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Abstract—We announce a new sufficient condition for strong 7). This characterization can be applied to the Lipschitz
invariance for differential inclusions in terms of a Hamiltonian  control systemi = g(z,a) above. However, this cone

inequality. In lieu of the usual Lipschitzness assumption on the  oharacterization can fail for a generanLipschitz dynamic
multifunction, we assume a feedback realization condition that . . . ]
F, as illustrated in the following example: Take = 1,

can in particular be satisfied for measurable dynamics that .
are neither upper nor lower semicontinuous. Our condition is S = {0}, F((0) = [-1,+1], and F(z) = {-sign(x)} for
based on H. Sussmann’s unique limiting property. We apply our « # 0. ThenT§ (0) = {0}, even though(F, S) is strongly
result to a broad class of nonlinear control systems with general jnvariant. This example satisfies our dynamic assumptions

measurable set-valued disturbances. As a consequence, we alsctcf Example 2.3 below). It is also covered by our main
prove a new strong invariance characterization for feedback théorem (see séction III).

realizable lower semicontinuous differential inclusions. X
_ ) . More generally, consider a control system of the form
Index Terms— Set-valued disturbances, non-Lipschitz sys-

tems, state constraints, strong invariance, nonsmooth analysis

z € g(x,a)U(x), @)
whereg is as above ani : R® = R is a (Borel) measurable
|. INTRODUCTION set-valued disturbancperturbation (cf. [14, Chapter 2] for
Consider a nonlinear control systeim= g(z,«) where control problems with set-valued disturbances). As before,
a € M(A) = {measurable functions [0,00) — A}, the trajectories of (1) are absolutely continuous functigns

g:R*"x A — R": (x,a) — g(x,a) is locally Lipschitz satisfying(t) € F(4(t)) for a.a.t, but in this case we now
in z uniformly in a € A and continuous, andd C R* have F(z) = {g(z,a)b : a € A,b € U(z)} C R". In this
is compact. The inputs represent either controls or dis- context, the values — ((t) € U(¢(t)) of the disturbance
turbances acting on the system. Using Filippov’s selectioperturbation are unknown to the controller; one only knows
theorem, this system can be represented adiffarential that 5(¢) takessome valuan U(¢(t)) for eacht. However,
inclusion & € F(z), where F(z) := {g(x,a) : a € A}. the multifunctionU, the perturbatiort — «(t) € A, and
Then an absolutely continuous functign: [0,7] — R™ is  the current state — ¢(¢) are known and can be measured.
a trajectory of the system if and only {f(t) € F(¢(t)) for  The dynamics (1) include the example from the previous
almost all (a.a.} € [0,77, i.e., if and only if¢ is a trajectory paragraph by takings = 1 andg = 1. The objective is to
of F. Oftentimes, it is important to know sufficient conditionsfind sufficient conditions, in terms af andU, under which
under which all trajectories of such a system that start in all the trajectories of (1) starting in a given closedSet R"
given closed sef C R" remain inS; when this is the case, remain inS, i.e., such tha{F, S) is strongly invariant iriR™.
we say that(F, S) is strongly invariant. Specifically, given a SinceF will not in general be Lipschitz, or even continuous,
multifunction F' : R* = R" (i.e., a mapping fronRR™ into  the usual invariance criteria for (locally) Lipschitz systems
the subsets oR™) and a closed sef C R" defining state (cf. [6], [14], [16]) do not give such conditions.
constraints, we say thaf’, S) is strongly invariant (inR"™) Such topics in flow invariance provide the foundation for
provided for eacht € S, each trajectoryt — ¢(t) of ' many important applications in control theory and optimiza-
starting atz remains inS on each interval0, 7] on which tion (cf. [5], [6], [7], [9], [12], [14], [15]). Starting from
¢ is defined. strong invariance and its Hamiltonian characterizations, one
Sufficient conditions for strong invariance usually invokecan develop uniqueness and regularity theory for solutions
a Lipschitz condition on the dynamics (cf. section IlI-B forof Hamilton-Jacobi-Bellman equations, stability theory, non-
a survey of results in this direction). For example Fifis  smooth characterizations of monotonicity in systems biology,
locally Lipschitz and nonempty, compact, and convex valuednd much more (cf. [1], [6], [7], [14], [16]). On the other
with linear growth, then it is well known (cf. [6, Chapter hand, it is well appreciated that many important dynamics
4]) that (F,S) is strongly invariant inR™ if and only if are non-Lipschitz and may even be discontinuous (e.g.,
F(z) CT§ (x) for all x € S, whereT§ denotes the Clarke system (1) above), and therefore are beyond the scope of
tangent cone (cf§lll below or [6] for the definition of the usual strong invariance characterizations. Therefore, the
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[9], [12] recently developed necessary and sufficient comonempty valuedprovided F'(z) is closed (resp., compact,
ditions for strong invariance under more general conditionsonvex, nonempty) for each € R™. A continuous function
on the structure of the dynamics such as dissipativity and(-) : [0,00) — [0,00) is called amodulusprovided it is
one-sided Lipschitzness (cf. section Il for further details)nondecreasing witty(0) = 0. For eachl” > 0, we letC[0, T']

