. The trajectory x(t;p, v̄), t ∈ [0, T̄ ] of (8) is strongly extremal.

2. The solution of (8) corresponding to the control

ṽ(t) =

{

v̄(t) if t ∈ [0, T̄ ]

u0 if t ∈ (T̄ , tf ]
(16)

satisfies x(tf ;p, ṽ) = q.

Proof (sketch). Let φ(·,x) denote the integral curve of the vector field f 0 +
∑m

k=1 gku
0
k ∈ L passing

through x ∈ R
n at t = 0. In view of Assumption 1, φ(t,x) is well defined for all t. Let hk(t,x) :=

φ(−t, ·)∗gk(φ(t,x)), k = 1, . . . ,m, where φ(t, ·)∗ is the differential of the map φ(t, ·). Then hk(t,x) ∈
L0(x) for all k and all t. Let δv(t), t ∈ [0, T ] be a trajectory of (8) corresponding to some control
v = (v1, . . . , vm)T , with initial condition δv(0) = p. Let η

v
be the solution of the system

ẋ(t) =

m
∑

k=1

(

vk(t) − u0
k

)

hk(t,x(t)) (17)

with the same initial condition η
v
(0) = p. Then it can be directly verified that we have

δv(t) = φ(t,η
v
(t)), t ∈ [0, T ]. (18)

(This is the so-called “variations formula”, which is a nonlinear extension of the variation-of-constants
formula for linear systems.)
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The system (17) is a time-varying control system, with the same controls as (8). In particular, associated
to our trajectory x we have the trajectory η

u
(t), t ∈ [0, tf ] of (17), where u is the control that generates

x (so that δu = x and T = tf ). Let q′ := η
u
(tf ). Now we can choose, for the system (17), a time-optimal

control v̄ which steers p to q′ in minimal time T̄ ≤ tf (here we again need Assumption 1; see pages 633–634
in [22]). By (18), this control v̄ then steers the state of the original system (8) from p to φ(T̄ , q′). Repeating
the arguments on page 634 in [22], we can show that the resulting trajectory of (8) is strongly extremal.
Finally, the control (16) steers the state of (8) from p to φ(tf − T̄ ,φ(T̄ , q′)) = φ(tf , q′) = δu(tf ) = q.

Remark 2 There are three minor differences between the above result and [22, Lemma 2]. First, Lemma 2
in [22] is stated for a time-optimal trajectory; however, the result is actually true for every trajectory
connecting p and q. In particular, it is true for an optimal trajectory x̃ corresponding to Problem 1.
Second, the treatment in [22] is limited to the single-input control system

ẋ = f(x) + g(x)u, |u| ≤ 1 (19)

but the above result remains valid for the multiple-input system (8). Finally, the construction given in [22]
works on a small time interval, so that the overall trajectory is replaced by a concatenation of several pairs
of strong extremals and constant-control trajectories; however, under Assumption 1 the construction works
globally and one pair is sufficient (this fact is explicitly mentioned in the remark on page 635 in [22]).

Remark 3 As we explained earlier, the purpose of considering strongly extremal trajectories of the sys-
tem (8) is to avoid singular trajectories and establish the bang-bang property with a bound on the total
number of switches. This task will be completed in Lemma 5 by using Lemmas 3 and 4 and the formula (13)
derived from the Maximum Principle. Alternatively, it is possible to achieve the same goal by applying
the Maximum Principle directly to the time-optimal control problem for the system (17) and obtaining a
bound on the number of switches for the time-optimal control v̄. Then strong extremality of the “lifted”
trajectory x(·;p, v̄) of the original control system would not be needed (and the proof could be made more
self-contained).

