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Abstract

For a�ne control systems, we study the relationship between an optimal regulation problem on the in�nite

horizon and stabilizability. We are interested in the case the value function of the optimal regulation problem is

not smooth and feedback laws involved in stabilizability may be discontinuous.
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1 Introduction

We are interested in the relationship between an optimal regulation problem on the in�nite horizon and the stabiliza-
tion problem for systems a�ne in the control. This relationship is very well understood in the case of the quadratic
regulator for linear systems, where the value function turns out to be quadratic (see, for example, [2, 15, 25], and [10]
for in�nite dimensional systems). The generalization of the linear framework to nonlinear a�ne systems has been

studied in the case the value function of the optimal regulation problem is at least C1 (see [26, 22, 8, 29, 23]). The
main purpose of this paper is to relax this regularity assumption: more precisely, we assume that the value function
is locally Lipschitz continuous. In particular, we study to what extent and in what sense solvability of the optimal
regulation problem still implies stabilizability. Essential tools for our extension are nonsmooth analysis (especially,
the notion of viscosity solution and Clarke gradient) and the theory of di�erential equations with discontinuous

righthand side. Viscosity solutions are used in [20, 21], in order to obtain stabilizability via optimal regulation.
However, in [20, 21] the author limits himself to homogeneous systems. When the value function is of class C1,
stabilization via optimal regulation guarantees robustness and stability margin for the control law (to this respect,

see [19, 33] and especially the book [29]). The robustness issue is not addressed in the present paper; however, our
results indicate that such a development may be possible even in the nonsmooth case.

Let us mention that a very preliminary study of this subject was already performed in [6]. We now describe
more precisely the two problems we deal with.

1.1 Feedback stabilization

We consider a system of the form

_x = f(x) +G(x)u = f(x) +

mX
i=1

uigi(x) (1)

where x 2 Rn; u 2 Rm, the vector �elds f : Rn ! Rn, gi : R
n ! Rn, i = 1; :::;m, are of class C1 and G is the

matrix whose columns are g1; :::; gm. For most of the paper, as admissible inputs we consider piecewise continuous
and right continuous functions u : R ! Rm. We denote by U the set of admissible inputs and by '(t;x; u(�)) the
solution of equation (1) corresponding to a �xed control law u(�) 2 U and such that '(0;x; u(�)) = x. Let us remark
that for every admissible input and every initial condition there exists a Carath�eodory solution which is unique. We
require that all such solutions are right continuable on [0;+1).

We say that system (1) is (globally) stabilizable if there exists a map u = k(x) : Rn ! Rm, called a feedback law,
such that for the closed loop system

_x = f(x) +G(x)k(x) (2)

1



the following properties hold:

(i) (Lyapunov stability) for all � > 0 there exists � > 0 such that for each solution '(�) of (2), j'(0)j < � implies
j'(t)j < � for all t � 0,

(ii) (attractivity) for each solution '(t) of (2) one has limt!+1 '(t) = 0.

It is well known that the class of continuous feedbacks is not su�ciently large in order to solve general stabilization
problems (see [3, 9, 32]). For this reason in the following we also consider discontinuous feedbacks. Of course, the
introduction of discontinuous feedback laws leads to the theoretical problem of de�ning solutions of the di�erential
equation (2) whose righthand side is discontinuous. In the following we consider Carath�eodory and Filippov solutions
(see [17] for the de�nitions of both kinds of solutions). Thus we say that system (1) is either Carath�eodory or Filippov
stabilizable according to the fact that we consider either Carath�eodory or Filippov solutions of the closed-loop system
(2).

1.2 The optimal regulation problem

We associate to system (1) the cost functional

J(x; u(�)) = 1

2

Z +1

0

�
h('(t;x; u(�))) + ju(t)j2




�
dt (3)

where h : Rn ! R is a continuous, radially unbounded function with h(x) � 0 for all x and 
 2 R+. Radially
unboundedness means that limjxj!1 h(x) = +1; such a property is needed in order to achieve global results, and
can be neglected if one is only interested in a local treatment. Occasionally, we will also require that h is positive
de�nite i.e., h(0) = 0 and h(x) > 0 if x 6= 0.

We are interested in the problem of minimizing the functional J for every initial condition x. The value function
V : Rn ! R associated to the minimization problem is

V (x) = inf
u2U

J(x; u(�)):

We say that the optimal regulation problem is solvable if for every x the in�mum in the de�nition of V is actually
a minimum. If this is the case, we denote by u�x(�) an optimal open-loop control corresponding to the initial condition
x; we also write '�

x
(�) instead of '(t;x; u�

x
(�)).

In the classical approach, it is usual to assume that the value function is of class C1. Under this assumption, the
following statement is well known: a system for which the optimal regulation problem is solvable can be stabilized

by means of a feedback in the so-called damping form

u = k�(x) = ��(rV (x)G(x))t (4)

provided that � is a su�ciently large positive real constant. As already mentioned, in this paper we are interested
in the case the value function is merely locally Lipschitz continuous. This case is particularly interesting because it
is known that if h is locally Lipschitz continuous and if certain restrictive assumptions about the right hand side of

(1) are ful�lled, then the value function is locally Lipschitz continuous (see [16]).

1.3 Plan of the paper and description of the results

In Section 2 we generalize the classical necessary conditions which must be ful�lled by optimal controls and by the
value function of an optimal regulation problem. We also provide an expression for an optimal control which is
reminiscent of the feedback form (4).

The results concerning stabilization are presented in Sections 3 and 4. By combining some well known results
about stabilization of asymptotically controllable systems, with the characterizations of optimal controls given in
Section 2, in Section 3 we �rst prove that solvability of the optimal regulation problem implies Carath�eodory

stabilizability. Then, by assuming that the value function is C-regular, we prove that the solvability of the optimal
regulation problem also implies Filippov stabilizability. Unfortunately, by this way we are not able to recover any
explicit form of the feedback law. We are so led to directly investigate the stabilizing properties of the feedback (4).
To this respect, we prove two theorems in Section 4. Both of them apply when the value function is nonpathological
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(in the sense introduced by Valadier in [34]). The �rst one makes use of a strong condition, actually implying that
(4) is continuous. The second theorem is more general, but requires an additional assumption.

In Section 5 we �nally prove a nonsmooth version of the optimality principle (see [22, 8, 29]). It turns out to
be useful in the analysis of the illustrative examples presented in Section 6. Particularly interesting are Examples 4
and 5, which enlightens some intriguing features of the problem.

Two appendices conclude the paper. In Appendix A we collect some tools of nonsmooth analysis used throughout
the paper. These include a new characterization of Clarke regular functions and the proof that semiconcave functions
are nonpathological. The proofs of all the results of the present paper are based on several Lemmas, which are stated
and proved in Appendix B.

2 Necessary conditions for optimality

It is well known that when the value function is of class C1, a necessary (as well as su�cient) condition for optimality
can be given in terms of a partial di�erential equation of the Hamilton-Jacobi type. Moreover, optimal controls
admit a representation in the feedback form (4), with � = 
 (see for instance [31]). The aim of this section is
to prove analogous results for the case the value function is locally Lipschitz continuous. The optimal regulation
problem (3) is naturally associated with the pre-Hamiltonian function

H(x; p; u) = �p �
�
f(x) +G(x)u

�
� h(x)

2
� juj2

2

: (5)

For each x and p, u 7! H(x; p; u) is strictly concave. By completing the square, we easily obtain the following
expression for the Hamiltonian function

H(x; p) =
def

max
u

H(x; p; u) = H(x; p;�
(pG(x))t) = �pf(x) + 


2
jpG(x)j2� h(x)

2
: (6)

The achievements of this sections are presented in the following Propositions. Comments and remarks are
inserted in order to relate our conclusions to the existing literature. The proofs are essentially based on the Dynamic
Programming Principle (see [7, 31]), and some Lemmas established in Appendix B; we also exploit certain tools of
nonsmooth analysis (see Appendix A for notations and de�nitions).

Proposition 1 Assume that the optimal regulation problem is solvable and that the value function V (x) is locally
Lipschitz continuous. Let x 2 Rn be �xed. Let u�x(�) be an optimal control for x and let '�x(�) be the corresponding

optimal solution. Then for all t � 0 there exists p0(t) 2 @CV ('�x(t)) such that

(i) H('�
x
(t); p0(t)) = 0

(ii) u�
x
(t) = �
(p0(t)G('�x(t)))t.

