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Remarks on the Strong Invariance Property for Non-Lipschitz
Control Systems with Set-Valued Disturbances?

Mikhail Krastanov, Michael Malisoff, and Peter Wolenski

Abstract— We announce a new sufficient condition for strong
invariance for differential inclusions in terms of a Hamiltonian
inequality. In lieu of the usual Lipschitzness assumption on the
multifunction, we assume a feedback realization condition that
can in particular be satisfied for measurable dynamics that
are neither upper nor lower semicontinuous. Our condition is
based on H. Sussmann’s unique limiting property. We apply our
result to a broad class of nonlinear control systems with general
measurable set-valued disturbances. As a consequence, we also
prove a new strong invariance characterization for feedback
realizable lower semicontinuous differential inclusions.

Index Terms— Set-valued disturbances, non-Lipschitz sys-
tems, state constraints, strong invariance, nonsmooth analysis

I. I NTRODUCTION

Consider a nonlinear control systeṁx = g(x, α) where
α ∈ M(A) := {measurable functions [0,∞) → A},
g : Rn × A → Rn : (x, a) 7→ g(x, a) is locally Lipschitz
in x uniformly in a ∈ A and continuous, andA ⊆ Rn

is compact. The inputsα represent either controls or dis-
turbances acting on the system. Using Filippov’s selection
theorem, this system can be represented as adifferential
inclusion ẋ ∈ F (x), where F (x) := {g(x, a) : a ∈ A}.
Then an absolutely continuous functionφ : [0, T ] → Rn is
a trajectory of the system if and only iḟφ(t) ∈ F (φ(t)) for
almost all (a.a.)t ∈ [0, T ], i.e., if and only ifφ is a trajectory
of F . Oftentimes, it is important to know sufficient conditions
under which all trajectories of such a system that start in a
given closed setS ⊆ Rn remain inS; when this is the case,
we say that(F, S) is strongly invariant. Specifically, given a
multifunction F : Rn ⇒ Rn (i.e., a mapping fromRn into
the subsets ofRn) and a closed setS ⊆ Rn defining state
constraints, we say that(F, S) is strongly invariant (inRn)
provided for each̄x ∈ S, each trajectoryt 7→ φ(t) of F
starting atx̄ remains inS on each interval[0, T ] on which
φ is defined.

Sufficient conditions for strong invariance usually invoke
a Lipschitz condition on the dynamics (cf. section III-B for
a survey of results in this direction). For example, ifF is
locally Lipschitz and nonempty, compact, and convex valued
with linear growth, then it is well known (cf. [6, Chapter
4]) that (F, S) is strongly invariant inRn if and only if
F (x) ⊆ TC

S (x) for all x ∈ S, whereTC
S denotes the Clarke

tangent cone (cf.§III below or [6] for the definition of
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TC
S ). This characterization can be applied to the Lipschitz

control systemẋ = g(x, α) above. However, this cone
characterization can fail for a generalnon-Lipschitz dynamic
F , as illustrated in the following example: Taken = 1,
S = {0}, F (0) = [−1,+1], and F (x) = {−sign(x)} for
x 6= 0. ThenTC

S (0) = {0}, even though(F, S) is strongly
invariant. This example satisfies our dynamic assumptions
(cf. Example 2.3 below). It is also covered by our main
theorem (see section III).

More generally, consider a control system of the form

ẋ ∈ g(x, α)U(x), (1)

whereg is as above andU : Rn ⇒ R is a (Borel) measurable
set-valued disturbanceperturbation (cf. [14, Chapter 2] for
control problems with set-valued disturbances). As before,
the trajectories of (1) are absolutely continuous functionsφ
satisfyingφ̇(t) ∈ F (φ(t)) for a.a.t, but in this case we now
haveF (x) = {g(x, a)b : a ∈ A, b ∈ U(x)} ⊆ Rn. In this
context, the valuest 7→ β(t) ∈ U(φ(t)) of the disturbance
perturbation are unknown to the controller; one only knows
that β(t) takessome valuein U(φ(t)) for eacht. However,
the multifunctionU , the perturbationt 7→ α(t) ∈ A, and
the current statet 7→ φ(t) are known and can be measured.
The dynamics (1) include the example from the previous
paragraph by takingn = 1 and g ≡ 1. The objective is to
find sufficient conditions, in terms ofg andU , under which
all the trajectories of (1) starting in a given closed setS ⊆ Rn

remain inS, i.e., such that(F, S) is strongly invariant inRn.
SinceF will not in general be Lipschitz, or even continuous,
the usual invariance criteria for (locally) Lipschitz systems
(cf. [6], [14], [16]) do not give such conditions.

