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1 Introduction

This note continues our work (cf. [3]) on uniqueness
questions for viscosity solutions of Hamilton-Jacobi-
Bellman equations (HJB’s) arising from determinis-
tic control problems with exit times (cf. [1]). We
prove a general uniqueness theorem characterizing the
value functions for a class of problems of this type
for nonlinear systems as the unique solutions of the
corresponding HJB’s among continuous functions with
appropriate boundary conditions when the dynamical
law is non-Lipschitz and noncoercing. The class in-
cludes Sussmann’s Reflected Brachystochrone Problem
(RBP), as well as problems with unbounded nonlinear
running cost functionals. We show that the RBP value
function is the unique viscosity solution of the corre-
sponding HJB among the continuous functions which
vanish on the target and which are bounded below.

Value function characterizations of this kind have been
studied by many authors for a large number of stochas-
tic and deterministic optimal control problems (cf. [1]
and [2]). However, these earlier characterizations as-
sume the dynamics are coercing and positive lower
bounds on the running cost functionals and therefore
do not apply to many standard problems. Our work is
part of a larger research program which extends unique-
ness results from viscosity theory to versions covering
well-known optimal control problems with unbounded
cost functionals or dynamics that do not have unique-
ness of solutions. A uniqueness characterization for a
class including the Fuller Problem is in [3].

2 Statement of Main Result

Let A be a compact metric space, and let A denote the
set of measurable functions [0,∞)→ A. For any closed

1Supported in part by DIMACS grant NSF-CCR91-19999 and
NSF Grant DMS95-00798. This work was carried out between
December 1998 and February 1999, while the author was a Re-
search Assistant for Héctor Sussmann. The author thanks Dr.
Sussmann for his helpful comments on early drafts of this paper.

S ⊂ RN , any continuous function f : RN × A→ RN ,
and any α ∈ A, we let Traj α (x, f, S) denote the set
of trajectories of ẏ = f(y, α) defined on [0,∞) which
start at x and reach S in finite time. We also set
Traj (x, f,A, S) = ∪α∈ATraj α (x, f, S), and, for each
x ∈ RN and α ∈ A, yf

x(·, α) denotes the unique solu-
tion of ẏ = f(y, α) starting at x when Traj α (x, f,RN )
is a singleton for all α ∈ A and x ∈ RN .

From now on, T denotes a fixed closed subset of RN .
Let Rf (A) denote those x for which Traj (x, f,A, T ) is
nonempty, and τ(φ) := inf{ t ≥ 0 : φ(t) ∈ T } for
each φ : [0,∞) → RN . If U ⊂ RN is open, we call a
continuous function g : U ×B → RN coercing if there
is an L > 0 such that, for all x, y ∈ U and a ∈ B,
(g(x, a) − g(y, a)) · (x − y) ≤ L ||x − y ||2. The
coercing functions RN × B → RN will be denoted by
Cco(RN ×B, RN ). We let Car(RN×B,R) denote those
B-uniformly continuous functions1 g : RN ×B → R
which radially increase in B, i.e., such that if x ∈ RN

and if || a || ≤ || a′ || in B, then g(x, a) ≤ g(x, a′).

When S ⊇ A, f : RN ×S → RN and ` : RN ×S → R
are continuous, α ∈ A, and x ∈ Rf (A) \ T , we let
Traj co

α (x, f, T , `) denote those φ ∈ Traj α (x, f, T ) that
admit t, t′ ∈ (0, τ(φ)), an input β ∈ A, a trajectory ψ ∈
Traj β (x, f, T ), an N ∈ N, and open subsets {Sn}∞n=N

of RN such that φ(t) = ψ(t′), Sn ⊇ Traceψd [ 1/n, t′]
and fdSn×A is coercing for all n ≥ N , and∫ t

0

`(φ(s), α(s)) ds ≥
∫ t′

0

`(ψ(s), β(s)) ds.

For x ∈ T , we set Traj co
α (x, f, T , `) ≡ Traj α (x, f, T ).

