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Abstract

This paper focuses on the gain in efficiency that may be obtained when using strong variations-like
algorithms to solve optimal control problems for switched hybrid nonlinear systems. After a review of
existing algorithms, a simple version of a strong variations algorithm is proposed together with some new
convergence results. A key features in the proposed algorithm are : 1) the absence of a priori assumptions on
the number of switches. 2) The complexity is independent of the state’s dimension. 3) The algorithm uses
a unified approach for both continuous input and discrete switching strategy. Several examples including
a system with 8 states and 7 configurations are used to illustrate the efficiency of the proposed algorithm.

1 Introduction

Hybrid systems paradigm is a key issue in process engineering. Since the early paper of Witsenhausen [29]
that pointed out some features of hybrid systems. Many works have been done to properly define such systems
[8, 27, 20]. Then attention has been focused on possible characterizations of optimality enabling an exhaustive
search over the whole set of possibilities to be avoided. Such characterizations may be directly obtained by
using the Bellman principle via a dynamic programming approach [4, 15]. Although such characterization
is universal and hence directly applies to hybrid systems, its use for systems with high state’s dimension is
cumbersome since the complexity of the unknown function V increases exponentially with the state dimension
in the general nonlinear case. That is the reason why generalizations of the Pontryagin Maximum Principle
(MP) have been attempted. [27, 23, 28, 20].

As for concrete optimal control computational algorithms, an excellent almost exhaustive recent survey of
existing attempts can be found in [31]. Here, the basic methodologies are briefly described in order to under-
line the novelty of the proposed approach.

In [14], the dynamic programming principle is used to compute the optimal cost function. The complex-
ity is maintained at a low level by projecting the computed cost function at the end of each iteration on a low
dimensional functional basis. This projection is done under precision-related constraint yielding a controlled
approximation. For truly complicated optimal cost function V (x) however, and despite this clever trick, the
methodology remains limited to system with low number of states. The dynamic programming paradigm
is also invoked in [9, 10] using level sets and behavioural programming with roughly the same unfortunate
explosion of complexity with the state dimension.

Another approach that gains increasing number of followers everyday is the one based on Mixed-Integer
Logical Dynamics (MILD) formulation where basically linear dynamics are used with extended state contain-
ing the continuous and binary variables [7, 5]. The approach is very attractive since systematic tools begin
to appear enabling an easy implementation and because of the wide class of hybrid features and constraint
that it may conceptually tackle. however, when it is used to solve truly nonlinear problems, the dimension of
∗Laboratoire d’Automatique de Grenoble. LAG-ENSIEG, CNRS UMR 5528. BP 46, Domaine Universitaire, 28400 Saint

Martin d’Hères. e-mail: mazen.alamir@inpg.fr ; Fax: (0)476826388. This work was supported by the European Project Control

& Computation

1



the decision variable increases exponentially with the state dimension and the solution needs branch & bound
-like approaches to explore the huge combinatorial set of possibilities.

In ([13, 12, 30, 6], a two stage approach has been proposed. In the first stage, the total number of switches is
a priori fixed as well as the sequence of active subsystems. By doing this, the cost function is only function
of the switching instants. Therefore, finding the optimal switching instants for the given number of switches
and the sequence of active subsystems is a classical nonlinear programming problem. In the second stage, the
a priori given data, namely, the number of switches and the sequence of active subsystems are updated to
improve the optimal solution that would be obtained by the first stage.

The work by [25, 26] uses the same two-stage structure but uses explicitly the maximum-principle in de-
riving the updated value of the switching instants. In [18] optimizing the switching instants when the number
of switches and the sequence of active configurations is given is achieved using either constrained nonlinear
programming of the maximum principle.

In this paper, it is shown that as long as switched nonlinear hybrid systems with only external switching
controls are concerned, strong variations algorithms enables a unified approach that iterates on both continu-
ous and logical variables and avoid the use of a priori assumptions on the number of switches or the sequence
of active configurations.

Strong variations algorithms are based on a leading paper of R. V. Gamkrelidze [11] where it has been shown
that variations in the control profiles that are small in the L2 norm but not in the extremum norm may be
used in the iterations when looking for an optimal control profile. This makes possible to imagine algorithms
for optimal control problems in which the admissible control sets are not necessarily convex [19, 21, 16, 3]. In
particular, discrete or boolean sets can be naturally handled by such algorithms. This is of a crucial interest
for our concern. The use of strong variations algorithms to solve hybrid optimal control problems has already
been suggested in [1]. The present papers confirms the conjecture stated there about the efficiency that such
algorithms may have in tackling this problem.