Such topics in flow invariance provide the foundation for
many important applications in control theory and optimiza-
tion (cf. [5], [6], [7], [9], [12], [14], [15]). Starting from
strong invariance and its Hamiltonian characterizations, one
can develop uniqueness and regularity theory for solutions
of Hamilton-Jacobi-Bellman equations, stability theory, non-
smooth characterizations of monotonicity in systems biology,
and much more (cf. [1], [6], [7], [14], [16]). On the other
hand, it is well appreciated that many important dynamics
are non-Lipschitz and may even be discontinuous (e.g.,
system (1) above), and therefore are beyond the scope of
the usual strong invariance characterizations. Therefore, the
development of conditions guaranteeing strong invariance
under less restrictive assumptions is a problem that is of
considerable ongoing research interest.

This motivates the search for sufficient conditions for
strong invariance for non-Lipschitz differential inclusions,
which is the focus of this note. Donchev, Rios and Wolenski
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[9], [12] recently developed necessary and sufficient con-
ditions for strong invariance under more general conditions
on the structure of the dynamics such as dissipativity and
one-sided Lipschitzness (cf. section III for further details).
In this note, we pursue a very different approach. Rather
than restricting the structure of the dynamics, we provide a
sufficient condition for strong invariance under an appropriate
feedback realization hypothesis. Our hypothesis is related to
H. Sussmann’s ‘unique limiting’ property that was introduced
in [13]; it is a less restrictive hypothesis than those of
the known strong invariance characterizations because it is
satisfied by a broad class of differential inclusions with mea-
surable, but possibly neither upper nor lower semicontinuous,
right-hand sides (cf. section II for examples).

In section II, we state our realization hypothesis precisely
and provide the necessary background from nonsmooth anal-
ysis. We also illustrate the applicability of our hypothesis
to the general control system (1) and other discontinuous
dynamics that are beyond the scope of the well known strong
invariance results. In section III, we announce our main
strong invariance result and discuss its relationship to the
known theorems in invariant system theory. In section IV,
we sketch the proof of this result (cf. [11] for the complete
proof), and we close in section V by proving a new necessary
and sufficient Hamiltonian condition for strong invariance for
general lower semicontinuous feedback realizable dynamics.

II. REALIZATION HYPOTHESIS ANDPRELIMINARIES

A. Basic Hypothesis

Our main object of study in this note is an autonomous
differential inclusionẋ ∈ F (x). In this subsection, we state
our realization hypothesis onF and illustrate its relevance
using several non-Lipschitz applications. We require the
following definitions. By atrajectory of ẋ ∈ F (x) on an
interval [0, T ] starting at a pointxo ∈ Rn, we mean an
absolutely continuous functionφ : [0, T ] → Rn for which
φ(0) = xo and φ̇(t) ∈ F (φ(t)) for (Lebesgue) almost all
(a.a.) t ∈ [0, T ]. We let TrajT (F, x) denote the set of all
trajectoriesφ : [0, T ] → Rn for F starting atx on all possible
intervals[0, T ], and we setTraj(F, x) := ∪T≥0TrajT (F, x)
andTraj(F ) := ∪x∈RnTraj(F, x).

A multifunction F : Rn ⇒ Rn is said to havelinear
growthprovided there exist positive constantsc1 andc2 such
that ||v|| ≤ c1 + c2||x|| for all v ∈ F (x) and x ∈ Rn,
where|| · || denotes the Euclidean norm. For any intervalI,
a functionf : I × Rn → Rn is said to havelinear growth
(on I) providedx 7→ F (x) := {f(t, x) : t ∈ I} has linear
growth. For any setsD,M ⊆ Rn and any constantη ∈ R,
we setM + ηD := {m + ηd : m ∈ M,d ∈ D} and we set
cone {D} := ∪{ηD : η ≥ 0}. Also,

Bn(p) := {x ∈ Rn : ‖x− p‖ ≤ 1}

for all p ∈ Rn andBn := Bn(0). A mappingF : Rn ⇒ Rn

is said to beupper (resp., lower) semicontinuousprovided
for eachx ∈ Rn and ε > 0, there existsδ > 0 such that
F (x′) ⊆ F (x) + εBn (resp.,F (x′) + εBn ⊇ F (x)) for all
x′ ∈ δBn(x); it is said to beclosed(resp.,compact, convex,

nonempty) valuedprovidedF (x) is closed (resp., compact,
convex, nonempty) for eachx ∈ Rn. A continuous function
ω(·) : [0,∞) → [0,∞) is called amodulusprovided it is
nondecreasing withω(0) = 0. For eachT ≥ 0, we letC[0, T ]
denote the set of allf : [0, T ]× Rn → Rn that satisfy

(C1) For eachx ∈ Rn, the mapt 7→ f(t, x) is measurable;
(C2) For each compact setK ⊆ Rn, there exists a modulus

ωf,K(·) such that, for allt ∈ [0, T ] and x1, x2 ∈ K,
‖f(t, x1)− f(t, x2)‖ ≤ ωf,K(‖x1 − x2‖); and

(C3) f has linear growth on [0,T].