Proof Lemma 1 and Lemma 2 imply that

8x 2 Rn; 8t � 0; 9u0(t) 2 Rm; 9p0(t) 2 @CV ('�x(t)) such that H('�
x
(t); p0(t); u0(t)) = 0 :

On the other hand by Lemma 3, H('�x(t); p0(t); u) � 0 for each u 2 Rm. Recalling the de�nition of H, (i) and

(ii) are immediatly obtained.

Remark 1 Under the assumptions of Proposition 1, we also have

8x 2 Rn 9p0 2 @CV (x) such that H(x; p0) = 0 : (7)

This follows from statement (i), setting t = 0.

Proposition 1 is a necessary condition for an open loop control being optimal. In particular, (ii) provides the
analogue of the usual feedback form representation of optimal controls. Next Proposition gives necessary conditions
for V (x) being the value function of the optimal regulation problem.

3



Proposition 2 Given the optimal regulation problem (3), assume that the value function V (x) is locally Lipschitz
continuous. Then,

(i) for each x 2 Rn and for each p 2 @CV (x), H(x; p) � 0.

In addition, assume that the optimal regulation problem is solvable. Then,

(ii) for each x 2 Rn and for each p 2 @V (x), H(x; p) = 0.

Proof Statement (i) is an immediate consequence of Lemma 3 and the de�nition of H; statement (ii) follows by
Lemma 4, taking into account statement (i).

Propositions 1 and 2 can be interpreted in terms of generalized solutions of the Hamilton-Jacobi equation

H(x;rV (x)) = 0 : (8)

Indeed, Proposition 2 implies in particular that V is a viscosity solution of (8) (a similar conclusion is obtained
in [16], for a more general cost functional but under restrictive assumptions on the vector �elds). Note that (ii)
of Proposition 2 cannot be deduced from Theorem 5.6 of [7], since in our case the Hamiltonian function is not
uniformely continuous on Rn. Together with (i) of Proposition 2, (7) can be interpreted by saying that V (x) is a
solution in extended sense of (8) (since p 7! H(x; p) is convex, the same conclusion also follows from Proposition
5.13 of [7]: in fact, we provide a simpler and more direct proof).

Finally, Proposition 2 (i) implies that V (x) is a viscosity supersolution of the equation

�H(x;rV (x)) = 0 : (9)

Remark 2 In general it is not true that V (x) is a viscosity subsolution of (9), unless certain additional conditions
such as C-regularity are imposed (see next Corollary 1). This is the reason why the complete equivalence between
solvability of the optimal regulation problem, solvability of the Hamilton-Jacobi equation and stabilizability by

damping feedback breaks down in the general nonsmooth case. Basically, the main di�erence between the smooth
and the nonsmooth case reduces to it.

If the value function V (x) satis�es additional assumptions, further facts can be proven. For instance, from
Proposition 2 (ii) and Proposition 4 (see Appendix A) we immediately obtain:

Corollary 1 Assume that the optimal regulation problem is solvable, and let V (x) be the value function. Assume
further that V (x) is locally Lipschitz continuous and C-regular. Then

8x 2 Rn 8p 2 @CV (x) ; H(x; p) = 0 : (10)

Remark 3 Corollary 1 implies that V is a subsolution of the equation (9), as well. Moreover, when V (x) is

C-regular, in Proposition 1(ii) we can choose any p0(t) 2 @CV ('�x(t)).

3 Control Lyapunov functions and stabilizability

In this section we show that the value function of the optimal regulation problem can be interpreted as a control
Lyapunov function for system (1). Then by using well known results in the literature, we will be able to recognize
that a system for which the optimal regulation problem is solvable, can be stabilized both in Carath�eodory and

Filippov sense. However, by this approach, it is not possible to give an explicit construction of the feedback law.
Since we consider nonsmooth value functions, our de�nition of control Lyapunov function must make use of

some sort of generalized gradient. Actually we need two di�erent kinds of control Lyapunov function, introduced
respectively by Sontag and Ri�ord (see [32, 28]). Let us denote by @V a (for the moment unspeci�ed) generalized
gradient of a function V : Rn ! R.
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De�nition 1 We say that V : Rn ! R+ is a control Lyapunov function for system (1) in the sense of the generalized
gradient @ if it is continuous, positive de�nite and radially unbounded and there exist W : Rn ! R continuous,
positive de�nite and radially unbounded and � : R+ ! R+ nondecreasing such that

sup
x2Rn

max
p2@V (x)

min
juj��(jxj)

fp �
�
f(x) + G(x)u

�
+W (x)g � 0

i.e.,
8x 2 Rn; 8p 2 @V (x); 9u : juj � �(jxj) and p �

�
f(x) +G(x)u

�
+W (x) � 0:

In particular, we say that V (x) is a control Lyapunov function in the sense of the proximal sub-di�erential if
@ = @P and we say that V (x) is a control Lyapunov function in the sense of Clarke generalized gradient if @ = @C .

3.1 Carath�eodory stabilizability

We now prove the Carath�eodory stabilizability result. We get it as a consequence of Ancona and Bressan's result (see
[1]) which states that an asymptotically controllable system is Carath�eodory stabilizable. The expression obtained
for the optimal control in Proposition 1 also plays an important role. Let us �rst recall the de�nition of asymptotic
controllability.

We say that system (1) is asymptotically controllable if
(i) for each x there exists an input ux(�) 2 U such that lim

t!+1
'(t;x; ux(�)) = 0,

(ii) for each � > 0 there exists � > 0 such that if jxj < �, there exists a control ux(�) as in (i) such that j'(t;x; ux(�))j <
� for each t � 0.
Moreover, we require that there exist �0 > 0 and �0 > 0 such that if jxj < �0, then ux(�) can be chosen in such a
way that jux(t)j < �0 for t � 0.

Theorem 1 Let system (1) be given, and let h(x) be continuous, radially unbounded and positive de�nite. If the
optimal regulation problem (3) is solvable and if its value function V (x) is locally Lipschitz continuous and radially

unbounded, then V (x) is a control Lyapunov function in the sense of the proximal subdi�erential, and the system is
asymptotically controllable. Moreover, the system is Carath�eodory stabilizable.

Proof Thanks to Theorem D in [32], page 569, system (1) is asymptotically controllable if and only if there exists
a control Lyapunov function in the sense of the proximal subdi�erential. Thus, the conclusion follows from Lemma

4 (Appendix B) and the fact that @PV (x) � @V (x).
Note that the existence of � such that ju�

x
(0)j � �(jxj) is a consequence of the feedback form obtained for the

optimal control in Proposition 1 and the fact that the set-valued map @CV is upper semi-continuous with compact
values. The second statement is therefore a consequence of Theorem 1 in [1].

We remark that since asymptotic controllability has been proven, stabilizability in the sense of the so called
sampling solutions may also be deduced (see [13]). A di�erent proof of asymptotic controllability which does not
make use of Theorem D in [32] was already given in [6]. There the fact that an optimal control gives asymptotic

controllability was proved by means of Lemma 5. From that proof it turns out evidently that the optimal control
itself gives asymptotic controllability.

3.2 Filippov stabilizability

We now discuss Filippov stabilizability. In this section we consider the case where the value function V (x) is C-
regular. The result is based on the interpretation of the value function as a control Lyapunov function in the sense
of Clarke generalized gradient. In the following section the result will be improved: indeed, in Section 4 we will
show that under the same assumptions the system can be stabilized just by the damping feedback (4), with � large

enough.

Theorem 2 Let system (1) be given, and let h be continuous, radially unbounded and positive de�nite. If the
optimal regulation problem (3) is solvable and if its value function V (x) is locally Lipschitz continuous, C-regular
and radially unbounded, then V (x) is a control Lyapunov function in the sense of Clarke gradient. Moreover, the

system is Filippov stabilizable.
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Proof The �rst statement is a trivial consequence of Lemma 4, the fact that for C-regular functions @V (x) =
@CV (x) for all x (see Proposition 4 in Appendix A), and the feedback form obtained for the optimal control in
Proposition 1. Then, the second statement follows from Theorem 2.7 in [28], according to which the existence of a
control Lyapunov function in the sense of Clarke gradient guarantees Filippov stabilizability (the di�erences between
our de�nition of control Lyapunov function in the sense of Clarke generalized gradient and the de�nition given in
[28] are not essential).