We call
⋃

α∈ATraj co
α (x, f, T , `) the coercifiable tra-

jectories at x (relative to f , T , and `). We call a
pair (f, `) (coercively) transient (relative to A) if
for all x ∈ Rf (A) and α ∈ A, each φ ∈ Traj α (x, f, T )

1For each a ∈ A, we set ||a|| = d(a, 0), where d is the metric
on A and 0 is some distinguished point. Recall that if (X, ‖ · ‖)
is a normed space, then a function h : X×Y → R is called
Y -uniformly continuous if there is a modulus ωh such that, for
all x, x′ ∈ X and y ∈ Y , |h(x, y) − h(x′, y)| ≤ ωh(||x − x′||). A
modulus is a function ω : R+×R+ → R+ such that for all R > 0,
ω(·, R) is continuous and nondecreasing and ω(0, R) = 0.



is a coercifiable trajectory at x. For each x, y ∈ Rf (B)
and compact metric space B, TB,f(x, y) denotes the
infimum of those t ≥ 0 for which there is a measur-
able [0,∞) → B and a φ ∈ Traj α (x, f,RN ) such that
φ(t) = y. For each x ∈ Rf (A), let vf,`,A(x) denote

inf
α∈A

{∫ τ(φ)

0

`(φ(s), α(s)) ds : φ ∈ Traj α (x, f, T )

}
. (1)

The HJB of (1) is

sup
a∈A

{−f(x, a) ·Dv(x)− `(x, a)} = 0, (2)

and we study uniqueness questions for viscosity solu-
tions of (2) on Rf (A) \ T among functions v satisfying{

lim
x→x0

v(x) = +∞ for all xo ∈ ∂(Rf ),

v ≡ 0 on T , and v is bounded below
. (3)

We will be interested in cases where (1) is an ‘upper
envelope’ of coercing problems, as follows:

Definition A We call (f, `) an {(fn, `n)}-coercing
upper envelope if there exists a B ⊇ A, a sequence
{(fn, `n)} in Cco(RN × B, RN ) × Car(RN × B, R), a
sequence {Mn} of positive numbers, and compact sets
An ⊆ B such that the following conditions hold:

1. M1 ≤ `n(x, a) ≤ Mn+1 for all n ∈ N, x ∈ RN ,
and a ∈ A, and B is compact.

2. R := Rf (A) ≡ Rfn
(An) is open, fn → f and

`n ↑ ` uniformly on compacta, and An ↓ A.2

3. Traj(x, fn, An, T ) ⊆ Traj(x, f1, A1, T ) for each
n ∈ N and x ∈ R.

4. For each p∈N, each q and x in R, and each φ in
Traj α (x, f, {q}), there is a measurable function
β : [0,∞) → Ap so that φ ∈ Traj β (x, fp, {q})
and so that ||α || ≥ ||β || a.e..

If in addition {f(x, a)×`(x, a) : a ∈ A} is convex for all
x, then we call (f, `) a convex coercing upper en-
velope (cocue). We also call the sequence {(fn, `n)}
the associated enveloping sequence.

We will prove the following uniqueness theorem:

Theorem A Let A be a compact metric space T ⊂ RN

be closed. Assume (f, `) is a coercively transient cocue
with associated enveloping sequence {(fn, `n)}, fn is
uniformly Lipschitz in A for all n, 3 TA,f is continuous,
and the following:

(TC) There is a K ∈ N such that: If x ∈ R, p ∈ RN ,
then ∃ a? ∈ arg supa∈A{−f(x, a) · p−`(x, a)} s.t.
(f(x, a?)− fn(x, a?)) · p ≥ 0 for all n ≥ K.

Then vf,`,A is the unique viscosity solution of (2) on
R \ T among functions v ∈ C(R) that satisfy (3).

2The convergence is in the Hausdorff sense.
3This means there is a constant L > 0 such that ||f(x, a) −

f(z, a)|| ≤ L||x− z|| for all a, x, and z.

Remark The method of our proof can also be used to
give analogs of Theorem A for not-necessarily-convex
coercing upper envelopes, for cases where (TC) is not
required, and for data violating the coercive transience
condition. One can also drop the condition `n ↑ `.
Some of these analogs give uniqueness in classes of lo-
cally Lipschitz viscosity solutions of (2) on R \ T sat-
isfying (3). For details, see [4].

