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1. Introduction

The theory of viscosity solutions forms the basis for
much current work in optimal control and numerical
analysis (cf. [1, 2, 3]). In two recent papers (cf. [4],
[5]), we proved theorems characterizing the value func-
tion in deterministic optimal control as the unique vis-
cosity solution of the Bellman equation that satisfies
appropriate side conditions. The results applied to a
very general class of problems whose dynamics and La-
grangians can be unbounded and fully nonlinear, in-
cluding cases where the targets are unbounded and the
dynamics are continuous but not Lipschitz continuous.
In particular, the results apply to Fuller’s Problem (cf.
[8] and §2 below). Uniqueness characterizations of this
kind have been used extensively to study singular per-
turbations, synthesis of optimal controls, convergence
of numerical algorithms for approximating value func-
tions and optimal trajectories, and much more (cf. [1],
[3], and the hundreds of references therein). However,
these results do not apply to exit time problems whose
dynamics and Lagrangians are unbounded and whose
Lagrangians vanish at some points outside the target
for certain control values. In fact, one easily finds exit
time problems with vanishing Lagrangians whose Bell-
man equations admit more than one proper viscosity so-
lution that vanishes on the target, where by properness
of a function w, we mean the condition w(z) — +o0 as
||z|]| = oo. Indeed, recall the following case from [4]:

Example Use the dynamics £ = u € [—1,+1] and
use £(z,a) = (z — 2)%(z — 1)22%(z + 1)%(z + 2)? as the
Lagrangian. We consider the problem

¢
Minimize/ L(yz(s,u),u(s))ds over U
0

for each z € R?, where U is the set of all measurable
functions u : [0,00) = [—1,+1], y(-,u) is the trajec-
tory for the input v € U starting at x, and t* is the
infimum of those times s at which y,(s,u) € T1 := {0}.
The value function v for this problem, which is defined

= inf {/ * Lyz(s,u),u(s))ds: v e U, t* < oo} )

is a proper viscosity solution of the corresponding Bell-
man equation |[Dv(z)| —£(z) =0 on R\ {0}. The value
function for the same problem but with the target 7Ty
replaced by T2 = {—2,0,+2} is also a proper viscosity
solution of this Bellman equation. O
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The paper [4] gave a uniqueness characterization for
viscosity solutions of Bellman equations for exit time
problems whose Lagrangians vanish for some points
outside the target. The result of that paper applies to
a very general class of problems whose dynamics give
positive running costs over any interval where the state
is outside the target, including Fuller’s Problem, and
shows that the value function is the unique proper vis-
cosity solution of the Bellman equation which vanishes
at the target. For related results, see [6].

This note gives a different approach which improves
special cases of the result of [4] by proving that the
value function for a class of problems including Fuller’s
Problem is the unique viscosity solution of the Bellman
equation that vanishes at the target and is bounded
below. We use the fact that all trajectories of these
problems whose total running costs over [0, 00) are fi-
nite tend to the origin (cf. §3). For the preceding ex-
ample, this condition is of course not satisfied, since the
trajectory z(t) = 1 generates a zero total running cost
without reaching 7; or 7.

Remark The paper [7] generalizes the result of this
note to variable interest problems with discontinuous
exit costs. For such problems, one minimizes

Aﬁmamﬁ

over the measurable functions 8 : [0,00) — A, where
8(s,z,B) == [, h(yz(r,B),B(r))dr, t* is the exit time
1nf{s > 0 Y=(8,B) € T} to a general closed target T,
and 7 and the control set A may both be unbounded.
The corresponding Bellman equation is
sup{—f(z,a) - Dv(z) — £(x,a) + h(z,a) - v(z)} = 0,

a€A

(s))e= e Dds &= 2 gy, (¢, 6)),

where f is the dynamics. We can allow cases where h
is not bounded below by a positive constant. O

2. Statement of Result

Recall that if F : R™ xR — IR is continuous and if
Q C IRY is open, then we say that a continuous function
w: RY — R is a viscosity solution of the equation
F(z,Dw(z)) = 0 on 2 provided these conditions hold:

(1) F(z,D¢(z)) < 0 for every C! function ¢ : Q - R
and for every local maximum z of w — ¢.

(2) F(z,Du(z)) > 0 for every C! function p: Q - R
and for every local minimum z of w — p.

We say that a continuous function a : R — [0, 00) is of
class MK provided a(0) = 0 and « is even and strictly



increasing on [0, 00). We will take class MK functions
as our Lagrangians. Note that functions of class MK
need not be bounded, convex, or Lipschitz.

