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Abstract This paper presents the optimal regulator for a linear
system with state delay and a quadratic criterion. The optimal
regulator equations are obtained using the maximum principle.
Performance of the obtained optimal regulator is verified in the
illustrative example against the best linear regulator available
for linear systems without delays. Simulation graphs demon-
strating better performance of the obtained optimal regulator
are included. The paper then presents a robustification algo-
rithm for the obtained optimal regulator based on integral slid-
ing mode compensation of disturbances. As a result, the sliding
mode compensating control leading to suppression of the distur-
bances from the initial time moment is designed. The obtained
robust control algorithm is verified by simulations in the illus-
trative example.
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1 Introduction

Although the optimal control (regulator) problem for linear sys-
tem states was solved in 1960s (see [1, 2]), the optimal control
problem for linear systems with delays is still open, depending
on the delay type, specific system equations, criterion, etc. A
detailed comment on the up-to-date state of the control theory
for time-delay systems is given in [3, 4]. Comprehensive re-
views of theory and algorithms for time delay systems can be
found in [5, 6, 7, 8, 9].

The first part of this paper concentrates on the solution of
the optimal control problem for a linear system with state de-
lay and a quadratic criterion. Using the maximum principle
[10, 11], the solution to the stated optimal control problem is ob-
tained in a closed form, i.e., it is represented as a linear in state
control law, whose gain matrix satisfies an ordinary differential
(quasi-Riccati) equation, which does not contain time-advanced
arguments and does not depend on the state variables. The ob-
tained optimal regulator makes an advance with respect to gen-
eral optimality results for time delay systems (such as given in
[12, 13, 14, 15, 16]), since (a) the optimal control law is given
explicitly and not as a solution of a system of integro-differential
or PDE equations, and (b) the quasi-Riccati equation for the
gain matrix does not contain any time advanced arguments and
does not depend on the state variables and, therefore, leads to a

conventional two points boundary-valued problem generated in
the optimal control problems with quadratic criterion and finite
horizon (see, for example, [1]). Thus, the obtained optimal regu-
lator is realizable using two delay-differential equations. Taking
into account that the state space of a delayed system is infinite-
dimensional [5], this seems to be a significant advantage.

Performance of the obtained optimal control for a linear sys-
tem with state delay and a quadratic criterion is verified in the
illustrative example against the best linear regulator available
for linear systems without delays. The simulation results show
a definitive (three and half times) advantage of the obtained op-
timal regulator in the criterion value.

The second part of the paper presents an integral sliding mode
regulator robustifying the optimal regulator for linear systems
with state delay and a quadratic criterion. The idea is to add a
compensator to the known optimal control to suppress external
disturbances deteriorating the optimal system behavior [17, 18].
The integral sliding mode compensator is realized as a relay
control in a such way that the sliding mode motion starts from
the initial moment, thus eliminating the matched uncertainties
from the beginning of system functioning. This constitutes the
crucial advantage of the integral sliding modes in comparison to
the conventional ones. Note that in the framework of this modi-
fied (with respect to [17, 3]) integral sliding mode approach, the
optimal control is not required to be differentiable and the slid-
ing mode manifold matrix is always invertible. Other original
modifications of the sliding mode control technique applicable
to disturbance suppression were suggested in [19, 20].

The paper is organized as follows. Section 2 states the opti-
mal control problem for a linear system with state delay. The so-
lution to the optimal control problem is given in Section 3. The
proof of the obtained results, based on the maximum principle
[10, 11], is given in Appendix. The paper then presents a robus-
tification algorithm for the obtained optimal regulator based on
integral sliding mode compensation of disturbances [17]. Sec-
tion 4 outlines the new general principles of the integral sliding
mode compensator design, which yield the basic control algo-
rithm oriented to time-delay systems. This basic algorithm is
then applied to robustify the optimal regulator. As a result, the
sliding mode compensating control leading to suppression of the
disturbances from the initial time moment is designed. Section
5 presents an illustrative example.