In this note, we pursue a very different approach. Rathetenote the set of alf : [0, 7] x R™® — R" that satisfy

than restricting the structure of the dynamics, we provide @) For eachz € R", the mapt — f(t,z) is measurable;

sufficient condition for strong invariance under an appropriai®>,) For each compact sét C R™, there exists a modulus
feedback realization hypothesis. Our hypothesis is related to  ,; ,(-) such that, for altt € [0, 7] andzy, =5 € K,

H. Sussmann’s ‘unique limiting’ property that was introduced £t 1) — f(t,22)|| < wp (|21 — 22]); and

in [13]; it is a less restrictive hypothesis than those ofcs) f has linear growth on [0,T].

the known strong invariance characterizations because it,;%r eachz € R", denote byCr ([0, T],z) thosef € C[0, T
satisfied by a broad class of differential inclusions with meag, 5t are also selections of the cone Ioffor a.a. € [0,T]
surable, but possibly neither upper nor lower semicontinuougnd allz € R?

. ! . sufficiently nearz; that is,
right-hand sides (cf. section Il for examples).

In section Il, we state our realization hypothesis precisely f€C[0,T]: 3y > 0 such that
and provide the necessary background from nonsmooth anal-Cr([0, 7], %) := ¢ f(t,z) € cone {F(z)} for a.a.
ysis. We also illustrate the applicability of our hypothesis t€0,7] and all x € 7B, ().

to the _general control system (1) and other discontinuoygytice that while the elements € Cr([0,T], z) are defined
dynamics that are beyond the scope of the well known strong, 4| of [0, 7] x R", they need only satisfy the requirement
invariance results. In section Ill, we announce our mail}(t z) € cone {F(z)} on part of their domain. LeC[0, T

strong invariance result and discuss its relationship to th&ote thosef € C[0,T] such thatf(t,z) € cone {F(z)}
known theorems in invariant system theory. In section Vo, aimost allt ¢ 0,7] and allz € R"™. We will assume:

we sketch the proof of this result (cf. [11] for the complet [/) For eachz € R", T > 0, and ¢ € Trajp(F.z),

proof), a.n.d we cloge In section V by proving a New necessary = i ere existsf € Cr([0,T7],z) for which ¢ is the unique
and sufficient Hamiltonian condition for strong invariance for . SN i
solution of the initial value probleny(t) = f(t, y(¢)),

general lower semicontinuous feedback realizable dynamics. y(0) = 2 on [0, 7.

Our uniqueness hypothesi?/) is less restrictive than
requiring a continuous selection from the dynamic¢ghat
A. Basic Hypothesis realizes the trajectory. This is becayses allowed to depend
Our main object of study in this note is an autonomougn time as well as the state, and need only béocal
differential inclusioni € F(x). In this subsection, we state selection. Moreoverf is allowed to depend on the choice
our realization hypothesis off and illustrate its relevance Of the trajectorys, and need not be continuous. In practice,
using several non-Lipschitz applications. We require thBypothesis(U) can be checked using open or closed loop
following definitions. By atrajectory of & € F(z) on an controls, and may be satisfied for non-Lipschitz dynamics.
interval [0, 7 starting at a pointz, € R", we mean an The following examples illustrate these points and also show
absolutely continuous function : [0,7] — R™ for which how to use cones to check conditiofr).
#(0) = z, and ¢(t) € F(¢(t)) for (Lebesgue) almost all ~ Example 2.1:Choose the dynamicB(z) = g(z, A)U ()
(a.a)t € [0,T]. We let Traj(F,z) denote the set of all where A C R™ is compact, andy : R" x A — R" is
trajectoriesp : [0, T] — R” for F starting atz on all possible continuous and satisfies
intervals[0, 7], and we seflraj(F,x) := Ur>oTrajp(F,z) (H) For each compack C R", there existsLx > 0 such