Remark 4 Due to Theorem 2.7 in [28], the existence of a control Lyapunov function in the sense of Clarke gener-
alized gradient for (1) also implies the existence of a C1 Lyapunov function. In turn, thanks to Sontag universal
formula, this implies the existence of a stabilizing feedback in C1(Rnnf0g) (see also Theorem 2.8 in [28]).

4 Stabilization by damping feedback

As already mentioned, in this section we improve the result of Theorem 2. More precisely, we discuss the possibility
of stabilizing the system by means of an explicit feedback in damping form. For a moment, let us forget the optimal
regulation problem, and let V (x) be any locally Lipschitz continuous function. Consider the corresponding feedback
law de�ned by (4). When it is implemented, it gives rise to the closed loop system

_x = f(x) + G(x)k�(x) = f(x) � �G(x)(rV (x)G(x))t : (11)

In general, the righthand side of (11) is not continuous. Indeed, by virtue of Rademacher's Theorem the righthand
side of (11) is almost everywhere de�ned; moreover, it is locally bounded and measurable (see [5]). Nevertheless,
under the assumptions of next theorem, the feedback law (4) turns out to be continuous, so that (11) possesses
solutions in classical sense.

Let h : Rn 7! R be any continuous, positive de�nite, radially unbounded function, and de�ne H according to
(6).

Theorem 3 Let V (x), h(x) and H(x; p) be as above. Assume that

8x 2 Rn 8p 2 @CV (x) ; H(x; p) = 0 : (12)

Then, the map x 7! rV (x)G(x) admits a continuous extension. If in addition V (x) is positive de�nite, radially
unbounded and nonpathological, the damping feedback (4) with � � 


2
is a stabilizer (in classical sense) for system

(1).

Proof By contradiction, assume that there exists a point �x where rV (x)G(x) cannot be completed in a continuous
way. There must exist sequences x0n ! �x and x00n ! �x such that

lim
n

rV (x0
n
)G(x0

n
) = c0 6= c00 = lim

n

rV (x00
n
)G(x00

n
) :

Since V (x) is locally Lipschitz continuous, its gradient, where it exists, is locally bounded. Possibly taking
subsequences, we may assume that the limits

p0 = lim
n
rV (x0

n
) and p00 = lim

n
rV (x00

n
)

exist. Of course, p0 6= p00. Clearly, p0; p00 2 @CV (�x), and hence by assumption (12)

� p0f(�x) +



2
jc0j2 � h(�x)

2
= 0 and � p00f(�x) +




2
jc00j2 � h(�x)

2
= 0 : (13)

Let 0 < �; � < 1, with �+ � = 1. From (13) it follows

� pf(�x) +



2

�
�jc0j2 + �jc00j2

�
� h(�x)

2
= 0 (14)

where p = �p0 + �p00. On the other hand, since @CV (�x) is convex, invoking again assumption (12) we have

0 = �pf(�x) + 


2
jpG(�x)j2 � h(�x)

2
< �pf(�x) + 


2

�
�jc0j2 + �jc00j2

�
� h(�x)

2
= 0 (15)
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where we also used the fact that the map c 7! jcj2 is strictly convex. Comparing (14) and (15) we obtain a
contradiction, and the �rst conclusion is achieved.

The second conclusion is based on the natural interpretation of V as a Lyapunov function for the closed loop
system. Although we now know that the right hand side of such system is continuous, we cannot apply the usual
Lyapunov argument since V is not di�erentiable. Instead, we invoke Proposition 6 in Appendix A, which is stated
in terms of the set-valued derivative of a nonpathological function with respect to a di�erential inclusion.

Let x be arbitrarily �xed (x 6= 0) and let a 2 _V
(17)

(x). Then a is such that there exists q 2 @CV (x) such that

a = p � (f(x) � 


2
G(x)(qG(x))t) for all p 2 @CV (x). We have to prove that a < 0. If we take p = q we obtain the

following expression for a:

a = q � f(x) � 


2
jqG(x)j2: (16)

By virtue of assumption (12), we get that a = �h(x)

2
. Finally, we recall that h is positive de�nite. The statement is

so proved for � = 


2
. The case � > 


2
easily follows.

Coming back to the optimal regulation problem and recalling Corollary 1, we immediatly have the following.

Corollary 2 The same conclusion of Theorem 3 hold in particular when the optimal regulation problem is solvable
and the value function V (x) is locally Lipschitz continuous, C-regular and radially unbounded.

Remark 5 Theorem 2 and Corollary 2 emphasize the role of C-regular functions. To this respect, it would be
interesting to know conditions about the function h(x) which enable us to prove that V (x) is C-regular. The problem

seems to be open in general. In Section 6 we show some examples where the function V (x) is C-regular. Moreover,
we point out some particular (but not completely trivial) situations where convexity (and hence, C-regularity and

Lipschitz continuity) of V (x) is guaranteed.
Assume for instance that system (1) is linear i.e., f(x) = Ax and G(x) = B, and that h is convex. Let x1; x2 2 Rn,

let 0 � �; � � 1 be such that � + � = 1, and let " > 0. We have

�V (x1) + �V (x2) + " � 1

2

�Z 1

0

�
�h('"x1(t)) + �h('"x2(t))

�
dt+

1




Z 1

0

(�ju"x1(t)j
2 + �ju"x2(t)j

2) dt

�

where, according to the de�nition of V , u"
xi

is such that V (xi) + " � J(xi; u
"

xi
), (i = 1; 2). Using the convexity of

both h and the quadratic map u 7! juj2, yields

�V (x1) + �V (x2) + " � 1

2

�Z 1

0

h(�'"
x1
(t) + �'"

x2
(t)) dt+

1




Z 1

0

j�u"
x1
(t) + �u"

x2
(t)j2 dt

�
:

Finally, by virtue of linearity

�V (x1) + �V (x2) + " � 1

2

�Z 1

0

h('�x1+�x2 (t)) dt+
1




Z 1

0

ju(t)j2 dt
�

where u(t) = �u"x1(t) + �u"x2(t) and 'x(t) = '(t;x; u(�)). Since V is an in�mum and the choice of " is arbitrary, we
conclude

�V (x1) + �V (x2) � V (�x1 + �x2) :

Note that here existence of solutions of the optimal regulation problem, so as a priori information about the
value function, are not required.

Next theorem provides an alternative stabilizability result. Condition (12) of Theorem 3 is weakened, so that
the damping feedback (4) is no more expected to be continuous in general. As a consequence, the stability analysis
will be carried out in terms of Filippov solutions. Recall that Filippov solutions of (11) coincide with the solutions
of the di�erential inclusion

_x 2 f(x) � �G(x)(@CV (x)G(x))
t (17)
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(see [27], [5]), where the set valued character of the righthand side depends on the presence of Clarke gradient.
Weakening condition (12) is balanced by the introduction of a new assumption. Roughly speaking, this new

assumption amounts to say that V is not \too irregular" with respect to the vector �elds g1; : : : ; gm (in a sense to
be precised).

In particular, Theorem 4 focuses on the class of nonpathological functions. The de�nition is given in Appendix
A. We recall that the class of nonpathological functions includes both C-regular and semiconcave functions.

Theorem 4 Let V (x) be any locally Lipschitz continuous, positive de�nite, radially unbounded and nonpathological
function. Let h(x) be any continuous, positive de�nite, radially unbounded function. Moreover, let H be de�ned as
in (6), and assume that

8x 2 Rn 9p0 2 @CV (x) such that H(x; p0) = 0 : (18)

Let � and 
 be given positive numbers, and assume that the following condition holds:

[H] There exists a real constant R < 1 such that the following inequality holds:


(A2
1 + : : :+ A2

m
)� 2�(A1B1 + : : :+ AmBm)�Rh(x) � 0 (19)

for each x 2 Rn (x 6= 0) and each choice of the real indeterminates A1; : : : ; Am, B1; : : : ; Bm subject to the following
constraints:

Ai; Bi 2 [D
C
V (x; gi(x)); DCV (x; gi(x))] for i = 1; : : : ;m : (20)

Then, the feedback law (4) Filippov stabilizes system (1).