3 Definitions and Main Lemmas

This section reviews definitions and earlier results from
viscosity theory. Let Ω ⊆ RN be open, let Ω ⊆ S, and
assume that F : RN ×RN → R and w : S → R are
continuous. We call w a viscosity solution of the
equation F (x,Dw(x)) = 0 on Ω if the following hold:

(i) If γ : Ω→ R is C1 and xo is a local minimum of
w − γ, then F (xo, D γ(xo)) ≥ 0.

(ii) If λ : Ω→ R is C1 and x1 is a local maximum of
w − λ, then F (x1, D λ(x1)) ≤ 0.

When condition (i) (resp., (ii)) holds, we say that w
is a viscosity supersolution (resp., subsolution) of
F (x,Dw(x)) = 0 on Ω. These conditions are equiv-
alent to F (x, p) ≥ 0 for all x ∈ Ω and p in the set
of subdifferential points D−w(x) and F (y, q) ≤ 0 for
all y ∈ Ω and q in the set of superdifferential points
D+w(y), respectively (cf. [1]).

We also say that w is the complete (viscosity) so-
lution of F (x,Dw(x)) = 0 on Ω in a class C of func-
tions in C(Ω,R) if it is the maximal subsolution and
minimal supersolution of this equation in C, i.e., if
w̃ ∈ C is a viscosity supersolution (resp., subsolution)
of F (x,Dw̃(x)) = 0 on Ω, then w(x) ≤ w̃(x) (resp.,
w(x) ≥ w̃(x)) for all x ∈ Ω. For A a compact metric
space and f : RN ×A→ RN and ` : RN ×A→ R both
continuous, H(x, p) := supa∈A{−f(x, a) ·p − `(x, a)}.
Recall the following results (cf. [1]):

Lemma 3.1 Let A be a compact topological space, let
f ∈ Cco(RN × A, RN ), and let ` ∈ Car(RN × A, R)
admit positive constants m and M such that m ≤
`(x, a) ≤ M for all x ∈ RN and a ∈ A. Assume
T ⊆ RN is closed, that the dynamics f satisfies STCT ,
and that R is open.4 Then vf,`,A is the complete so-
lution of H(x,Dv(x)) = 0 on R \ T in the class of
functions v ∈ C(R) that satisfy (3).

4 Recall that STCT is the condition that for any ε > 0, T
lies in the interior of the set of points that can be brought to T
in time < ε using the dynamics f .



Lemma 3.2 Let A, f , `, m, and M satisfy the as-
sumptions of Lemma 3.1, except allow m=0. Assume
u ∈ C(Ω̄) is viscosity subsolution of H(x,Du(x) ) = 0
on Ω, where Ω ⊂ RN is bounded and open. If we
set τx(α) := inf{ t ≥ 0 : yx(t, α) ∈ ∂Ω }, then
u(x) ≤

∫ t

0
`(yx(s, α), α(s)) ds + u(yx(t, α)) for all

α ∈ A, x ∈ Ω, and 0 ≤ t < τx(α). 5

We often relax the requirements of Lemma 3.2 by as-
suming that fdS×A is coercing for some open S ⊇ Ω̄.
Since A is a compact metric space, we can view our
inputs as members of the class of relaxed controls (cf.
[1]). For B ⊇ A compact and f : RN × B → RN

and ` : RN × B → R continuous, define `r and
fr by `r(x,m) :=

∫
A
`(x, a) dm(a) and fr(x,m) :=∫

A
f(x, a) dm(a) for each (x, a) ∈ RN × Br, where Br

is the set of Radon probability measures on B. When
f is coercing, we can let yr,f

x (·, α) denote the unique
solution of y′(s) = fr(y(s), α(s)) starting at x for each
x ∈ Rn and α ∈ Br. Recall the following (cf. [1]):

Lemma 3.3 Let A be a compact metric space, and
let {αn}∞n=1 in Ar and c > 0 be given. Assume f :
RN ×A→ Rn is continuous and uniformly Lipschitz in
A. There is a subsequence of {αn}∞n=1 (which we do not
relabel) and an α ∈ Ar such that αn → α weak-star on
[0, c] and such that yr,f

xn
(·, αn) → yr,f

x (·, α) uniformly
on [0, c] whenever xn → x in RN .