2 Optimal control problem for linear
state delay system

Consider a linear system with time delay in the state

ẋ(t) = a0(t)+a(t)x(t −h)+B(t)u(t), (1)

with the initial condition x(s) = ϕ (s), s ∈ [t0 − h, t0], where
x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control variable,
and φ(s) is a piecewise continuous function given in the interval
[t0 − h, t0]. Existence of the unique solution of the equation (1)
is thus assured by the Carathéodory theorem (see, for example,
[21]). The quadratic cost function to be minimized is defined as
follows:

J =
1
2
[x(T )]T ψ[x(T )]+

1
2

∫ T

t0

uT (s)R(s)u(s)ds+
1
2

∫ T

t0

xT (s)L(s)x(s)ds, (2)

where R is positive and ψ, L are nonnegative definite symmetric
matrices, and T > t0 is a certain time moment.

The optimal control problem is to find the control u(t), t ∈
[t0,T ], that minimizes the criterion J along with the trajectory
x∗(t), t ∈ [t0,T ], generated upon substituting u∗(t) into the state
equation (1). The solution to the stated optimal control problem
is given in the next section and then proved using the maximum
principle [10, 11] in Appendix.

3 Optimal control problem solution

The solution to the optimal control problem for the linear system
with state delay (1) and the quadratic criterion (2) is given as
follows. The optimal control law is given by

u∗(t) = (R(t))−1BT (t)Q(t)x(t), (3)

where the matrix function Q(t) satisfies the matrix equation

Q̇(t) = L(t)−Q(t)M1(t)a(t)−aT (t)MT
1 (t)Q(t)− (4)

Q(t)B(t)R−1(t)BT (t)Q(t),

with the terminal condition Q(T ) = ψ. The auxiliary ma-
trix M1(t) is defined as M1(t) = (∂x(t − h)/∂x(t)), whose
value is equal to zero, M1(t) = 0, if t ∈ [t0, t0 + h), and
is determined as M1(t) = Φ−1(t, t − h) = Φ(t − h, t) =
exp(−∫ t

t−h B(s)R−1(s)BT (s)Q(s)ds), if t ≥ t0 +h, where Φ(t,τ )
satisfies the matrix equation

dΦ(t,τ )
dt

= B(t)R−1(t)BT (t)Q(t)Φ(t,τ ),

with the initial condition Φ(t, t) = I, and I is the identity matrix.
Upon substituting the optimal control (3) into the state equa-

tion (1), the optimally controlled state equation is obtained

ẋ(t) = a0(t)+a(t)x(t −h)+B(t)R−1(t)BT (t)Q(t)x(t), (5)

with the initial condition x(s) = ϕ (s), s ∈ [t0 −h, t0].
The results obtained in this section by virtue of the duality

principle are proved in Appendix using the general equations of
the Pontryagin maximum principle [10, 11].

4 Robust control problem

Consider a nominal control system with state delay

ẋ(t) = f (x(t −h))+B(t)u(t), (6)

where u(t) ∈ Rm is the control input, the rank of matrix B(t) is
complete and equal to m for any t > 0, and the pseudoinverse
matrix of B is uniformly bounded:

‖B+(t)‖ ≤ b+, b+ = const > 0, B+(t) := [BT (t)B(t)]−1BT (t),

and B+(t)B(t) = I, where I is the m-dimensional identity matrix.
Suppose that there exists a state feedback control law

u0(x(t), t), such that the dynamics of the nominal closed loop
system takes the form

ẋ0(t) = f (x0(t −h))+B(t)u0(x0(t), t), (7)

and has certain desired properties. However, in practical appli-
cations, system (6) operates under uncertainty conditions that
may be generated by parameter variations and external distur-
bances. Let us consider the real trajectory of the disturbed
closed loop control system

ẋ(t) = f (x(t−h))+B(t)u(t)+g1(x(t), t)+g2(x(t−h), t), (8)

where g1,g2 are smooth uncertainties presenting perturbations
and nonlinearities in the system (6). For g1,g2, the standard
matching and conditions are assumed to be held: g1,g2 ∈ spanB,
or, in other words, there exist smooth functions γ1,γ2 such that

g1(x(t), t) = B(t)γ1(x(t), t),

g2(x(t −h), t) = B(t)γ2(x(t −h), t),

||γ1(x(t), t)|| ≤ q1||x(t)||+ p1, q1, p1 > 0,

||γ2(x(t −h), t)|| ≤ q2||x(t −h)||+ p2, q2, p2 > 0.