Proof As in the proof of Theorem 3 we shall apply Proposition 6 in Appendix A. Let a 2 _V
(17)

(x). By construction,
there exists �q 2 @CV (x) such that for each p 2 @CV (x) we have

a = p � f(x) � �(�qG(x))(pG(x))t :

In order to prove the theorem, it is therefore su�cient to show the following

Claim. For each x 6= 0 there exists p0 2 @CV (x) such that for each q 2 @CV (x)

p0 � f(x) � �(qG(x))(p0G(x))
t < 0:

Let p0 be as in (18) and let q be any element in @CV (x). We have

p0 � f(x) � �(qG(x))(p0G(x))
t =

=
1

2

h
�h(x) +

�

(p0G(x))(p0G(x))

t � 2�(qG(x))(p0G(x))
t
�i

:

For each x 6= 0, let us interprete A1; : : : ; An as the components of the vector p0G(x) and, respectively, B1; : : : ; Bn

as the components of the vector qG(x). Now, (20) is ful�lled and (19) is applicable, so that we �nally have

p0 � f(x) � �(qG(x))(p0G(x))
t � h(x)

2
(R� 1) < 0 :

Taking into account Proposition 1, we immediatly have the following.

Corollary 3 Let h be positive de�nite, continuous and radially unbounded. Assume that the optimal regulation prob-

lem is solvable and that the value function V is locally Lipschitz continuous, nonpathological and radially unbounded.
Assume �nally condition [H]. Then, the feedback law (4) Filippov stabilizes system (1).

8
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Figure 1: 0 < R < 1 ; 
 � 2�

In order to grasp the meaning of condition [H], let us focus on the single-input case (m = 1). Writing A;B
instead of A1; B1, conditions (19), (20) reduce to


A2 � 2�AB �Rh(x) � 0 (21)

for each x 2 Rn (x 6= 0) and each choice of the pair A;B satisfying

A;B 2 [DC
V (x; g(x)); DCV (x; g(x))] : (22)

In the plane of coordinates A;B, (21) de�nes a region bounded by the branches of an hyperbola. Our assumptions
amounts to say that the square

Q = [D
CV (x; g(x)); DCV (x; g(x))]� [D

CV (x; g(x)); DCV (x; g(x))]

is contained in this region (intuitively, it means that the distance between D
CV (x; g(x)) and DCV (x; g(x)) should

be not too large). Note that the \north-est" and the \south-west" corners of Q lie on the line B = A.
In order to rewrite the condition in a more explicit way, we distinguish several cases. In the following, we set for

simplicity D = D
C
V (x; g(x)) and D = DCV (x; g(x)).

First case. Assume that the condition (21), (22) is veri�ed with 0 < R < 1, and let 
 � 2�. The line B = A is
contained in the \good" region (see Figure 1). Let

A0 =

s
Rh(x)


 + 2�

be the abscissa of the intersection between the line B = �A and the right branche of the hyperbola. Then, condition
(21), (22) is equivalent to 8>>>><

>>>>:
D � 
D

2 � Rh(x)

2�D
if D � A0

D �
�D �

q
�2D

2
+ 
Rh(x)



if D � A0

(23)

(for D = A0 the two formulas coincides).

When 
 > 2�, the line B = A cross the hyperbola in two points whose abscissas are A1 =
q

Rh(x)


�2� and �A1 (see

Figure 2). The condition (21), (22) is still reducible to (23), but it can be satis�ed only if

D � A0 or D � �A0 :

9
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Figure 2: 0 < R < 1 ; 
 > 2�
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Figure 3: R = 0 ; 
 < 2�

Second case. Assume now that the condition (21), (22) is veri�ed with R = 0. In this case the hyperbola
degenerates, and the \good" region becomes a cone. It contains the line B = A if and only if 
 � 2�. Hence, the
condition is never satis�ed if 
 > 2�.

If 
 = 2�, the condition is satis�ed provided that D = D, and hence in particular when V is smooth.

Finally, if 
 < 2�, conditions (23) simpli�es in the following manner (see Figure 3)8>>><
>>>:
D � 
D

2�
if D � 0

D � 2�D



if D < 0 .

(24)

Third case. Assume �nally that the condition (21), (22) is veri�ed with R < 0. The \good" regions are now the
convex regions bounded by the branches of the hyperbola (see Figure 4).

The condition is never satis�ed if 
 � 2�. For 
 < 2�, the condition are given by (23). However, the condition
cannot be satis�ed if

0 � D < A1 or �A1 < D � 0 :

Remark 6 Note that in certain cases stabilization is possible even if 2� < 
 (typically, this happens for stabilizable

driftless systems).
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Figure 4: R < 0 ; 
 < 2�

5 Su�cient conditions for optimality

In this section we enlarge the class of admissible inputs to all measurable, locally bounded maps u(t) : [0;+1)! Rm.
The aim is to extend the following result, whose proof can be found in [22, 8, 29] in slightly di�erent forms.

Optimality Principle. If the Hamilton-Jacobi equation (8) admits a positive de�nite, C1 solution V (x) such that
V (0) = 0, and if the feedback (4) with � = 
 is a global stabilizer for (1), then for each initial state x, trajectories
corresponding to the same feedback law minimize the cost functional (3) over all the admissible inputs u(t) for which
limt!+1 '(t;x; u(�)) = 0. Moreover, V (x) coincides with the value function.

As remarked in [29], restricting the minimization to those inputs whose corresponding solutions converge to zero,
can be interpreted as incorporating a detectability condition. In this section we explicit the detectability condition
by assuming that h is positive de�nite.

The following result can be seen as a partial converse of Proposition 1. Roughly speaking, it says that if
the closed loop system admits a Carath�eodory solution satisfying the necessary conditions and driving the system
asymptotically to zero, then this solution is optimal.

Theorem 5 Consider the optimal regulation problem (3) with h(x) continuous, positive de�nite and radially un-
bounded, and let V (x) be any locally Lipschitz continuous, radially unbounded and positive de�nite function. Assume
in addition that V (x) is nonpathological. Let H be de�ned according to (6), and assume that

(A) 8x 2 Rn; 8p 2 @CV (x) one has H(x; p) � 0 .

Let xo 2 Rn, and let uo(t) be any admissible input. Let us write for simplicity 'o(t) = '(t;xo; uo(�)) and assume
that

(B) for a.e. t � 0 there exists po(t) 2 @CV ('o(t)) such that

(i) H('o(t); po(t)) = 0

(ii) uo(t) = �
(po(t)G('o(t)))t;
(C) limt!+1 'o(t) = 0.

Then, uo(t) is optimal for xo. Moreover, the value function of the optimal regulation problem and V (x) coincides
at xo.

Proof Since 'o(t) is absolutely continuous, by (B)(ii) we have for a.e. t � 0

_'o(t) = f('o(t)) �G('o(t))uo(t) = f('o(t))� 
G('o(t))(po(t)G('o(t)))t :

Using (B)(i), we now can compute the cost

11



J(xo; uo(�)) =
1

2

Z +1

0

�
h('o(t)) +

juo(t)j2



�
dt

=

Z +1

0

�po(t) [f('o(t)) � 
G('o(t))uo(t)] dt

=

Z +1

0

�po(t) _'o(t) dt = V (xo)

where the last equality follows by virtue of Lemma 6 and (C). In order to complete the proof, we now show that for
any other admissible input u(t), we have

V (xo) = J(xo; uo(�)) � J(xo; u(�)) :
For simplicity, we use again a shortned notation '(t) = '(t;xo; u(�)). Let us distinguish two cases.