Il. REALIZATION HYPOTHESIS ANDPRELIMINARIES

andTraj(F) := UgernTraj(F, ). that (g(z1,a) — g(w2,0a)) - (21 — 22) < Li||z1 — 22|

A multifunction I : R® = R" is said to havdinear for all 1,22 € K anda € A. Also, x — g(x, A) has
growth provided there exist positive constam{sandc, such linear growth.
that [[v]| < ¢ + ¢cff«] for all v € F(z) andz € R", andU : R” = R is locally bounded, (Borel) measurable,
where|| - || denotes the Euclidean norm. For any interfal ¢josed and nonempty valued, and satistiés )N (0, co) 0

a functionf : I x R" — R" is said to havdinear growth  and{/(z) N (—o0,0) # 0 for all z € R™. (The argument we

(on I) providedz — F(z) := {f(t,x) : t € I} has linear are about to give still applies if instead of assuming that

growth. For any setd, M C R™ and any constany € R, U(z)N(0,00) £ 0 andU(z) N (=00, 0) # 0 for all z € R,

we setM +nD :={m+nd:m e M,d € D} and we set e assume eithel/ : R" = (0,00) or U : R" = (—o0,0).)

cone {D} :=U{nD : n > 0}. Also, This includes systems of the form (1) from the introduction

o T with set-valued disturbances, as special cases. One can easily

Bu(p)i={w €R": Jlz = pll < 1} check (cf. [2]) that condition{ H) guarantees the existence

for all p € R™ and BB,, := B,,(0). A mappingF : R = R™ of a unique trajectory) : [0,7] — R" of & = g(z,a)s

is said to beupper (resp.,lower) semicontinuouprovided for each initial condition,I” > 0, and (essentially) bounded

for eachz € R™ ande > 0, there existsd > 0 such that measurable functions : [0,7] — A and3: [0,T] — R.

F(z') C F(x) + eB,, (resp.,F(z') + eB,, 2 F(x)) for all To check condition(U), let ¢ € Traj(F'). Applying the

2’ € 6B, (x); it is said to beclosed(resp.,compact convex (generalized) Filippov lemma (cf. [14, p. 72]), we find a



measurable paifo, §) for which a(t) € A, 5(t) € U(¢(t)), forall 2’ € nB,(z). The (possibly empty) set of all proximal
and(t) = g(é(t), a(t))B(t) for almost allt. We now show subgradients foif at z is denoted bydp f ().

that condition(U) holds with f(¢,z) := g(z, a(t))3(t). In We next state the version of the Clarke-Ledyaev Mean
general, we will not havg(t) € U(z) for all t andz. In fact, Value Inequality needed for our strong invariance results (cf.
it could be thatl/ (¢(¢t))NU(x) = O for somet andz, so we [6, p. 117] for its proof). Lefx, Y] denote the closed convex
may not havef (¢, z) € F(z) for a.a.t and allz. On the other hull of z € R* andY C R™.

hand, one can easily check tha(t) € cone {U(z)} for a.a. Theorem 1:Assumez € R", Y C R” is compact and
t andz, so f(t,z) € g(z, A)cone{U(x)} = cone{F(z)} for convex, and¥ : R* — R is lower semicontinuous. Then
a.a.t and allz, and this gives the desired result. for any § < mingey ¥(y) — ¥(x) and A > 0, there exist

Example 2.2:AssumeF : R® = R is (locally) Lipschitz  z € [z,Y]+ A\B,, and{ € 9p¥(z) so that§ < ((,y — z) for
and nonempty, compact, and convex valued. We claim thatl y € Y.