The paper is organized as follows: First the problem in question is clearly stated in section 2 and re-formulated
in a rather standard form in section 3. In section 4 a simple algorithm is proposed with some convergence
results. The algorithm may be viewed as a free-disturbance version of an existing algorithm that has been
proposed in [3] to solve nonlinear differential games over non convex sets in the context of robust model pre-
dictive control of batch processes. However, the fact that only the free-uncertainty case is considered here, new
stronger convergence results are derived here that might not hold for the min-max version of the algorithm
given in [3]. Finally, in section 5, the algorithm is applied on several examples of switched hybrid systems
to assess its efficiency in solving the optimal control problem under concern. It is particularly shown that
for relatively large state’s dimension, no combinatoric effects appear nor tree search-like task is needed. The
paper ends with some concluding remarks suggesting some ideas for further investigations.

2 Problem statement

Let us consider a nonlinear system that may be in Q different configurations. Let q ∈ Q := {1, . . . , Q} be a
discrete state variable used to designate the active configuration of the system. It is assumed that both the
continuous state of and the control input, denoted respectively by x ∈ Rn and v ∈ V ⊂ Rm are uniquely
defined whatever is the active configuration q. When the system is at configuration q ∈ Q, its dynamics is
described by

ẋ = fq(x, v) ; x ∈ Rn ; v ∈ V ⊂ Rm ; q ∈ Q (1)

where V ⊂ Rm is some set of admissible controls.

To complete the system’s definition, one has to describe how the system switches from one configuration
to another. In the general hybrid systems framework, this may be induced by external inputs (controlled

2



switches) and/or when the state crosses some switching boundary (autonomous switches). In the present pa-
per, interest is focused on hybrid systems with only controlled switches. Furthermore, the jump is assumed to
be completely free in the sense that whatever is the present configuration, the system may jump to any other
configuration. The aim of this paper is to propose a heuristic algorithm with appropriate convergence prop-
erties that provides a good sub-optimal switching strategy q∗(·) between configurations and a corresponding
good sub-optimal control v∗(·) such that the following functional is minimized

J(x0, q(·), v(·)) :=
∫ T

0

Lq(τ)

(
x(τ), v(τ)

)
dτ (2)

where for all q ∈ Q, Lq : Rn × Rm → R+ is some penalty function depending on the system’s configuration.

3 Problem’s re-formulation

The system’s dynamics can be clearly re-written as follows

ẋ =
∑
q∈Q

αqfq(x, v) (3)

provided that for all q0 ∈ Q, αq0 is equal to 1 if q0 is the ”active” configuration and αq0 = 0 otherwise. More
precisely, the αq’s have to meet the following requirements

∀q ∈ Q , αq ∈ {0, 1} and
∑
q∈Q

αq = 1 (4)

namely, one and only one of the αq’s is equal to 1 while the others are all 0’s. In what follows, the constraint
(4) is formally denoted by α = (α1 . . . αQ )T ∈ A where A ⊂ {0, 1}Q is a discrete subset with card(A) = Q.
with this notation, equation (3) becomes

ẋ = F (x, v, α) :=
∑
q∈Q

αqfq(x, v) ; v ∈ V and α ∈ A (5)

and by concatenating (v, α) in a single control vector u := (v, α) ∈ V × A it comes that the class of hybrid
systems under study may be written in the following general form

ẋ = f(x, u) ; u ∈ U := V ×A ⊂ Rm × {0, 1}Q (6)

with a non convex set U of admissible controls.
Similarly, the cost function may be rewritten as follows

J(x0, u) :=
∫ T

0

Q∑
q=1

αq(τ)Lq(x(τ), v(τ))dτ =:
∫ T

0

L(x(τ), u(τ))dτ ; u := (v, α) (7)

In the following section, a simple algorithm is proposed to find ”good” sub-optimal solutions u(·) to the problem
of minimizing (7) under (6) with controls that belong to the non convex set U .

