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Abstract

We prove that a closed set K of a finite dimensional space is invariant under the
stochastic control system

dX = b(X, v(t))dt + σ(X, v(t))dW (t), v(t) ∈ U,

if and only if it is invariant under the deterministic control system with two controls

x′ = b(x, v(t))− 1
2

m∑
j=1

Dσj(x, v(t))σj(x, v(t)) + σ(x, v(t))u(t), u(t) ∈ H1, v(t) ∈ U.

This extends the well known result of stochastic differential equations to stochastic
control systems. Furthermore, we ask only C1,1 regularity of the diffusion σ instead
of the usual assumption σ ∈ C2. In this way our result is new even for stochastic
differential equations. The arguments of the proof are based on estimates between
solutions of the stochastic control system with time independent controls and fam-
ilies of solutions {xω(·)}ω∈Ω to the deterministic control system

x′ = σ(x, vω)uω(t), uω(t) ∈ H1.

with appropriately chosen controls uω(t) and vω ∈ U .
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1 Introduction

We are given two finite dimensional spaces H and H1, a complete filtered probability
space (Ω,F , {Ft}t≥0,P) such that {Ft}t≥0 is right continuous, F0 contains all P−null
sets of F and a standard H1-valued {Ft}t≥0-Brownian motion W (t), t ≥ 0.

This paper is devoted to the problem of invariance of closed sets under the stochastic
control system

dX = b(X, v(t))dt+ σ(X, v(t))dW (t), v(t) ∈ U, (1.1)

where U is a complete separable metric space and b : H × U → H, and σ : H × U →
L(H1, H) are bounded continuous mappings which are Lipschitz with respect to the first
variable, and controls v(t) are U−valued mappings which are progressively measurable
with respect to the family Ft, called admissible controls.

A set K ⊂ H is invariant under the control system (1.1) if for every F0-random
variable X0 ∈ L2(Ω) such that X0 ∈ K almost surely and every admissible control v(·),
the solution X to (1.1) starting at X0 satisfies for all t ≥ 0, X(t) ∈ K almost surely. We
refer to [27] for the definition of solutions to stochastic control systems.

When b and σ are control independent, the above system reduces to the stochastic
differential equation

dX = b(X)dt+ σ(X)dW (t). (1.2)

Recently a number of papers were written on stochastic viability and invariance of
closed sets. In the case of stochastic equation (1.2) conditions for the invariance were
expressed using the Stratonovitch drift [15] (see also [17] when K is the closure of an open
set with smooth boundary) or stochastic contingent sets [2, 3]. Next, a characterization
of invariance, based on [15], in terms of curvature of the boundary of K was proposed in
[6].

For stochastic control systems and differential inclusions different authors used stochas-
tic contingent sets [4, 5], viscosity solutions of second order partial differential equations
[8, 9, 10] and derivatives of the distance function [14], see also [18, 19, 20, 22, 23, 25] for
several other approaches.

The method based on the second order partial differential equations deals with value
functions of some associated optimal control problems. In [8] it is the exit time function,
while in [10] it is the value function of an infinite horizon problem. These tools use the
second order jets of continuous solutions to PDE’s. So the second order normal cones to
K arise naturally in characterizations of invariance.

In contrast, the results of [15, Doss] obtained in the context of stochastic equations
use only first order normals to K. This approach is based on an equivalence between
invariance of stochastic equation (1.2) and that of an associated deterministic control
system. Namely it was shown in [15] that if σ ∈ C3 and has bounded derivatives up to
the order three, then K is invariant under the stochastic equation (1.2) if and only if K
is invariant under the (well understood) deterministic control system

x′ = b(x)− 1

2

m∑
j=1

Dσj(x)σj(x) + σ(x)u(t), u ∈ L1
loc(R+, H1). (1.3)
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Theory of [15] needs however more regularity of the diffusion term σ (C3
b instead of

bounded and Lipschitz continuous) and is based on the support theorem which is not
applicable in the presence of controls.

In this paper we prove a similar first order characterization of invariance for stochastic
control systems, when σ ∈ C1,1

b . That is we extend the Doss theorem into two directions :
to control systems and less regular σ. Furthermore, we propose a very direct “deterministic
proof”, while in [15] arguments are based on the support theorem of stochastic analysis.

Recall that in the deterministic case a necessary and sufficient condition for invariance
of K under (1.3) can be expressed by using tangents to K :

b(x)− 1

2

m∑
j=1

Dσj(x)σj(x) + σ(x)u ∈ TK(x), ∀ x ∈ K, ∀ u ∈ H1

(see Section 2 for the definition of TK(x) and [1] for the thorough study of invariance in
the deterministic case). The result of Doss implies that K is invariant under the stochastic
system (1.2) if and only if the so called Stratonovitch drift is tangent to K:

b(x)− 1

2

m∑
j=1

Dσj(x)σj(x) ∈ TK(x), ∀ x ∈ K (1.4)

and the image of the diffusion σ is tangent to K :

σ(x)u ∈ TK(x), ∀ x ∈ K, ∀ u ∈ H1. (1.5)

In Section 2 we show that condition (1.5) in turn is equivalent to the invariance of the
boundary of K under the deterministic control system

x′ = σ(x)u(t), u ∈ L1
loc(R+, H1). (1.6)

Instead of using the support theorem, we take the deterministic control system (1.6)
as a starting point. We first show in Section 3 that if K is invariant under (1.2), then
(1.5) holds true. In fact we prove even a much stronger result for continuous data and
weak solutions. Hence K is also invariant under the deterministic control system (1.6).
Consider next a solution X(t) to (1.2) starting at some x ∈ K. If K is invariant under
(1.2), then for all h > 0, X(h) ∈ K almost surely. For almost every ω ∈ Ω we extend then
Xω(h) by an invariant solution of the deterministic system (1.6) with an appropriately
chosen constant control uω. In Section 4, from an analysis of these extensions, we deduce
(1.4). In this way we get two necessary conditions for the invariance (1.4) and (1.5), which
are stated (equivalently) using proximal normals.

To prove that conditions (1.4) and (1.5) are also sufficient for the invariance ofK under
(1.2), consider a solution X(t) to (1.2) starting at some random variable X0 ∈ L2(Ω) with
X0 ∈ K almost surely. In Section 4 we check that for all t > 0, ψ(t) := Ed2

K(X(t)) = 0,
where dK(x) denotes the distance from x to K. The idea is to define for every fixed
t > 0 with ψ(t) > 0 and all h > 0 an Ft+h−random variable y(h) ∈ K such that
E|X(t + h) − y(h)|2 ≤ ψ(t) + Lhψ(t) + o(h), with L independent from t. This leads to
the inequality dψ(t) ≤ Lψ(t), where dψ(t) is the lower right derivative of ψ at t. Then
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an extension of the Gronwall inequality proposed in Section 2 (Proposition 2.7) allows to
conclude that ψ = 0. In order to construct y(h) we use again invariant solutions to (1.6)
with appropriately chosen controls.