F satisfies conditioU). To see why, lett € R", T > 0, The following is a variant of the well known “compactness
and ¢ € Traj,(F, ) be given, and set of trajectories” lemma. Its proof is a special case of the
. compactness of trajectories proof in [6].
f(t,2) = projp,) (4(t)) Lemma 2.4:Let 7 € R, T > 0, f € C[0,T] be also

continuous int, and {y; : [0,7] — R™} be a sequence of
uniformly bounded absolutely continuous functions satisfy-
Eiirag y;(0) = z for all i. Assume

(i.e., f(t,z) is the closest point t@)(t) in F(z), which is
well defined by the convexity of'(x)). Then f € Cr[0,T)
satisfies the requirement. If on the other hand we inste i
define the mapping” : R = R by F(z) = {1} for < 0, Ui(t) € f(ri(t),yi(t) +7i(t)) + 0:(¢) B 3)
F(0) = {0y U [1,2], and F(z) = [0,2] for = > 0, and if ¢ 4 o [0, 7] and alli, where{5;(-)} is a sequence of
¢ € Traj(F), then f(t,z) = ¢(t) € cone{F(z)} for almost nonnegative measurable functions that convergesito L.

al.lt;; ?r:'_d alrl]a:_e Rf- In this (tlﬁlse, ﬁlgn_d't'om_t[{]) Is satisfied 5oy " {r:()} is a sequence of measurable functions
Wi Is choice off, even thoughi” is neither upper nor converging uniformly to0 asi — oo, and {r;(-)} is a

IovI\;er serrlcgr;,tfguou.sdno;hconvex V?qued' the introducti sequence of nonnegative measurable functions converging
xampie £.5-L-onsider the exampre from fhe Introduc Ionuniformly tot on [0,7] asi — oo. Then there exists a

in whichn =1, F(0) = [-1,+1], and F(z) = {—sign(z)} : g .

for z # 0. We claim that(U) is again satisfied. To see torfjfétoryy of § = f(t,y),.y(()) = @ such that a subsequence
i . B . y; } converges tagy uniformly on [0, 7).

why, let 7' > 0, 7 € R, and ¢ € Trajy(F,7) be given. e\ apply Lemma 2.4 to continuous mollifications of

Note that(F, {0}) is sEroneg invariant irR. Therefore, e|th'er our feedback mapg € C[0, T]. More precisely, set

(i) ¢ starts at somez # 0 and then moves t® at unit

speed and then stays @tor (i) ¢ = 0. If z # 0, then £ = Cexp (tz%l), [t] <1

the requirement is satisfied usinit,z) = —sign(z)5(¢), n(t) = 0 It > 1

whereg(t) = 1 if ¢ € [0,]Z|] and0 otherwise. In this case, t N

we then havef(t,z) € cone{F(z)} for all t € [0,7] and where the constan®’ > 0 is chosen so thaf, 1(s)ds =1

v € (|7]/2)B.(Z). If insteadz = 0, then the requirement FOT €ache > 0 and? € R, sety.(t) := n(t/c)/e. Notice

is instead satisfied withf (t,2) = 0 € cone{F(z)} for all that [gn=(t)dt = 1 for all ¢ > 0. Define the following
t€[0,7] andz € R. convolutions off € C[0,T] in the t-variable:

o _ fe(t, ) ::/f(s,ac)ng(t—s)ds 4
B. Preliminaries in Nonsmooth Analysis R

The principal nonsmooth objects used in this note are tHéth the convention thaf (s, z) = 0 for all s ¢ [0, T]. Then
proximal subgradient and normal cone, and here we reviely € C[,O’T] and is continuous for a“,? > 0. (See ,[.10’
these concepts; see [6] for a complete treatmentSLEtR" Appendix C] for the theory of convolutions and mollifiers.)

be closed and: € 5. A vector¢ € R" is called aproximal V& Will apply Lemma 2.4 to a sequenge:= f.;) with
normal vector of S at x provided there exists a constantg(z) > 0 converging to zero, .usmlg ideas from the standard
o = o(C,x) > 0 so that proof that f.(; (-, ) — f(-,z) in L' for eachx asi — oo.

Remark 2.5:Note for later use (cf. (20)) that if;(¢) = ¢
(¢, —z) <oz’ —x|* Vo' € 8. (2) in Lemma 2.4, then the conclusions of the lemma remain
true even if thet-continuity hypothesis ory € C[0,T] is
omitted. This follows from the proof of the compactness of
trajectories lemma in [6].