4 The proposed algorithm

In this section, a general purpose algorithm is given to solve optimal control problems in which the control
input may be restricted to possibly non convex admissible sets. Consider the following constrained optimiza-
tion problem

Minimize J(u) =
∫ tf

t0

L(x(t), u(t), t)dt (8)
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subject to the system equations

ẋ(t) = f(x(t), u(t), t) ; x(t0) = x0 (9)

and the control constraint

u(t) ∈ U ∀t ∈ [t0, tf ] (10)

where U is not necessarily convex. Assume that the following assumption holds

Assumption 1

• The functions f and L are twice continuously differentiable. (Note that for the original problem this can
be guaranteed by assuming twice continuous differentiability of fq and Lq for all q ∈ Q).

• There is a positive real M > 0 such that for all admissible control u, the corresponding state trajectory
x(t; t0;x0, u) satisfies the following inequality

∀t ∈ [t0, tf ] , ‖ x(t; t0;x0, u) ‖≤M (11)

To solve the above problem for non convex admissible sets U , several existing algorithms may be used such as
the ones given in [16, 19, 21]. However, these strong variations algorithms are rather tedious to properly encode.
The proposed algorithm, based on a variable penalty technique is very simple while enabling convergence results
to be derived.

4.1 The algorithm

It is the Maximum-Principle characterization of the optimal solution that will be used in our algorithm. It
is clear that the maximum principle is an infinite dimensional sufficient condition in the sense that it must
hold for all t ∈ [t0, tf ]. An implementable algorithm, however, must be finite dimensional and all convergence
investigations are to be done on some finite dimensional approximation of the optimal control problem.
One natural way to define a finite dimensional version of the above problem is to define a sufficiently dense
grid

t0 = t1 < t2 < . . . < tN = tf ; tk+1 = tk + h ; h =
tf − t0
N − 1

(12)

over the time interval [t0, tf ] in order to approximate the solutions of the state and the co-state differential
equations with a sufficiently high precision using a second order integration method. More specifically, given
an (N − 1)m-dimensional vector ū

ū = [ūT (1), . . . , ūT (N − 1)] ∈ Ū := U × . . .× U ⊂ <(N−1)m

we shall identify the vector ū ∈ <(N−1)m to the corresponding piece-wise constant control defined over [t0, tf ]
by

u(tk + τ) = ū(k) ; k = 1 . . . N ; τ ∈ [0, h[ (13)

Furthermore, the following finite dimensional approximations

x̄ := [x̄T (1), . . . , x̄T (N)]T ∈ <Nn ; λ̄ := [λ̄T (1), . . . , λ̄T (N)]T ∈ <Nn

are defined by

x̄(k + 1) := x̄(k) +
h

2

[
f
(
x̄(k), ū(k), tk

)
+ f

(
x̄(k) + hf(x̄(k), ū(k), tk+1

)]
; x̄(1) = x0 (14)

λ̄(k − 1) := λ̄(k) +
h

2

[
Hx

(
x̄(k − 1), ū(k − 1), λ̄(k) + hHx

(
x̄(k), ū(k − 1), λ̄(k), tk

)
, tk−1

)
+

Hx(x̄(k), ū(k − 1), λ̄(k), tk
)]

; λ̄(N) = 0 (15)
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With the discretization scheme defined above, an approximate value of the cost function can be obtained for
all ū ∈ Ū using J̄(ū) given by

J̄(ū) = h
N−1∑
k=1

L
(
x̄(k), ū(k), tk

)
(16)

Given the above definitions, consider the following algorithm

Algorithm

• Step 0: Fix some small εu > 0, εJ > 0, some integer imax and two reals dµ > 0 and γ > 1. Choose
µ0 ≥ 0 and some initial admissible guess ū0 ∈ Ū .

• Step 1: Compute x̄0 solution of (14) with ū = ū0, let i = 1,

• Step 2: Compute λ̄i−1 solution of (15) with ūi−1 and x̄i−1 already computed,

• Step 3: Compute ūi and x̄i such that

– x̄i is solution of (14) with ū = ūi such that

– ūi(k) := Arg min
u∈U

[
H
(
x̄i(k), u, λ̄i−1(k), tk

)
+ µi−1 ‖ u− ūi−1(k) ‖2

]
,

• Step 4: If
(
J̄(ūi) > J̄(ūi−1) − εJ

)
and

(
‖ ūi − ūi−1 ‖> εu

)
then let µi−1 = max

(
µi−1 + dµ, γµi−1

)
and return to Step 3,

• Step 5: If
(
J̄(ūi) > J̄(ūi−1)− εJ

)
then µi = max

(
0,min

(
µi−1 − dµ, µi−1/γ

))
,

• Step 6: If
(
‖ ūi − ūi−1 ‖≤ εu

)
and

(
i ≥ imax

)
Then stop else let i = i+ 1 and return to Step 2.