The last two conditions provide reasonable restrictions on the
growth of the uncertainties.

The following initial conditions are assumed for system (6)

x(θ) = ϕ (θ), (9)

where ϕ (θ) is a piecewise continuous function given in the in-
terval [t0 −h, t0].

Thus, the control problem now consists in robustification of
control design in system (7) with respect to uncertainties g1,g2:
to find such a control law that the trajectories of system (8) with
initial conditions (9) coincide with the trajectories x0(t) with the
same initial conditions (9).

4.1 Design principles

Let us redesign the control law for system (6) in the form

u(t) = u0(x(t), t)+u1(t), (10)

where u0(x(t), t) is the ideal feedback control designed for (6),
and u1(t) ∈ Rm is the relay control generating the integral slid-
ing mode in some auxiliary space to reject uncertainties g1,g2.
Substitution of the control law (10) into the system (6) yields

ẋ(t) = f (x(t −h))+B(t)u0(x(t), t)+B(t)u1(t)+ (11)



g1(x(t), t)+g2(x(t −h), t).

Define the auxiliary function

s(t) = z(t)+ s0(x(t), t), (12)

where s0(x(t), t) = B+(t)x(t), and z(t) is an auxiliary variable
defined below. Then,

ṡ(t) = ż(t)+G(t)[ f (x(t))+B(t)u0(x(t), t)+ (13)

B(γ1(x(t), t))+γ2(x(t −h), t))+B(t)u1(t)]+(∂ s0(x(t), t)/∂ t),

G(t) = ∂ s0(x(t), t)/∂x = B+(t) and ∂ s0(x(t), t)/∂ t =
d(B+(t))/dt)x(t). Note that in the framework of this modified
(with respect to [17, 3]) integral sliding mode approach, the
optimal control u0(x(t)) is not required to be differentiable and
the sliding mode manifold matrix GB = B+B = I is always
invertible.

The philosophy of integral sliding mode control is the follow-
ing: in order to achieve x(t) = x0(t) at all t ∈ [t0,∞), the sliding
mode should be organized on the surface s(t) = 0, since the fol-
lowing disturbance compensation should have been obtained in
the sliding mode motion

B+(t)B(t)u1eq(t) = −B+(t)B(t)γ1(x(t), t)−

B+(t)B(t)γ2(x(t −h), t),

that is
u1eq(t) = −γ1(x(t), t)−γ2(x(t −h), t).

Note that the equivalent control u1eq(t) can be unambiguously
determined from the last equality and the initial condition for
x(t).

Define the auxiliary variable z(t) as the solution to the differ-
ential equation

ż(t)=−B+(t)[ f (x(t−h))+B(t)u0(x(t), t)]+d(B+(t))/dt)x(t),

with the initial conditions z(t0) = −s0(t0) = −B+(t0)ϕ (t0).
Then, the sliding manifold equation takes the form

ṡ(t) = B+(t)[B(t)(γ1(x(t), t))+γ2(x(t −h), t))+B(t)u1(t)] =

= γ1(x(t), t)+γ2(x(t −h), t)+u1(t) = 0.

Finally, to realize sliding mode, the relay control is designed

u1(t) = −M(x(t),x(t −h), t)sign[s(t)], (14)

M = q(||x(t)||+ ||x(t −h)||)+ p,

q > q1,q2, p > p1 + p2.
The convergence to and along the sliding mode manifold

s(t) = 0 is assured by the Lyapunov function V (t) = sT (t)s(t)/2
for the system (11) with the control input u1(t) of (14):

V̇ (t) = sT (t)[γ1(x(t), t)+γ2(x(t −h), t)+u1(t)] ≤
−|s(t)|([q(||x(t)||+ ||x(t −h)||)+ p]+

[γ1(x(t), t)+γ2(x(t −h), t)]) < 0,

where |s(t)| =
m
∑

i=1
|si(t)|.