For eachx̄ ∈ Rn, denote byCF ([0, T ], x̄) thosef ∈ C[0, T ]
that are also selections of the cone ofF for a.a. t ∈ [0, T ]
and allx ∈ Rn sufficiently nearx̄; that is,

CF ([0, T ], x̄) :=

 f ∈ C[0, T ] : ∃γ > 0 such that
f(t, x) ∈ cone {F (x)} for a.a.
t ∈ [0, T ] and all x ∈ γBn(x̄).


Notice that while the elementsf ∈ CF ([0, T ], x̄) are defined
on all of [0, T ]×Rn, they need only satisfy the requirement
f(t, x) ∈ cone {F (x)} on part of their domain. LetCF [0, T ]
denote thosef ∈ C[0, T ] such thatf(t, x) ∈ cone {F (x)}
for almost allt ∈ [0, T ] and allx ∈ Rn. We will assume:

(U) For each x̄ ∈ Rn, T ≥ 0, and φ ∈ TrajT (F, x̄),
there existsf ∈ CF ([0, T ], x̄) for which φ is the unique
solution of the initial value probleṁy(t) = f(t, y(t)),
y(0) = x̄ on [0, T ].

Our uniqueness hypothesis(U) is less restrictive than
requiring a continuous selection from the dynamicsF that
realizes the trajectory. This is becausef is allowed to depend
on time as well as the state, and need only be alocal
selection. Moreover,f is allowed to depend on the choice
of the trajectoryφ, and need not be continuous. In practice,
hypothesis(U) can be checked using open or closed loop
controls, and may be satisfied for non-Lipschitz dynamics.
The following examples illustrate these points and also show
how to use cones to check condition(U).

Example 2.1:Choose the dynamicsF (x) = g(x,A)U(x)
where A ⊆ Rm is compact, andg : Rn × A → Rn is
continuous and satisfies

(H) For each compactK ⊆ Rn, there existsLK > 0 such
that (g(x1, a)− g(x2, a)) · (x1 − x2) ≤ LK‖x1 − x2‖2

for all x1, x2 ∈ K and a ∈ A. Also, x 7→ g(x,A) has
linear growth.

and U : Rn ⇒ R is locally bounded, (Borel) measurable,
closed and nonempty valued, and satisfiesU(x)∩(0,∞) 6= ∅
andU(x) ∩ (−∞, 0) 6= ∅ for all x ∈ Rn. (The argument we
are about to give still applies if instead of assuming that
U(x)∩ (0,∞) 6= ∅ andU(x)∩ (−∞, 0) 6= ∅ for all x ∈ Rn,
we assume eitherU : Rn ⇒ (0,∞) or U : Rn ⇒ (−∞, 0).)
This includes systems of the form (1) from the introduction
with set-valued disturbances, as special cases. One can easily
check (cf. [2]) that condition(H) guarantees the existence
of a unique trajectoryφ : [0, T ] → Rn of ẋ = g(x, α)β
for each initial condition,T > 0, and (essentially) bounded
measurable functionsα : [0, T ] → A andβ : [0, T ] → R.

To check condition(U), let φ ∈ Traj(F ). Applying the
(generalized) Filippov lemma (cf. [14, p. 72]), we find a
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measurable pair(α, β) for which α(t) ∈ A, β(t) ∈ U(φ(t)),
and φ̇(t) = g(φ(t), α(t))β(t) for almost allt. We now show
that condition(U) holds with f(t, x) := g(x, α(t))β(t). In
general, we will not haveβ(t) ∈ U(x) for all t andx. In fact,
it could be thatU(φ(t))∩U(x) = ∅ for somet andx, so we
may not havef(t, x) ∈ F (x) for a.a.t and allx. On the other
hand, one can easily check thatβ(t) ∈ cone {U(x)} for a.a.
t andx, sof(t, x) ∈ g(x,A)cone{U(x)} = cone{F (x)} for
a.a.t and allx, and this gives the desired result.

Example 2.2:AssumeF : Rn ⇒ Rn is (locally) Lipschitz
and nonempty, compact, and convex valued. We claim that
F satisfies condition(U). To see why, let̄x ∈ Rn, T > 0,
andφ ∈ TrajT (F, x̄) be given, and set

f(t, x) = projF (x)(φ̇(t))

(i.e., f(t, x) is the closest point tȯφ(t) in F (x), which is
well defined by the convexity ofF (x)). Thenf ∈ CF [0, T ]
satisfies the requirement. If on the other hand we instead
define the mappingF : R ⇒ R by F (x) = {1} for x < 0,
F (0) = {0} ∪ [1, 2], and F (x) = [0, 2] for x > 0, and if
φ ∈ Traj(F ), thenf(t, x) ≡ φ̇(t) ∈ cone{F (x)} for almost
all t and allx ∈ Rn. In this case, condition(U) is satisfied
with this choice off , even thoughF is neither upper nor
lower semicontinuous nor convex valued.