1) The integral in (3) diverges. In this case, it is obvious that J(xo; uo(�)) = V (xo) < J(xo; u(�)).
2) The integral in (3) converges. According to Lemma 5, we conclude that limt!+1 'o(t) = 0, and since V (x)

is radially unbounded, continuous and positive de�nite, this in turn implies limt!+1 V ('(t)) = 0. Let p(t) be any
measurable selection of the set valued map @CV ('(t)) (such a selection exists, since @CV ('(t)), the composition
of an upper semicontinuous set valued map and a continuous single valued map, is upper semicontinuous, hence
measurable; see [4]). By (A), and the usual completing the square method, we have

J(xo; u(�)) =
1

2

Z +1

0

�
h('(t)) +

ju(t)j2



�
dt

�
Z +1

0

h
� p(t)f('(t)) +




2
jp(t)G('(t))j2 + ju(t)j2

2


i
dt

=

Z +1

0

h
� p(t)f('(t)) � p(t)G('(t))u(t) +

1

2

j
p(t)G('(t)) + u(t)j2

i
dt

�
Z +1

0

�p(t) _'(t) dt = V (xo)

where we used again Lemma 6. This achieves the proof. In particular, we see that uo(t) is optimal, and we see that
the value function of the minimization problem (3) coincides with V (x) at xo.

Note that (C) is actually necessary, since h(x) is positive de�nite (see Lemma 5). It could be replaced by the
assumption that J(xo; uo(�)) is �nite.

Corollary 4 Let h(x) be continuous, radially unbounded and positive de�nite. Let V (x) be any locally Lipschitz
continuous, radially unbounded and positive de�nite function. Assume in addition that V (x) is nonpathological. Let
�nally H be de�ned according to (6), and assume that (12) holds. Then, for each x 2 Rn there exists a measurable,
locally bounded control which is optimal for the minimization problem (3). Moreover, the value function and V (x)
coincide at every x 2 Rn.

Proof Let x0 2 Rn and let 'o(t) be any solution of the initial value problem�
_x 2 f(x) + G(x)k
(x)
x(0) = xo

(25)

where for a.e. x 2 Rn, k
(x) = �
(rV (x)G(x))t (that is, at those points where the gradient exists, k
 is given
by (4) with � = 
). By virtue of Theorem 3, we can assume that k
(x) is continuous, so that such a 'o(t) exists,

and it is a solution in classical sense. From the proof of Theorem 3, it is also clear that k
(x) = �
(pG(x))t
for each p 2 @CV (x) and each x 2 Rn. Since x 7! @CV (x) is compact convex valued and upper semicontinuous,
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Figure 5: Level curves of V (x; y) = (4x2 + 3y2)1=2 � jxj

by Filippov's Lemma ([4]) there exists a measurable map po(t) 2 @CV ('
o(t)) such that for a.e. t � 0, one has

k
('
o(t)) = �
(po(t)G('o(t)))t.

Let us set uo(t) = �
(po(t)G('o(t)))t. Note that 'o(t) is the unique solution of (1) issuing from xo and
corresponding to the admissible input uo(t).

Theorem 3 also states that k
(t) is a stabilizing feedback. In conclusion, all the assumptions (A), (B), (C) of
Theorem 5 are ful�lled. The statement is proven.

6 Examples

The results of the previous sections are illustrated by the following examples.

Example 1 Consider the two-dimensional, single input driftless system�
_x
_y

�
= ug(x; y) where g(x; y) =

�
x2 � y2

2xy

�

(the so-called Artstein's circles example). The function V (x; y) =
p
4x2 + 3y2 � jxj is a control Lyapunov function

(in the sense of proximal gradient) for this system. As a sum of a function of class C1 and a concave function, V is
semiconcave in R2 nf(0; 0)g, but not di�erentiable when x = 0 (the level curves are piecewise arcs of circumferences:
see Figure 5).

We want to construct an optimization problem with 
 = 1, whose value function is V . To this purpose, we follow

an \inverse optimality" approach (see [29]). De�ne

h(x; y) =

8><
>:
�

xp
4x2+3y2

�
4x2 + 2y2 � jxj

p
4x2 + 3y2

�
+ (sgnx)y2

�2
if x 6= 0

y4 if x = 0 .

(26)

Note that h(x; y) is continuous and positive de�nite. Equation (8) takes the form

(rV (x; y)g(x; y))2 = h(x; y) :

A simple computation shows that it is ful�lled in the usual sense if x 6= 0. In points where x = 0, we have

@CV (0; y) = ( p1;
p
3 sgn y ) where p1 2 [�1; 1]

and the Hamilton-Jacobi equation reduces to
�
@V

@x

�2
= 1. Consistently with Propositions 1 and 2, we therefore see

that V is a viscosity subsolution, and actually a viscosity solution (note that the subdi�erential is empty for x = 0,
y 6= 0), as well as a solution in extended sense. We also see that V is a viscosity supersolution of (9), but not a
viscosity subsolution of such equation.
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Figure 6: Level curves of V (x; y) = jxj+ y2

The damping feedback k1(x) corresponding to V (i.e., (4) with � = 1) is easily computed for x 6= 0 (it coincides
with minus the expression inside the square brackets in (26)). It turns out to be positive if x < 0, and negative
if x > 0. It is discontinuous along the y-axis. Its construction can be completed in such a way condition (i) of
Proposition 1 is preserved. In fact, at the points of the form (0; y) there are two possible choices of the vector p0.
Both of them give rise to a stabilizing feedback, provided that solutions are intended in Carath�eodory sense.

Now let 'o(t) be any Carath�eodory solution of the closed loop system, and let uo(t) = k1('
o(t)). The assumptions

(A), (B), (C) of Theorem 5 are ful�lled. Thus, all the solutions of the closed loop system are optimal and V is
actually the value function.

Note that in this example optimal controls are not unique. Note also that the damping feedback does not stabilize
the system in Filippov sense. On the other hand, it is well known that Artstein's circles system cannot be stabilized
in Filippov sense.

Example 2 Given the two-dimensional, single input linear system�
_x = �x
_y = y + 2u

we want to impose the value function V (x; y) = jxj+ y2. Note that V is C-regular, but not di�erentiable for x = 0.

Its level curves are plotted in Figure 6. Let us set

h(x; y) = 2jxj+ 12y2

and 
 = 1. The function h(x) is continuous, positive de�nite and radially unbounded. In points where x 6= 0, V is
smooth: the Hamilton-Jacobi equation is ful�lled in the usual sense. In points where x = 0, we have

@CV (0; y) = ( p1; 2y ) where p1 2 [�1; 1] :
The Hamilton-Jacobi equation reduces to an identity in these points, so that (12) is satis�ed. According to

Theorems 3 and 5, the damping feedback is continuous. It takes the form

k�(x; y) = ��rV (x; y)g(x; y) = �4�y : (27)

Hence, it is a stabilizer for � � 1
2
(actually, we have a larger stability margin: � > 1

8
). Moreover, for � = 1, it

generates the optimal solutions. Finally, thanks to Corollary 4 V (x) coincides with the value function.
Note that in this example matrix G is constant. Nevertheless, in points of the form (0; y) the Hamiltonian

function H is not strictly convex with respect to p.

Example 3 First we consider the single-input, driftless system�
_x
_y

�
= ug(x; y) where g(x; y) =

�
x

y

�
(28)
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Figure 7: Level curves of V (x; y) = 7
4
x2 + 13

4
y2 � 33=2

2
jxjy

Figure 8: Level curves of V (x; y) = x2 + y2 + jxjy2

and choose the semiconcave function V of the Example 1. To interpret V as a value function, we de�ne 
 = 1 and
h(x; y) = V 2(x; y). Theorem 3 is applicable, and the damping feedback law is continuous. Optimality of solutions

and the fact that V is the value function are guaranteed by Corollary 4. Similar conclusions are obtained if we take
the semiconvex function V (x; y) =

p
4x2 + 3y2 + jxj.

Finally, we consider system (28) and the associated optimal regulation problem with 
 = 1 and h(x; y) =�
7
2
x2 + 13

2
y2 � 3

p
3jxjy

�2
. The value function in this case is given by V (x; y) = 7

4
x2 + 13

4
y2 � 3

p
3

2
jxjy. Such a

function V is neither C-regular nor semiconcave, but it is nonpathological (the levels curves are plotted in Figure
7). Even in this case, Theorem 3 and Corollary 4 are applicable.