The next subsection presents the robustification of the de-
signed optimal control (3). This robust regulator is designed
assigning the sliding mode manifold according to (12)–(13) and
subsequently moving to and along this manifold using relay
control (14).

4.2 Robust sliding mode control design for linear
state delay system

Consider the disturbed linear state delay system (1), whose be-
havior is affected by uncertainties g1,g2 presenting perturba-
tions and nonlinearities in the system

ẋ(t)= a0(t)+a(t)x(t−h)+B(t)u(t)+g1(x(t), t)+g2(x(t−h), t).
(15)

It is also assumed that the uncertainties satisfy the standard
matching and growth conditions given in the beginning of Sec-
tion 4, and the quadratic cost function (2) is the same as in Sec-
tion 2.

The problem is to robustify the obtained optimal control (3),
using the method specified by (12)–(13). Define this new con-
trol in the form (10): u(t) = u0(x(t), t) + u1(t), where the op-
timal control u0(x(t), t) coincides with (3) and the robustifying
component u1(t) is obtained according to (14)

u1(t) = −M(x(t),x(t −h), t)sign[s(t)],

M = q(||x(t)||+ ||x(t −h)||)+ p,

q > q1,q2, p > p1 + p2. Consequently, the sliding mode mani-
fold function s(t) is defined as

s(t) = z(t)+ s0(x(t), t), (16)

where
s0(x(t), t) = B+(t)x(t), (17)

and the auxiliary variable z(t) satisfies the delay differential
equation

ż(t) = −B+(t)[a0(t)+a(t)x(t −h)+B(t)u0(x(t), t)], (18)

with the initial conditions z(t0) = −B+(t0)ϕ (t0).

5 Example

This section presents an example of designing the optimal reg-
ulator for a system (1) with a criterion (2), using the scheme
(3)–(5), and comparing it to the regulator where the matrix Q
is selected as in the optimal linear regulator for a system with-
out delays, disturbing the obtained regulator by a noise, and de-
signing a robust sliding mode compensator for that disturbance,
using the scheme (16)–(18).

Consider a scalar linear system

ẋ(t) = 10x(t −0.25)+u(t), (19)

with the initial conditions x(s) = 1 for s ∈ [−0.1,0]. The con-
trol problem is to find the control u(t), t ∈ [0,T ], T = 0.5, that
minimizes the criterion

J =
1
2
[
∫ T

0
u2(t)dt +

∫ T

0
x2(t)dt]. (20)

In other words, the control problem is to minimize the overall
energy of the state x using the minimal overall energy of control
u.

Let us first construct the regulator where the control law and
the matrix Q(t) are calculated in the same manner as for the op-
timal linear regulator for a linear system without delays, that



is u(t) = R−1(t)BT (t)Q(t)x(t) (see [1] for reference). Since
B(t) = 1 in (19) and R(t) = 1 in (20), the optimal control is
actually equal to

u(t) = Q(t)x(t), (21)

where Q(t) satisfies the Riccati equation

Q̇(t)=−aT (t)Q(t)−Q(t)a(t)+L(t)−Q(t)B(t)R−1(t)BT (t)Q(t),

with the terminal condition Q(T ) = ψ. Since a(t) = 10, B(t) = 1
in (19), and L(t) = 1 and ψ = 0 in (20), the last equation turns
to

Q̇(t) = 1−20Q(t)−Q2(t), Q(0.5) = 0. (22)

Upon substituting the control (21) into (19), the controlled sys-
tem takes the form

ẋ(t) = 10x(t −0.25)+Q(t)x(t). (23)

The results of applying the regulator (21)–(23) to the sys-
tem (19) are shown in Fig. 1, which presents the graphs of
the criterion (20) J(t) and the control (21) u(t) in the interval
[0,T ]. The value of criterion (20) at the final moment T = 0.5 is
J(0.5) = 15.94.