This algorithm may be understood in the light of the following remarks. Rigorous convergence results are
given in the following subsection and the corresponding proofs are given in the appendix.

X The algorithm begins with some initial guess ū0. The key problem is that such an arbitrary choice is
generically incompatible with the maximum principle’s necessary condition (??).

X Step 3 produces then a chattering behaviour between the proceeding step’s guess ūi−1 and the one that
minimizes the corresponding modified Hamiltonian in the construction of which, x̄i−1 and λi−1 are used.

X The modification of the Hamiltonian by the penalty term µi−1‖u − ūi−1(k)‖2 enables the successive
iterations to be stabilized. Indeed, when µi−1 is high, u will be different from ūi−1 only if it dramatically
decreases H.

X Note that Step 4 leads to high values of µi if the algorithm remains between Step 3 and Step 4. These
high values stabilize the iterations as explained above and force the algorithm to leave this loop after a
finite number of iterations (see corollary 2 hereafter). The aim of Step 5 is then to reduce µi that may
have been temporary increased (in Step 4) in order to avoid some local difficulties. This is because,
from the maximum principle viewpoint, the minimization in Step 3 has sense only for µi−1 = 0.

X The condition
(
J̄(ūi) > J̄(ūi−1)− εJ

)
and

(
‖ ūi − ūi−1 ‖> εu

)
in Step 4 is to be interpreted s follows:

If ūi fails to decrease significantly the cost function, that is
(
J̄(ūi) > J̄(ūi−1)− εJ

)
and if there is still

evolution margin (that is
(
‖ ūi − ūi−1 ‖> εu

)
) then return to Step 3 with the new value of µi.

X Note that both additive and multiplicative factors are used to decrease µ. Indeed, the multiplicative
factor guarantees a fast decrease that may be necessary if very high values are needed to stabilise the
iterations. The additive term enables to avoid asymptotic decrease of µ that would never exactly reach
the key value 0 (see point 2. of corollary 2 hereafter).

5



4.2 Some convergence results

In this section, the convergence results are stated. No proofs are reported because of the lack of space, inter-
ested readers may consult the technical report [2] for complete proofs.

The following proposition is the key convergence result. It concerns the behavior of the approximate cost
function values at successive iterations

Proposition 1 [Behavior of successive cost function values]

there are positive reals r > 0 and σ > 0 such that, for sufficiently small step size h, the solutions of suc-
cessive iterations satisfy the following inequality

J̄(ūi)− J̄(ūi−1) ≤ h(r − µi−1)
N−1∑
k=1

‖ ūi(k)− ūi−1(k) ‖2 +σ (17)

Note that inequality (17) clearly shows that if

N−1∑
k=1

‖ ūi(k)− ūi−1(k) ‖2 6= 0

then one can always decrease the cost function by letting µi−1 taking sufficiently high values. But this is ex-
actly what is Step 4 dedicated to. Now since J i cannot indefinitely decreases, the quantity ‖ ūi(k)− ūi−1(k) ‖
must vanish.

From proposition 1, we can easily derive the following corollaries

Corollary 1 [Convergence of the cost function]
Let

(
x̄i, ūi

)
be a sequence generated by the algorithm. The corresponding sequence of cost values J̄(ūi) are

monotonically decreasing. Moreover, if imax =∞, the infinite sequence J̄(ūi) is convergent. ♠

Finally, the following is the basic result of the present paper

Corollary 2 [Convergence of the control sequence]

Let
(
x̄i, ūi

)
be a sequence generated by the algorithm.

1. Suppose that imax =∞ in order to generate an infinite sequence ūi ∈ Ū . There is an integer ı̄ such that

∀i ≥ ı̄ : ‖ ūi(k)− ūi−1(k) ‖= 0 ; k = 1 . . . N − 1 (18)

Moreover, if 0 is an accumulation point for the sequence µi−1 then there is an accumulation point ū∗ of
the sequence ūi that satisfies the maximum principle on the grid points, that is

H(x̄∗(k), ū∗(k), λ̄∗(k), tk) ≤ H(x̄∗(k), ū, λ̄∗(k), tk) ; for all ū ∈ Ū (19)

2. In particular, if for some ı̄, one has ūı̄ = ūı̄−1 =: ū∗ with µı̄−1 = 0 then the control ū∗ satisfies the
maximum principle (19) at the grid points.