Example 2.3:Consider the example from the introduction
in which n = 1, F (0) = [−1,+1], andF (x) = {−sign(x)}
for x 6= 0. We claim that(U) is again satisfied. To see
why, let T > 0, x̄ ∈ R, and φ ∈ TrajT (F, x̄) be given.
Note that(F, {0}) is strongly invariant inR. Therefore, either
(i) φ starts at somēx 6= 0 and then moves to0 at unit
speed and then stays at0 or (ii) φ ≡ 0. If x̄ 6= 0, then
the requirement is satisfied usingf(t, x) ≡ −sign(x̄)β(t),
whereβ(t) = 1 if t ∈ [0, |x̄|] and0 otherwise. In this case,
we then havef(t, x) ∈ cone{F (x)} for all t ∈ [0, T ] and
x ∈ (|x̄|/2)B1(x̄). If instead x̄ = 0, then the requirement
is instead satisfied withf(t, x) ≡ 0 ∈ cone{F (x)} for all
t ∈ [0, T ] andx ∈ R.

B. Preliminaries in Nonsmooth Analysis

The principal nonsmooth objects used in this note are the
proximal subgradient and normal cone, and here we review
these concepts; see [6] for a complete treatment. LetS ⊆ Rn

be closed andx ∈ S. A vector ζ ∈ Rn is called aproximal
normal vector of S at x provided there exists a constant
σ = σ(ζ, x) > 0 so that

〈ζ, x′ − x〉 ≤ σ||x′ − x||2 ∀x′ ∈ S. (2)

The set of all proximal normal vectors ofS atx is denoted by
NP

S (x) and is a convex cone. Notice that for eachδ > 0 and
x ∈ S, ζ ∈ NP

S (x) if and only if there existsσ = σ(ζ, x) > 0
so that〈ζ, x′ − x〉 ≤ σ||x′ − x||2 for all x′ ∈ S ∩ δBn(x).

Next assumef : Rn → (−∞,∞] is lower semicontinuous
and letx ∈ domain(f) := {x′ : f(x′) < ∞}. Thenζ ∈ Rn

is called aproximal subgradientfor f at x provided there
exist σ > 0 andη > 0 such that

f(x′) ≥ f(x) + 〈ζ, x′ − x〉 − σ‖x′ − x‖2

for all x′ ∈ ηBn(x). The (possibly empty) set of all proximal
subgradients forf at x is denoted by∂P f(x).

We next state the version of the Clarke-Ledyaev Mean
Value Inequality needed for our strong invariance results (cf.
[6, p. 117] for its proof). Let[x, Y ] denote the closed convex
hull of x ∈ Rn andY ⊆ Rn.

Theorem 1:Assumex ∈ Rn, Y ⊆ Rn is compact and
convex, andΨ : Rn → R is lower semicontinuous. Then
for any δ < miny∈Y Ψ(y) − Ψ(x) and λ > 0, there exist
z ∈ [x, Y ] +λBn andζ ∈ ∂P Ψ(z) so thatδ < 〈ζ, y−x〉 for
all y ∈ Y .

The following is a variant of the well known “compactness
of trajectories” lemma. Its proof is a special case of the
compactness of trajectories proof in [6].

Lemma 2.4:Let x̄ ∈ Rn, T > 0, f̃ ∈ C[0, T ] be also
continuous int, and {yi : [0, T ] → Rn} be a sequence of
uniformly bounded absolutely continuous functions satisfy-
ing yi(0) = x̄ for all i. Assume

ẏi(t) ∈ f̃(τi(t), yi(t) + ri(t)) + δi(t)Bn (3)

for a.a.t ∈ [0, T ] and all i, where{δi(·)} is a sequence of
nonnegative measurable functions that converges to0 in L2

as i → ∞, {ri(·)} is a sequence of measurable functions
converging uniformly to0 as i → ∞, and {τi(·)} is a
sequence of nonnegative measurable functions converging
uniformly to t on [0, T ] as i → ∞. Then there exists a
trajectoryy of ẏ = f̃(t, y), y(0) = x̄ such that a subsequence
of {yi} converges toy uniformly on [0, T ].

We will apply Lemma 2.4 to continuous mollifications of
our feedback mapsf ∈ C[0, T ]. More precisely, set

η(t) =

{
C exp

(
1

t2−1

)
, |t| < 1

0, |t| ≥ 1

where the constantC > 0 is chosen so that
∫

R η(s)ds = 1.
For eachε > 0 and t ∈ R, set ηε(t) := η(t/ε)/ε. Notice
that

∫
R ηε(t)dt = 1 for all ε > 0. Define the following

convolutions off ∈ C[0, T ] in the t-variable:

fε(t, x) :=
∫

R
f(s, x)ηε(t− s)ds (4)

with the convention thatf(s, x) = 0 for all s 6∈ [0, T ]. Then
fε ∈ C[0, T ] and is continuous for allε > 0. (See [10,
Appendix C] for the theory of convolutions and mollifiers.)
We will apply Lemma 2.4 to a sequencẽf := fε(i) with
ε(i) > 0 converging to zero, using ideas from the standard
proof thatfε(i)(·, x) → f(·, x) in L1 for eachx as i →∞.