In Section 5 we turn to stochastic control system (1.1). Taking constant controls
v ∈ U , the necessary conditions for the invariance of K under (1.1) may be written as

b(x, v)− 1

2

m∑
j=1

Dσj(x, v)σj(x, v) ∈ TK(x), Im(σ(x, v)) ⊂ TK(x), ∀ v ∈ U, x ∈ K. (1.7)

When controls are piecewise constant with respect to the time, by the same constructions
as those used for stochastic equations in Section 4, we show that conditions (1.7) are
also sufficient for the invariance. Then we approximate solutions corresponding to any
admissible control by solutions with piecewise constant controls to prove the invariance
of K in the full generality.

In conclusion, K is invariant under the stochastic control system (1.1) if and only if
it is invariant under the deterministic control system with two (deterministic) controls

x′ = b(x, v(t))− 1
2

∑m
j=1Dσj(x, v(t))σj(x, v(t)) + σ(x, v(t))u(t),

u ∈ L1
loc(R+, H1), v : R+ → U is measurable.

In Section 5 the tangential characterization (1.7) of the invariance is also stated in terms
of proximal normals and normal cones. Finally, using the same idea as in [6], but a
slightly different definition, we also characterize the invariance of K under (1.1) using the
curvature of K.

2 Preliminaries

We are given two euclidean finite dimensional spaces H = Rn and H1 = Rm, (norm | · |,
inner product 〈·, ·〉) and denote by B1 the closed unit ball in H1, and by ‖ · ‖ the norm of
L(H1, H).

Consider a complete filtered probability space (Ω,F , {Ft}t≥0,P) such that {Ft}t≥0 is
right continuous, F0 contains all P−null sets of F and a standard H1-valued {Ft}t≥0-
Brownian motion W (t), t ≥ 0 (see for instance [27] for the corresponding definitions).
The following result is well known, since W (t) is a Gaussian random variable with mean
0 and covariance operator tI.

Proposition 2.1 There exists C1 > 0 such that for all t > 0

E|W (t)|4 ≤ C1t
2, E|W (t)|6 ≤ C1t

3.

Furthermore for any bounded adapted process f : R+ → L∞(Ω, L(H1, H)) there exists
c > 0 independent from f such that

E|
∫ t

0

f(s)dW (s)|4 ≤ ct2‖f‖4
∞, ∀ t > 0.
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Let b : H → H, σ : H → L(H1, H) be bounded Lipschitz continuous mappings.
Denote by σ∗(x) the transpose of σ(x), by σj(x) the column j of the matrix σ(x) and by
Dσj the jacobian of σj.

Then for every F0- random variable X0 ∈ L2(Ω), the differential stochastic equation
dX = b(X)dt+ σ(X)dW (t),

X(0) = X0,
(2.1)

has a unique strong solution X(t), i.e. for all t > 0,

X(t) = X0 +

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dW (s).

Furthermore, for every t0 > 0 there exists M0 > 0 such that

E|X(s2)−X(s1)|2 ≤M0(s2 − s1), ∀ 0 ≤ s1 < s2 ≤ t0. (2.2)

Consider a closed non empty subset K of H. We denote by ∂K the boundary of K
and by dK the distance of x ∈ H from K :

dK(x) = inf
y∈K

|x− y|, x ∈ H.

Definition 2.2 The set K is called invariant under the system (2.1) if for every F0-
random variable X0 ∈ L2(Ω) such that X0 ∈ K almost surely, the strong solution X to
(2.1) satisfies for all t ≥ 0, X(t) ∈ K almost surely.

Recall that the contingent cone TK(x) to K at x ∈ K is the set of all vectors v ∈ H
such that lim infh→0+ dK(x+hv)/h = 0 and the normal cone NK(x) to K at x ∈ K is the
negative polar cone of TK(x).

Consider the set-valued map

∂K 3 x ; NK(x) ⊂ H

and fix x ∈ ∂K and p ∈ NK(x). The contingent derivative DNK(x, p)(u) of NK at (x, p)
in the direction u ∈ H is defined by

v ∈ DNK(x, p)(u) ⇐⇒

∃ hi → 0+, ∃ (ui, vi) → (u, v) such that x+ hiui ∈ ∂K, p+ hivi ∈ NK(x+ hiui).

It is clear that DNK(x, p)(u) = Ø, whenever u /∈ T∂K(x). See [7] for properties of set-
valued derivatives.

The contingent curvature of K at (x, p) ∈Graph(NK) is defined by

∀ u, v ∈ T∂K(x), CurvK(x, p)(u, v) = sup
µ∈DNK(x,p)(u)

〈µ, v〉.

It was introduced in [6] by the same formulae, but with the set K instead of ∂K.
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Lemma 2.3 Assume that σ : H → L(H1, H) is differentiable and for every x ∈ ∂K and
p ∈ NK(x), σ∗(x)p = 0. Then for all vj ∈ DNK(x, p)(σj(x))

CurvK(x, p)(σj(x), σj(x)) = 〈vj, σj(x)〉 = −〈p,Dσj(x)σj(x)〉 .

In particular, if for every x ∈ ∂K there exists a unique unit outward normal n(x) to K
at x and if n(·) is differentiable on ∂K, then

Tr[n′(x)σ(x)σ(x)∗] = −
m∑
j=1

〈n(x), Dσj(x)σj(x)〉 . (2.3)

Proof — Let {ej}j=1,...,m be an orthonormal basis of H1, x ∈ ∂K, p ∈ NK(x), u =
(u1, ..., um) ∈ H1, µ ∈ DNK(x, p)(σ(x)u) and consider hk → 0+, µk → µ, vk → σ(x)u
such that x+ hkvk ∈ ∂K, p+ hkµk ∈ NK(x+ hkvk). Then 〈p+ hkµk, σ(x+ hkvk)u〉 = 0.
Thus

〈µk, σ(x)u〉+

〈
p,
∑
r

〈∇σir(x), σ(x)u〉ur
〉

= o(hk)/hk.

Taking the limit when k →∞ implies

〈µ, σ(x)u〉+

〈
p,
∑
r

〈∇σir(x), σ(x)u〉ur
〉

= 0.

Setting in the last equality u = ej yields

∀ µ ∈ DNK(x, p)(σj(x)), 〈µ, σj(x)〉 = −〈p,Dσj(x)σj(x)〉 . (2.4)

To prove the last statement, observe that (2.4) yields

〈σ(x)∗n′(x)σ(x)ej, ej〉 = −〈n(x), Dσj(x)σj(x)〉 .

Adding the above expressions for j = 1, ...,m implies

Tr[σ(x)∗n′(x)σ(x)] = −
m∑
j=1

〈n(x), Dσj(x)σj(x)〉 .