The set of all proximal normal vectors Sfatz is denoted by
N{&(z) and is a convex cone. Notice that for eack 0 and
r € 9, ¢ € NE(x) ifand only if there existe = o({,z) > 0
so that(¢, 2" — z) < ol|lz’ — z||? for all 2’ € SN 6B, (x). [1l. STRONG INVARIANCE THEOREM
Next assumeg : R” — (—oo, oc] is lower semicontinuous a  statement of Theorem and Remarks

and letz € domain(f) := {2’ : f(2’) < oc}. Then¢ € R"
is called aproximal subgradienfor f at x provided there
existo > 0 andn > 0 such that

Let Hr : R® x R® — [—o0,+00] denote the(upper)
Hamiltonianfor our dynamicsF’; i.e.,

F&) > f@) + (G o' — @) — ofla! — 2] Hr(@,p) = sup (v.p)-



For any subsetD C R", we write Hp(z,D) < 0 to On the other hand, Theorem 2 does not make any struc-

mean thatHr(x,d) < 0 for all d € D. By definition, this tural assumptions on the dynamics, and allows general set-

inequality holds vacuously iD = . valued disturbances, as in (1). In particular, our feedback
Theorem 2:Let F : R™ = R" satisfy (U), ¥ : R® — R realizability hypothesigU) can be satisfied for non-Lipschitz

be lower semicontinuous, anfl := {z € R" : ¥(z) < 0}. dynamics that are not tractable by the well known strong

If there exists an open sét C R™ containingS for which  invariance results. For instance, see the examples in section

Hp(z,0p¥(x)) <0 for all z € U, then(F,S) is strongly II.

invariant inR™.

We sketch the proof of this theorem in section IV. Note that IV. SKETCH OF PROOF OFTHEOREM 2

we require the Hamiltonian inequality inreighborhood/ g section is devoted to a sketch of the proof of Theorem
of S. The result is not true in general if the Hamiltonian, £q; 4 complete proof, see [11].

condition is placed only o5, even if;Il and F' are smooth. Fix T > 0 andz € S. We first develop some properties
For example, taker = 1, W(x) = 2% and F(z) = {1}.  that hold for all f € Cx([0, ], ). Fixing f € Cr([0, 7], 2)

In this caseS = {0} and Hr(0,0p¥(0)) = 0, but (F,S)  ang: > 0, and fixingy > 0 such thatf (¢, z) € cone{F(z)}
is not strongly invariant. On the other hand, Example 2.3, o e B, (%) and almost alk € [0, ], set

is covered by Theorem 2, once we choose the verification

function ¥(z) = 22. In this case, the Hamiltonian condition Golt,z, k] = co{f ty): lly—al| < 1} c R (5)
reads Hp(z, ¥'(z)) = —2|z[ < 0 for all z € R, so our e = k) =
sufficient condition for strong invariance is satisfied. for eacht € [0,T], » € R" and k € N, where /. is the

Theorem 2 contains the usual sufficient condition foteqyarization (4) off andzo denotes the closed convex hull.
strong invariance for an arbitrary closed setC R™ by By reducingy > 0, we can assume that3,(z) C U. We
letting ¥ be the characteristic functiofs of F; that is, 4iso set elt,z, k] = 1+ sup{|lp| : p € GS[t,x kﬁ for all
I _ . . . o gf P Rad PPl P fLo
s(z) =0if z € S and is1 otherwise. Thedp¥(z) = {0} 4 [0, 7], = € R*, andk € N. Note that
for all z ¢ boundary (S), and 9p¥(z) = Nf (z) for all

x € boundary (S), by the local characterization af % (z) Gt k] < grlt, @, k] =1+ c1 + e <|m|| + 1) (6)
in section 1I-B. This implies the following special case of ! B k
Theorem 2: for all t € [0,7), 2 € R”, andk € N, wherec; andc, are

Corollary 3.1: Letf;: R™ = R" satisfy(U) andS C R™  the constants from the linear growth requiremégi) on f,
be closed. It (w, Ng () < 0 for all = € boundary (S), 50 the sets?5|t,z, k] are compact. The following estimate

then (£, 5) is strongly invariant ink". is based on Theorem 1 from section II:
Remark 3.2:The converse of Corollary 3.1 does not hold, | emma 4.1:1f = € 1B,(z),t>0, k€N, h>0,and if

as illustrated by the data in Example 2.3; theiE, {0}) is
strongly invariant inR andN{%}(O) = R, so the Hamiltonian , < _ and z + hg;t,z, k|B, C 2—75‘n(a‘:), (7)
condition fails. This means that the converse of Theorem ~ 2k gs(t, @, k] 3
2 does not hold. On the other hand, see section V for #en
necessary and sufficient condition for strong invariance under U(z + ho) < U(z) + h @)
certain additional hypotheses dn - k
holds for somev € G3[t, z, k.