In [22], Sussmann used the above result to derive a condition on the Lie brackets of f and g which
guarantees the bang-bang property of (19), with bounds on the number of switches on finite time intervals.
Bang-bang theorems for multiple-input nonlinear control systems, along similar lines but with additional
hypotheses, are also available; see [2, 25]. However, the bang-bang property of (8) is not enough for our
purposes, because the number of switches may grow with the length of the time interval. To establish
Theorem 1, we need to have a bound on the number of switches which is independent of time, i.e., we need
to show that the control system (8) has the bang-bang property with N switches (as defined in Section 2)
for some N . The hypotheses of Theorem 1 are stronger than the conditions imposed in the above papers,
and indeed allow us to reach such a conclusion. This is shown in the next lemma, which is of independent
interest and will be our main tool in proving Theorem 1. Similarly to Lemma 4, we state it as a reachability
result for arbitrary trajectories, which includes the desired property of optimal trajectories as a special
case.

Lemma 5 Assume that the hypotheses of Theorem 1 hold. Consider, as in Lemma 4, a trajectory x(t),
t ∈ [0, tf ] of the system (8) with x(0) = p and x(tf ) = q. Then there is a control that steers the state

of (8) from p to q and is bang-bang with at most (r + 1)m − 1 switches. In particular, the system (8) has

the bang-bang property with (r + 1)m − 1 switches.

Proof. The number of vertices of U is m + 1. Similarly to the proof of Theorem 8.1.2 in [23], we proceed
by induction on m. If m = 0, then U is a singleton and the statement is obvious. We now treat the case
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of an arbitrary m > 0, supposing that the above property with m − 1 instead of m would hold for every
trajectory connecting two arbitrary points if U were a convex polyhedron with m vertices. Apply Lemma 4
to find another trajectory connecting p and q, which is a concatenation of a strongly extremal trajectory
and a trajectory corresponding to a constant control u0. Let us denote the strongly extremal trajectory
x(t;p, v̄), t ∈ [0, T̄ ] by x̄. The corresponding costate function λ is nontrivial on L0(x̄). Using (5), (6), (9)
and remembering that l = 0, we have

L0 = span {(ad f 0)
s(gk) : k = 1, . . . ,m, s = 0, . . . , r − 1}. (20)

Considering the switching functions ϕij , 1 ≤ i, j ≤ m defined by (12) and using the formulas for their
derivatives obtained in the proof of Lemma 3, we see that these functions cannot all be identically zero
along the strong extremal x̄.

So, pick some i, j for which ϕij is not identically zero along x̄. We know from Lemma 3 that ϕij is
a polynomial function of degree at most r − 1. Hence, the time interval [0, T̄ ] is divided into at most r
subintervals, inside some of which we have ϕij(t) < 0 and inside the others ϕij(t) > 0. The formula (13)
implies that the control v̄ satisfies v̄i = 0 on subintervals of the former type and v̄j = 0 on subintervals
of the latter type. Let us consider one such subinterval I ⊂ [0, T̄ ]. Denote its endpoints by a and b.
Assume, for example, that ϕij is negative on the interior of I. We have just shown that the restriction
of x̄ to I is a trajectory of (8) with controls taking values in the set U i := {u ∈ U : ui = 0}. This set is
a simplex with m vertices (which are also vertices of U). By the induction hypothesis, there is a control
that steers the state of (8) from a to b, takes values in the set of vertices of U i, and is a concatenation
of at most (r + 1)m−1 constant controls. A similar conclusion holds for the restriction of x̄ to every other
subinterval. This means that we can steer p to q by a bang-bang control which is a concatenation of at
most r(r + 1)m−1 + 1 ≤ (r + 1)m constant controls, and the induction step is complete.

The bound on the number of switches provided by Lemma 5 is conservative, as is clear from the proof.
However, all we need is the fact that—in contrast with the result of [22]—this bound is independent of the
final time tf .

4 Proof of Theorem 1

We are now ready to prove the main result stated in the Introduction. Consider the control system (8).
Each vertex of U corresponds to the closed-loop system ẋ = f i(x) for some index i between 0 and m.
This system is globally asymptotically stable, hence its solutions satisfy |x(t)| ≤ βi(|x(0)|, t) for some
class KL function βi. Let β̄ := max{βi : i = 0, . . . ,m} ∈ KL. Let α be the class K function defined by
α(r) := β̄(r, 0).