For each function a of class MK, we consider the
following problem, which we denote by P,:

tp(8)
Minimize / afzp(t, B)]dt over B € U subject to
0

p(t, 8) = yp(t, B), 9p(t, B) = B(t), (2p,yp)(0) = p,

where t,(8) :=inf{t > 0: 2,(t,8) = yp(¢,6) =0}, U is
as above, the dots are used to indicate time derivatives,
and z4(t, B) = (x4(¢,8),y4(t, 8)). The value function
of P,, which we denote by v, is defined

tp(B)
v (p) = inf {/0 alz,(t,B)]dt : B el, t,(B) < oo} .

For the case of a(r) = 2, we get Fuller’s Problem

(FP), whose value function is denoted v;,. We prove
the following result on the Bellman equation of P,:

Theorem If o is of class MK, and if w: IR*> > R is a
viscosity solution of the Bellman equation

—zoD1w(z1,22) + |Daw(zy,z2)| —a(z1) =0 (1)

on R?\ {0} which is bounded below and null at 0, then
w(z) = vy (x) for all z € R

Notice that if « is also convex, then v, is convex
and therefore continuous on R2. Therefore, v, p is the
unique continuous viscosity solution of the correspond-
ing Bellman equation (1) for Fuller’s Problem (with
a(z) = x?) which is null at 0 and bounded below. The
hypotheses of the theorem are minimal, since one can
find solutions of (1) which are null at the origin but not
bounded below. For details, see [7].

3. Lemmas

To prove our theorem, we need the following converse
dynamic programming inequalities and generalization
of Barbélat’s Lemma:

Lemma 1 Let a be a function of class MK. Let w be a
viscosity solution of (1) on R*\ {0} and B C R?\ {0}
be a bounded open set for which 0 € B. Let ¢ € B. If
BEU and 0 <r < inf{t > 0: 2,(¢t,8) € OB}, then

1M®§AZWMMmﬁ+wm&ﬁﬂ (@)

Moreover, we have

w(g) > inf {/0 a[wq(taﬁ)]dﬂrw{zq(ﬂﬂ)]} (3)

— Beu

for all 0 <t <inf{t > 0:dist(z,(¢,8),0B) < 6,8 € U}
and all 0 < 0 < dist(g,0B).

Proor. This is a special case of the proof of Theorem
111.2.32 of [1]. O

Lemma 2 Let a be of class MK. If ¢ : [0,00) — R
1s differentiable and ¢' is Lipschitz continuous, and if

IS al¢(s)] ds < oo, then tliglo o(t) = tllglo ¢'(t) =0.

ProoF. It suffices to check that lim; o, ¢'(t) =
0, since then ¢ is Lipschitz, and then the result
follows by Barbilat’s Lemma. We suppose that
limsup,_,. #'(t) > v € (0,1) wlog. (Otherwise, ap-
ply the same argument to —¢.) By passing to a subse-
quence, we can choose tj T 400 for which tx4q1 —t; > 1
and ¢'(tx) > v for all k. Choose a Lipschitz con-
stant C > 1 for ¢/, pick 0 < § < v/(2C), and set
I, = [ty, — 6,t; + 6]. Then

P'(t)=¢'(t) = ¢'(tk) + &' (tr) 2 —Co+7v27/2 (4)

for all t € Iy,. Set vy = inf{|p(¢)| : t € I} } for all k, and
choose sy € I}, so that |¢(sg)| = vk-

If ¢(s) > 0, then (4) gives sy =t — 9, so since ¢ > 0
on I, we get ¢(t) > [t — (tx — 8)]/2 for all t € I, so

vd/4
/awmwz2m/ a(wdu  (5)
Iy 0

by changing variables. This last inequality remains true
if ¢(sx) < 0 (in which case s, = t; + d and we have
—¢(t) > v[tr + 0 —t]/2 on Ij) or if ¢(si) = 0 (in which
case we argue as in the ¢(sy) > 0 case on [sg, t +6] and
as in the @(sg) < 0 case on [ty — J,sg]). Since § < 1/2
and tx41 — tr > 1 for all k, the I},’s are disjoint, so we
sum on k in (5) to contradict fooo afp(s)lds < 0. O

4. Proof of Theorem

Let o and w be as in the hypotheses. The fact that
w < v on R? follows easily from a repeated application
of the inequality (2) (cf. [1]). To prove the reverse
inequality, fix Z € R? and € > 0. We use Zorn’s Lemma
to find a B € U such that ¢z(8) < oo and

tz(B) _
mmzA ales (t, B)dt — ¢ (6)

and let € | 0 to conclude. In what follows, we set
f(z,y,a) = (y,a), {(x) = a(z;) for all z € R?, and

Bj(t) =¢/4 [67("71) — e*(t+j—1)]

for allt > 0 and j € N. (Our arguments easily general-
ize to cases where the instantaneous cost £ also depends
on the control value.) Consider

(t,): 0<t<1, and v:[0,{] > R?isa

Z trajectory for zZ = f(z,f) for some 8 € U
1

for which 4(0) = Z with the property that
w(@) > [y ly(s)ds + w(y(t) — Ei(t).