Proof: Suppose the contrary. Sinck is lower semi-

continuous, there must then exist 215, (z),t > 0,k € N,
Theorem 2 improves on the known strong invariancendp, > 0 satisfying (7) but such that

results because it does not require the usual Lipschitz or

other structural assumptions on the dynamics. The papers .= — < min ¥(y) — ¥(z), YV =z + hG%[t, z, k]. (9)
[4], [5] provide strong invariance results for locally Lipschitz yey

dynamics (see also [6, Chapter 4]). For locally LipscHitz et )\ € (0, i) be such that

Clarke showed (cf. [4]) that the strong invariance property ~

for (F,S) is equivalent toF(z) C T§ (x) for all z € S, @+ hgyt, z, KBy + ABn C YB,(7). (10)
whereT§ denotes the Clarke tangent cone (cf. [6]). Recal\ext we apply Theorem 1 with the choicksands defined

thatv € T§ (x) if and only if for each sequence; € S py (9). It follows that there exist € [z,Y] + AB, and
converging tox and each sequendg > 0 decreasing 10 (¢ 5, (z) for which

0, there exists a sequeneg € R"™ converging tov such

that z; + t;u; € S for all i. In particular, if S = {0}, d <Hg§1<é7y*£ﬂ> = Jin k<C, hv). (11)
then 7§'(0) = {0}. See [5] for Hilbert space versions, Y vedilek

and [14] for other strong invariance results for LipschitZNote thatz € ~B,(z) C U, by (10). Since we have
dynamics and nonautonomous versions. For strong invarianee € [z,Y] + AB,, (7) combined with the choice of
characterizations under more general structural conditions angives ||z — x| < hgslt,z,k] + A < 4. Therefore
F (e.g., dissipativity and one-sided Lipschitzness), see [8f.(t,2) € G%[t,z,k], by the definition (5) ofG5[t,z, k].
[9], [12]. Sincef (s, z) € cone{F(z)} fora.a.s € [0, T] (by our choice

B. Relationship to Known Strong Invariance Results



of v > 0), our Hamiltonian hypothesis givesg, f(s, z)) < 0
for almost alls € [0, T]. Therefore, (11) gives

d < W, fe(t,2)) = h/RnE(tfs)«,f(s,z))ds < 0.

This contradiction concludes the proof of Claim 4.1. =
Now setD := 1B,(z) C U. Let wy x be a modulus
of continuity for x — f(¢t,z) on K := D + B, for all
€ [0,T]. Such a modulus exists by conditid@’z). Then
wy i IS also a modulus of continuity ok’ > = — f.(¢,z)
for all ¢t € [0,7] ande > 0. The following estimate follows
from Caratl®odory’s Lemma (cf. [11] for its proof):

Lemma 4.2:Let (¢t,z,k) € [0,7]x D xN and assume that

vE G;[t,x,k]. Then|jv — f.(t,2)|| S wsx(1/k)+1/k.
Next defined(D) := 1+ ¢; + ¢c2 + co max{||v| : v € D}.
It follows from the estimate (6) that

G5[t,z,k] C8(D)B, Vte[0,T], z€ D, keN. (12)

Next set

. g
T := T, —— =
mm{ ’8(5(D)} and hy

for all K € N. ChooseN > 2 such that
D4 md(D)B, € VB.(z) k>N,

i
ey ¥

(14)
We can assume < 1. By the choices ofy andd(D),

1

0 < hy < Dhgr o H] Vvt € [0,T],z € D,k € N. (15)
Next we definec(k) = Ceiling(T/hy), i.e., c(k) is the
smallest intege> T/hk. For eachk > N, we then define
a partition(k) : 0 = toy < t1 < ... < tegyx = 1 by
settingt; , =t;—1x +he fori=1,2,... ,e(k) — 1.

