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JIMMIE LAWSON AND YONGDO LIM

ABSTRACT. In this paper we study close connections that exist between the Riccati
operator (differential) equation that arises in linear control systems and the sympletic
group and its subsemigroup of sympletic Hamiltonian operators. A canonical triple
factorization is derived for the sympletic Hamiltonian operators, and their closure
under multiplication is deduced from this property. This semigroup of Hamiltonian
operators, which we call the sympletic semigroup, is studied from the viewpoint of Lie
semigroup theory, and resulting consequences for the theory of the Riccati equation
are delineated. Among other things, these developments provide an elementary proof
for the existence of a solution for the Riccati equation for all ¢ > 0 under rather

general hypotheses.

1. INTRODUCTION

The main purpose of this paper is to demonstrate how the Lie theory of subsemi-
groups of a matrix group, or more generally a Lie group, can be applied to problems
in geometric control theory. We have chosen to do this in the form of a case study of
a basic and familiar setting in control theory: the familiar Riccati equation that arises
in the context of linear control systems with quadratic costs. The bulk of our the-
ory carries through in the infinite dimensional setting with little additional effort, and
we develop our theory in this context. This generalization is perhaps of some interest
since both classical control theory and the Lie theory of semigroups have typically been
developed in the finite dimensional setting.

We recall the primary connection of Lie semigroup theory with geometric control
theory. Suppose that the states of a control problem are points of a Lie group and the
controls are right invariant vector fields, or that the control problem can be reinter-

preted so that this is the case. If the control functions are closed under concatenation,
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then the attainable set from the identity forms an infinitesimally generated subsemi-
group of the Lie group, and all attainable sets are translates of this semigroup. If this
attainability semigroup is closed in the group, then it is an example of a Lie semigroup
(i.e., a closed infinitesimally generated semigroup). In addition to the techniques of
geometric control, one has available the vast machinery and structure theory of Lie
groups and Lie algebras to study control problems on Lie groups and the attainability
semigroup. The attainability semigroup has been used primarily to study questions of
controllability (see, for example, the survey [11]), but in this paper we seek to make
a case that a detailed understanding of the attainability semigroup can be useful for
attacking a variety of control questions. We refer the reader to the references [4] and [5]
for the theory of Lie semigroups; a good background article on semigroups and control
is the survey article [8].

Connections between linear control theory, the Riccati equation, and the sympletic
group are well known; see, for example Hermann [3], Shayman [12], and Jurdjevic
[6, Chapter 8] and the references cited in those sources. In this paper we focus on
connections to the symplectic subsemigroup, which consists of those sympletic trans-
formations that are sometimes called Hamiltonian. This semigroup has largely been
overlooked in the control context; see, however, Bougerol [1], which was an impor-
tant inspiration for our investigations. We exploit properties of the sympletic group
and sympletic semigroup both to rederive some familiar results concerning the Riccati
equation from this vantage point, hopefully with some new insights along the way, and
to further extend and generalize the theory. We employ (and thus illustrate) a variety
of basic tools from Lie group and Lie semigroup theory such as pushing forward control
systems from groups to homogeneous spaces (Section 5) and the subtangential set of
a semigroup, called its Lie wedge (Section 8). But the primary structure theorem for
the symplectic semigroup, which is crucial to many of our applications, is its triple
decomposition as given in Section 6. The triple decomposition often allows us to break
up problems into much simpler subcases.

An important order exists on the symmetric operators called the Loewner order.
In the last two sections we consider this order and its connections with the sympletic

semigroup and the Riccati equation.
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Many of the results of this paper are not new, but rather are new derivations of
known results from the perspective of Lie group and Lie semigroup theory. Part of
the purpose, as already mentioned, is to give an accessible case study of Lie semigroup
theory and its connections with control theory. However, this paper is also foundational
for more advanced and original applications of the sympletic semigroup to the study

of Riccati equations that we plan to publish in a subsequent paper or papers.

2. SYMPLECTIC SPACES AND THE SYMPLETIC GROUP

In this section we recall basic results concerning sympletic spaces and the sympletic
group. These results are well-known, particularly in the finite dimensional setting, but
it will be convenient to have them at hand for the general setting of this paper. Crucial
for later purposes are the familiar results Proposition 2.5 through Proposition 2.7 at
the end of the section, and the reader may choose simply to glance at them and move
on.

Let V be a vector space over I = R, the real numbers, or F = C, the complex
numbers. A symplectic form on V is a nondegenerate, skew-symmetric bilinear form
Q:VxV —>PF

Definition 2.1. We give a standard construction for sympletic forms. Let H be a
Hilbert space over R with inner product {-,-): H x H — R. The form (-,-) exrtends

uniquely to a nondegenerate symmetric complex bilinear form on Hec = H +1H,
Blu+iv,z+1iy) = (u,z) — (v, y) +i((u,y) + (v, z)).

Note that Hc is a complex Hilbert space with inner product {(a,b) = B(a,b), where
b =u—iv if b= u+1v, and that both B(-,-) and (-,-) restricted to H C Hc agree with
(-,-). ForF =R, we set E = H and for F =C, we set E = H¢. Set Vg := E® E; we

x
denote members of Vg by column vectors where x,y € E. We define the sympletic

Yy
form @ := Qg on Vg by
Tt
Y1 ’

where B(-,-) = (-,-) forF =R. The pair (Vg,Qg) is called a standard sympletic space,
real if F = R and complez if F = C.

T2

Qn( .

]) = B(z1,y2) — B(y1, 22),
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Example 2.2. Let E = R be the one-dimensional Hilbert space over R. Then Vg =
FaF, whereF=R or F=C, and

w z wy 2
ll,lll)zdet[ ! 1] , Wy, We, 21, 29 € F.

Wa 22 Wa 29

Qn(

Example 2.3. Let E = R® with its usual Hilbert space structure. Then Vi = F2".

The sympletic form restricted to the standard basis is given by
1, ifj=14+n;
Qlei,e)) = —1, ifi=j+mn;
0, otherwise.

The sympletic form @) may be expressed as the matriz product

Qlz,y)=2"-J-y

where x* denotes the transpose and J denotes the 2n x 2n matriz given in block form

as

Remark 2.4. Given any sympletic form @) on a finite dimensional vector space V,
there exists a basis {€1,..., €y} such that Q) restricted to this basis is given by the
formulas in Example 2.3. Thus the sympletic space (V, Q) is isomorphic as a symplectic

space to the standard one of FExample 2.3 under the isomorphism that carries €; to e;.