3. In the case where imax is finite, the algorithm stops after a finite number of iterations. Namely, it cannot
be trapped by the loop in (Step 3)-(Step 4)

5 Illustrative examples

In this section, some examples are used to illustrate the efficiency of the proposed algorithm. Experiments
have been conducted using a Fortran 90-compiler on a Pentium III-600Mhz Personal Computer.
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Iterations Cost function µ ‖ ūi − ūi−1 ‖∞

1 146.83 10 20.0
2 47.43 8.33 11.0
3 43.47 6.94 3.0
4 43.24 5.79 1.0
5 43.16 4.79 1.0
6 43.10 3.79 1.0
...

...
...

...
9 42.99 0.79 1.0
10 42.99 0.00 0.00

Table 1: Convergence results for example 1. (Execution time ≈ 0.2 s)

5.1 Example 1 [17, 22, 24, 16]

Consider the switched nonlinear hybrid system given by

ẋ = fq(x) :=
(

x2

−x1 + (1.4− 0.14x2
2)x2 + 4( 2(q−1)

Q−1 − 1)

)
; q ∈ {1, . . . , Q} (20)

having Q ∈ N distinct configurations in each of which the system is autonomous, namely, no continuous control
input v appears in the general form (1). The optimal control problem is defined by taking

Lq(x) = x2
1 +

[2(q − 1)
Q− 1

− 1
]2

; T = 2.5 s (21)

It can be easily seen that when Q tends to infinity, the corresponding hybrid optimal control problems tends
to the following classical one

min
u

∫ 2.5

0

(
x2

1(t) + u2(t)
)
dt under ẋ =

(
x2

−x1 + (1.4− 0.14x2
2)x2 + 4u

)
and |u(t)| ≤ 1 (22)

This optimal control problem has been studied in [17, 22, 24, 16] and the optimal value is known to be equal
to 42.8 that can be viewed as a lower bound of the optimal solution of the hybrid optimal control problem.
The hybrid optimal control problem corresponding to Q = 21 has been solved using N = 201 in (12), that
is h = 2.5/200 s. Consequently, the corresponding decision variable is basically of dimension 21200 . The
parameters in step 0 of the algorithm are as follows εu = εJ = 0.001, dµ = 1, γ = 1.2 and µ0 = 10 while the
initial guess ū0(·) ≡ −1 has been used. The convergence results of the algorithm are shown on table 1 with
the obvious notation u = q in accordance with the notations used in the problem’s reformulation since there
is no continuous input (see section 3). Note the monotonic decrease of the cost function to a value that is
quite close to the lower bound 42.8 mentioned above. Note also that according to point 2. of corollary 2, the
iterations stop at an extremal point satisfying the maximum principle at the grid points since for i = 10, one
obtains µi = 0 and ūi − ūi−1 = 0.

The switching strategies obtained at different iterations as well as the initial and the optimal state trajec-
tories are given on figure 1. Note that during the optimal scenario, about 13 controlled switches take place.
This suggests that strategies based on the use of an a-priori given number of switches have to explore a 2113-
dimensional tree corresponding to all the possible sequences of active configurations for each choice of the 13
switching instants.
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ū1

ū5
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Figure 1: Switching strategies and state trajectories at different iterations (Example 1)

5.2 Example 2 [30]

In [30], an algorithm has been proposed to solve optimal control problems on switched hybrid systems. The
following bilinear system has been considered to illustrate the proposed algorithm

subsystem 1:
{
ẋ1 = −x1 + 2x1v
ẋ2 = x2 + x2v

subsystem 2:
{
ẋ1 = x1 − 3x1v
ẋ2 = 2x2 − 2x2v

subsystem 3:
{
ẋ1 = 2x1 + x1v
ẋ2 = −x2 + 3x2v

with the following cost function

J =
1
2

(x1(T )− 2)2 +
1
2

(x2(T )− 2)2 +
1
2

∫ T

0

[
(x1(t)− 2)2 + (x2(t)− 2)2 + v2(t)