Remark 2.5:Note for later use (cf. (20)) that ifτi(t) ≡ t
in Lemma 2.4, then the conclusions of the lemma remain
true even if thet-continuity hypothesis onf ∈ C[0, T ] is
omitted. This follows from the proof of the compactness of
trajectories lemma in [6].

III. STRONG INVARIANCE THEOREM

A. Statement of Theorem and Remarks

Let HF : Rn × Rn → [−∞,+∞] denote the(upper)
Hamiltonian for our dynamicsF ; i.e.,

HF (x, p) := sup
v∈F (x)

〈v, p〉.
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For any subsetD ⊆ Rn, we write HF (x, D) ≤ 0 to
mean thatHF (x, d) ≤ 0 for all d ∈ D. By definition, this
inequality holds vacuously ifD = ∅.

Theorem 2:Let F : Rn ⇒ Rn satisfy (U), Ψ : Rn → R
be lower semicontinuous, andS := {x ∈ Rn : Ψ(x) ≤ 0}.
If there exists an open setU ⊆ Rn containingS for which
HF (x, ∂P Ψ(x)) ≤ 0 for all x ∈ U , then (F,S) is strongly
invariant inRn.
We sketch the proof of this theorem in section IV. Note that
we require the Hamiltonian inequality in aneighborhoodU
of S. The result is not true in general if the Hamiltonian
condition is placed only onS, even ifΨ andF are smooth.
For example, taken = 1, Ψ(x) = x2, and F (x) ≡ {1}.
In this case,S = {0} and HF (0, ∂P Ψ(0)) = 0, but (F,S)
is not strongly invariant. On the other hand, Example 2.3
is covered by Theorem 2, once we choose the verification
function Ψ(x) = x2. In this case, the Hamiltonian condition
readsHF (x,Ψ′(x)) = −2|x| ≤ 0 for all x ∈ R, so our
sufficient condition for strong invariance is satisfied.

Theorem 2 contains the usual sufficient condition for
strong invariance for an arbitrary closed setS ⊆ Rn by
letting Ψ be the characteristic functionIS of F ; that is,
IS(x) = 0 if x ∈ S and is1 otherwise. Then∂P Ψ(x) = {0}
for all x 6∈ boundary (S), and ∂P Ψ(x) = NP

S (x) for all
x ∈ boundary (S), by the local characterization ofNP

S (x)
in section II-B. This implies the following special case of
Theorem 2:

Corollary 3.1: Let F : Rn ⇒ Rn satisfy(U) andS ⊆ Rn

be closed. IfHF (x,NP
S (x)) ≤ 0 for all x ∈ boundary (S),

then (F, S) is strongly invariant inRn.
Remark 3.2:The converse of Corollary 3.1 does not hold,

as illustrated by the data in Example 2.3; there,(F, {0}) is
strongly invariant inR andNP

{0}(0) = R, so the Hamiltonian
condition fails. This means that the converse of Theorem
2 does not hold. On the other hand, see section V for a
necessary and sufficient condition for strong invariance under
certain additional hypotheses onF .

B. Relationship to Known Strong Invariance Results

Theorem 2 improves on the known strong invariance
results because it does not require the usual Lipschitz or
other structural assumptions on the dynamics. The papers
[4], [5] provide strong invariance results for locally Lipschitz
dynamics (see also [6, Chapter 4]). For locally LipschitzF ,
Clarke showed (cf. [4]) that the strong invariance property
for (F, S) is equivalent toF (x) ⊆ TC

S (x) for all x ∈ S,
whereTC

S denotes the Clarke tangent cone (cf. [6]). Recall
that v ∈ TC

S (x) if and only if for each sequencexi ∈ S
converging tox and each sequenceti > 0 decreasing to
0, there exists a sequencevi ∈ Rn converging tov such
that xi + tivi ∈ S for all i. In particular, if S = {0},
then TC

S (0) = {0}. See [5] for Hilbert space versions,
and [14] for other strong invariance results for Lipschitz
dynamics and nonautonomous versions. For strong invariance
characterizations under more general structural conditions on
F (e.g., dissipativity and one-sided Lipschitzness), see [8],
[9], [12].

On the other hand, Theorem 2 does not make any struc-
tural assumptions on the dynamics, and allows general set-
valued disturbances, as in (1). In particular, our feedback
realizability hypothesis(U) can be satisfied for non-Lipschitz
dynamics that are not tractable by the well known strong
invariance results. For instance, see the examples in section
II.

IV. SKETCH OF PROOF OFTHEOREM 2

This section is devoted to a sketch of the proof of Theorem
2. For a complete proof, see [11].