Example 4 In this example we consider the system�
_x = u

_y = �y3

and the function V (x; y) = x2 + y2 + jxjy2 (see Figure 8). By direct computation, it is possible to see that
@CV (x; y) = @V (x; y) at each point, so that V is C-regular, and hence nonpathological. In particular, along the
y-axis we have

@CV (0; y) = (p1; 2y) with p1 2 [�y2; y2] :
De�ne 
 = 1 and h(x; y) = 4x2+5y2+4jxj(y4+ y2). Then the Hamilton-Jacobi equation (8) is satis�ed by V (x)

in the usual sense when x 6= 0. Along the y-axis the Hamiltonian reduces to 1
2
(p21�y4). Thus, we have H(p; 0; y) � 0

for each p in the Clarke gradient, but the equality holds only at the extremal points. Hence, V (x; y) is seen to be

a viscosity subsolution of (8) (since V is C-regular but not di�erentiable along the y-axis, the superdi�erential is
empty in these points), but not a supersolution.
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In particular, condition (12) is not met and Theorem 3 is not applicable. Nevertheless, the system is Filippov
stabilized by the (discontinuous) damping feedback k1(x; y) = �2x� (sgnx)y2. Indeed, a simple computation shows
that condition [H] is ful�lled with 3=5 � R < 1, so that we can use Theorem 4.

As far as the existence of optimal controls is concerned, we make the following important remark. Given an
initial point (�x; �y), we do not have for sure that there is a Carath�eodory solution of the closed loop system issuing
from (�x; �y) and asymptotically going to the origin. In fact, by numerical simulation one realizes that this is actually
false, with the exception of the points along the x-axis. As a matter of fact, if �x 6= 0, �y 6= 0, the solution starting
from (�x; �y) hits the y-axis at some point (0; ŷ) with ŷ 6= 0. The only way to construct a Carath�eodory solution
issuing from a point (0; �y), moving along the y-axis and asymptotically going to the origin, is taking u = 0. But in
this way the necessary conditions for optimality fail. In fact, by direct computation is possible to see that the cost
of such a solution is stricty greater than V (0; �y).

In conclusion, according to the theory developed in this paper, we have the following alternative: either V is
not the value function of the optimal regulation problem, or there exist no optimal controls (with the exceptions of
points along the x-axis).

Example 5 Consider the two-dimensional driftless system with two inputs�
_x

_y

�
= u1g1(x; y) + u2g2(x; y) where g1(x; y) =

�
x+ y

x+ y

�
; g2(x; y) =

�
x� y

�x+ y

�
:

In order to impose the value function V (x; y) = jxj+ jyj, we try h(x; y) = 4(jxj+ jyj)2. Note that V is locally
Lipschitz continuous and C-regular, while h is continuous and positive de�nite. As before, we set 
 = 1. For xy 6= 0,
V is di�erentiable, and the Hamilton-Jacobi equation is satis�ed in the usual sense. This allows us to construct a
(discontinuous) feedback in damping form

�
u1 = k1(x; y) = �2(jxj+ jyj)
u2 = k2(x; y) = 0

if xy > 0 ; and

�
u1 = k1(x; y) = 0
u2 = k2(x; y) = �2(jxj+ jyj) if xy < 0 (29)

In points of the form (x; 0) we have

@CV (x; 0) = ( 1; p2 ) where p2 2 [�1; 1]
so that the Hamilton-Jacobi equation reduces to

2x2(1 + p22) = 4x2 :

This equality is satis�ed only for p2 = �1. Even in this case we see that V is a viscosity subsolution of (8), but

not a supersolution. Unfortunately, if we complete the construction of the feedback (29) according to one of these
choices, the closed loop system has no (Carath�eodory) solution issuing from (x; 0). In fact, the only way to construct
a solution going to the origin for t! +1, is to take a strict convex combination of the two vector �elds g1; g2, but
this cannot be done in \optimal" way.

In conclusion, the necessary conditions are not satis�ed for points of the form (x; 0), so that we have again the
alternative: either V is not the value function or the optimal regulation problem is not solvable for these points.
Actually, we conjecture that in this example the optimal regulation problem is solvable only for points lying on the
lines y = �x.

7 Appendix A (Tools from nonsmooth analysis)

For reader's convenience, we shortly review the de�nitions of the various extensions of derivatives and gradients used
in this paper (see [14, 12] as general references). Moreover we prove two apparently new results on Clarke regular
and semiconvex functions.

Given a function V : Rn ! R, for any x; v 2 Rn, for any h 2 Rnf0g, we consider the di�erence quotient

R(h; x; v) = V (x+ hv)� V (x)

h
:
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If there exists limh!0+ R(h; x; v), then it is called the directional derivative of V at x in the direction v and is
denoted by D+V (x; v).

When V does not admit directional derivative in the direction v, we may substitute this notion with a number
of di�erent generalizations. We limit ourselves to the de�nitions we use in this paper.

The so-called Dini directional derivatives associate to each x four numbers, D+V (x; v), D
+
V (x; v), D�V (x; v),

D
�
V (x; v), where the former is de�ned as:

D+V (x; v) = lim inf
h!0+

R(h; x; v);

and the others are analogously de�ned. When D+V (x; v) = D�V (x; v) (respectively, D
+
V (x; v) = D

�
V (x; v)) we

simply write it as DV (x; v) (respectively, DV (x; v).

If we let vary v as well, we get the so-called contingent directional derivativesD+
K
V (x; v), D

+

K
V (x; v), D�

K
V (x; v),

D
�
K
V (x; v). More precisely, the lower right contingent directional derivative is de�ned as:

D+
K
V (x; v) = lim inf

h!0+;w!v

R(h; x; w)

and the other are de�ned in similar way. When V is locally Lipschitz continuous, Dini derivatives and contingent
derivatives coincide.

Clarke introduced another kind of generalized directional derivative, by letting x vary:

DCV (x; v) = lim sup
h!0; y!x

R(h; y; v) and D
C
V (x; v) = lim inf

h!0; y!x

R(h; y; v):

Besides directional derivatives, di�erent generalizations of the di�erential have been de�ned in the literature.
The sub-di�erential can be seen as a generalization of Fr�echet di�erential:

@V (x) =

�
p 2 Rn : lim inf

h!0

V (x+ h) � V (x)� p � h
jhj � 0

�
:

Analogously the super-di�erential is de�ned as:

@V (x) =

�
p 2 Rn : lim sup

h!0

V (x+ h) � V (x)� p � h
jhj � 0

�
:

These objects can be used in order to de�ne the notions of viscosity super and sub-solutions of partial di�erential

equations of the Hamilton-Jacobi type (see [7, 14]). The sub and super-di�erentials can be characterized by means
of contingent derivatives (see [18]): indeed we have

@V (x) = fp 2 Rn : p � v � D+
K
V (x; v) for all v 2 Rng

@V (x) = fp 2 Rn : p � v � D
+

K
V (x; v) for all v 2 Rng

For each x, @V (x) (and analogously @V (x)) is a convex and closed set, and it may be empty. If V is di�erentiable
at x, then it coincides with the singleton frV (x)g.

The proximal sub-di�erential is de�ned as:

@PV (x) = fp 2 Rn : 9� � 0; 9� � 0 s:t: (z 2 Rn; jz � xj < �)

) (V (z) � V (x) � p � (z � x)� �jz � xj2)
	
:

For each x, @PV (x) is convex, but not necessarily closed. Moreover, @PV (x) � @V (x).

The Clarke generalized gradient is de�ned as:

@CV (x) =
�
p 2 Rn : p � v � DCV (x; v); 8v 2 Rn

	

17



or, equivalently,
@CV (x) = fp 2 Rn : p � v � D

C
V (x; v); 8v 2 Rng :

It is possible to see that DCV (x; v) = sup fp � v : p 2 @CV (x)g and DC
V (x; v) = inf fp � v : p 2 @CV (x)g .

If V is Lipschitz continuous, by Rademacher's Theorem its gradient rV (x) exists almost everywhere. Let N be
the subset of Rn where the gradient does not exist. It is possible to characterize Clarke generalized gradient as:

@CV (x) = co

�
lim
xi!x

rV (xi); xi ! x; xi =2 N [


�

where 
 is any null measure set. By using this characterization, it is obvious that @CV (x) is convex; it is possible
to see that it is also compact. Moreover, we have

@PV (x) � @V (x) � @CV (x)

and also
@V (x) � @CV (x):

Let us now give the de�nition of semiconcave and Clarke regular (brie
y C-regular) functions.