Let (Vg,Qr = Q) be a standard sympletic space, where E is a Hilbert space. Any
bounded linear operator A: Vg — Vg then has a block matrix representation of the

form

A A
Ay Ago
where ¢;: E — Vg is the natural embedding into the j-th coordinate and 7;: Vg — E'is
projection into the i-th coordinate, for i, j = 1,2. We denote by End(Vg) resp. End(F)
the set of bounded F-linear operators on Vi resp. E, and by GL(Vg) resp. GL(E) those

that are invertible. We shall always assume the topology is generated by the operator

A= where A;; :==m0Ao01;: E— E,

norm. Note that the operator norm topology on End(Vg) is the product topology of

the operator norm topology for the four block matrix operators in End(E).
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We define an operator J € End(Vy) by

I
=11,
~10

where [ is the identity operator on E. Note that
J2 = _IVE7 J4 = IVE7

in particular, J is invertible.
There are a direct sum non-degenerate symmetric bilinear form f(-,-) and a Hilbert

space inner product (-, -) defined on Vg by
ul |z u| |z
ﬂ([ ] , [ ]) = B(u, z) + (v, y), ([ ] , [ ]) = (u, z) + (v, ).
v Y v Y
In terms of 3, the symplectic form @ is given by Q(a,b) = 5(a, Jb).
For a bounded linear transformation A on E or Vg, let A* denote the unique linear

operator such that (Az,y) = (z, A*y) for all z,y in F or Vg respectively. We call A*
the adjoint of A. Note that for F =C, z,y € F,

Bz, Ay) = (z, Ay) = (z, AY) = (A"2,7) = f(A"z,y),
so A* is the same as the adjoint with respect to §(-,-), and a similar computation is

A B
valid in V. Observe that for M = [C D] in End(Vg), we have by straightforward

computation
<ABu x)_<u A* C* x)
CDv’y_v’B*D*y'
A B A* C*
Thus = . It follows that
D B* D*

J*=—J, JJ* =1

We say that A is symmetric if A* = A.
We denote by M* for M € End(Vg) the unique linear operator such that Q(Mz,y) =
Q(z, M*y) for all z,y € Vg. Since
Q(z, M*y) = Q(Mz,y) = B(Mz, Jy) = B(z, M* Jy)
= B(z, JJ*M*Jy) = Q(z, J* M*Jy),
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we conclude that M* = J*M*J = —JM*J. We call M* the sympletic conjugate of M.
For (Vg, @) a standard sympletic space, we set

Sp(Ve) :={M € GL(Vg): Vz,y € Vg, Q(Mz, My) = Q(z,y)}.
Suppose that M € Sp(Vg). Then Vz,y € Vg,
Bz, Jy) = Q(z,y) = Q(Mz, My) = f(M=z, IMy) = f(x, M*JMy).

Thus J = M*JM, and the argument reverses to yield that M € Sp(Vg) if M is
invertible and M*JM = J. We conclude that for M € GL(Vg),

M*JM =J < M € Sp(Vg).

Proposition 2.5. Let M € GL(Vg). The following are equivalent:

(1) M € Sp(Vg), i.e., M preserves Q(-,);
(2) M*JM = J;

A B
(3) If M = o D,then

(a) A*C, B*D are symmetric;
(b) A*D — C*B = I.
(4) M~! = M*.
Thus the set Sp(Vg) is a group.

Proof. The equivalence of (1) and (2) was established in the remarks preceding the
proposition. The equivalence of (2) and (3) is a straightforward computation. The
implication (2)=>(4) follows from multiplying both sides of (2) on the left by —J, and
left multiplying M*M = I by J gives the reverse implication.

It follows from definition that Sp(Vg) is closed under composition and from (4) that

it is closed under inversion (since M* = M); hence it is a group. O

A B

Corollary 2.6. The set Sp(Vg) is closed under taking adjoint. Hence M = D

Sp(Vg) if and only if
(1) AB*, CD* are symmetric;
(2) AD*— BC* =1.
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Proof. Let M € Sp(Vg). By (4) of the preceding proposition, we have

and thus M* € Sp(Vg). The remaining assertion follows from applying the preceding
proposition to M*. [l

Recall that the Lie algebra sp(Vg) consists of all X € End(Vg) such that exp(tX) €
Sp(Vg) for all t € R.

Proposition 2.7. Let X € End(Vg). The following are equivalent:

(1) X € sp(Vp),
(2) X*J+ JX = 0;

(3) If X = [g ZB;]’ then

(a) B and C are symmetric;
(b) D = —A*.

Proof. (1) < (2): Suppose that X € sp(Vg). Then by (2) of Proposition 2.5 e!X" Je!X =
J for all t € R. Differentiating with respect to ¢ and evaluating at ¢ = 0 yields
the desired result. Conversely if (2) is satisfied, then the function ¢ — e'*"Je!* has
derivative (with respect to t) e*" (X*J+JX)e!* = 0, and hence is a constant function.
Evaluating at ¢ = 0 establishes that the constant is J.

(2) < (3): This is a straightforward computation using the block operator represen-
tation. O

3. THE RICCATI EQUATION

Let E be a Hilbert space and let Vi = E® E as in the previous section. We consider
the control system given by the basic group control equation (BGCE) on Sp(Vg):

9(t) = u(t)g(t), (BGCE)

where u : I — sp(Vg), I a (finite or infinite) subinterval of R, is called a steering or
control function. In the case that E is finite dimensional, we assume that u(-) belongs
to the class of measurable functions from I into sp(Vx) which are locally bounded,
that is, bounded on every finite subinterval, and in the case of general £ we assume

that u(-) is a regulated function, that is, a function that on each finite subinterval of
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its domain is a uniform limit of piecewise constant functions. A solution of (BGCE),
called a trajectory, is an absolutely continuous function z(-) from I into G such that the
equation (BGCE) holds a.e., where a.e. means on the complement of a set of measure
0 in the finite dimensional setting and the complement of a countable set otherwise.
Control systems such as the one just described are called right invariant, since right
translates of solutions of (BGCE) are again solutions. Using the homogenity of Sp(Vg),
one readily obtains that global solutions on all of I exist whenever local solutions exist.
Thus global solutions always exist in the settings we are considering (see [8, Section
3] and [4, Section IV.5]). The solution for initial condition g(0) = idy (g is called the
fundamental solution of the basic group control equation and denoted ®(¢). By right
invariance the general solution to (BGCE) with initial condition g(t;) = go is then
given by g(t) = ®(t)(®(to)) " go-
We turn now to Ricatti equations.

Definition 3.1. An (operator) Riccati equation is a differential equation on the space

Sym(E) of bounded symmetric operators on E of the form
K(t) = R(t) + A() K (t) + K()A*(t) - K()S()K (1), K(t) = Ko, (R)
where R(t), S(t), Ko are all in Sym(E).

There is a close connection between the basic group control equation and the Riccati

equation.

Lemma 3.2. Suppose that ¢(-) is a solution of the following (BGCE) on an interval
I:
At)  R(t)

"= sw) a0

, R(t),S(t) € Sym(E).

