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§1. Introduction

This note proves that the value function of Sussmann’s Reflected Brachystochrone Prob-
lem (RBP) for an arbitrary singleton target {B} is the unique viscosity solution of the
corresponding Bellman equation on R? \ {B} among functions which vanish at B, are
continuous in the plane, and are bounded below. The RBP is the time-optimal problem
of bringing points in the plane to B using the dynamics & = ui+\/|y|, ¥ = us \/m, subject
to (u1,us) € C := {2z € R? : |||, < 1}. For an analogous uniqueness characterization for
a general class of exit time problems whose dynamics do not admit unique trajectories
for some choices of inputs and initial positions, see [2]. We denote the value function of
the RBP for the target { B} by T (so Tg(z) is the infimum of the times ¢ for which some
RBP trajectory brings x to B in time t). The corresponding Bellman equation is

[Dv((z,9)|Vlyl =1 =0. (1)

(If F: RY x RY — R is continuous, then a wviscosity subsolution (resp., supersolution) of
F(q, Dv(g)) = 0 on an open subset 2 C R is a continuous function w : Q2 — R so that
F(p,Dv(p)) < (resp., >) 0 for all C* functions 7 : © — R and all local maxima (resp.,
minima) p of w — . A wiscosity solution of F(q, Dv(q)) = 0 on Q is then a function
which is both a viscosity sub- and supersolution of that equation on €2.)

§2. Proof that T is a viscosity solution of (1) on R? \ { B}

Consider the problems obtained from the RBP by replacing the RBP dynamics with
T = w/yY?+1/n,y = us/y?>+1/n for each n € N (with the same constraint on
(u1,us)). Call the n-th such problem P,. By standard results from [1], we know that the
value function T;, g for P, is a viscosity solution of the corresponding Bellman equation

[Dv((z,y))|Vy*+1/n—1=0 (2)

on R? \ {B}. Standard stability results would then let us conclude that T is a viscosity
solution of (1) on R? \ {B} if we show T}, 5 — T uniformly on compacta on R? \ {B}.
We prove this convergence by the Ascoli-Arzeld Theorem. First note that T, p < Tp
pointwise (since if (41, ¢2) is a trajectory for the RBP for the input u, then it is also a
trajectory for the P, dynamics for u|@s|'/2/(¢% +1/n)'/*). The definition of the infimum
gives [T, 5(z) — Tn5(y)| < Ty(x) V T, (y) for z,y € R?, and an elementary consideration
of vertical and horizontal movements along RBP trajectories which we omit establishes
that (p,q) — Tp(q) is continuous. Fixing p € R? \ {B}, we can therefore let v, denote
a uniform limit of a subsequence of the T, g’s (which we do not relabel) on Bj(p) for
some 6 > 0 (depending on p). Again using stability, v, is a viscosity solution of (1) on
Bs(p), so the result follows if we show T, p — T pointwise on B;(p). Fixing ¢ € (0,1)
and z € By(p), this amounts to showing that T}, p(z) + & > Tg(z) for n large enough. In
what follows, f,,, f : R? x C — R? denote the dynamics for P, and the RBP, respectively.
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For each n € N, there is an input «,, so that the corresponding f, trajectory ¢, =
(On,1, On2) drives z to B in time ¢, < T, g(z) + /2. Note that ¢, is also a trajectory
for fi (using the input 8, = an(¢2, + 1/n)/*/(¢2 5, + 1)/*). Now apply the classical
compactness theorem for relaxed controls (cf. [1] and [4]). Passing to a weak-x, Radon
measure valued (subsequential) limit B of the §,,’s, we obtain a relaxed trajectory ¢" for

fi (meaning ¢"'(t) = [, f1(¢"(¢), a)d(B(t))(a) for all t) so that ¢, — ¢" uniformly on
compacts (along a subsequence). Assumlng wlog that oy, — o weak-x, it follows that

F(t) — Galt) =:v+/fn ), en(s ds—>:v+//f¢7" d(a(5))(a) ds

forallt > 0. Since f is affine in the input, it follows that there is an input « so that (a, ¢")
is an input-trajectory pair of f. Since t, < Ts(z) + 1 for all n, we assume t,, = p € R.
It follows that ¢"(p) = B, so T,, g(x) + & > Tg(x) for large n, as desired.

§3. Proof of uniqueness characterization

Let w € C(R?) be a viscosity solution of (1) on R? \ {B} which is bounded below and
vanishes at B. By standard comparison theorems (e.g., Theorem IV.4.3 of [1]), we get
w > T, 5 pointwise for all n, since w is also a viscosity supersolution of (2) on R? \ {B},
so w > Ty pointwise, since 1), p — T pointwise. These theorems apply since the f,’s
are uniformly Lipschitz, i.e., Lipschitz in the state variable uniformly in the control value.

To prove the reverse inequality, first note that any RBP trajectory 1 starting at a
p € R? that first reaches B at time s > 0 admits u1, ue € (0, s) with gy < p; and an RBP
subtrajectory ¢ on [0, uo] with 9(us) = ¥(p1) such that [[1/n, ue] N {y = 0} = 0 for
large n. To see why, assume wlog that p = (p1,0). Note that f does not allow movement
along the z-axis. It follows that v(#) lies in {y > 0} or {y < 0} at some £ € (0,s).
Assume 9(t) € {y > 0} wlog. Reflect the subtrajectories of ¢ which lie in {y < 0}
over the z-axis to get another RBP trajectory w that first reaches v (f) at some time
t € (0,%] and lies in the closed upper half plane. From [3], one optimal RBP trajectory
joining points P and @) in the closed upper half plane is a cycloid arc passing from P to
Q without hitting the z-axis in between. Replace #[[0,#] with such an arc ¢ for P = p
and Q = ¢)(f) which first reaches ¥ (%) at u, and set y; = s.

Fix x € R? \ {B}. Pick an RBP trajectory ¢ starting at z and first reaching B at
time 7, and let 7' be the supremum of those times ¢ < 7 for which w(z) <t 4+ w(4(t)).
Supposing 7' < 7, use the continuity of w to conclude that w(z) < 7' + w(4(7')). Note
that f[(R? \ {|y| <1/n}) x C is uniformly Lipschitz for all n. Setting ¥(-) = ¢(- + 1)
and p = ¢(7') in the argument above and using the well-known local suboptimality
principle for viscosity subsolutions for problems with uniformly Lipschitzian dynamics
(e.g., Theorem II1.2.32 of [1]), we get w(¢(1/n)) < ps — 1/n + w(e(r' + p1)) for large
enough n, so w(¢(7")) < pe+w(p(7'+p1)). Hence, w(x) < 7'+ 1 +w(P(7" + p1)), which
is a contradiction. Since w(B) = 0, it follows from infimizing that w < T pointwise.
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