Fix T > 0 and x̄ ∈ S. We first develop some properties
that hold for allf ∈ CF ([0, T ], x̄). Fixing f ∈ CF ([0, T ], x̄)
andε > 0, and fixingγ > 0 such thatf(t, x) ∈ cone{F (x)}
for all x ∈ γBn(x̄) and almost allt ∈ [0, T ], set

Gε
f [t, x, k] = co

{
fε(t, y) : ‖y − x‖ ≤ 1

k

}
⊆ Rn (5)

for each t ∈ [0, T ], x ∈ Rn and k ∈ N, wherefε is the
regularization (4) off andco denotes the closed convex hull.
By reducingγ > 0, we can assume thatγBn(x̄) ⊆ U . We
also setgε

f [t, x, k] = 1 + sup{‖p‖ : p ∈ Gε
f [t, x, k]} for all

t ∈ [0, T ], x ∈ Rn, andk ∈ N. Note that

gε
f [t, x, k] ≤ gf [t, x, k] := 1 + c1 + c2

(
||x||+ 1

k

)
(6)

for all t ∈ [0, T ], x ∈ Rn, andk ∈ N, wherec1 and c2 are
the constants from the linear growth requirement(C3) on f ,
so the setsGε

f [t, x, k] are compact. The following estimate
is based on Theorem 1 from section II:

Lemma 4.1:If x ∈ γ
2Bn(x̄), t ≥ 0, k ∈ N, h > 0, and if

h ≤ 1
2k gf [t, x, k]

and x + hgf [t, x, k]Bn ⊆
2γ

3
Bn(x̄), (7)

then
Ψ(x + hv) ≤ Ψ(x) +

h

k
(8)

holds for somev ∈ Gε
f [t, x, k].

Proof: Suppose the contrary. SinceΨ is lower semi-
continuous, there must then existx ∈ γ

2Bn(x̄), t ≥ 0, k ∈ N,
andh > 0 satisfying (7) but such that

δ :=
h

k
< min

y∈Y
Ψ(y)−Ψ(x), Y := x + hGε

f [t, x, k]. (9)

Let λ ∈ (0, 1
2k ) be such that

x + hgf [t, x, k]Bn + λBn ⊆ γBn(x̄). (10)

Next we apply Theorem 1 with the choicesY andδ defined
by (9). It follows that there existz ∈ [x, Y ] + λBn and
ζ ∈ ∂P Ψ(z) for which

δ < min
y∈Y

〈ζ, y − x〉 = min
v∈Gε

f [t,x,k]
〈ζ, hv〉. (11)

Note that z ∈ γBn(x̄) ⊆ U , by (10). Since we have
z ∈ [x, Y ] + λBn, (7) combined with the choice of
λ gives ‖z − x‖ ≤ hgf [t, x, k] + λ ≤ 1

k . Therefore
fε(t, z) ∈ Gε

f [t, x, k], by the definition (5) ofGε
f [t, x, k].

Sincef(s, z) ∈ cone{F (z)} for a.a.s ∈ [0, T ] (by our choice
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of γ > 0), our Hamiltonian hypothesis gives〈ζ, f(s, z)〉 ≤ 0
for almost alls ∈ [0, T ]. Therefore, (11) gives

δ ≤ h〈ζ, fε(t, z)〉 = h

∫
R

ηε(t− s)〈ζ, f(s, z)〉ds ≤ 0.

This contradiction concludes the proof of Claim 4.1.
Now set D := γ

2Bn(x̄) ⊆ U . Let ωf,K be a modulus
of continuity for x 7→ f(t, x) on K := D + Bn for all
t ∈ [0, T ]. Such a modulus exists by condition(C2). Then
ωf,K is also a modulus of continuity ofK 3 x 7→ fε(t, x)
for all t ∈ [0, T ] andε > 0. The following estimate follows
from Carath́eodory’s Lemma (cf. [11] for its proof):

Lemma 4.2:Let (t, x, k) ∈ [0, T ]×D×N and assume that
v ∈ Gε

f [t, x, k]. Then‖v − fε(t, x)‖ ≤ ωf,K(1/k) + 1/k.
Next defineδ(D) := 1 + c1 + c2 + c2 max{‖v‖ : v ∈ D}.

It follows from the estimate (6) that

Gε
f [t, x, k] ⊆ δ(D)Bn ∀ t ∈ [0, T ], x ∈ D, k ∈ N. (12)

Next set

T̃ := min
{

T,
γ

8δ(D)

}
and hk :=

γ

4kδ(D)
(13)

for all k ∈ N. ChooseN > 2 such that

D + hkδ(D)Bn ⊆ 2γ

3
Bn(x̄) ∀k ≥ N. (14)

We can assumeγ < 1. By the choices ofγ andδ(D),

0 < hk ≤ 1
2kgf [t, x, k]

∀t ∈ [0, T ], x ∈ D, k ∈ N. (15)

Next we definec(k) = Ceiling(T̃ /hk), i.e., c(k) is the
smallest integer≥ T̃ /hk. For eachk ≥ N , we then define
a partitionπ(k) : 0 = t0,k < t1,k < . . . < tc(k),k = T̃ by
settingti,k = ti−1,k + hk for i = 1, 2, . . . , c(k)− 1.