[911 (t) gia(t)

ga1(t)  g22(1)

If goo is invertible for all t € 1, then K(t) := gio(t)(g22(t)) ™" satisfies

K@) =R(t) + AWK () + K(t)A*(t) — K(t)S(t)K(t),

I

on 1. Furthermore, if g(ty) = 0

K
10] for some ty € 1, then K(ty) = K.
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Proof. Using the product rule and the power rule for inverses and the equality of the

second columns in the basic group control equation, we obtain

K = §1a(g22) " — 912995 G22905
= (Agi2 + Rg»)9% — K(Sg12 — A*g20)95
= AK+R—-KSK+ KA*.

The last assertion is immediate. O
Corollary 3.3. Local solutions exist for the Riccati equation (R).
Proof. Global solutions exist for the basic group control equation (BGCE) with initial

condition g(tg) = 0 IO and the goo(t)-entry will be invertible in some neighborhood

of ty. Now apply the previous theorem. U

4. THE SPACES A AND M

We fix the Hilbert space E and define

- (f

We also consider the lower block triangular subgroup P of Sp(Vg) given by

P::{g

We note from Proposition 2.5 that such a lower triangular block matrix is in Sp(Vg) if
and only if A* = D! and A*C = D~C is symmetric.

: 3A,C € End(E) such that

g] € SP(VE‘)}'

10)] € Sp(Ve): A,C,D € End(E)}.

B B
! , I €A . The following are equivalent:

D,

Proposition 4.1. Let [
2

A B A, B
(1) There ezist My = |~ " '|, My = |2 72| € Sp(Vg) such that MyP =
01 D1 2 D2
2
A B A, B
(2) For all My = tot , My = S = Sp(Vg), we have M1P = M,P.
Cl D1 2 D2

(3) There exists @ € GL(FE) such that BiQ = By and D1Q = Ds.
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Proof. (1)=-(3): This implication follows directly from the fact M, € M;P; the matrix
@ is the lower right-hand entry of the matrix P € P such that M, = M, P.

1

(3)=(1): Assume (3). Pick [?‘ 13;1] € Sp(Vg). Then

A B
C D

@)~ o AQ)™ BiQ=DB;
0 @ C(@)™" DiQ =D,

Note that the right-hand side is in Sp(V%), since the left-hand factors are. Also the
second factor in the left-hand side is in P, so (1) follows.

(1)<(2): The implication from right to left is trivial. Assume (1). It suffices to show
B,
D,
and M have the same second column, when left multiplied by M; ™" the second columns

that if there is another matrix M = € Sp(Vg), then M;P = MP. Since M;

- *
must remain equal, i.e., M := M;~'M must be of the form l
*

0 ~
I] . Since M € Sp(VEg),

it follows that M € P, since it is block lower triangular. Thus M;P = MP. O

B B
Definition 4.2. We define L;] ~ ! 2
1

2
sition 4.1 hold. The relation ~ is an equivalence relation (from part (2) or (3)) and

] in case the equivalent conditions of Propo-

B
the quotient space A/ ~ is denoted M. We denote the equivalence class of Dl by

) |

There exists a natural projection 7: Sp(Vg) — A which sends a matrix to its second
column. Let p: A — M be the natural projection from A to M which sends a column

to its ~-equivalence class. We endow M with the quotient topology from po 7.

Corollary 4.3. Consider v := porn: Sp(Ve) = M. Then (M) = (Ms) if and only
if MiP = MsP. Thus the left transformation group (Sp(Ve), M), where the action is
given by left block matrix multiplication by any representative of a ~-equivalence class,
is topologically conjugate to the coset transformation group (Sp(Ve),Sp(Ve)/P) and
the mapping v is open.
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Proof. The first assertion follows readily from Proposition 4.1, and the second asser-
tion follows readily from the first. It is standard that the quotient mapping onto a

homogeneous space is an open mapping. O

The preceding corollary allows us to freely identify M and the homogenous space
Sp(Vk)/P. In the finite dimensional setting P is a parabolic subgroup and the ho-

mogenous space is a flag manifold of Sp(Vg).
B
We say that a point (D) € M is finite if D is invertible (note from part (3) of
Proposition 4.1 this invertibility is independent of which representative is chosen). In

-1
this case we may rewrite the point as ( I ) . Since for appropriate A, C,

x BD™!

*

A B

€ Sp(Vg),
C D p(Ve)

D o |
0 D'|

we conclude (BD')*I is symmetric, and hence BD! is symmetric. Conversely if

. . I E E
E € End(F) is symmetric, then 0 7 € Sp(Vg), and thus s € M.

A
Proposition 4.4. The correspondence A < (I) 1S @ homeomorphism between the

set Sym(E) of symmetric operators in End(E) and the open set Mg of finite points in
M.

Proof. Since by (3) of Proposition 4.1 we can represent each member of M in at
most one way with bottom entry I, we have from the preceding discussion that the
correspondence is a bijection.

Since the operator norm topology for the block operator matrices agrees with the

product topology from the operator norm topologies in each block, we conclude that

1= ()

Conversely consider the open subset U C Sp(Vg) of elements such that the (2,2)-

the mapping

B : Sym(E) — M defined by A —

1s continuous.

block entry D is invertible. The open set U is the inverse image of set of finite points
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of M. Thus the set M, of finite points is open in M, since the quotient map is open.
The map

A B B
— BD™" : U — Sym(F)

B
is continuous, and induces (D) — BD™! on the quotient space M, and thus the

latter map is also continuous (note that the maps do go into Sym(F) by the paragraph

preceding the proposition). Thus the correspondence is a homeomorphism. [l

Remark 4.5. Our presentation of the manifold M is nonstandard. Typically, at least
in the finite dimensional setting, one considers maximal isotropic subspaces of Vg,
sometimes called Lagrangian subspaces or polarizations. The “horizontal” subspace
Ey = E & {0} and the “vertical” subspace Ey = {0} @ E are examples of such. If in
our context we define a polarization of Vg to be an image of Fy under a member of

Sp(VE), then we can identify the members of M with the polarizations of Vg via the

(o)

B
Another way of saying this is that we associate with (D) the column space of

correspondence

A B

€ Sp(Vi).
C D p(Ve)

Vs

C

B

5. EXTENDED SOLUTIONS OF RICCATI EQUATIONS

The results of the preceding section allow us to extend the solution of a Ricatti
equation by considering it to be a differential equation on the larger M with Sym(FE)
embedded as the set of finite points as outlined in the previous section.