Consider Problem 1 with arbitrary p and tf . By Lemmas 2 and 5, there exists a piecewise constant
optimal control ũ : [0, tf ] → U that takes values in the vertices of U and has at most (r +1)m − 1 switches.
The interval [0, tf ] is thus divided into at most (r+1)m subintervals, on each of which the optimal trajectory
x̃ satisfies one of the equations ẋ = f i(x), i = 0, . . . ,m. The length of at least one of these subintervals is
no smaller than tf/(r + 1)m. Considering all possible locations of this subinterval relative to the others, it
is straightforward to check that x̃ satisfies

|x̃(tf )| ≤ β(|p|, tf ) (21)

where
β(r, t) := max

{

αk(β̄(αl(r), t/(r + 1)m)) : k, l ≥ 0, k + l = (r + 1)m − 1
}
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is a class KL function. (Here αk denotes the composition of α with itself k times.)

All the desired conclusions follow from the formula (21). Since x̃ is an optimal trajectory for Problem 1
which consists in maximizing |x(tf )|2, it is clear that every other solution of (8) with x(0) = p also satisfies
|x(tf )| ≤ β(|p|, tf ). In view of the fact that p and tf were arbitrary, we conclude that all solutions of (8)
satisfy the bound (4). We know from Lemma 1 that the same is automatically true for the solutions of
the differential inclusion (3), which in turn include all solutions of the switched system (1). It remains to
recall that (4) defines the stability properties that needed to be established.

Remark 4 It is clear from (20) that L0 is a finite-dimensional Lie algebra, hence so is L (because dimL ≤
dimL0+1). Hector Sussmann has pointed out to us that in view of this fact, completeness of the differential
inclusion (3) is guaranteed if the vector fields f 0,f1, . . . ,fm which generate L are complete. This means
that Assumption 1 can be replaced by just backward completeness of the individual subsystems ẋ =
f i(x), i = 0, 1, . . . ,m, since their forward completeness follows from their global asymptotic stability.
Unfortunately, we are not aware of a specific reference containing the above result. (Note, however, that
the special case of piecewise constant switching is covered by Palais’ Theorem [17, Chapter IV, Theorem III]
which guarantees completeness of all convex combinations of f 0,f1, . . . ,fm.)

Remark 5 The analyticity of the vector fields f 0,f1, . . . ,fm was only needed to ensure that the Lie
algebras L and L0 have the maximal integral manifold property (see the beginning of Section 3). This
property also holds for vector fields that are only smooth, provided that L(x) and L0(x) are assumed
to be of constant rank on R

n. Thus the analyticity hypothesis can be relaxed accordingly. See, e.g, [8,
Chapter 2] for more details on this issue.

5 Conclusions

We have formulated the first stability criterion for switched nonlinear systems (or, more generally, differ-
ential inclusions) that involves Lie brackets of the individual vector fields but does not require that these
vector fields commute (Theorem 1). As a special case, we have shown that a switched system generated by
two globally asymptotically stable nonlinear vector fields whose third-order Lie brackets vanish is globally
uniformly asymptotically stable (Corollary 1). This represents a nonlinear extension of an earlier result
from [6] and a promising step toward a solution of the open problem described in [9]. In contrast with the
methods previously used to obtain results of this kind, our approach relied on reducing the stability anal-
ysis problem to the “worst-case” optimal control problem and then proving, via the Maximum Principle,
the existence of an optimal control which is bang-bang with a bound on the total number of switches.

Acknowledgment. We are grateful to Hector Sussmann for helpful discussions on the results presented
here.
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[27] L. Vu and D. Liberzon. Common Lyapunov functions for families of commuting nonlinear systems. Systems

Control Lett., 2003. Submitted.

12