V is said to be a semiconcave function (with linear modulus) if there exists C > 0 such that

�V (x) + (1� �)V (y) � V (�x + (1� �)y) � �(1� �)Cjx� yj2

for any pair x; y 2 Rn and for any � 2 [0; 1]. Analogously V is said to be semiconvex if �V is semiconcave.
In the next proposition (see [11]) a few interesting properties of semiconcave functions are collected.

Proposition 3 If V is semiconcave then:

(i) V is Lipschitz continuous,

(ii) for any x; v there exists D+V (x; v) and D+V (x; v) = D
C
V (x; v),

(iii) @V (x) = @CV (x) for any x.

We say that V is C-regular if for all x; v 2 Rn there exists D+V (x; v) and D+V (x; v) = DCV (x; v).

C-regular functions forma rather wide class: for instance, semiconvex functions are C-regular. C-regular functions

can be characterized in terms of generalized gradients in the following way:

Proposition 4 Let V : Rn ! R be locally Lipschitz continuous. V is C-regular if and only if @CV (x) = @V (x) for
all x.

Proof Let us �rst assume V is C-regular. Being V also Lipschitz continuous, we have that

@V (x) = fp 2 Rn : p � v � D+
K
V (x; v) for all v 2 Rng = fp 2 Rn : p � v � D+V (x; v) for all v 2 Rng =

= fp 2 Rn : p � v � D
+
V (x; v) for all v 2 Rng = fp 2 Rn : p � v � DCV (x; v) for all v 2 Rng = @CV (x)

Let us now assume @CV (x) = @V (x) for all x. Due to the convexity of @CV (x), we get that D+
K
V (x; v) =

DCV (x; v) for all x and for all v. Moreover we have

D+
K
V (x; v) � D+V (x; v) � D

+
V (x; v) � DCV (x; v)

that implies that there exists

D+V (x; v) = DCV (x; v):

The proofs of Theorems 3 and 4 rely on the notion of set-valued derivative of a map V with respect to a di�erential

inclusion, introduced in [30] and already exploited in [5]. Given a di�erential inclusion
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_x 2 F (x) (30)

(with 0 2 F (0)) the set-valued derivative of a map V with respect to (30) is de�ned as the closed, bounded (possibly
empty) interval

_V
(30)

(x) = fa 2 R : 9v 2 F (x) s:t: p � v = a ; 8p 2 @CV (x)g :
Such a derivative of the map V can be successfully used in case V is nonpathological, in the sense of the following

de�nition given by Valadier in [34].

A function V is said to be nonpathological if for every absolute continuous function ' : R ! Rn and for a.e. t,
the set @CV ('(t)) is a subset of an a�ne subspace orthogonal to _'(t).

Note that nonpathological functions form a quite wide class which includes C-regular functions. The following
proposition can be also easily proven.

Proposition 5 If V is semiconcave then it is nonpathological.

Proof Let ' : R ! Rn be an absolutely continuous function. Since V is semiconcave, then it is also locally
Lipschitz continuous. This implies that V �' is absolutely continuous and then for almost all t there exists d

dt
V ('(t)).

Let t 2 R be such that there exists both _'(t) and d

dt
V ('(t)). Since V is locally Lipschitz we have that

d

dt
V ('(t)) = lim

h!0

V ('(t) + h _'(t))� V ('(t))

h
:

On one hand due to Lipschitz continuity of V we have that

d

dt
V ('(t)) = lim

h!0+

V ('(t) + h _'(t))� V ('(t))

h
=

= D+V ('(t); _'(t)) = D
C
V ('(t); _'(t)) = minfp � _'(t); p 2 @CV ('(t))g:

On the other hand

d

dt
V ('(t)) = lim

h!0�

V ('(t) + h _'(t)) � V ('(t))

h
= � lim

h!0+

V ('(t) + h(� _'(t))) � V ('(t))

h
=

= �D+V ('(t);� _'(t)) = �D
C
V ('(t);� _'(t)) = DCV ('(t); _'(t)) =

= maxfp � _'(t); p 2 @CV ('(t))g:

This means that for almost all t the set fp � _'(t); p 2 @CV ('(t))g reduces to the singleton
�
d

dt
V ('(t))

	
, and then

@CV ('(t)) is a subset of an a�ne subspace orthogonal to _'(t).

Note that, in order to prove Proposition 5, we don't really need semiconcavity, but Lipschitz continuity and
property (ii) of Proposition 3 would be su�cient.

The following extension of second Lyapunov theorem to di�erential inclusions and nonpathological functions holds
(see [5] for the case of C-regular functions: the case of nonpathological functions requires minor modi�cations).

Proposition 6 Assume that V : Rn ! R is positive de�nite, locally Lipschitz continuous, nonpathological and
radially unbounded. Assume further that

8x 2 Rnnf0g _V
(30)

(x) � fa 2 R : a < 0g :
Then

(i) (Lyapunov stability) for all � > 0 there exists � > 0 such that for each solution '(�) of (30), j'(0)j < � implies

j'(t)j < � for all t � 0,

(ii) (attractivity) for each solution '(�) of (30) one has limt!+1 '(t) = 0.
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8 Appendix B (Lemmas)

This appendix contains a number of Lemmas used in the proofs of the results of this paper. For a (real or vector

valued) function  (t), the right derivative is denoted by d
+

dt
 (t) or, when convenient, simply by _ +(t).

Lemma 1 Let I � R, ' : I ! Rn be an absolutely continuous function and V : Rn ! R be a locally Lipschitz

continuous function. If t 2 I is such that there exists both d
+

dt
V ('(t)) and _'+(t), then

d+

dt
V ('(t)) = lim

h!0+

V ('(t) + h _'+(t))� V ('(t))

h
:

Moreover, there exists p0 2 @CV ('(t)) such that d
+

dt
V ('(t)) = p0 � _'+(t).

Proof The �rst statement is a consequence of the Lipschitz continuity of V (see also [5]). As far as the second
statement is concerned, let us �rst remark that

D
C
V ('(t); _'+(t))) � D+V ('(t); _'+(t))) =

d+

dt
V ('(t)) = D

+
V ('(t); _'+(t))) � DCV ('(t); _'

+(t))) :

Then we use the fact that @CV (x) is compact and convex at each point, so that the set fp� _'+(t)); p 2 @CV ('(t))g
is a bounded and closed interval.

The following lemmas are essentially based on the Dynamic Programming Principle. The outline of the proof is
standard, but some modi�cations are needed in order to face the lack of di�erentiability of the value function.

Lemma 2 Let the optimal regulation problem be solvable and let V be its value function. Then for each x 2 Rn,

for each optimal solution '�x(�) and each t � 0 the derivative d
+

dt
V ('�x(t)) exists. In addition,

d+

dt
V ('�x(t)) = �1

2
h('�x(t))�

ju�
x
(t)j2
2


: (31)

Proof Let t � 0 and let � = '�
x
(t). The solution '�

x
(t) fot t � t provides an optimal trajectory issuing from �.

Hence, it is su�cient to prove (31) for t = 0. Let T > 0. Due to the de�nition of the value function and the Dynamic
Programming Principle, we have that

V ('�
x
(T )) � V (x)

T
= �1

2

1

T

Z T

0

�
h('�

x
(t)) +

ju�
x
(t)j2



�
dt:

By the continuity of h and '�
x
, and right-continuity of u�

x
(�), there exists

lim
T!0+

�1

2

1

T

Z T

0

�
h('�x(t))�

ju�x(t)j2



�
dt = �1

2
h(x)� ju�x(0)j2

2

:

Then there exists also the limit on the left hand side, that is lim
T!0+

V ('�x(T )) � V (x)

T
= �1

2
h(x)� ju�x(0)j2

2

.

Lemma 3 Let the value function V of the optimal regulation problem be locally Lipschitz continuous. Then

8x 2 Rn; 8u 2 Rm; 8p 2 @CV (x) p � (f(x) +G(x)u) � �1

2
h(x)� juj2

2

: (32)

Proof Let us �x a control value u0, and an instant T > 0. Let y be an arbitrary point in a neighbourhood of x,
and let � = '(T ; y; u0). By the Dynamic Programming Principle we have that

V (y) � 1

2

Z
T

0

�
h('(t; y; u0)) +

ju0j2



�
dt+ V (�)
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and then

lim inf
T!0+; y!x

 
�1

2

1

T

Z
T

0

�
h('(t; y; u0)) +

ju0j2



�
dt

!
� lim inf

T!0+; y!x

V (�)� V (y)

T
: (33)

Let us consider the two sides of the inequality separately.