Consider on F the Riccati equation
K(t) = R(t) + A(K (1) + K()A*(t) = K(t)S(t) K (t), K (to) = Ko, (R)

where t varies over some interval I containing ¢y3. (We recall our standing hypothesis
that coefficient functions are locally bounded and measurable in the finite dimensional

case and regulated otherwise.) As we have seen in Section 3, we can obtain a solution
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to the Riccati equation from the solution of the basic group control equation

!gll(t) gu(t)] olto) = [I K()]
go1(t) gaa(t)|’ 0 I

by setting K (t) = g12(t)(go2(#)) ™! on any interval containing t, where gs5(t) is invert-
ible.
Note that by uniqueness of solutions we have g(t) = k(t), where we define
I K,
0 1]

k(t) = ®(t)(2(t)) " !

since both satisfy (BGCE) and have the same initial point at to.
Suppose that on the interval T we define a function K(-) on M by

K(t) = gft) (g’) = k(1) (3) (ES)

= 2(0)(@(1) " [é Ij] (2) — 0(1)(2(t)) " (f) .

We observe on any interval where go,(t) is invertible that

R0t = (mw) _ (gu<t)<g22<t)>l> _ (K(t)) |
g22(1) 1 I

where the last equality follows from Lemma 3.2. The last expression also agrees with
the embedded image in M of the solution K (¢). The function K(-) on I is called the
extended solution of the Riccati equation.

Consider the maximal interval around ¢y for which go(¢) is invertible. This inteval
is open since gyy is continuous and My is open in M. By uniqueness of solutions any
solution K7 (-) of the Riccati equation (R) and K (-) must agree on this interval (we are
viewing Sym(F) as embedded in M). If K;(-) admitted a solution at the endpoint ¢,
then by continuity K (t;) = K (t,), which is impossible since one is a finite point and
the other is not. We have thus established the following

Proposition 5.1. The Riccati equation (R) admits an extended solution throughout
the interval I on which it is defined. The mazimal interval on which (R) admits a

solution s the largest interval containing ty such that the extended solution is finite.
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The basic group control equation (BGCE) pushes forward to a control system on the
manifold M in such a way that the restriction to Sym(FE), the space of finite points,
agrees with the Riccati equation. We indicate briefly this “push-forward” construction.
Let M be a smooth (= C*°) manifold and suppose that ¥ : G x M — M is a smooth
action of a Lie group G on M. In our case G = Sp(Vg) and M = M endowed with
the appropriate smooth structure to make the action of Sp(Vg) on M smooth. (This
smooth structure arises by taking the inverse of the embedding of Sym(F) into M and
its translates by members of Sp(Vg) acting on M as an atlas of charts.) We typically
denote ¥(g,z) by gz or g.x. Let V(M) denote the Lie algebra of smooth vector
fields on M. For z € M, the smooth mapping ¥, : G — M given by ¥,(g) = g.x
has derivative at e, d¥, : T,G — T,M; alternatively d¥,(v), v € T.G, is given by
v — &(0), where o : R — M is defined by «(t) = exp(tX).z, where exp : g — G is
the exponential mapping and X (e) = v. The mappings d¥, give rise to a Lie algebra
homomorphism d¥ : g — V(M) given by d¥(X)(z) = d¥,(X(e)) (note that the
appropriate match-up to obtain a Lie algebra homomorphism is right invariant vector
fields with left actions). We denote the vector field d¥ (X)) by X. We consider the basic
manifold control equation (BMCE) on M given by the control differential equation

(1) = a(t) (=(1)) ,
where u(-) : I — g is locally bounded and u(t) = d¥ (u(?)).

Proposition 5.2. The solution to the (BMCE)

#(t) = a(t) (z(t)), =z(to) = o

on M is given by z(t) = ®(t)(®(tg)) *.wo. The basic control differential equation on

M has a global solution for any initial value.

Proof. The first assertion follows from
B(1) = AU B()(D(t0) ™" = dWs, (u(t)B(0)(B(10)™") = dWs 0 Aoy~ (u(t)e)
= dUs()(a(t0)) 1.0 (u(t)e) = U (2(1)) ,

where p,(h) = hg is right translation in G. That global solutions exist now follows
from the corresponding assertion for the (BGCE). The last assertion follows readily
from the first. O
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Remark 5.3. In the case G = Sp(Vy) and M = M that we are considering, we note
from equation (ES) above that

R(t) = &(t)(®(to)) " (Ij) ,

K,
which is the solution of (BMCE) for initial condition IO at time ¢y. Hence the

extended solution of the Riccati equation is the solution of (BGCE) pushed forward to
(BMCE).

6. THE SYMPLECTIC SEMIGROUP

Let (Vg, @) be a standard sympletic space constructed from a real Hilbert space
H. A bounded symmetric operator A on E' is positive semidefinite if (x, Az) > 0 for
all z € E\ {0}. We denote by P (resp. Py) all positive semidefinite (resp. positive
semidefinite invertible) bounded operators on E. We use freely the standard fact from
operator theory that a positive semidefinite operator has a unique positive semidefinite

square root.

Lemma 6.1. If P,(Q € P then I + PQ is invertible. If P € Py and QQ € P, then
P+Q ePy.

Proof. We first show that I + PQ is injective. For if (I + PQ)(z) = 0, then

0=(Q(x), (I + PQ)(z)) = (Q(x), ) + (Q(z), PQ(x)).

Since both latter terms are non-negative by hypothesis, we have that 0 = (Qz,z) =
(QY?z,QY?x), and thus that QY/2(z) = 0. It follows that 0 = (I + PQ)(z) = z +
PQY?(Q'?x) = z, and thus I + PQ is injective.

The same argument may be applied to the adjoint I + QP to conclude that it is also
injective, and hence its adjoint I + P() has dense image.

Suppose that (I + PQ)(z,) — 0. We claim that x,, — 0. For if not, then we obtain
a subsequence, again denoted x,, such that x, is bounded away from 0, i.e., there
exists 8 > 0 such that g < ||z,]|| for all n. Then u, := z,/||z.|| = (€./5)z, for some
0 < e, < 1. Since (1/8)(I + PQ)(x,) — 0, it follows that (I + PQ)(u,) — 0. Since
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|Q(u,)|| < ||Q]| for all n, we have
(Qun), un) + (Q(un), PQ(un)) = (Q(un), (I + PQ)(un)) — 0.

Since both of the left-hand terms are non-negative, we have (QY2(u,), @Y?(u,)) =
(Q(uy),u,) — 0, and thus that Q'/2(u,) — 0. By continuity of PQ/2, it follows that
PQ(uy,) — 0, and thus that ||(I+ PQ)(u,)|| — 1, a contradiction to (I + PQ)(u,) — 0.

We conclude by showing that I + P(Q is surjective. Let y € E. Then there exists
zn € E such that y, := (I + PQ)(x,) — vy, since I + PQ has dense image. Then the
double indexed sequence y, — y, = (I + PQ)(z, — x,,) — 0 as m,n — oo. It then
follows from the preceding paragraph that the double indexed sequence z,, — x,,, — 0
as m,n — oo, i.e., the sequence {z,} is Cauchy. Let x be its limit. By continuity
(I 4+ PQ)(z) =y. Thus I + PQ is surjective. By the Banach Open Mapping Theorem,
it is open, so the inverse is a bounded linear operator.