Then Z; is partially ordered by the relation ~ defined
by (t1,m1) ~ (t2;72) <= (t1 <t2 & 12[[0,t1] = ).
Moreover, one can use standard arguments to check
that every totally ordered subset of Z; has an upper



bound in Z;. (Let {(s;, 1;)}; C 21 be totally ordered,
set s, = 0 and 8 = sup, s;, and define i : [0,5) — RN
by @(p) = pj(p) for any j such that s; > p. Let
Bj : (sj—1,8;] = [—1,+1] be a control for the trajec-
tory pif(sj-1,s;], and define Bt :(0,00) = [—1,+1] by
BT(s) := B;(s) on (sj_1,s,] for j > 1 and ﬂT(s)zlfor
s > 5. Then Bt is measurable and admits a trajectory
2z(+, B1) on [0, 00). Since E; and w are continuous, the
desired upper bound is (5, zz (-, 1)) € Z,.)

It follows from Zorn’s Lemma that Z; contains a
maximal element which we will denote by (#,7). Wlog,
4 does not reach 0 on [0,¢]. (Otherwise the require-
ment (6) is satisfied if we use the input for 7). We
show that £ = 1. Let B be an open set contain-
ing ¥(t) =: & with 0 ¢ B. Suppose £ < 1. Set
7 = inf {¢ : dist(2;(¢, 8),0B) < dist(%,0B)/2,8 € U}.
By standard estimates (cf. [1], Chapter 3), one checks
that 7 > 0. By Lemma 1, it follows that there are

€ (0,1—1) and B3 € U so that

/ﬁzr )ds + wlzz(t,B)]
- E(t+t) + Ei(t) (7

and so that z;(-, 8) remains in B on [0,%]. Let & denote
the control for 4. Since (£,7) € 21, it follows that

w(z) — /e (5,&)ds — E(F). (8)

Let 3% denote the concatenation of the input &[[0,7]
followed by the input 8. Since ¢t +% < 1, we can add
(7) and (8) to conclude that (t+t, zz(-, 8¥)) € Z;. This
contradicts the maximality of (¢,%), so t = 1.

We now extend ¥ to get the desired trajectory. Set

(t,7): 0<t <1, and v:[0,t] » R? is
a trajectory for 2 = f(z, ) for some input
ﬂ € U which is such that v(0) = 5(1) and

fo ))ds + w(y(t)) — E2(t) .

and partially order Z» as before. By the preceding, we
know that Z» contains a maximal element (1,73). Let

2 : [0,1] = [—1,+1] denote the input for 75. We can
assume wlog that 72 does not reach 0 on [0, 1]. Indeed, if
there is an sp € [0, 1] such that 72(s2) = 0, then we can
satisfy the requirement by concatenating & followed by
us, where @& is the control for 4 on [0,1]. Let ¢2 denote
the concatenation of &[[0,1] followed by w2 [[0,1], and
let v denote the corresponding concatenated trajectory
for ¢y from Z to »(1).

Now reapply the procedure to v2(2) to get a longer
trajectory that reaches 0 or runs for three time units.
The procedure is iterated, and it results in a sequence
of terminal points p,, := ¢, (n) for trajectories ¢, which
begin at Z, are defined on [0, n], and wlog do not reach
0. It follows that for all n € IN, we would have

)

N M

/ " Uu(s,ca)) ds + w(da(n)

Setting @(s) = cp(s) if n —1 < s < n, letting ¢ de-
note the corresponding trajectory, and letting b denote
a lower bound for w, a passage to the limit as n — oo
n (9) gives [ (¢(s))ds < w(xT) —b+e/2 < oo,

~

since ¢ = ¢, on (n — 1,n]. It follows from Lemma
2 that limg_ o qAS(s) = 0. Since the FP dynamics is
controllable to the origin and w is continuous, stan-
dard estimates (cf. [1]) guarantee m € IN and (3, €
U for which w(¢(m)) > —e/4, t,, (Bm) < oo, and
(f”’" (Bm)f(zpm (s,8m))ds < e/4. We then satisfy (6)
by taking S to be &[[0,m] followed by B,. O

Remark One can prove a variant of the theorem for
solutions of (1) on open sets Q C R? with {0} replaced
by a general closed target 7. To do this, we add the
condition v : [0,1] — Q in the Z;’s and assume
w(z) <w VreQ and zlgrzl w(z) = Yz, € 00N

for some w € R U {400} (cf. [1]). The proof of the
inequality w < v, is more involved since one must con-
sider trajectories which exit 2 before reaching 7. To
cover cases where 7 ¢ . we assume Q2 C T. For
details, see [7]. O
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