Since Tr[σ(x)∗n′(x)σ(x)] = Tr[n′(x)σ(x)σ(x)∗] the proof is complete. 2

A vector p ∈ H is called a proximal normal to K at x ∈ K if |p| = dK(x+ p). Clearly
p = 0 is a proximal normal and it is the only proximal normal when x is in the interior of
K. It is well known that if p is a proximal normal to K at x, then for some c > 0

∀ y ∈ K, 〈p, y − x〉 ≤ c|y − x|2. (2.5)

Proposition 2.4 Assume that σ : H → L(H1, H) is continuous. Then the following
conditions are equivalent :

(i) for all x ∈ K and for any proximal normal p to K at x, σ(x)∗p = 0,
(ii) for all x ∈ K, Im(σ(x)) ⊂ TK(x),
(iii) for all x ∈ K and for any p ∈ NK(x), σ(x)∗p = 0.
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Proof — Denote by Nprox
K (y) the cone spanned by all proximal normals to K at

y ∈ K. The Clarke normal cone to K at x ∈ K is defined by

N c
K(x) := co

Limsup
y → x
y ∈ K

Nprox
K (y)

 ,

where Limsup denotes the Painlevé-Kuratowski upper limit (see for instance [7]) and co
the closed convex hull. The tangent cone CK(x) to K at x is the negative polar cone to
N c
K(x) for x ∈ K. It is well known that CK(x) ⊂ TK(x) (see [7]). From the definition of

normal cone we deduce that if (i) holds true, then for all p ∈ N c
K(x), σ(x)?p = 0 implying

that Im(σ(x)) ⊂ CK(x) ⊂ TK(x).
Observe next that if p is a proximal normal toK at x, then for every v ∈ TK(x), 〈p, v〉 ≤

0. Consequently (ii) implies (i). Clearly (ii) yields (iii). Since for any proximal normal p
to K at x we have p ∈ NK(x), (iii) implies (i). 2

Proposition 2.5 Assume that σ : H → L(H1, H) is locally Lipschitz. Then K and ∂K
are invariant under the deterministic control system

y′ = σ(y)u(t), u(·) ∈ L1
loc(R+, H1) (2.6)

if and only if and for all x ∈ K and any proximal normal p at x we have σ(x)∗p = 0.

Proof — If K (or ∂K) is invariant under the deterministic control system (2.6), then,
by taking constant controls in (2.6), from the definition of contingent cone we deduce
that for all x ∈ K, Im(σ(x)) ⊂ TK(x). Proposition 2.4 implies then that for all x ∈ K
and any proximal normal p at x we have σ(x)∗p = 0. Conversely, if for all x ∈ K and
any proximal normal p at x we have σ(x)∗p = 0, then by Proposition 2.4 for all x ∈ K,
Im(σ(x)) ⊂ TK(x). This and [1] imply that the set K is invariant under the deterministic
control system (2.6).

To prove that ∂K is invariant, assume by a contradiction that for some control u(·) ∈
L1

loc(R+, H1) and some T > 0, a solution y to (2.6) satisfies y(0) ∈ ∂K, y(T ) ∈ K\∂K.
Since σ is locally Lipschitz, when the control u(·) is fixed, solutions to (2.6) depend
continuously on the initial condition. Hence there exists y1 /∈ K such that the solution z
to

z′ = σ(z)u(t), z(0) = y1

satisfies z(T ) ∈ Int(K). Set x(s) = z(T − s). Then x(T ) = y1 /∈ K, x(0) = z(T ) ∈ K
and x′(s) = σ(x(s))(−u(T − s)). Since K is invariant under (2.6) we also have x(T ) ∈ K,
contradicting the choice of y1 and completing the proof. 2

Corollary 2.6 Assume that σ : H → L(H1, H) is locally Lipschitz. Then the following
conditions are equivalent :

(i) for all x ∈ K and for any proximal normal p to K at x, σ(x)∗p = 0,
(ii) for all x ∈ ∂K, Im(σ(x)) ⊂ T∂K(x).
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Proof — By Proposition 2.5, if (i) holds true, then ∂K is invariant under the deter-
ministic control system (2.6). From the very definition of the contingent cone we deduce
(ii). If (ii) holds true, then for all x ∈ K, Im(σ(x)) ⊂ TK(x). Proposition 2.4 completes
the proof. 2

For ψ : R+ → R the lower right derivative is defined by dψ(t) := lim infh→0+
ψ(t+h)−ψ(t)

h
.

Proposition 2.7 Consider T > 0 and a continuous function ψ : [0, T ] → R+ with
ψ(0) = 0. Assume that for some L ≥ 0 and every t ∈ [0, T [ such that ψ(t) > 0 we have
dψ(t) ≤ Lψ(t). Then ψ = 0.

Proof — By contradiction assume first that for some 0 < t2 < T, ψ(t2) > 0. Let
t0 = max{s ∈ [0, t2] | ψ(s) = 0}. Fix any tε ∈ (t0, t2) and set Ψ(s) = ψ(s) if s ∈ [tε, t2]
and Ψ(s) = ψ(t2) for all s ≥ t2. Then Ψ > 0 on [tε,+∞). Let K denote the epigraph of
Ψ. Then K is closed and for all (t, r) ∈ K, (1, LΨ(t)) ∈ TK(t, r). Hence, by the viability
theorem (see [1]) the solution (t, y(t)) to the system{

t′(s) = 1, t(0) = tε
y′(s) = LΨ(tε + s), y(0) = Ψ(tε)

satisfies (t, y(t)) ∈ K. Thus Ψ(tε + t) ≤ Ψ(tε) +
∫ t

0
LΨ(tε + s)ds. The Gronwall inequality

implies that Ψ(tε + t) ≤ Ψ(tε)e
Lt. Taking the limit when tε → t0+ we get Ψ(t0 + t) = 0

for all t ≥ 0. In particular ψ(t2) = 0. The obtained contradiction yields the result. 2

3 A Necessary Condition for Viability

Consider a closed nonempty subset K ⊂ H. We first study a necessary condition for the
viability of K under (1.2) and deduce from it a necessary condition for the invariance in
terms of proximal normals and the diffusion. The result below may be applied to any
weak solution of (1.2). See for instance [26] or [21] for the definition of weak solution.

A mapping X : R+ → L2(Ω, H) is called an adapted process if for every t ≥ 0, X(t)
is Ft−measurable.

Let b, σ be bounded and continuous. Assume that an adapted process X(·) is contin-
uous and for some x ∈ H,

∀ t ≥ 0, X(t) = x+

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dW (s) a.s., (3.1)

where a.s. states for almost surely. In the other words X is a solution to (1.2) on
a complete filtered probability space (Ω,F , {Ft}t≥0,P) corresponding to the {Ft}t≥0-
Brownian motion W and the initial condition x (in general, such solution may not exist
for the given data, but it may be obtained with another probability space and Brownian
motion, see [26] or [19]).