The last assertion now follows easily by observing that P+ @Q = P(I + P7'Q). O

Remark 6.2. Note that the preceding proof simplifies considerably in the finite dimen-
stonal case. Indeed it follows from the injectivity of I + PQ that it is invertible.

We define four subsets:

A B

S = { D € Sp(Vg) : D is invertible, B*D € P, CD* € 73},
(A B] L

S, = { c D € Sp(Vg) : D is invertible, B*D € P,, CD"* € ’P},
(A4 B] L

S, = { c D € Sp(Vg) : D is invertible, B*D € P, CD" € Po},

So=8N8S,.

Remark 6.3. Note that S, is the adjoint dual of S1 and that S s self-dual, i.e., S is

closed under adjoints.

Members of S are sometimes called Hamiltonian operators of Sp(Vg).

We define
I B
:BEP}Pg:{O

FU:{ :BEPo},
0 I
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I 0

I 0
PL:{ :CEP},PoLz{
C I C I

We further define a group H of block diagonal matrices by
A* 0
H= {

0 At
The following lemma is straightforward.

5C€P0}.

t A€ GL(E)}.

Lemma 6.4. All four of the sets TV, T'L, TY and 'Y are semigroups under composition,
the first two are closed, and T'§ (resp. T§) is a semigroup ideal in TV (resp. T*). The
semigroup TV resp. TY (resp. T'L resp. T'}) consists of all unipotent block upper (resp.
lower) triangular operators contained in S resp. Sy (resp. S, resp. Sz). The group H is
closed in GL(VEg) and consists of all block diagonal matrices in Sp(Vg). Furthermore,
each of the four semigroups TV, T'L TV and TY is invariant under conjugation by

members of H.

Lemma 6.5. We have that S = TVHTE, S = TVHIE, S = TVHTE, and Sy =
TYHUS. Furthermore these “triple decompositions” are unique. The multiplication

mapping from TV x H x T'F to S is a homeomorphism.

Proof. Each member of & admits a triple decomposition of the form
(D7H)* 0
0 D
The triple decomposition follows from direct multiplication (applying the equations
A*D — C*D = I and B*D = D*B to see that the (1,1)-entry is A). Note further that
if B*D = D*B € P (tesp. P), then BD™! = (D™')*D*BD~! € P (resp. Py), and
hence the first factor in the triple decomposition is in T'V (resp. I'Y). Similar reasoning

applies to the third factor after noting D~'C = D *CD*(D ')*.

Conversely consider a product

I BD7!
0 1

A B
C D

1 0
D'C I

: (1)

D' 0
0 D

D'+ BD*C BD*
D*C D*

I B
0 I

I 0
C

= e TVHTL,

Then the (2,2)-entry in the product is precisely D* and the middle block diagonal
matrix in the factorization is determined. Multiplying the (1, 2)-entry of the product
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on the right by (D*)~! gives B and the (2,1)-entry on the left by (D*)~! gives C.
Hence the triple factorization is uniquely determined. Finally note that (BD*)*D* =
DB*D* is positive semidefinite since B is (since the first block matrix is in T'V). Also
(D*C)(D*)* = D*CD, which is positive semidefinite since C' is. Thus the product
block matrix satisfies the conditions to be in §. Note further that DB*D* resp. D*CD
is invertible if B resp. C' is, and thus the decomposition holds also in S;, + =0, 1, 2.
In regard to the last statement, we have seen that the mapping is a bijection, it is
continuous since multiplication (i.e., composition) is, and from the first display in the

proof we see that the inverse factorization is also continuous on S. U

Related triple decompositions in the finite dimensional setting have been obtained by
Wojtkowski [13] for the real sympletic group, by Koufany [7] in the setting of euclidean
Jordan algebras, and by the authors in the setting of Lie algebras of Cayley type [9].

Remark 6.6. Analogous triple decompositions occur for the larger set of sympletic
block matrices for which the (2,2)-block D is invertible. For this set of matrices, one
has unique triple decompositions in the set product NV HN' where NV resp. NU denotes
the group of upper resp. lower block unipotent matriz operators. The preceding proof

adapts directly to this case.

The following semigroup property appears in the finite dimensional setting in Bougerol
[1] and in Wojtkowski [13] and [14].

Theorem 6.7. We have that S is a semigroup. Furthermore, 8§;S C S; fori = 0,1, 2,

i.e., each S; is a semigroup ideal.

Proof. Let sy = wuihily and sy = ughsls be the triple decompositions for s;,s, € S.
Suppose that lius = ushsls € TV HI'E. That

S159 = U,lhlll’l,Lthlg = U1h1U3h3l3h2l2 = [ul(h1u3h1_1)](h1h3h2)[(h2_1l3h2)l2]

is in TYHT'L then follows from Lemma 6.4. We observe that indeed
I 0| |1 B, I B,
C, Il|o I C, I+CiB,

and that the (2,2)-entry is invertible by Lemma 6.1. We further have that B} ([ +
C1B;) = B} + B3C1 B, is positive semidefinite (and is in Py if By € Py by Lemma

Liug =

Y
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6.1) and Ci(I + C1By)* = C; + C1ByCy is positive semidefinite since C; and B, are
(and is in Py if C; is). Thus [jus has the desired triple decomposition ushsl; and S is
a semigroup by Lemma 6.5. The assertion that the S; are ideals now follows readily

from Lemmas 6.4 and 6.5 in a similar fashion. O

Definition 6.8. The semigroup S of the preceding theorem is called the sympletic

semigroup.

Corollary 6.9. The sympletic semigroup can be alternatively characterized as

s={|”
C

Proof. Let S§' denote the set defined on the righthand side of the equation in the

statement of this corollary. We observe that

B
D] € Sp(Vg) : A is invertible, C*A € P, BA* € 'P}.

A B
C D

A A=

The inner automorphism M — AMA : GL(Vg) — GL(Vg) carries Sp(Vg) onto itself
(check, for example, that it preserves condition (3) of Proposition 2.5), interchanges the
semigroups I'V and I'’, carries the group H to itself, and interchanges the semigroup

S and the set §’. Thus &' is a semigroup and
S§'=T"HIY C 88§ =S.

Dually § C §'. O

7. FRACTIONAL TRANSFORMATIONS

If M € Sp(Vi) and z, Mz € M,, the set of finite points, then
X\ [(AX+B\ [(AX +B)(CX + D)™
1] \cx+p) I '

X
Identifying X € Sym(E) with (I)’ we have that MX = (AX + B)(CX + D)™ !, as

A B
¢ D

Mzx =

long as M X is finite.
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A B
Proposition 7.1. Let M = [C’ S € Sp(Vg). Then identifying finite points of M

with symmetric operators and restricting M to the set of finite points whose image under

M 1is again finite, we have that M acts on this set as the fractional transformation
Zw— (AZ+ B)(CZ+ D) .

Members of S carry the set P resp. Py into P resp. Py via such fractional transforma-

tions.