Lemma 3.4 Let A be a compact metric space and let
f : RN × A→ RN and ` : RN × A→ R be continuous
and such that {f(x, a) × `(x, a) : a ∈ A} is convex for
all x ∈ RN . Let (φr, µr) be a trajectory-input pair for
fr. There is a measurable mapping α : [0,∞) → A so
that∫ t

0

`r(φr(s), µr(s)) ds =
∫ t

0

`(φr(s), α(s)) ds ∀t ≥ 0

and so that (φr, α) is a trajectory-input pair for f .

4 Proof of Theorem A

We set f∞ := f , `∞ := `, and v := vf,`,A. Consider, for
each x ∈ R, the problem

inf

{∫ tx,n(α)

0

`n(yfn
x (s, α), α(s)) ds : α ∈ An(x)

}
, (4)

where An(x) is the set of An-valued measurable inputs
that drive x to T using the dynamics fn in finite time
and tx,n(α) is the first time yfn

x (·, α) reaches T . The
corresponding HJB is

sup
a∈An

{−fn(x, a) ·Du(x) − `n(x, a) } = 0 (5)

5The glb of an empty set of real numbers is +∞.

Let vn denote the value function for this problem. By
Lemma 3.1, the continuity of TA,f , and Condition 2 of
Definition A, vn is the complete viscosity solution of
(5) on R\ T among the functions satisfying (3). Since
the Fn’s defined by Fn(x, p) = supa∈An

{−fn(x, a) ·p −
`n(x, a) } are continuous and `n → `∞ and fn → f∞
locally uniformly, we could conclude from standard sta-
bility results (cf. [1]) that v is a viscosity solution of (2)
on R \ T if we prove vn → v uniformly on compacts.
We prove this using the Ascoli-Arzelá Theorem.

For each x, p ∈ R and n ∈ N, let v̂n(x, p) denote the
value (4) but with T replaced by the singleton {p}, and
v̂∞(x, p) is the value (1) with the same target replace-
ment. If r ∈ N, then v̂r ≤ v̂∞ pointwise (in x and p).
Indeed, if x, p ∈ R and φ ∈ Traj α (x, f∞, {p}), then
we can use the definition of coercing upper envelopes
to find an Ar-valued input β (depending on r), with
||β || ≤ ||α || a.e., so that φ ∈ Traj β (x, fr, {p}). Since
`n ↑ `∞ pointwise and `r ∈ Car(RN ×A,R), we get∫ τp(φ)

0

`∞(φ(s), α(s)) ds ≥
∫ τp(φ)

0

`r(φ(s), α(s)) ds

≥
∫ τp(φ)

0

`r(φ(s), β(s)) ds

≥ v̂r(x, p),

where τp(φ) is the first time φ reaches p, so the claim
follows by infimizing over Traj α (x, f∞, {p}) for all α
on the left side. Therefore, for all x ∈ R and n ∈ N,

vn(x) = inf
p∈T

v̂n(x, p) ≤ inf
p∈T

v̂∞(x, p) = v(x). (6)

Now fix x ∈ R, and let δ > 0 be such that Bδ(x) ⊂ R.
By the continuity of TA,f , we can travel between any
points y, z ∈ Bδ(x) using the dynamics f and A-valued
controls. Therefore, vn(z) − vn(y) ≤ v̂n(z, y) ≤
v̂∞(z, y) for all y, z ∈ Bδ(x) and n ∈ N∪{∞}, where we
use the definition of the infimum, the fact that y ∈ R,
and A ⊆ An for all n to get the first inequality. Arguing
symmetrically, we get, for all y, z ∈ Bδ(x),

|vn(z)− vn(y)| ≤ v̂∞(z, y) ∨ v̂∞(y, z). (7)

Notice also that ṽ∞ is continuous on R × R. Indeed,
let ε, δ > 0 and x, y, x̃, ỹ ∈ R be given. Since TA,f

is continuous, there is a µ = µ(δ) > 0 so that if
||x − x̃|| ∨ ||y − ỹ|| < µ(δ), then there are inputs α1

and α2 in A, trajectories φ1 ∈ Traj α1 (x, f∞, {x̃}) and
φ2 ∈ Traj α2 (ỹ, f∞, {y}), and numbers t1, t2 ∈ [0, δ)
such that φ1(t1) = x̃ and φ2(t2) = y. Using the defini-
tion of the infimum and concatenating, we get

ṽ∞(x, y)− ṽ∞(x̃, ỹ)− ε/2 ≤
∫ t1

0

`(φ1(s), α1(s)) ds

+
∫ t2

0

`(φ2(s), α2(s)) ds.