Let us now apply the optimal regulator (3)–(5) for linear
states with time delay to the system (19). The control law (3)
takes the same form as (21)

u∗(t) = Q∗(t)x(t), (24)

where Q∗(t) satisfies the equation

Q̇∗(t) = 1−20Q∗(t)M1(t)−Q∗2(t), Q∗(0.5) = 0, (25)

where M1(t) = 0 for t ∈ [0,0.25) and M1(t) =
exp(−∫ t

t−0.25 Q∗(s)ds) for t ∈ [0.25,0.5]. Since the solu-
tion Q∗(t) of the equation (25) is not smooth, it has been
numerically solved with the approximating terminal condition
Q∗(0.5) = 0.04, in order to avoid chattering.

Upon substituting the control (24) into (19), the optimally
controlled system takes the same form as (23)

ẋ(t) = 10x(t −0.25)+Q∗(t)x(t). (26)

The results of applying the regulator (24)–(26) to the system
(19) are shown in Fig. 2, which presents the graphs of the cri-
terion (20) J(t) and the control (24) u∗(t) in the interval [0,T ].
The value of the criterion (20) at the final moment T = 0.5 is
J(0.5) = 4.63. There is a definitive improvement (three and half
times) in the values of the criterion to be minimized in compar-
ison to the preceding case, due to the optimality of the regulator
(3)–(5) for linear states with time delay.

The next task is to introduce a disturbance into the controlled
system (26). This deterministic disturbance is realized as a con-
stant: g(t) = 100. The matching conditions are valid, because
state x(t) and control u(t) have the same dimension: dim(x) =
dim(u) = 1. The restrictions on the disturbance growth hold
with q1 = q2 = p2 = 0 and p1 = 100, since ||g(t)|| = 100. The
disturbed system equation (26) takes the form

ẋ(t) = 100+10x(t −0.25)+Q∗(t)x(t). (27)

The system state behavior significantly deteriorates upon in-
troducing the disturbance. Figure 3 presents the graphs of the
criterion (20) J(t) and the control (24) u(t) in the interval [0,T ].

The value of the the criterion (20) at the final moment T = 0.5
is J(0.5) = 398.68. The deterioration of the criterion value in
comparison to that obtained using the optimal regulator (24) is
more than 80 times.

Let us finally design the robust integral sliding mode con-
trol compensating for the introduced disturbance. The new con-
trolled state equation should be

ẋ(t) = 100+10x(t −0.25)+Q∗(t)x(t)+u1(t), (28)

where the compensator u1(t) is obtained according to (14)

u1(t) = −M(x(t),x(t −h), t)sign[s(t)], (29)

and M = 100.4 > p1 = 100. The sliding mode manifold s(t) is
defined by (21)

s(t) = z(t)+ s0(x(t), t),

where
s0(x(t), t) = B+(t)x(t) = x(t),

and the auxiliary variable z(t) satisfies the delay differential
equation

ż(t) = −B+(t)[10x(t −0.25)+u0(t)] =

−[10x(t −0.25)+Q∗(t)x(t)],

with the initial conditions z(0) = −x(0) = −1.
Upon introducing the compensator (29) into the state equa-

tion (28), the system state behavior is much improved. Figure 4
presents the graphs of the criterion (20) J(t) and the control (24)
u(t), after applying the compensator (29), in the interval [0,T ].
The value of the criterion (20) at the final moment T = 0.5 is
J(0.5) = 4.64. Thus, the criterion value after applying the com-
pensator (29) is only slightly different from the criterion value
given by the optimal regulator (24)–(25) for linear state delay
systems.

6 Appendix

Proof of the optimal control problem solution. Define the
Hamiltonian function [10, 11] for the optimal control problem
(1),(2) as

H(x,u,q, t)=
1
2
(uT R(t)u+xT L(t)x)+qT [a0(t)+a(t)x1 +B(t)u],

(30)
where x1(x) = x(t−h). Applying the maximum principle condi-
tion ∂H/∂u = 0 to this specific Hamiltonian function (30) yields

∂H/∂u = 0 ⇒ R(t)u(t)+BT (t)q(t) = 0,

and the optimal control law is obtained as

u∗(t) = −R−1(t)BT (t)q(t).