We next define sequences i, 1k, T2k, - - -, Te(k),k fOF
k> N.We setzgr, =z andzi1x = & + (t1,6 — t0,k) Vo, ks

wherev = v, € jS [0, z, k] satisfies the requirement from

Claim 4.1 for the pairto x, zox) = (0,Z) andh = hy. By
(12), we get

NE (16)

o — 3l < md(D) = T,

sozy, € D. If ¢(k) > 2, then we set

To g = Tk + (ta,k — t1,6)V1,k,

for all t € [0, 7]\ n(k), wherer,(t) is the partition point
t;.r € m(k) immediately preceding for eacht € [0, 17,

2e(tik) = Vi — fe(tig, Taey(tin)) Vi k

thev; , € G [tik> (k) (ti,k), k] satisfy the conclusions from
Claim 4.1 for the pairgt, ) = (t; x, i) @ndh = hy, and

(18)

ri(t) = T (k) (Ti(t)) — (k) (t) Vte [O,T}, Vk.

Thenz, () is the polygonal arc connecting the points;,
fori=0,1,2,...,¢c(k). In particular,z; ;, = ) (i)

Sincef. is continuous, one can check that (17) satisfies the
requirements from our compactness of trajectories lemma,
so we can find a subsequence{of;()(-)} that converges
uniformly to a trajectoryy. of § = f-(t,y), y(0) = Z. By
possibly passing to a subsequence without relabelling, we
can assume that, ) — y. uniformly on [0,T]. Moreover,
since zi41x = ik + (tivix — tig)vip € D for all
1=0,1,...,c¢(k) —1 andk > N, conditions (14) and (15)
along with Claim 4.1 give¥(z; ;) — ¥(z;_14) < 2 for
1 = 1,2,...,¢(k). Summing these inequalities ovérand
recalling thath;, <~ gives¥(z; ) < ¥(Z) + %(T + ) for
all i andk . Hence,

Veao(r(0) S U@ + (T +9)  (19)
for all t € [0, 7). Since|r,(t) —t| < hy — 0 ask — +oo
for all t € [0, 77, it follows thatz i) (1 (t)) — v.(t) for all
t € [0,7] ask — +oc. Since¥ is lower semicontinuous, it
follows from (19) that¥ (y.(t)) < ¥(z) for all ¢ € [0, 7).

Now let y, ; [O,T] — R”™ be the trajectory obtained by
the preceding argument with the choiee= 1/i for each
i € N. Note thaty, /;(t) € D for all i andt, because each
of the polygonal arcs ;) constructed above joins points in
D and D is closed and convex. Moreover,

U1i(t) = f(tyi(t))
+ [yt yaa(0) = f(Eya(0)]

for all i and almost alk € [0,7]. One can check (cf. [11])

that they, /; are uniformly bounded and equicontinuous, so
we can assume (possibly by passing to a subsequence) that
there is a continuous functiop : [0,7] — D such that
Y1/ — y uniformly on [0, T] (by the Ascoli-Arzeh lemma).

(20)

wherevy . € G3[t1k, 1., k] satisfies the requirement from we show thaty is a trajectory of f, using the following

Claim 4.1 for the pair(t1,z1,,). Reapplying (12) gives
226 — 21kl < hed(D) = 5, SO [lz2k — 2| < 3, by

(16). Thereforer; , € D. We now repeat this process except
with x5, € D instead ofz; ;. Proceeding inductively gives

sequences; , € G;[ti,k,xi,k,k] and sequencefr; i} that
satisfy Tit1k = Tik + (ti+1,k — ti,k)vi,k for each index
i=0,1,...,c(k) — 1. The choices ofl" andk > 2 give
ck)y v
4k — 2
for all ¢ and. It follows that the sequencds:; 1} lie in D.
For eachk > N, we then choose () to be the unique
polygonal arc satisfying () (0) = z and

Ty (t) = fe(Tr(t), Triy (1) + 78(1)) + 21 (T5(2))

i — [ <

17)

lemma (cf. [11] for its proof):
Lemma 4.3: f1;(t,y1/:(t)) — f(t,y1/:(t)) — 0 in L? as
— OQ.
It therefore follows from Remark 2.5 and the form of
the dynamics (20) that a subsequence{gf,;} converges
to a trajectory of f uniformly on [0,7]. This must be
the aforementioned functiop, as desired. Again using the
lower semicontinuity of&, we can therefore conclude that
W(y(t) < liminf; oo U(y1/i(t)) < (z) for all ¢ € [0, 7).
Finally, we show the strong invariance asserted in the
theorem. Letz, € S, T > 0, and ¢ € Trajp(F,z,) be
given. Set

ti=sup{t>0:¥(p(s)) < V¥(x,)¥s€[0,8]}. (21)
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