]
dt ; T = 3 (23)

with the initial state x(0) = ( 1 1 )T . A sub-optimal solution of the hybrid optimal control problem above
has been obtained in [30] based on the a priori assumption of 2 switching instants. The following sub-optimal
cost has been obtained The sub-optimal J achieved by [30] is 3.625. The sub-optimal switching strategy is
characterized by one switch at instant t∗ = 1.7244 taking the system from configuration q = 2 to configuration
q = 3. This can be seen on the dotted lines plots of figure 2. Let us see how the problem above can be put in
the framework of the present paper. The system admits three different configurations (Q = 3) and can be put
in the general form (1) by using the following notations

f1(x, v) =
(
−x1 + 2x1v
x2 + x2v

)
; f2(x, v) =

(
x1 − 3x1v
2x2 − 2x2v

)
; f3(x, v) =

(
2x1 + x1v
−x2 + 3x2v

)
(24)

By the same, the cost function can be put in the standard form (2) by using the following straightforward
definition of Lq for q ∈ {1, 2, 3}

Lq(x, v) :=
1
2

[
(x1 − 2)2 + (x2 − 2)2 + v2(t)

]
+
∂Ψ
∂x

(x) · fq(x, v) ; Ψ(x) =
1
2

(x1 − 2)2 +
1
2

(x2 − 2)2

where the final penalty in (23) has been transformed into an integral form. The proposed algorithm has been
successfully used to solve the corresponding hybrid optimal control problem using the following parameters
εu = εJ = 0.001, dµ = 0.5, γ = 1.5 and µ0 = 10. The optimal cost achieved by the algorithm is given by
Ĵproposed algorithm = 0.3742 to be compared to 3.625 obtained in [30]. The convergence history for example
2 is shown on figure 3. A careful look on figure 3 enables the following fact to be underlined
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Figure 3: Convergence results for example 2 (Execution time ≈ 1s)

X At iteration 28, the condition required by corollary 2 are satisfied, namely µi = 0 ; ‖ūi− ūi−1‖∞ = 0.
Therefore, according to corollary 2, the sequence so obtained satisfies the maximum principle at the grid
points.

X The evolution of µi is not monotonic, the dynamics of this penalty is a key issue in the convergence of
the iterations.

As for the optimal trajectories, they can be viewed on figure 2 where the optimal switching strategy, the
optimal control input and the optimal states trajectories (in the phase plane) are given in solid lines. These
are to be compared with the dotted lines that summarize the results of [30]. Figure 2 suggests the following
comments

X Note the high number of switches ”asked by the proposed algorithm”. This is because, in the absence of
switches, keeping the state near the point (2, 2) as implied by the cost function would need a control v
that is far from 0 whatever is the configuration being used and this is penalized by the squared penalty
term on the control v. That is why a 2-switches strategy necessarily corresponds to a high cost. However,
by using cleverly and intensively the switches, the algorithm suggests to use the different dynamics of
the system to keep the state ”turning around the target point (2, 2)” while using few continuous control
v. This can be clearly seen on figure 2.(b) and 2.(c)

9



5.3 Example 3

Let us consider the dynamic equations of an induction machine with the norm of flux and the torque as
regulated outputs. The voltage input to this machine comes from a two stage power source. The first one is
the rectifier that delivers a DC voltage from and AC source and the second is the inverter that transform this
DC voltage into a dynamic voltage by changing the positions of the three inverter commutators. This leads
to 7 different possible values of the voltage at the input of the induction machine. This is shown on figure 4
in the (α, β)-plane. As a consequence, the system may be viewed as a hybrid system with 7 configurations
(Q = 7) in each of which, the system is autonomous.

d

dt


Isα
Isβ
φsα
φsβ

 =


−( 1

σTr
+ 1

σTs
) −pΩ Rr

z
pΩLr
z

pΩ −( 1
σTr

+ 1
σTs

) −pΩLrz
Rr
z

−Rs 0 0 0
0 −Rs 0 0



Isα
Isβ
φsα
φsβ

+


V0Lr
z 0
0 V0Lr

z
V0 0
0 V0

(Vsα(q)
Vsβ(q)

)

(25)

y =
(
‖Φ‖2

Γ

)
:=
(

φ2
sα + φ2

sβ

p(Isβφsα − Isαφsβ

)
(26)

in which,

z := LsLr −M2 ; σ = 1−M2/(LsLr) ; Ts =
Ls
Rs

; Tr =
Lr
Rr

where Ls, Lr, Rs and Rr are the stator and rotor inductances and resistances while Ω is the motor speed
and p = 2. The optimal control problem in question here is to find a switching strategy q∗(·) such that