Taking linearity and causality of the problem into account, let
us seek q(t) as a linear function in x(t)

q(t) = −Q(t)x(t), (31)

where Q(t) is a square symmetric matrix of dimension n. This
yields the complete form of the optimal control

u∗(t) = R−1(t)BT (t)Q(t)x(t). (32)



Note that the transversality condition [10, 11] for q(T )
implies that q(T ) = −∂J/∂x(T ) = −ψx(T ) and, therefore,
Q(T ) = ψ.

Using the co-state equation dq(t)/dt = −∂H/∂x and denot-
ing (∂x1(t)/∂x) = M1(t) yields

−dq(t)/dt = L(t)x(t)+aT (t)MT
1 (t)q(t), (33)

and substituting (31) into (33), we obtain

Q̇(t)x(t)+Q(t)d(x(t))/dt = L(t)x(t)−aT (t)MT
1 (t)Q(t)x(t).

(34)
Substituting the expression for ẋ(t) from the state equation

(1) into (34) yields

Q̇(t)x(t)+Q(t)a(t)x(t −h)+Q(t)B(t)u(t) = (35)

L(t)x(t)−aT (t)MT
1 (t)Q(t)x(t). (35)

In view of linearity of the problem, differentiating the last
expression in x does not imply loss of generality. Upon substi-
tuting the optimal control law (32) into (35), taking into account
that (∂x(t −h)/∂x(t)) = M1(t), and differentiating the equation
(35) in x, it is transformed into the quasi-Riccati equation

Q̇(t) = L(t)−Q(t)M1(t)a(t)−aT (t)MT
1 (t)Q(t)− (36)

Q(t)B(t)R−1(t)BT (t)Q(t).

with the terminal condition Q(T ) = ψ.
Let us now obtain the value of M1(t). By definition, M1(t) =

(∂x(t−h)/∂x(t)). Substituting the optimal control law (32) into
the equation (1) gives

ẋ(t) = a0(t)+a(t)x(t −h)+B(t)R−1(t)BT (t)Q(t)x(t), (37)

with the initial condition x(s) = φ(s), s ∈ [t0 −h, t0]. Integrating
(37) yields

x(t0 +h) = x(t0)+
∫ t0+h

t0

(a0(s)+a(s)x(s−h))ds+ (38)

∫ t0+h

t0

B(s)R−1(s)BT (s)Q(s)x(s)ds.

Analysis of the formula (38) shows that x(t) does not depend on
x(t−h), if t ∈ [t0, t0 +h). Therefore, M1(t) = 0 for t ∈ [t0, t0 +h).
On the other hand, if t ≥ t0 + h, the following Cauchy formula
is valid for the solution x(t) of the equation (37)

x(t) = Φ(t, t −h)x(t −h)+
∫ t

t−h
Φ(t,s)(a0(s)+a(s)x(s−h))ds,

(39)
where Φ(t,τ ) satisfies the matrix equation

dΦ(t,τ )
dt

= B(t)R−1(t)BT (t)Q(t)Φ(t,τ ),

with the initial condition Φ(t, t) = I, and I is the
identity matrix. The expression (39) immediately
implies that M1(t) = Φ−1(t, t − h) = Φ(t − h, t) =
exp(−∫ t

t−h B(s)R−1(s)BT (s)Q(s)ds) for t ≥ t0 + h. The
optimal control problem solution is proved.
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Figure 1: Best linear regulator available for linear systems with-
out state delay. Graphs of the criterion (20) J(t) and the control
(21) u(t) in the interval [0,0.5].
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Figure 2: Optimal regulator obtained for linear systems with
state delay. Graphs of the criterion (20) J(t), and the optimal
control (24) u∗(t) in the interval [0,0.5].
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Figure 3: Controlled system in the presence of disturbance.
Graphs of the criterion (20) J(t) and the control (24) u(t) in
the interval [0,0.5].
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Figure 4: Controlled system after applying robust integral slid-
ing mode compensator. Graphs of the criterion (20) J(t) and the
control (24) u(t) in the interval [0,0.5].