Lefthand side. There exists � 2 [0; T ] such that

�1

2

1

T

Z
T

0

�
h('(t; y; u0)) +

ju0j2



�
dt = �1

2
h('(�; y; u0)) �

ju0j2
2


:

By continuous dependence of solutions of Cauchy problem on initial data we have that lim inf
T!0+; y!x

'(�; y; u0) = x

and then

lim inf
T!0+; y!x

 
�1

2

1

T

Z
T

0

�
h('(t; y; u0)) +

ju0j2



�
dt

!
= �1

2
h(x)� ju0j2

2

:

Righthand side. Let us consider the quotient

V ('(T ; y; u0))� V (y)

T
=
V ('(T ; y; u0))� V (y + (f(x) + G(x)u0)T )

T
+
V (y + (f(x) + G(x)u0)T )� V (y)

T
: (34)

By Lipschitz continuity of V there exists L > 0 such that����V ('(T ; y; u0)) � V (y + (f(x) + G(x)u0)T )

T

���� � L

T
j'(T ; y; u0) � y � (f(x) + G(x)u0)T )j =

=
L

T
jx+ @'

@t
(0;x; u0)T +

@'

@y
(0;x; u0) � (y � x) + o(T; jy � xj)� y � (f(x) +G(x)u0)T )j �

� L

T
o(T; jy � xj) :

Then there exists

lim
T!0+;y!x

V ('(T ; y; u0))� V (y + (f(x) + G(x)u0)T )

T
= 0 :

Coming back to (34), we therefore have

lim inf
T!0+; y!x

V ('(T ; y; u0))� V (y)

T
= lim inf

T!0+; y!x

V (y + (f(x) +G(x)u0)T ) � V (y)

T
=

= D
C
V (x; f(x) +G(x)u0) = minfp � (f(x) +G(x)u0); p 2 @CV (x)g:

By comparing the two sides of the inequality (33), the conclusion of the lemma follows.

Lemma 4 If the optimal regulation problem is solvable and its value function is locally Lipschitz continuous then

8x; 8p 2 @V (x) p � (f(x) + G(x)u�x(0)) = �1

2
h(x)� ju�x(0)j2

2

: (35)

Proof Let us consider
d+

dt
V ('�x(t)). On one hand, by Lemma 2, we have that

d+

dt
V ('�x(0)) = �1

2
h(x)� ju�x(0)j2

2

:
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On the other hand, from the characterization of the subdi�erential by means of the contingent derivatives (see
Appendix A) and Lemma 1, it follows that for all p 2 @V (x)

p � (f(x) +G(x)u�
x
(0)) � D+

K
V (x; f(x) + G(x)u�

x
(0)) = D+V (x; f(x) +G(x)u�

x
(0)) =

= lim inf
t!0+

V (x+ t(f(x) +G(x)u�
x
(0))) � V (x)

t
=
d+

dt
V ('�x(0)):

Finally we get that for all x and for all p 2 @V (x)

p � (f(x) + G(x)u�
x
(0)) � �1

2
h(x)� ju�

x
(0)j2
2


:

Since @V (x) � @CV (x), the opposite inequality is provided by Lemma 3.

In the next lemma, we denote by K0 the class of functions a : [0;+1)! [0;+1) such that a(�) is continuous,
strictly increasing and a(0) = 0.

Lemma 5 Let x0 be �xed. Let a 2 K0 be such that h(x) � a(jxj) for each x 2 Rn (such a function exists, if h is
continuous and positive de�nite). Assume also that J(x0; u(�)) <1 for some admissible input u(t). Then,

lim
t!+1

'(t;x0; u(�)) = 0 :

Proof Since u(t) and x0 are �xed, we shall write simply '(t) instead of '(t;x0; u(�)). From the assumption, it
follows that both the integrals

Z +1

0

h('(t)) dt and

Z +1

0

ju(t))j2 dt (36)

converge. It follows in particular that u(t) is square integrable on [0;+1) and on every subinterval of [0;+1). It
also follows that lim inft!+1 h('(t)) = 0, and since h(x) is continuous, positive de�nite and bounded from below
by a class K0 function, this in turn implies

lim inf
t!+1

j'(t)j = 0 :

Assume, by contradiction, that lim sup
t!+1 j'(t)j > 0, and let

l = minf1; lim sup
t!+1

j'(t)jg :

Let L be a Lipschitz constant for f(x), valid on the sphere jxj � l. Moreover, let b > 0 be a bound for the norm
of the matrix G(x) for jxj � l. By the de�nition of l, there exists a strictly increasing, divergent sequence ftjg such
that for each j,

j'(tj)j >
3l

4
:

Without loss of generality, we can assume that tj+1 � tj > 1=(4L) for each j 2 N. The existence of some � > 0
and k 2N such that for each j > k and each t 2 [tj � �; tj]

jj'(t)jj � l

4

is excluded, since in this case the �rst integral in (36) would be divergent (here again, we use the facts that h is
bounded from below by a(�)). Hence, for � = 1=(4L) and each k 2 N, we can �nd an index jk > k and an instant
sk such that

tjk � � � sk � tjk and j'(sk)j <
l

4
:
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Since the solution '(t) is continuous, for each k there exist two instants �k, �k such that

sk < �k < �k < tjk ; j'(�k)j =
l

4
; j'(�k)j =

3l

4
;

and

l

4
< j'(t)j < 3l

4
; 8t 2 (�k; �k) :

We have, for each k,

j'(�k)� '(�k)j � j'(�k)j � j'(�k)j =
l

2
: (37)

On the other hand,

j'(�k)� '(�k)j �
Z

�k

�k

jf('(t))j dt+
Z

�k

�k

jG('(t))j � ju(t)j dt :

By construction, for t 2 [�k; �k] we have j'(t)j � l. Hence, on the interval [�k; �k] the following inequalities hold:

jf('(t))j � Lj'(t)j and jG(x)j � b :

This yields

j'(�k) � '(�k)j � lL� + b

Z
tj
k

tjk
��
ju(t)j dt : (38)

Now, taking into account (37), (38) and recalling that � = 1=(4L), we infer

l

2
� l

4
+ b

Z tjk

tjk
��
ju(t)j dt

that is,

Z tjk

tjk
��
ju(t)j dt � l

4b
:

Using H�older inequality and the fact that u(t) is square integrable on [tjk � �; tjk ], we also have

C

 Z
tj
k

tj
k
��
ju(t)j2 dt

! 1
2

�
Z

tj
k

tj
k
��
ku(t)k dt

where C is a positive constant independent of u(�). This yieldsZ
tjk

tjk
��
ju(t)j2 dt � l2

16b2C2
> 0 :

But this is impossible, since u(t) is square integrable on [0;+1) by virtue of (36). Thus, we conclude that

lim inf
t!+1

j'(t)j = lim sup
t!+1

j'(t)j = 0

which implies

lim
t!+1

j'(t)j = 0

as required.

Lemma5 is reminiscent of the so-called Barbalat's Lemma ([24], p. 491). However, it does not reduce to Barbalat's
Lemma since we have to take into account the input variable and we cannot use uniform continuity of solutions.
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Lemma 6 Let V (x) : Rn ! R be locally Lipschitz continuous and nonpathological. Let x 2 Rn, and let u(�) be
any admissible input. Let us write, for simplicity, '(t) = '(t;x; u(�)). Let �nally p(t) be any measurable function
such that p(t) 2 @CV ('(t)) a.e.. Then,Z

t2

t1

p(t) � _'(t) dt = V ('(t2)) � V ('(t1)) :

Proof Under our assumptions, for a.e. t 2 R there exists p0 2 @CV ('(t)) such that the right derivative d
+

dt
V ('(t))

exists and it is equal to p0� d
+

dt
'(t) (see Lemma1). The conclusion follows by virtue of the de�nition of nonpathological

function.
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