We next define sequencesx0,k, x1,k, x2,k, . . . , xc(k),k for
k ≥ N . We setx0,k = x̄ and x1,k = x̄ + (t1,k − t0,k)vo,k,
wherev = vo,k ∈ Gε

f [0, x̄, k] satisfies the requirement from
Claim 4.1 for the pair(t0,k, x0,k) = (0, x̄) andh = hk. By
(12), we get

‖x1,k − x̄‖ ≤ hkδ(D) =
γ

4k
, (16)

so x1,k ∈ D. If c(k) ≥ 2, then we set

x2,k = x1,k + (t2,k − t1,k)v1,k,

wherev1,k ∈ Gε
f [t1,k, x1,k, k] satisfies the requirement from

Claim 4.1 for the pair(t1,k, x1,k). Reapplying (12) gives
‖x2,k − x1,k‖ ≤ hkδ(D) = γ

4k , so ‖x2,k − x̄‖ ≤ γ
2k , by

(16). Thereforex2,k ∈ D. We now repeat this process except
with x2,k ∈ D instead ofx1,k. Proceeding inductively gives
sequencesvi,k ∈ Gε

f [ti,k, xi,k, k] and sequences{xi,k} that
satisfy xi+1,k = xi,k + (ti+1,k − ti,k)vi,k for each index
i = 0, 1, . . . , c(k)− 1. The choices of̃T andk ≥ 2 give

‖xi,k − x̄‖ ≤ c(k)γ
4k

≤ γ

2
for all i andk. It follows that the sequences{xi,k} lie in D.

For eachk ≥ N , we then choosexπ(k) to be the unique
polygonal arc satisfyingxπ(k)(0) = x̄ and

ẋπ(k)(t) = fε(τk(t), xπ(k)(t) + rk(t)) + zk(τk(t)) (17)

for all t ∈ [0, T̃ ] \ π(k), whereτk(t) is the partition point
ti,k ∈ π(k) immediately precedingt for eacht ∈ [0, T̃ ],

zk(ti,k) := vi,k − fε(ti,k, xπ(k)(ti,k)) ∀i, k (18)

thevi,k ∈ Gε
f [ti,k, xπ(k)(ti,k), k] satisfy the conclusions from

Claim 4.1 for the pairs(t, x) = (ti,k, xi,k) andh = hk, and

rk(t) := xπ(k)(τk(t))− xπ(k)(t) ∀t ∈ [0, T̃ ], ∀k.

Then xπ(k) is the polygonal arc connecting the pointsxi,k

for i = 0, 1, 2, . . . , c(k). In particular,xi,k ≡ xπ(k)(ti,k).
Sincefε is continuous, one can check that (17) satisfies the

requirements from our compactness of trajectories lemma,
so we can find a subsequence of{xπ(k)(·)} that converges
uniformly to a trajectoryyε of ẏ = fε(t, y), y(0) = x̄. By
possibly passing to a subsequence without relabelling, we
can assume thatxπ(k) → yε uniformly on [0, T̃ ]. Moreover,
since xi+1,k = xi,k + (ti+1,k − ti,k)vi,k ∈ D for all
i = 0, 1, . . . , c(k) − 1 andk ≥ N , conditions (14) and (15)
along with Claim 4.1 giveΨ(xi,k) − Ψ(xi−1,k) ≤ hk

k for
i = 1, 2, . . . , c(k). Summing these inequalities overi and
recalling thathk ≤ γ givesΨ(xi,k) ≤ Ψ(x̄) + 1

k (T̃ + γ) for
all i andk . Hence,

Ψ(xπ(k)(τk(t))) ≤ Ψ(x̄) +
1
k

(T̃ + γ) (19)

for all t ∈ [0, T̃ ]. Since|τk(t) − t| ≤ hk → 0 as k → +∞
for all t ∈ [0, T̃ ], it follows thatxπ(k)(τk(t)) → yε(t) for all
t ∈ [0, T̃ ] ask → +∞. SinceΨ is lower semicontinuous, it
follows from (19) thatΨ(yε(t)) ≤ Ψ(x̄) for all t ∈ [0, T̃ ].

Now let y1/i : [0, T̃ ] → Rn be the trajectory obtained by
the preceding argument with the choiceε = 1/i for each
i ∈ N. Note thaty1/i(t) ∈ D for all i and t, because each
of the polygonal arcsxπ(k) constructed above joins points in
D andD is closed and convex. Moreover,

ẏ1/i(t) = f(t, y1/i(t))
+

[
f1/i(t, y1/i(t))− f(t, y1/i(t))

] (20)

for all i and almost allt ∈ [0, T̃ ]. One can check (cf. [11])
that they1/i are uniformly bounded and equicontinuous, so
we can assume (possibly by passing to a subsequence) that
there is a continuous functiony : [0, T̃ ] → D such that
y1/i → y uniformly on [0, T̃ ] (by the Ascoli-Arzel̀a lemma).
We show thaty is a trajectory off , using the following
lemma (cf. [11] for its proof):

Lemma 4.3:f1/i(t, y1/i(t)) − f(t, y1/i(t)) → 0 in L2 as
i →∞.