The process X(·) is called viable in K, if for all t ≥ 0, X(t) ∈ K a.s.
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Theorem 3.1 Assume that b and σ are bounded and continuous. If an adapted process
X(·) is continuous, satisfies (3.1) with x ∈ K and for some hi → 0+, X(hi) ∈ K a.s.,
then for any proximal normal p to K at x we have σ(x)∗p = 0.

In particular, if (1.2) has a weak solution starting at some x ∈ K which is viable in
K, then for any proximal normal p to K at x we have σ(x)∗p = 0.

Corollary 3.2 Assume that b, σ are bounded and Lipschitz continuous. If K is invariant
under the system (2.1), then for all x ∈ K and any proximal normal p to K at x we have
σ(x)∗p = 0.

Proof of Corollary 3.2 By [26, Theorem 5.1.1] for every F0−initial condition X0 ∈
L2(Ω) there exists a continuous version of the strong solution to (2.1). Theorem 3.1
completes the proof. 2

Theorem 3.1 follows from a more general result below.

Theorem 3.3 Let f : [0, T ] → L1(Ω, H), g : [0, T ] → L2(Ω, L(H1, H)) be adapted and
continuous at zero, and f ∈ L1([0, T ]× Ω), g ∈ L2([0, T ]× Ω). Let x ∈ K and define the
adapted process

X(t) := x+

∫ t

0

f(s)ds+

∫ t

0

g(s)dW (s).

Assume that at least one of the following two conditions is satisfied

(i) X(·) is almost surely continuous at zero,

(ii) f(0) ∈ L2(Ω), g(0) ∈ L4(Ω).

If for some hi → 0+, X(hi) ∈ K a.s., then for any proximal normal p to K at x we have
g(0)∗p = 0 a.s.

Proof of Theorem 3.1 Consider a continuous version of X. It is enough to set
f(t) = b(X(t)) and g(t) = σ(X(t)). Since b, σ are bounded and continuous, f(·) and
g(·) are continuous at zero. All other assumptions of Theorem 3.3 are verified as well by
boundedness of b, σ. 2

Proof of Theorem 3.3 It is not restrictive to suppose that x = 0 and

p

|p|
= (0, ..., 1).

Fix λ ∈ (0, 1/4]. Then dK(λp + X(hi)) ≤ λ|p|, for all i ≥ 1. Denote by Bc(p, |p|) the
complement of the ball B(p, |p|). Set

ψ(y) =
[
dBc(p,|p|)(λp+ y)

]4
.

Clearly ψ is continuous, bounded, vanishing outside of B(p, |p|)− λp. Moreover

ψ(y) =


(|p| − |p− λp− y|)4, if λp+ y ∈ B(p, |p|),

0 otherwise.
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If |λp+ y − p| < |p| and p 6= λp+ y, then

Dψ(y) = 4(|p| − |p− λp− y|)3 p− λp− y

|p− λp− y|
.

If |λp+ y − p| > |p|, then Dψ(y) = 0. Consequently for all y 6= p− λp,

Dψ(y) =


4(|p| − |p− λp− y|)3 p− λp− y

|p− λp− y|
, if λp+ y ∈ B(p, |p|),

0 otherwise.

So Dψ(y) is bounded on
{
y ∈ H : λp+ y /∈ B(p, 1

4
|p|)
}
, and Dψ(0) = 4λ3|p|2p.

If |λp+ y − p| < |p| and p 6= λp+ y, then

D2ψ(y) = 12(|p| − |p− λp− y|)2 1

|p− λp− y|2
(p− λp− y)⊗ (p− λp− y)+

+4(|p| − |p− λp− y|)3 1

|p− λp− y|3
(p− λp− y)⊗ (p− λp− y)−

−4(|p| − |p− λp− y|)3 1

|p− λp− y|
Id.

If |λp + y − p| > |p|, then D2ψ(y) = 0. Consequently D2ψ is continuous and bounded
outside of B(p − λp, 1

4
|p|). Differentiating again we find that D3ψ is continuous and

bounded on the set {
y ∈ H : λp+ y /∈ B(p,

1

4
|p|)
}
.

Moreover

D2ψ(0) = 12λ2p⊗ p+
4λ3

1− λ
p⊗ p− 4|p|2 λ3

1− λ
Id.

Let ρ ∈ C∞ be such that 0 ≤ ρ ≤ 1 and

ρ(y) =


0, if λp+ y ∈ B(p, 1

4
|p|),

1, if λp+ y ∈ Bc(p, 1
2
|p|).

Define the function ζ(y) = ρ(y)ψ(y). Then ζ ∈ C2, is bounded and has bounded deriva-
tives up to order 3. Furthermore,

ζ(y) ≤ λ4|p|4, ∀ y ∈ K. (3.2)

From Itô’s formula (see for instance [21, Theorem 4.2.1]) and (3.2), since X(hi) ∈ K a.s.
we get

ζ(X(hi)) = λ4|p|4 +

∫ hi

0

(
1

2
Tr [D2ζ(X(s))g(s)g(s)∗] + 〈Dζ(X(s)), f(s)〉

)
ds

+

∫ hi

0

〈Dζ(X(s)), g(s)dW (s)〉 ≤ λ4|p|4 a.s.

10



Taking the expectation and using Fubini’s theorem to bring the expectation inside the
integrals, we obtain∫ hi

0

E〈Dζ(X(s)), f(s)〉ds+
1

2

∫ hi

0

E Tr [D2ζ(X(s))g(s)g(s)∗]ds ≤ 0. (3.3)

Since Dζ is bounded, for a constant c1 independent of s

〈Dζ(0), f(0)〉 ≤ 〈Dζ(X(s)), f(s)〉+ c1|f(s)− f(0)|+ |Dζ(X(s))−Dζ(0)||f(0)|. (3.4)

If the assumption (i) holds true, then |Dζ(X(s))−Dζ(0)||f(0)| → 0 a.s. when s→ 0 + .
This and the dominated convergence theorem yield∫ hi

0

E|Dζ(X(s))−Dζ(0)||f(0)|ds = o(hi). (3.5)

If (ii) is satisfied, then, by the Lipschitz continuity of Dζ, for some L > 0,

|Dζ(X(s))−Dζ(0)||f(0)| ≤ L|X(s)||f(0)|

and, by the Höder inequality and (2.2), for some c2 > 0 and all i,∫ hi

0

E|Dζ(X(s))−Dζ(0)||f(0)|ds ≤ L

∫ hi

0

‖X(s)‖L2‖f(0)‖L2ds

≤ c2L‖f(0)‖L2

∫ hi

0

√
sds = o(hi).