Since (f∞, `∞) is a coercing upper envelope, φj is a
trajectory for f1 for j = 1, 2. But if γ is any trajectory
for a coercing dynamical law g : RN × B → RN with
controls in a compact set B which starts at p, and if
L is as in the definition of coercing, then (cf. [1]) for
all s ≥ 0, ||γ(s)|| ≤

(
||p||+

√
2Ks

)
eKs, where K :=

L+maxa∈B || g(0, a) ||. It follows that || γ(s) ||∨|| ζ(s) ||
is uniformly bounded over the restriction to [0, 1] of all
trajectory-input pairs (γ, ζ) of f∞ starting at points p
with || p− x || ∧ || p− y || ≤ 1. Let κ be such a uniform
bound, set B̂ := supBκ(0)×A `, and pick δ > 0 such
that δ < ε

4[B̂+1]
∧ 1 and a corresponding µ = µ(δ) < 1.

This gives ṽ∞(x, y)− ṽ∞(x̃, ỹ)− ε/2 ≤ ε
4[B̂+1]

(B̂+ B̂),
so ṽ∞(x, y) − ṽ∞(x̃, ỹ) ≤ ε. Using symmetry, we get
||x − x̃|| ∨ ||y − ỹ|| < δε ⇒ |ṽ∞(x, y) − ṽ∞(x̃, ỹ)| ≤ ε
for a suitable δε > 0, so v̂∞ is continuous on R×R, as
claimed.

It now follows from (6) and (7) that the vn’s are
equicontinuous and pointwise bounded on R, so we
can apply the Ascoli-Arzelà Theorem (on Bδ/2(x), for
example) to get a v̄ such that vn → v̄ uniformly on
Bδ/2(x), at least along a subsequence, and the locally
defined functions v̄ are (local) viscosity solutions of (2).

Fixing x ∈ Bδ/2(x) ⊆ R and letting v̄ denote the lo-
cally defined function on Bδ/2(x), we now show that
v̄ = v. Since vn(x) ≤ v(x) for all n, v̄(x) ≤ v(x). We
assume that vn(x) → v̄(x) wlog. Now let ε > 0, and
choose αn’s and trajectories φn ∈ Traj αn

(x, fn, T ) so
that vn(x) + ε ≥

∫ τ(φn)

0
`n(φn(s), αn(s)) ds for all n.

Since M1 > 0 and vn(x) ≤ v(x) for all n, the exit times
of the φn are bounded above, so we can assume (by
passing to a subsequence, if necessary, without relabel-
ing) that τ(φn) → µ ∈ R. We can also find A1-valued
inputs βn so that (φn, βn) is a trajectory control pair
for the dynamics f1, by Condition 3 of the cocue defi-
nition. Also note that ||φn(s) || is bounded as s varies
over a compact interval and n varies in N (since f1 is
coercing).

From Lemma 3.3, we know there is a weak-? limit of
a subsequence of the βn’s, which we call β̄, so that
the φn’s converge uniformly on compact intervals to
a relaxed trajectory for fr

1 (x, β̄). Let φr denote this
relaxed trajectory. Passing to a further subsequence
if necessary (without relabeling), we can also assume
that αn → ᾱ weak-?, where now ᾱ(s) ∈ Ar

1 for all s.
Since An ↓ A, one easily checks that ᾱ ∈ A. Therefore,
for all t ≥ 0,

φr(t) ← φn(t) = x+
∫ t

0

fn(φn(s), αn(s)) ds

→ x+
∫ t

0

fr
∞(φr(s), ᾱ(s)) ds

and (φr, ᾱ) is a trajectory-input pair for fr
∞. Denoting

as in Lemma 3.4, we get

vn(x) + ε ≥
∫ τ(φn)

0

`n(φn(s), αn(s)) ds

→
∫ µ

0

`r∞(φr(s), ᾱ(s)) ds

=
∫ µ

0

`∞(φr(s), α(s)) ds ≥ v(x),

since T 3 φn(τ(φn))→ φr(µ). Since vn(x)→ v(x) and
vn(x) → v̄(x) subsequentially on Bδ/2(x), v̄ = v, so v
is a viscosity solution of (2) on R \ T .