A
Proof. We have already observed the first statement. For M = [C in § and Z in

P resp. Py, we have the product

A B
C D

1 Z
0 I

*x AZ+ B
* CZ+D

The right-hand product is in S resp. S; by Theorem 6.7. Thus (AZ + B)*(CZ + D) =
(CZ + D)*(AZ + B) is in P resp. Py by definition of S and S;. Since the right-hand

matrix product is in S, we have that C'Z 4+ D is invertible. Hence

(AZ+B)(CZ+ D) '=((CZ+ D) Y[(CZ+D)(AZ+B)|(CZ+D)*
is in P resp. Py. [l
Proposition 7.2. The sympletic semigroup S is closed in Sp(Vg).

Proof. Let S denote the closure of S in Sp(V%). By continuity of multiplication S is
again a subsemigroup. For M € S, let

An Bn
Cn Dn

A

n —

, where M, € S for all n.

Since BXD, — B*D and the set P of positive semidefinite operators is closed in
End(E), we conclude that B*D > 0. Similarly CD* > 0 and the dual conditions
C*A >0 and BA* > 0 hold.

It is standard that P, is open in Sym(E) = M, (we prove this later in Lemma 9.2)
and hence in M, since M, is open in M. By continuity of the action of Sp(Vx) on
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M, we conclude for M € S that M(Py) C Py, the closure being taken in M. Since
M (Py) is open, we conclude that there exists P > 0 such that
A B

P P AP+ B
M = = € Ps.
I C D I CP+ D
It follows that CP + D is invertible. We then have

A B||I P A AP+ B
C D||0 I ¢ CP+D

The final product is in S since it is a semigroup. Since the positivity conditions hold for
any member of S and since the (2, 2)-entry is invertible, we conclude that the product
is actually in §. But then by the dual conditions of Corollary 6.9, we conclude that
the (1,1)-entry A is invertible. If we now apply Corollary 6.9 to M, we conclude that
MeS. O

8. GLOBAL RICCATI SOLUTIONS VIA SEMIGROUP THEORY

Lie’s Fundamental Theorems, which relate Lie groups and Lie algebras, have been
extended to Lie semigroups and their tangent objects. For a closed subsemigroup S of

a Lie group G, we set

L£(S) :={X € g:exp(tX) € S for all ¢t > 0}.
It follows directly from the Trotter Product Formula that £(S) is a closed convex cone
(see [4] or [5]); it is usually referred to as the Lie wedge of S, since it is typically not

a pointed cone. The semigroup S is said to be infinitesimally generated if it is the

closure of the semigroup generated by exp(£(S5)).

Proposition 8.1. The symplectic semigroup S has Lie wedge
A B
2(s) - {
Cc A"
Proof. We initially set W equal to the righthand side of the equation in the statement
of the proposition and establish that W = £(S). First note that any member X of W

can be uniquely written as a sum

A B 0 B
Cc —-Ar 0 0

:B,CEO}.

A 0
0 —A*

0 0
C

X =

=U+D+1L
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of a strictly upper block triangular, a block diagonal, and a strictly lower block tri-

I tB
angular matrix. Since exp(tU) = 0 7 e TV C Sforallt > 0, we conclude that

U € £(S), and similarly L € £(S). Clearly exp(tD) € H C S for all ¢, so D € £(S)
also. Since £(S) is a cone, hence closed under addition, we have that X € £(S). Thus
W C £(S).

Conversely suppose that exp(tX) € S for all ¢ > 0. Using the triple decompositions

of Lemma 6.5, we can write
exp(tX) = U(t)D(t)L(t) for each t > 0.
Differentiating both sides with respect to ¢ and evaluating at 0 yields
X = U(0) + D(0) 4+ L(0).

Then X135 = U(0)1y = limyo+ U(t)12/t > 0, since by equation (1) in the proof of
Lemma 6.5 and the following sentences U (t) has its (1, 2)-entry greater than or equal
to 0 for ¢ > 0. In a similar fashion one argues that Xy > 0. O

Members of £(S) are frequently called Hamiltonian operators of the sympletic Lie
algebra. They are typically the Hamiltonian operators that one considers in the context
of continuous systems and differential equations, while the Hamiltonian operators that
make up the sympletic semigroup are the ones tht appear in discrete systems. Lie
semigroup theory clearly shows the relationship between Hamiltonian operators at the
sympletic group level and Hamiltonian operators at the sympletic Lie algebra level.

Suppose that we consider the basic group control equation for a general Lie group
modified so that the controls come from some nonempty subset 2 C g, with initial
condition ¢g(0) = e, the identity of the group. The attainable set A(S2) is the set of

points that appear on trajectories of this system for some ¢ > 0.

Proposition 8.2. The attainable set A = A(Q) is a subsemigroup of G. If g(-) is a
trajectory of the system with [t1,ts], t1 < to in its domain, then g(ts) = sg(t1) for some
s € A.

Proof. Let u;(+) : [0, T;] — € be steering functions for ¢ = 1,2, and let g;(-), i = 1,2
be the corresponding trajectories. It is elementary to observe that the concatenation

steering function v = uy * us : [0, 71 + T3] — Q has trajectory given by g(t) = g:1(¢t) for
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0<t<T and g(t) = go(t — T1)g1(T1) for T} <t < Ty. In particular, g(T} + T») =
92(T2)g1(T1), so the attainable set is a semigroup.

Let u(-) be a steering function with domain containing [t1,%s] and corresponding
trajectory g(-). Define () = ®(t + t1)(®(t1))~". Define a(-) on [0,ty — t1] by u(t) =
u(t + t1). Then

Y(t) = ult + ) ®(t + ) (R(t1)) ™ = a(t)y(t), 7(0) =e.

It follows that ’Y(tz—tl) € A. But ’Y(tQ—tl) = q)(tg)(q)(tl))il, and hence (I)(tg) = S(D(tl)
for s = y(ty — t1). O

Restricting the preceding argument to the set of steering functions consisting of
piecewise constant maps, one observes that the reachable set is the semigroup consisting
of finite products of members of exp(Q2) (see, for example, [8]). For the case that S
is a closed subsemigroup and Q = £(5), we conclude from the definition of the latter
that the attainable set for the class of piecewise constant functions is contained in S.
The density of the set of piecewise constant controls and the continuous dependence
of solutions on controls then yields that the attainable set is contained in the closed
set S. From these observations and Proposition 7.2 we have the first assertion of the

following

Proposition 8.3. Fach solution ®(t) for t > 0 of the basic group control equation on
Sp(Ve)

§() = u(D)g (), 9(0) = idy e, ult) € £(S),
is contained in the semigroup S, i.e., the attainable set is contained in S. If ®(s) € S;
for some s and some i = 0,1, or 2, then ®(t) € S; for all t > s.