Thus also in this case we have (3.5).
Taking the expectation in (3.4) and integrating on [0, hi], we deduce from (3.5) and

the continuity of f at zero that

hi E〈Dζ(0), f(0)〉 ≤
∫ hi

0

E〈Dζ(X(s)), f(s)〉ds+ o(hi). (3.6)

On the other hand, since D2ζ is bounded, for some c3 > 0 independent from s,

Tr [D2ζ(0)g(0)g(0)∗] ≤ Tr [D2ζ(X(s))g(s)g(s)∗]+

+‖D2ζ(X(s))−D2ζ(0)‖‖g(0)‖2 + c3‖g(s)− g(0)‖ (‖g(s)‖+ ‖g(0)‖) .
(3.7)

If (i) holds true, then ‖D2ζ(X(s)) − Dζ(0)‖‖g(0)‖2 → 0 a.s. when s → 0 + . This and
the dominated convergence theorem yield∫ hi

0

E‖D2ζ(X(s))−D2ζ(0)‖‖g(0)‖2ds = o(hi). (3.8)

If (ii) is satisfied, then, by the Lipschitz continuity of D2ζ, for some L > 0,

‖D2ζ(X(s))−D2ζ(0)‖‖g(0)‖2 ≤ L|X(s)|‖g(0)‖2

11



and, by the Hölder inequality, for some c4 > 0 independent from s

E
(
|X(s)|‖g(0)‖2

)
≤ ‖X(s)‖L2‖g(0)‖2

L4 ≤ c4‖g(0)‖2
L4

√
s.

Thus also in this case we have (3.8). On the other hand, by the Hölder inequality,

E (‖g(s)‖‖g(s)− g(0)‖) ≤ ‖g(s)‖L2‖g(s)− g(0)‖L2 ,

and
E (‖g(0)‖‖g(s)− g(0)‖) ≤ ‖g(0)‖L2‖g(s)− g(0)‖L2 .

Taking the expectation in (3.7) and integrating on [0, hi], we deduce from (3.8), the
continuity of g at zero and the last two inequalities that

hi
2

ETr [D2ζ(0)g(0)g(0)∗] ≤ 1

2

∫ hi

0

ETr [D2ζ(X(s))g(s)g(s)∗]ds+ o(hi). (3.9)

Consequently, by (3.3), (3.6), (3.9)

hi E
(
〈Dζ(0), f(0)〉+

1

2
Tr [D2ζ(0)g(0)g(0)∗]

)
≤ o(hi).

Dividing by hi and taking the limit, we obtain

E〈Dζ(0), f(0)〉+
1

2
ETr

[
D2ζ(0)g(0)g(0)∗

]
≤ 0.

Thus

4λ3|p|2E〈p, f(0)〉+ 6λ2 ETr [(p⊗ p)g(0)g(0)∗]+

+λ3

[
2

1− λ
ETr [(p⊗ p)g(0)g(0)∗]− 2

1− λ
|p|2ETr [g(0)g(0)∗]

]
≤ 0.

Dividing by λ2 and letting λ→ 0 we deduce that

ETr [(p⊗ p)g(0)g(0)∗] ≤ 0.

But p⊗ p = (αi,j) with αn,n = 1 and αi,j = 0 for i+ j < 2n. Thus

ETr [(p⊗ p)g(0)g(0)∗] = E
n∑
i=1

gn,i(0)2 ≤ 0.

So gn,i(0) = 0 a.s. for all i and g(0)∗p = 0 a.s. as required. 2

Remark 3.4 In [2] the authors investigate invariance by using stochastic tangent sets.
Namely a pair of Ft-random variables (β, γ) ∈ L2(Ω, H)× L2(Ω, L(H1, H)) is tangent to
K at (t, x) ∈ R+×K if there exist continuous adapted processes ζ(s) and η(s) converging
to zero when s→ t+ such that for all small h > 0,

x+

∫ t+h

t

(β + ζ(s))ds+

∫ t+h

t

(γ + η(s))dW (s) ∈ K a.s.

If for some T > t, ζ ∈ L1([t, T ]×Ω), η ∈ L2([t, T ]×Ω) and γ ∈ L4(Ω), then Theorem 3.3
may be applied and thus we get γ∗p = 0 a.s. for every proximal normal p to K at x.
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4 Necessary and Sufficient Conditions for the Invari-

ance

We denote by C1,1
b (H;L(H1, H)) the set of all functions σ : H → L(H1, H) such that σ

and its derivative σ′ are bounded and σ′(·) is Lipschitz.
In this section we assume that K is closed, b is Lipschitz and bounded, and that

σ ∈ C1,1
b (H;L(H1, H)). Recall that σj(x) denotes the column j of the matrix σ(x) and

Dσj the jacobian of σj.

Theorem 4.1 Assume that K is closed, b is Lipschitz and bounded, and that σ ∈ C1,1
b .

The set K is invariant under the system (2.1) if and only if for every x ∈ ∂K and for all
proximal normal p to K at x we have〈

p, b(x)− 1

2

m∑
j=1

Dσj(x)σj(x)

〉
≤ 0, σ(x)∗p = 0. (4.1)

Remark 4.2

a) In Theorem 4.1 instead of taking proximal normals p, we may take vectors p ∈
N c
K(x) (the Clarke normal cone to K at x). Indeed, it is enough to apply the same

arguments as those from the proof of Proposition 2.4 to show that if (4.1) holds true for
all proximal normals, then it is also valid for all p ∈ N c

K(x). Conversely, since Nprox
K (x) ⊂

N c
K(x), if (4.1) holds true for all p ∈ N c

K(x), then it is also valid for all proximal normals
to K at x.

b) In [8] invariance is defined in a different way. Namely the initial conditions are
elements of H instead of random variables.

From the proof of Theorem 4.1 provided below it follows that (4.1) is also a necessary
and sufficient condition for the invariance of K with this different definition.

Since Nprox
K (x) ⊂ NK(x) ⊂ N c

K(x) the above remark implies the following corollary.

Corollary 4.3 Assume that K is closed, b is Lipschitz and bounded, and that σ ∈ C1,1
b .

Then K is invariant under (2.1) if and only if for every x ∈ ∂K and for all p ∈ NK(x)
the relations (4.1) hold true.

Theorem 4.1 allows to extend to a less regular σ a result from [15] :

Corollary 4.4 Assume that K is closed, b is Lipschitz and bounded, and that σ ∈ C1,1
b .

Then K is invariant under the stochastic system (2.1) if and only if K is invariant under
the deterministic control system

x′ = b(x)− 1

2

m∑
j=1

Dσj(x)σj(x) + σ(x)u(t), u ∈ L1
loc(R+, H1), (4.2)

or, equivalently, if and only if

b(x)− 1

2

m∑
j=1

Dσj(x)σj(x) ∈ TK(x), Im(σ(x)) ⊂ TK(x), ∀ x ∈ K.
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Proof — By Corollary 4.3, relations (4.1) may be equivalently written with p ∈ NK(x)
instead of proximal normals. Thus, by the separation theorem, (4.1) is equivalent to

∀ x ∈ K, b(x)− 1

2

m∑
j=1

Dσj(x)σj(x) ∈ coTK(x) & Im(σ(x)) ⊂ coTK(x),

where co denotes the closed convex hull. By [7, Theorem 4.1.10] and continuity of b, σ
in the above coTK(x) may be replaced by TK(x). Hence, by [1], (4.1) is a necessary and
sufficient condition for the invariance of K under (4.2). 2

Theorem 4.1 and Lemma 2.3 imply the following two corollaries.