Let w ∈ C(R) be another viscosity solution of (2) on
R \ T satisfying (3). Then, w is a viscosity super-
solution of the HJB for the data (fn, `n) and An on
R \ T for n large enough. Indeed, let x ∈ R \ T and
p ∈ D−w(x) be given. Pick a? ∈ arg supa∈A{ f∞(x, a) ·
p − `∞(x, a) }. For n large enough, condition (TC) and
`n ↑ `∞ gives

0 ≤ −f∞(x, a?) · p− `∞(x, a?)
≤ −fn(x, a?) · p− `∞(x, a?)
≤ −fn(x, a?) · p− `n(x, a?),

(with n not depending on x ∈ R or p ∈ RN ) so since
An ⊇ A for all n, the result follows. Again using the
completeness of vn as the solution of the corresponding
HJB for n ∈ N, we get w ≥ vn pointwise, so w ≥ v
pointwise, since vn → v pointwise along a subsequence.

Now let x ∈ R, α ∈ A, and φ ∈ Traj α (x, f∞, T ). Let
t̄ denote the supremum of those t ∈ [0, τ(φ)] for which
w(x) ≤

∫ t

0
`∞(φ(s), α(s)) ds + w(φ(t)), and suppose

t̄ < τ(φ), for the sake of obtaining a contradiction.
Since φ and `∞ are continuous, w ∈ C(R \ T ), and
φ( t̄ ) ∈ R \ T , we know that

w(x) ≤
∫ t̄

0

`∞(φ(s), α(s)) ds+ w(φ(t̄ )). (8)

Since (f, `) is coercively transient, we know that φ(·+
t̄ ) is a coercifiable trajectory at φ( t̄ ). Therefore, we
can find t, t′ ∈ (0, τ(φ( · + t̄ ))), β ∈ A , and ψ ∈
Traj β (φ( t̄ ), f∞, T ) so that ψ(t′) = φ( t+ t̄ ) and∫ t′

0

`∞(ψ(s), β(s)) ds ≤
∫ t+t̄

t̄

`∞(φ(s), α(s)) ds, (9)

and a number N ∈ N and open sets {Sn}∞n=N so that
f∞dSn ×A ∈ Cco(Sn ×A) and Sn ⊃ ψd [1/n, t′] for all
n ≥ N . Applying Lemma 3.2, we get

w(ψ(1/n)) ≤
∫ t′

1/n

`∞(ψ(s), β(s)) ds+ w(φ( t+ t̄ )).

Letting n→∞ and using w ∈ C(R), we get

w(φ(t̄ )) ≤
∫ t′

0

`∞(ψ(s), β(s)) ds + w(φ( t+ t̄ )). (10)



Combining (8), (9), and (10), we get

w(x) ≤
∫ t̄

0

`∞(φ(s), α(s)) ds

+
∫ t′

0

`∞(ψ(s), β(s)) ds+ w(φ( t+ t̄ ))

≤
∫ t+t̄

0

`∞(φ(s), α(s)) ds+ w(φ( t+ t̄ ))

Since t̄ < t + t̄ < τ(φ), this contradicts the definition
of t̄. Therefore, t̄ = τ(φ). The inequality w ≤ v now
follows by infimizing over all α’s that drive x to T using
f∞ and the corresponding φ’s in (8), since w ≡ 0 on
T . Thus, v is the unique viscosity solution of (2) in the
class of functions v ∈ C(R) satisfying (3), as desired.

5 Reflected Brachystochrone Problem

Sussmann’s RBP is an optimal time control problem
with the dynamical law f = f∞ given by ẋ = ux

√
|y|,

ẏ = uy

√
|y|, the controls (ux, uy)′ being subject to

(ux, uy) ∈ B1(0). The objective is to bring an ini-
tial point to some fixed single point target T = {B}
in minimal time. For the origins of this problem, see
[5]. Since the RBP dynamical law is not coercing, it
is beyond the scope of the previously known results
characterizing value functions as the unique viscosity
solutions of the corresponding HJB’s among functions
with suitable boundary conditions. We sketch the proof
that the RBP satisfies Theorem A’s hypotheses.