Proof. Only the last assertion remains to be proved. But this follows from the second

assertion of Proposition 8.2 and the fact that each S; is an ideal of S. O

Remark 8.4. If one considers the basic group control equation

I K,

g(t) = u(t)g(t), g(0) = -

] , u(t) € £(S), Ko € P,

then the solution ®(t)g(0) evolves in S for t > 0 by the preceding proposition and the
semigroup property of S. Thus one can form the triple factorization of ®(t)g(0) as
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given in Lemma 6.5. We note from the proof of that lemma that the (1,2)-entry of the
upper block triangular factor is given by g12(t)(g22(t)) ™", which has initial value Ky and
by Lemma 3.2 satisfies the Riccati equation determined by the steering function u(-).
Thus the function that sends t to the (1,2)-block of the upper triangular factor of the
triple decomposition yields the solution of the corresponding Riccati equation. Similar

remarks apply over any interval in which gos(t) is invertible.

Our results on the sympletic semigroup lead to a semigroup-theoretic proof of the

following global existence result concerning the Riccati equation.
Theorem 8.5. The Riccati equation
K(t) = R(t) + A(t) K (1) + K(0)A*(t) = K()S(6)K (1), K(to) = Ko

has a solution in P for all t > to if R(t),S(t) > 0 for allt > ty and Ky > 0. If
additionally K(t1) € Py for some t; > ty, then K(t) € Py for allt > 1.

Proof. The Riccati equation has extended solution on M given by

R (1) = 2()(0(10)” (Ij)

(see equation (ES) of Section 5). By Proposition 8.2 ®(¢)(®(ty)) ! € S for all ¢ > t,.
It then follows from Proposition 7.1 that K (t) € P for t > t, and thus is equal to K (t)
(see Proposition 5.1).

If K(t;) € Py for some t; > ty, then for t > t;,

K() = K()=0o0)@()" (Ij)

= s®(t)(®(t0)) (f) = sK (1),

for some s € S by Propositions 8.3 and 8.2. The conclusion follows from Proposition
7.1. O
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9. THE LOEWNER ORDER
For X, Y € Sym(FE), we define
X < Y=Y -XeP,,
X <Y =Y-XeP.

The order < is sometimes called the Loewner order. For X <Y (respectively, X <Y)

we define the order intervals
X,Y] = {ZeSym(E): X <Z<Y},
(X,Y) = {ZeSym((F): X <Z<Y},
respectively.

Lemma 9.1. If A € Sym(F) satisfies ||A|| < 1, then I + A € Py. Hence {I + A :
I|A|| < 1} 4s an open set about I in Py.

Proof. Pick r € R such that ||A|| < r < 1. Then by the Cauchy-Schwarz inequality
—(z, Az) < [{z, Az)| < ||zl |4zl < |All |2]|* < rll2]|* = (z,7I(2)),
and hence 7/ + A > 0. Then also [ + A = (rI+ A)+ (1 —r)] > 0 and is in Py by

Lemma 6.1. The last assertion now follows immediately. O

Lemma 9.2. The set Py is open in Sym(E), and hence open in M, if we identify the

symmetric operators with the finite points of M.

PY2 0
P—1/2
carries I to P and P, into Py by Proposition 7.1. Thus it carries the open set around 7

Proof. For P € Py the matrix is in the sympletic semigroup & and

contained in Py (Lemma 9.1) onto an open set around P that is contained in Py. Since
Sym(E) is identified with the open set M, of finite points in M (Proposition 4.4), the

last assertion follows. O

Proposition 9.3. For any A, B € Sym(E) with B < A,
(i) the sets (—oo, A) = {Y € Sym(F) : Y < A} and (B,+o) = {Z € Sym(FE) :
B < Z} are open;
(ii) the interval (B, A) is open.
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Proof. We have (—oo, A) = A — Py and (B, o0) = B + Py, which are open since Pj is.
The intersection of these two sets is (B, A). O

Proposition 9.4. For any A € Py, the sets {(—(1/n)A, (1/n)A) : n € N} form a basis
of open sets at 0 in Sym(FE).

Proof. The sets (—(1/n)A, (1/n)A) are open by the previous proposition. Suppose
that —(1/n)A < X < (1/n)A in Sym(F). Then there exist P,QQ € Py such that
X =P+ (—(1/n)A) and X +@Q = (1/n)A. Eliminating X, we obtain P+Q = (2/n)A,
so P,Q < (2/n)A. We have

|PY2a]|? = (@, Px) < (z, (2/n)Az) < (2/n)||All ||

It follows that ||P'/2|| < (v/2/v/n)||A||/2, and thus || P]| < [|[PY2||2 < (2/n)]|A|. We
conclude that

XTI < 1Pl + (1/n)[[All < 3/n)]|All-
Thus the set (—(1/n)A, (1/n)A) is contained in the open ball around 0 of radius
3/mllAll- R
Proposition 9.5. The closure of Py in Sym(FE) is P.

Proof. That P is closed in Sym(FE) follows immediately from its definition. Since for
A e P, A=lim, o A+ (1/n)I and the members of the sequence are in Py by Lemma
6.1, the proposition follows. O

A partial order < on a topological space X is closed if <= {(z,y) : z < y} is closed
in X x X.

Proposition 9.6. The Loewner order < is closed on Sym(E). FEach order interval
[A,B] = {X € Sym(F) : A < X < B} for A < B is closed in M (where, as usual,
we identify Sym(E) with the finite points Mgy of M ). The interior of [A, B| is equal
to (A, B).

Proof. We observe that

and the latter set is closed since P is (by the previous proposition).
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Consider the open set (—I,I) around 0. Since M is regular (that coset spaces are
regular is a standard and elementary result in the theory of topological groups), there
exists an open set U containing 0 such that U C (—I, 1), where the closure is taken in
M. For any A € P, pick n > 0 such that (—(1/n)A, (1/n)A) C U; this is possible by
Proposition 9.4. Then [0, (1/2n)A] = PN ((1/2n)A—P) is closed in Sym(F), contained
in (—(1/n)A, (1/n)A) and hence in U, thus closed in U, and therefore closed in M.
The diagonal operator in Sp(Vg) with entries v/2nI and (1/v/2n)I carries the closed
interval [0, (1/2n)A] onto [0, A] and thus the latter is also closed in M. Since any

closed interval [B, A] is the image of [0, A — B] under the operator with block matrix

1
entries o Il we conclude they are all closed.