Corollary 4.5 Assume that b is Lipschitz and bounded, that σ ∈ C1,1
b , K is closed and

for every x ∈ ∂K there exists a unique unit outward normal n(x) to K at x. If n(·) is
differentiable on ∂K, then K is invariant under (2.1) if and only if for every x ∈ ∂K

〈n(x), b(x)〉+
1

2
Tr[n′(x)σ(x)σ∗(x)] ≤ 0, σ(x)∗n(x) = 0. (4.3)

Corollary 4.6 Assume that K is closed, b is Lipschitz and bounded and that σ ∈ C1,1
b .

Further assume that for every x ∈ ∂K and p ∈ NK(x), DNK(x, p)(σj(x)) 6= Ø for all
j = 1, ...,m. Then K is invariant under (2.1) if and only if for every x ∈ ∂K and
p ∈ NK(x)

〈p, b(x)〉+
1

2

m∑
j=1

CurvK(x, p)(σj(x), σj(x)) ≤ 0, σ(x)∗p = 0. (4.4)

Furthermore, for all vj ∈ DNK(x, p)(σj(x))

CurvK(x, p)(σj(x), σj(x)) = 〈vj, σj(x)〉 = −〈p,Dσj(x)σj(x)〉 .

In order to prove Theorem 4.1 we shall need the following lemma. Let x ∈ H and let
X(·) be the strong solution to (2.1) with X0 = x. Set

Iij(t) := σij(X(t))− σij(x)−

−
∫ t

0

〈∇σij(X(s)), b(X(s))〉 ds−
∫ t

0

〈∇σij(X(s)), σ(X(s))dW (s)〉 .
(4.5)

Lemma 4.7 There exists a constant M1 > 0 independent from x such that for all 1 ≤
i ≤ n, 1 ≤ j ≤ m

E(Iij(t))
2 ≤M1t

2, E(Iij(t))
4 ≤M1t

4, ∀ t ≥ 0. (4.6)

Proof — We first assume that in addition σ ∈ C2. By the Itô formula

σij(X(t)) = σij(x) +

∫ t

0

(
〈∇σij(X(s)), b(X(s))〉+

1

2
Tr[σ′′ijσσ

∗](X(s))

)
ds+

+

∫ t

0

〈∇σij(X(s)), σ(X(s))dW (s)〉 .
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Thus E(Iij(t))
r = E

(
1
2

∫ t
0

Tr[σ′′ijσσ
∗](X(s))ds

)r
for r = 2, 4. Since σ′′ij and σ are bounded,

it is enough to take M1 = n4
(
1 + maxi,j ‖σ′′ijσσ∗‖∞

)4
, where n =dim(H).

Consider next a mollifier ψ : H → [0, 1] and the sequence of C∞ functions {σkij}k≥1

defined by

σkij(z) :=

∫
σij(z − y/k)ψ(y)dy.

Then σkij and its first and second derivatives are bounded with the same bounds than those
of σ. Furthermore, σkij, ∇σkij converge pointwise to σij and ∇σij respectively. Define Ikij(t)
as in (4.5) with σij replaced by σkij. By the first part of the proof for some c > 0 and all
k ≥ 1, E(Ikij(t))

2 ≤ ct2. Set

Jk :=

∫ t

0

〈(
σ∗∇σij − (σk)∗∇σkij

)
(X(s)), dW (s)

〉
.

Then for some constant α > 1

1
α

E(Iij(t))
2 ≤ E(Ikij(t))

2 + E
(
σij(X(t))− σkij(X(t))

)2
+ (σij(x)− σkij(x))

2+

+E
(∫ t

0

〈
(∇σij −∇σkij)(X(s)), b(X(s))

〉
ds

)2

+ E(Jk)
2 ≤

≤ ct2 + E
(
σij(X(t))− σkij(X(t))

)2
+ (σij(x)− σkij(x))

2+

+t||b||2∞
∫ t

0

E|(∇σij −∇σkij)(X(s))|2ds+

∫ t

0

E|(σ∗∇σij − (σk)∗∇σkij)(X(s))|2ds.

Taking the limit when k → ∞ we end the proof of the first inequality in (4.6) with the
constant M1 = αc.

To prove the second inequality, observe that for some constant β > 1

1

β
E(Iij(t))

4 ≤ E(Ikij(t))
4 + E

(
σij(X(t))− σkij(X(t))

)4
+ (σij(x)− σkij(x))

4+

+E
(∫ t

0

〈
(∇σij −∇σkij)(X(s)), b(X(s))

〉
ds

)4

+ E(Jk)
4.

We may apply the same limiting argument provided we show that

lim
k→∞

E|Jk|4 = 0.

By Proposition 2.1 for a constant c0 > 0

E|Jk|4 ≤ c0t
2‖σ∗∇σij − (σk)∗∇σkij‖4

∞.

The right-hand side of the above inequality converging to zero, the proof follows. 2
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Fix u = (u1, ..., um) ∈ B1 and consider the ordinary differential equation

y′ = σ(y)u, y(0) = x.

Since σ ∈ C1,1
b , its solution y(·) verifies

y(s) = x+ sσ(x)u+
s2

2

(∑
j

〈∇σij(x), σ(x)u〉uj
)

+Ox(s
3), (4.7)

where for some M > 0 independent from x, and all s ≥ 0

|Ox(s
3)| ≤Ms3. (4.8)

Proof of Theorem 4.1 —

Necessity. Assume that K is invariant. Then, by Corollary 3.2, σ∗(y)py = 0 for all
y ∈ K and any proximal normal py to K at y.

Fix x ∈ K and a proximal normal p to K at x. Then for some c > 0 we have

∀ z ∈ K, 〈p, z − x〉 ≤ c|z − x|2. (4.9)

Consider the strong solution X to (2.1) with X0 = x. Then for a constant M0 > 0 and

t0 = 1 the inequality (2.2) holds true. Fix 0 < t ≤ 1, and also an element W̃ (t) in the

class of functions equivalent to W (t) ∈ L2(Ω;H1), and an element X̃(t) in the class of
functions equivalent to X(t) ∈ L2(Ω;H). For every ω ∈ Ω define

uω :=


0 if W̃ω(t) = 0,

− W̃ω(t)

|W̃ω(t)|
otherwise.

For all ω ∈ Ω, let zω(·) be the solution to the deterministic system

z′(s) = σ(z(s))uω, z(0) = X̃ω(t). (4.10)

Since X̃(t) ∈ K almost surely, by Proposition 2.5 we know that for almost all ω ∈ Ω and
for all s ≥ 0, zω(s) ∈ K.

For all ξ ∈ H define F (t, ξ) : Ω → L(H1, H) by

F (t, ξ) := (fij(t, ξ)), fij(t, ξ)ω = 〈∇σij(ξ), σ(ξ)W̃ω(t)〉.