Figure 4: The input voltage of the induction machine as a function of the configuration q ∈ {1, . . . , 7})

the nonlinear output (26) is regulated around some reference signal hr(t) while minimizing the harmonics of
the stator current at some precise frequency ω0. To tackle such requirements, the system is extended using
additional states as follows

d

dt


x1

x2

x3

x4

 =


−( 1

σTr
+ 1

σTs
) −pΩ Rr

z
pΩLr
z

pΩ −( 1
σTr

+ 1
σTs

) −pΩLrz
Rr
z

−Rs 0 0 0
0 −Rs 0 0



x1

x2

x3

x4

+


V0Lr
z 0
0 V0Lr

z
V0 0
0 V0

(Vsα(q)
Vsβ(q)

)

(27)
ẋ5 = x1 cosω0t ; x5(0) = 0 (28)
ẋ6 = x1 sinω0t ; x6(0) = 0 (29)
ẋ7 = x2 cosω0t ; x7(0) = 0 (30)
ẋ8 = x2 sinω0t ; x8(0) = 0 (31)

y = h(x) =
(
‖Φ‖2

Γ

)
:=
(

x2
3 + x2

4

p(x2x3 − x1x4

)
(32)

10



Indeed, in doing so, the quantity

Ψ(x(T )) :=
1
T 2

[
x2

5(T ) + x2
6(T ) + x2

7(T ) + x2
8(T )

]
(33)

is a truncated approximation of the spectral power of the stator current at the prescribed frequency ω0 and
therefore, the following cost function may be used to reflect the control specifications stated above

J(x0, q) = wfΨ(x(T )) +
∫ T

0

‖h(x(τ))− hr(τ)‖2dτ (34)

where wf is a weighting coefficient penalizing the current power spectrum at the frequency ω0. This cost
function can be put in the standard form (2) by using the following straightforward definition of Lq for
q ∈ {1, . . . , 7}

Lq(x, t) :=
∂Ψ
∂x

(x)fq(x) + ‖h(x)− hr(t)‖2 (35)

where fq(x) is clearly defined by the r.h.s of (27)-(31). The numerical values of the parameters used in the
simulations are given on table 2. while the values of the prediction horizon T = 0.2 s and the sampling period
h = 50 × 10−6 s are used leading to a number of discretization instants N = 4000. Harmonics attenuation

Ls Lr M Rs Rr p Ω
0.031747H 0.0323H 0.031H 0.07Ω 0.052Ω 2 2π100rad/sec

Table 2: Numerical values of the induction machine’s parameters

is tested for the value ω0 = 2π × 170 rad/s. Finally the reference trajectories on the output are given by the

following constant set-points hr(t) =
(

1
100

)
. The parameters of the algorithm have been taken as follows

εu = εJ = 0.001, dµ = 1, γ = 1.2 and µ0 = 0. Figure 5 shows the optimal trajectories for both the regulated
outputs and the state vector when no penalty is used to insure harmonic rejection (wf = 0). Figure 6 shows the
same results when the penalty wf = 104 is used in order to reject the harmonics corresponding to w0 = 2π×170
(rad/s). The corresponding power spectrum in the two cases above is given on figure 7 where the effect of the
penalty term at the prescribed frequency can be clearly appreciated. Finally, figure 8 shows an example of
the optimal switching strategy in the case (wf = 104) over the whole time interval (figure 8.(a)) and over a
shorter time window enabling the switches to be clearly identified (figure 8.(b)).

Torque (N.m)

Time (s) Time (s)

Figure 5: Optimal trajectories without harmonics attenuation (wf = 0).
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Torque (N.m)

Time (s) Time (s)

Figure 6: Optimal trajectories without harmonics attenuation (wf = 104).

Figure 7: Power spectrum of the stator current for wf = 0 (dotted lines) and wf = 104 (solid lines).

6 Conclusion and future work

In this paper, an algorithm is proposed to solve optimal control problems for switched hybrid systems. These
are hybrid systems with no autonomous switches in which the controlled switches are free. The basic features
of the algorithm are the unified framework used in updating both continuous control and switching strategy
and the fact that no combinatoric search is needed whatever is the number of switches. Future works concern
the generalization of the proposed scheme to hybrid systems with autonomous switches and/or controlled
switched with admissible target configurations that may depend on the active configuration.
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