Consider a closed interval [A, B] for A < B. Since (A4, B) is open (Proposition
9.3), it is contained in the interior of [A4, B]. Conversely if X is in the interior of
[A, B], then there exists some open set U containing 0 such that X + U C [A, B|.
By Proposition 9.4 there exists an n € N such that (—(1/n)I,(1/n)I) C U. Then
A< X—-(1/n)I <X <X+ (1/n)I < B,so A < X < B. This concludes the
proof. [l

Proposition 9.7. For an element A € Sym(E), the following are equivalent:

1. AeP;
2. A+ X is invertible for all X € Py;
3. A+ rl is invertible for all r > 0.

Proof. Ttem (2) follows from item (1) by Lemma 6.1 and item (3) is a trivial consequence
of item (2). Assume (3) and suppose that A ¢ P. Consider the segment {t A+ (1—¢)I :
0 <t < 1}. This connected segment cannot lie entirely in the union of the two disjoint
open sets Py and Sym(E) \ P, and thus must meet the set P\ Py, which by definition
consists of noninvertible elements. Hence tA + (1 — ¢t)I is not invertible for some
0 <t < 1. We conclude that the scalar multiple A + ((1 — ¢)/t)I is not invertible, a

contradiction. d
Proposition 9.8. Inversion on Py is order reversing.
Proof. If A € Py and I < A, then

(x, A7 ) = (A2, A7Y2g) < (A7Y22, A(A7V%0)) = (A~ Y22, AYV?2) = (2, 2),
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and thus A~ < I. Now
X<Y=I=X'"2XX""?2<x?yx-12
Thus inverting, we see that
I 2 X1/2Y_1X1/2 = X—l — X—I/ZIX—I/Z 2 Y_l.
Hence inversion on P, is order reversing. O
Proposition 9.9. The closure P of P in M has interior P,.

Proof. Since Py is open in M (Lemma 9.2), it is contained in the interior of P. For

the converse, we consider the sympletic maps on M given by

I 0 I 0 0 I
t[ = ; t,[ = ; J = .
I I —I I —I 0
Note that

()= () )= () (15 ) e
D —(B+1) I —(X+1) I

Since inversion is order reversing on Py and X — —X is order reversing on Sym(F),
we conclude that Jt; is order preserving on P.
We observe that

n(0) () o) < ().
We conclude that

Ju(P) €| X € Sym(E) : I < X < %11}

since P = |J[0,nI). (If A € Py, then (1/n)A € (—1,I) for some n by Proposition 9.4,
and so A < nl.) Thus Jt;(P) C [-1,0) C [-I,0].

B _
Suppose that D is in the interior of P, the closure taken in M. Then

B
Jtr (D) S intJt[(P) C int[—], O] = (—I, 0),
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B —-pP
the last equality coming from Proposition 9.6. Hence Jt; (D) = ( s ) for some

P e P,0< P < I. Since the inverse of Jt; is given by ¢t_;(—J), we have

B () -P _y -1 _ P\ (Pt -1I
p) ' 1) \-p) "\ )\ 1 )
. .. B
Since P < I implies I < P~!, we conclude that P~! —I > 0, and thus (D) ePy. O

The next proposition gives another important property of the symplectic semigroup.

Proposition 9.10. Members of the symplectic semigroup S satisfy the following mono
tonicity properties:

(i) For g € S and X, Y € Py, X <Y if and only if g(X) < g(Y).

(ii) Forge S and X,Y € P, X <Y implies g(X) < g(Y).

Proof. (i) We verify this for each of the factors in the triple decomposition of Lemma
6.5. This is straightforward for the upper triangular and diagonal factors. Suppose
X,Y € Pyand X <Y. Then for C € P,

(};) _ (CXX+ 1) _ (X (CXI+ I)‘1> |

and similarly the image of Y is Y(CY + I)™' = (C + Y~!)~L. Since by the previous
proposition, inversion is order reversing on Py, we conclude that C + X~ > C + Y1
and therefore (C' + X~')~! < (C + Y1)~ These steps are reversible. Hence lower

I 0
¢ I

triangular matrices in S also preserve the order on Py.

(ii) For X <Y in P, we have X + (1/n)I <Y + (1/n)I for each n > 0. By the
previous paragraph and Proposition 9.7, g(X + (1/n)I) < g(X + (1/n)Y for each n.
Since the order relation < is closed (Proposition 9.6), we have by taking the limit as
n — oo that g(X) < ¢g(Y). O

10. ORDER AND THE RICCATI EQUATION

In this section we briefly consider relationships that exist between the Riccati equa-

tion and the Loewner order.
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If the Riccati equation
K(t) = R(t) + A(t)K(t) + K(t)A*(t) — K(t)S(t)K (t), K (to) = Ko
has a solution on the interval [to, %], then we denote K (¢1) by I'(t, Ko, t1).

Proposition 10.1. Suppose in the Riccati equation that R(t),S(t) > 0 for allt € R
and suppose that Ko > 0. Then for all ty < t1, T'(to, Ko, 11) exists and is in P.

Futhermore, for Ko = 0 we have
F(tl, 0, tg) < F(to, O,tg) fO’I" all o < t1 < 1o
Thus the mapping t — T'(¢,0,t1) : (—00,t1] — P is a continuous order-reversing map.

Proof. The first assertion follows from Theorem 8.5. By Proposition 5.2 we have that
0 0
[(to,0,t5) = ®(t2)(P(tg)) * (I) and T'(¢1,0,t3) = ®(t2)(P(¢1)) * s By Proposi-

tion 8.2 there exist s, s’ € S such that ®(ty) = s®(¢1) and ®(¢1) = s'®(¢p). Then

[(t,0,t) = ®(t)(®(t1))~" (?) =3 (?)

! 0 _ -1 0 —
< ss (I> = ®(12)(®(t0)) (I) = I['(t0,0,t2),

where the inequality follows from the facts that s is order-preserving on P (Proposition
9.10), s'(0) € P (Proposition 7.1) and 0 is the least element in P. Since I'(,0,¢;) =

0
D(t)(D(t)) ! (I> , we conclude that the map t — ['(¢, 0, ¢;) is continuous on (—o0, t1).
U

We recall another important connection of the Loewner order with the Riccati equa-
tion. The elegant, quick proof is taken from [2], although the theorem appeared earlier
in [10].

Proposition 10.2. Consider the Hamiltonian matrices in the symmetric Lie algebra
sp(Vr)

A(t)  R(t)
S(t) —A*(1)

A(t)  R(t)

, and H(t) = S — A
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and the corresponding Riccati equations

K@) = R(t)+A@)K(t)+ K(t)A*(t) — K({t)St)K(t), K(0) = Ky,

K(t) = Rt)+A)K(@) +K({t)A*(t) — K(t)S(t)K(t), K(0) = K.
Assume that 5 3
R-R A-A
A*— A+ §—8
and 0 < Ky < Ky. Then for every t > 0, we have K(t) < f((t)

>0

HJ < HJ, ie.,

Proof. Global solutions K () and K(-) exist for all ¢ > 0 by Theorem 8.5. The sym-
metric operator function U(t) := K (t) — K (t) satisfies the Riccati differential equation

U=(A-KSU+UA—-KS)—UBU + [I —X] (HJ - HJ) [ !

with a positive semidefinite intial condition. The result now follows from Theorem
8.5. O
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