By (4.7)

zω(|W̃ω(t)|) = X̃ω(t)− σ(X̃ω(t))W̃ω(t) +
1

2
F (t, X̃ω(t))W̃ω(t) + Φω(t), (4.11)

where |Φω(t)| ≤M |W̃ω(t)|3. Set yω(t) = zω(|W̃ω(t)|). We claim that y(t) is Ft−measurable
and y(t) ∈ L2(Ω, H). Indeed for all (x0, v0) ∈ H ×H1 consider the solution z(·;x0, v0) to
z′ = σ(z)v0 satisfying z(0) = x0 and define the closed set

Π := {(s, x0, v0, z(s;x0, v0)) | s ≥ 0, x0 ∈ H, v0 ∈ H1}.
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Observe that the set Γ(t) := {(ω, |W̃ω(t)|, X̃ω(t), uω, r) | ω ∈ Ω, r ∈ H} belongs to
Ft × B1 × BH × BH1 × BH , where B1 denotes the σ− algebra of Borel subsets of R, BH
denotes the σ− algebra of Borel subsets of H and BH1 denotes the σ− algebra of Borel
subsets of H1. Then Γ(t) ∩ (Ω× Π) ∈ Ft × B1 × BH × BH1 × BH . Since

Γ(t) ∩ (Ω× Π) = {(ω, |W̃ω(t)|, X̃ω(t), uω, yω(t)) | ω ∈ Ω},

by the projection theorem (see for instance [11]) ω 7→ yω(t) is Ft−measurable. Since σ is
bounded, we deduce that y(t) ∈ L2(Ω, H). Define G(t) : Ω → L(H1, H) by

G(t) = (gij(t)), gij(t) =

∫ t

0

〈∇σij(X(s)), σ(X(s))dW (s)〉.

Applying Lemma 4.7 to (4.11) we obtain

y(t) = x+

∫ t

0

b(X(s))ds−
(∫ t

0

〈∇σij(X(s)), b(X(s))〉ds+G(t)

)
W̃ (t)+

+

∫ t

0

(σ(X(s))− σ(x))dW (s) +
1

2
F (t, X̃(t))W̃ (t) + Φ(t) + Ψ(t)W̃ (t),

(4.12)

where |Φω(t)| ≤ M |W̃ω(t)|3 and E‖Ψ(t)‖2 ≤ Ct2, E‖Ψ(t)‖4 ≤ Ct4 for some constant
C > 0 independent from t. Since y(t) ∈ K almost surely, by (4.9),

E〈p, y(t)− x〉 ≤ cE|y(t)− x|2. (4.13)

By (4.12) for some α > 1

1

α
|y(t)− x|2 ≤ t2 ‖b‖∞ + t2|W̃ (t)|2 max

i,j
‖〈∇σij, b〉‖2

∞+

+|W̃ (t)|2Σi,j

(∫ t

0

〈∇σij(X(s)), σ(X(s))dW (s)〉
)2

+

+

∣∣∣∣∫ t

0

(σ(X(s))− σ(x))dW (s)

∣∣∣∣2 + |W̃ (t)|4 max
i,j

‖σ∗∇σij‖2
∞ + |Φ(t)|2+

+‖Ψ(t)‖2|W̃ (t)|2 = I1(t) + I2(t) + I3(t) + I4(t) + I5(t) + I6(t) + I7(t).

(4.14)

Then E(I1(t)) = O(t2) and since E|W (t)|2 = t, E(I2(t)) = O(t3). By Proposition 2.1 for
some c1 > 0 independent from t ∈ (0, 1]

(E(I3(t)))
2 ≤ c1E|W (t)|4 max

i,j
E
(∫ t

0

〈∇σij(X(s)), σ(X(s))dW (s)〉
)4

= O(t4).

Consequently, E(I3(t)) = O(t2). By the Lipschitz continuity of σ and (2.2)

E(I4(t)) =

∫ t

0

E|σ(X(s))− σ(x)|2ds = O(t2).
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By Proposition 2.1, E(I5(t)) = O(t2). We also know that E|Φ(t)|2 ≤ME|
∫ t

0
dW (s)|6. By

Proposition 2.1,

E|Φ(t)|2 = O(t3). (4.15)

Thus, E(I6(t)) = O(t3). Finally observe that

E(I7(t)) ≤ E‖Ψ(t)‖4 + E|W (t)|4 = O(t2).

The above estimates and (4.14) imply that for all 0 ≤ t ≤ 1, E|y(t)− x|2 = O(t2) and, by
(4.13),

E 〈p, y(t)− x〉 = O(t2). (4.16)

By (4.12) we have

E〈p, tb(x)〉 − E 〈p,G(t)W (t)〉+
1

2
E
〈
p, F (t, X̃(t))W (t)

〉
=

= E〈p, y(t)− x〉 − E〈p,
∫ t

0

(b(X(s))− b(x))ds〉+

+E
〈
p,

(∫ t

0

〈∇σij(X(s)), b(X(s))〉ds
)
W (t)

〉
− E〈p,Φ(t) + Ψ(t)W (t)〉 =

= A1(t) + A2(t) + A3(t) + A4(t).

(4.17)

By the Lipschitz continuity of b, Fubini’s theorem, the Hölder inequality and (2.2) for
some c2 > 0,

A2(t) ≤ c2

∫ t

0

√
sds ≤ c2t

3/2.

Furthermore, for some c3 > 0

A3(t) ≤ c3t
√

E|W (t)|2 = c3t
3/2.

Moreover
E〈−p,Ψ(t)W (t)〉 ≤ |p|

√
E‖Ψ(t)‖2E|W (t)|2 ≤ |p|

√
Ct3

and, by (4.15),

E〈−p,Φ(t)〉 ≤ |p|
√

EΦ(t)2 = O(t3/2).

Hence from (4.16) and (4.17) we deduce that for all 0 < t ≤ 1

E〈p, tb(x)〉 − E 〈p,G(t)W (t)〉+
1

2
E
〈
p, F (t, X̃(t))W (t)

〉
= O(t3/2). (4.18)

By the Lipschitz continuity of σ and ∇σij and by (2.2), for some c4 > 0 and all s ∈ [0, 1]

E|σ∗(X(s))∇σij(X(s))− σ∗(x)∇σij(x)|2 ≤ c4s. (4.19)

18



This and the Hölder inequality imply that for all 1 ≤ i ≤ n, 1 ≤ j ≤ m

E|〈∇σij(X(t)), σ(X(t))W (t)〉W j(t)− 〈∇σij(x), σ(x)W (t)〉W j(t)| ≤

≤
√
c4t
√

E|W (t)|4 = O(t3/2).