It therefore follows from Remark 2.5 and the form of
the dynamics (20) that a subsequence of{y1/i} converges
to a trajectory of f uniformly on [0, T̃ ]. This must be
the aforementioned functiony, as desired. Again using the
lower semicontinuity ofΨ, we can therefore conclude that
Ψ(y(t)) ≤ lim infi→∞Ψ(y1/i(t)) ≤ Ψ(x̄) for all t ∈ [0, T̃ ].

Finally, we show the strong invariance asserted in the
theorem. Letxo ∈ S, T ≥ 0, and φ ∈ TrajT (F, xo) be
given. Set

t̄ := sup {t ≥ 0 : Ψ(φ(s)) ≤ Ψ(xo) ∀s ∈ [0, t]} . (21)



6

We next show that̄t = T (by contradiction), which would
imply that φ remains inS on [0, T ]. To this end, note that
the lower semicontinuity ofΨ gives

Ψ(φ(t̄ )) ≤ Ψ(xo). (22)

In particular, this implies that̄x := φ(t̄) ∈ S ⊆ U . Next let
f ∈ CF ([0, T ], x̄) satisfy the requirement(U) for F and the
trajectory [0, T − t̄] 3 t 7→ y(t) := φ(t + t̄), andγ ∈ (0, 1)
satisfy f(t, x) ∈ cone{F (x)} for a.a.t ∈ [0, T − t̄] and all
x ∈ γBn(x̄). We can assumeγBn(x̄) ⊆ U .

By uniqueness of solutions of the initial value problem
ẏ = f(t, y), y(0) = φ(t̄) on [0, T − t̄], the above argument
applied tof and x̄ = φ(t̄) gives t̃ ∈ (0, T − t̄ ) such that

Ψ(φ(t̄ + t ))−Ψ(φ(t̄ )) ≤ 0 ∀t ∈ [0, t̃]. (23)

Here we use the fact that the trajectory on[0, T̃ ] constructed
above forf starting atx̄ can be extended to[0, T − t̄], by the
linear growth assumption(C3), and so coincides withy by
our uniqueness assumption in (U). Sinceφ remains inS on
[0, t̄], summing (22) and (23) then contradicts the definition
(21) of the supremum̄t. This proves the theorem.

V. STRONG INVARIANCE CHARACTERIZATION

As we saw in Example 2.3, the Hamiltonian condition
that HF (x, NP

S (x)) ≤ 0 for all x ∈ boundary(S) is not
necessary for strong invariance for(F, S); there,(F, {0}) is
strongly invariant inRn, but the Hamiltonian condition is
not satisfied, andF is upper semicontinuous but not lower
semicontinuous. On the other hand, if we strengthen our
assumption onF to

(U ]) Condition (U) holds; andF is lower semicontinu-
ous, and closed, convex, and nonempty valued.

then we get the following strong invariance characterization:
Theorem 3:Let F : Rn ⇒ Rn satisfy (U ]) andS ⊆ Rn

be closed. Then(F, S) is strongly invariant inRn if and only
if HF (x,NP

S (x)) ≤ 0 for all x ∈ boundary (S).
Proof: We showed the sufficiency of the Hamiltonian

condition for strong invariance in Theorem 2, so it remains
to show the necessity. We do this by extending an argument
from the appendix of [1] to non-LipschitzF . Assume(F, S)
is strongly invariant. Fixx ∈ boundary(S), v ∈ F (x), and
ζ ∈ NP

S (x). Using Michael’s Selection Theorem (cf. [3, p.
219]), we can find a continuous selections : Rn → Rn of F
for which s(x) = v. Chooseσ > 0 satisfying the condition
(2) for ζ to be inNP

S (x).
We can now use the local existence property to findt̄ > 0

and a trajectoryφ : [0, t̄] → Rn of the continuous dynamics
y 7→ s(y) starting atx, so φ̇(0) = s(φ(0)) = s(x) = v.
Since φ ∈ Trajt̄(F, x) and (F, S) is strongly invariant in
Rn, it follows that φ(t) ∈ S for all t ∈ [0, t̄]. Condition (2)
then gives〈ζ, φ(t) − x〉 ≤ σ||φ(t) − x||2 for all t ∈ [0, t̄].
Dividing this inequality byt ∈ (0, t̄], and lettingt → 0 gives

〈ζ, v〉 ≤ σ lim
t→0

t||(φ(t)− x)/t||2 = 0.

Taking the supremum over allv ∈ F (x) and noting that
x ∈ boundary(S) was arbitrary gives the desired result.

Theorem 3 is no longer true if the requirement thatF be
lower semicontinuous is dropped, as shown by Example 2.3.
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