The continuity of TB1(0),f for each target {B} follows
from an elementary consideration of vertical and hori-
zontal movements along RBP trajectories and the fact
that RBP trajectories can be reversed. Set `n ≡ 1
and An ≡ A = B = B1(0), and define fn by
fn(x, y, ux, uy) = (y2 + 1/n)1/4 (ux, uy)′ for all n ∈ N.
These functions are Lipschitz continuous in the state
variable, uniformly in the control variable, and there-
fore coercing, and fn → f uniformly on compacta.
Since Rfn(A) ≡ R2, Conditions 1 and 2 of Defini-
tion A are satisfied. For each initial point p ∈ R2

and each fn input (u?
x, u

?
y), the corresponding tra-

jectory (φ?
x, φ

?
y) is the trajectory for f1 using the in-

put (φ? 2
y (t) + 1/n)1/4/(φ? 2

y (t) + 1)1/4(u?
x(t), u?

y(t))′ .
The trajectory (µx, µy) corresponding to any f in-
put (βx, βy) is a trajectory for fn using the input√
|µy(t)|/(µ2

y(t) + 1/n)1/4(βx(t), βy(t))′, so Conditions
3 and 4 of Definition A are also satisfied. One easily
verifies (TC).

That each φ ∈ Trajα(p, f, {B}) is coercifiable at p =
(x, y)′ when y 6= 0 follows from the fact that f∞ is
coercing away from {(p, q)′ : q = 0} × B1(0), so we
assume p = (x, 0)′ 6= B in the sequel. Fix α ∈ A
and φ = (φ1, φ2)′ ∈ Traj α (p, f∞, {B}). Since p 6= B,

and since the RBP dynamics does not allow horizontal
movement along the x-axis, it follows that for some s ∈
(0, τ(φ)), φ(s) is not in the x axis. We assume φ(s) =
(µ, ν), with ν > 0, wlog. Then φd [0, s] is strictly below
the x axis on each interval in {(uj,−, uj,+)}j∈S , where
S is at most countable. Set Dφ =

⋃
j (uj,−, uj,+). We

reflect the subtrajectories φd(uj,−, uj,+) over the x-axis.

Define φ̃ = (φ̃1, φ̃2)′ and w̃ = (ũx, ũy)′ on [0, s] by
φ̃1(t) ≡ φ1(t), ũx(t) ≡ ux(t),

φ̃2(t) =
{

+φ2(t), t /∈ Dφ

−φ2(t), otherwise and

ũy(t) =
{

+uy(t), t /∈ Dφ

−uy(t), otherwise .

Then, φ̃ reaches φ(s) at some time s̃ ∈ (0, s] and lies
completely in the closed upper half plane. Also, (φ̃, w̃)
is an RBP trajectory-control pair. Recall from [5] that
the time optimal trajectories for joining points P and
Q using the dynamics ẋ = ux

√
y, ẏ = uy

√
y (with

(ux, uy) ∈ B1(0) ) are arcs of cycloids which pass from
P to Q without hitting the x-axis in between. Since
p lies in the x-axis and φ(s) is above the axis, we can
replace φ̃d [0, s̃] with a cylcoid arc φ̂ to get a trajec-
tory that reaches φ(s) at some time t̂ ∈ ( 0, s̃ ] and lies
in the open upper half plane along ( 0, t̂ ]. Moreover,
since the RBP motion is Lipschitz in (x, y) on sets of
the form {y ≥ b} × B1(0) for b > 0, the RBP law
is coercing on Sn×B1(0) for open sets Sn containing
Trace φ̂d [ 1/n, t̃ ] for n large enough. Thus, we take
ψ = φ̂, t = s, and t′ = t̂ in the condition defining
coercifiability of φ ∈ Traj α (p, f∞, {B}) to satisfy the
requirement. Applying Theorem A, we obtain

Corollary: The RBP value function is the unique solu-
tion of the corresponding HJB in the class of functions
w ∈ C(R2) which are bounded below and which vanish
on the target.
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