Consequently,

E|F (t, X̃(t))W (t)− F (t, x)W (t)| = O(t3/2). (4.20)

Furthermore, by the Hölder inequality and (4.19), for a constant c5 > 0

E
∣∣∣∣〈p,(∫ t

0

〈σ(X(s))∗∇σij(X(s))− σ(x)∗∇σij(x), dW (s)〉
)
W (t)

〉∣∣∣∣ ≤
≤ c5

√
t max

i,j

(
E|
∫ t

0

〈σ(X(s))∗∇σij(X(s))− σ(x)∗∇σij(x), dW (s)〉|2
)1/2

=

= c5
√
t max

i,j

(∫ t

0

E|σ∗(X(s))∇σij(X(s))− σ∗(x)∇σ(x)|2ds
)1/2

= O(t3/2).

(4.21)

Thus it follows from (4.18), (4.20) and (4.21) that for all 0 < t ≤ 1

E〈p, tb(x)〉+
1

2
E 〈p, F (t, x)W (t)〉−

−E
〈
p,

(∫ t

0

〈∇σij(x), σ(x)dW (s)〉
)
W (t)

〉
= O(t3/2).

(4.22)

Finally observe that

E
〈
p,

(∫ t

0

〈∇σij(x), σ(x)dW (s)〉
)
W (t)

〉
=

= E

〈
p,

(∑
j

〈∇σij(x), σ(x)W (t)〉W j(t)

)〉
= E〈p, F (t, x)W (t)〉 =

= E

(∑
i

pi
∑
j,k,r

∂σij
∂xk

(x)σkr(x)W
r(t)W j(t)

)
=

=
∑
i

pi
∑
j,k

∂σij
∂xk

(x)σkj(x)E(W j(t))2 = t

〈
p,
∑
j

Dσj(x)σj(x)

〉
.

(4.23)

and from (4.22), (4.23) we obtain that for every 0 < t ≤ 1,

t

〈
p, b(x)− 1

2

∑
j

Dσj(x)σj(x)

〉
= O(t3/2).
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Dividing by t and taking the limit completes the proof of necessary conditions.

Sufficiency. Fix an F0-random variable X0 ∈ L2(Ω) such that X0 ∈ K a.s. and
consider the strong solution X(t) to (2.1).

Set ψ(t) = Ed2
K(X(t)). To prove that X(t) ∈ K almost surely, we have to show that

ψ(t) = 0. Since ψ(0) = 0, by Proposition 2.7 it is enough to prove that for some L > 0
and all t > 0 such that ψ(t) > 0 we have

dψ(t) ≤ Lψ(t).

Fix t > 0 such that ψ(t) > 0, and also an element X̃(t) in the class of functions equivalent

to X(t) ∈ L2(Ω;H). Set ϕω(h) = d2
K(X̃ω(h)).

By the measurable selection theorem [7, p.317] there exists an Ft-measurable map
ω 7→ ζω ∈ K such that

ϕω(t) = |X̃ω(t)− ζω|2.

In particular, X̃ω(t)− ζω is a proximal normal to K at ζω.

Fix h ∈ (0, 1), and also an element W̃ (t) in the class of functions equivalent to W (t) ∈
L2(Ω;H1), and an element W̃ (t + h) in the class of functions equivalent to W (t + h) ∈
L2(Ω;H1). For all ω ∈ Ω set

uω(h) :=


0 if W̃ω(t+ h) = W̃ω(t)

W̃ω(t+ h)− W̃ω(t)

|W̃ω(t+ h)− W̃ω(t)|
otherwise.

(4.24)

For every ω ∈ Ω consider the solution zω(·) to the deterministic system

z′(s) = σ(z(s))uω(h), zω(0) = ζω.

By (4.1) and Proposition 2.5, zω(s) ∈ K for all s ≥ 0. On the other hand, by (4.7), for
all ω ∈ Ω

zω(|W̃ω(t+ h)− W̃ω(t)|) = ζω + σ(ζω)(W̃ω(t+ h)− W̃ω(t))+

+
1

2

(∑
j

〈
∇σij(ζω), σ(ζω)(W̃ω(t+ h)− W̃ω(t))

〉
(W̃ j

ω(t+ h)− W̃ j
ω(t))

)
+ Φω(t),

where for some M > 0, |Φω(t)| ≤M |W̃ω(t+ h)− W̃ω(t)|3. Set

yω(h) = zω(|W̃ω(t+ h)− W̃ω(t)|).

By the same arguments as in the proof of necessary conditions, replacing X̃(t) by ζ,
we show that y(h) is Ft+h−measurable and y(h) ∈ L2(Ω;H). Observe next that

d2
K(X(t+ h)) ≤ |X(t+ h)− y(h)|2. (4.25)
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Since

X(t+ h) = X(t) +

∫ t+h

t

b(X(s))ds+

∫ t+h

t

σ(X(s))dW (s) a.s.,

for a constant α > 1 independent from t

|X(t+ h)− y(h)|2 ≤ ϕ2(t) + αh2‖b‖2
∞ + α|

∫ t+h

t

(σ(X(s))− σ(ζ))dW (s)|2+

+α

∥∥∥∥∥∑
j

〈
∇σij(ζ), σ(ζ)(W̃ (t+ h)− W̃ (t))

〉
(W̃ j(t+ h)− W̃ j(t))

∥∥∥∥∥
2

+ αΦ(t)2+

+2

〈
X(t)− ζ,

∫ t+h

t

b(X(s))ds+

∫ t+h

t

(σ(X(s))− σ(ζ))dW (s)− Φ(t)

〉
−

−2

〈
X(t)− ζ,

1

2

(∑
j

〈
∇σij(ζ), σ(ζ)(W̃ (t+ h)− W̃ (t))

〉
(W̃ j(t+ h)− W̃ j(t))

)〉

= J1(h) + J2(h) + J3(h) + J4(h) + J5(h) + 2J6(h)− 2J7(h).

Then E(J2(h)) = O(h2). In the same way as we have shown the estimate of E(I4(t)) we
prove that

E|
∫ t+h

t

(σ(X(s))− σ(X(t)))dW (s)|2 = O(h2).

Thus for a constant c6 := 2α

E(J3(h)) ≤ c6E|
∫ t+h

t

(σ(X(t))− σ(ζ))dW (s)|2 +O(h2)

= c6hE|σ(X(t))− σ(ζ)|2 +O(h2).

Since σ is Lipschitz continuous we deduce that for a constant c7 > 0 independent from t

E(J3(h)) ≤ c7hψ(t) +O(h2). (4.26)

Similarly to Proposition 2.1

E|W (t+ h)−W (t)|4 = O(h2), E|W (t+ h)−W (t)|6 = O(h3) (4.27)

and therefore E(J4(h)) + E(J5(h)) = O(h2) for 0 < h ≤ 1. By (2.2) and the Hölder
inequality, for some M0 > 0 and all s ∈ [t, t+ 1],

E|X(s)−X(t)| ≤
√
M0

√
s− t.
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This and the Lipschitz continuity of b imply that for a positive constant c8 independent
from t

E
〈
X(t)− ζ,

∫ t+h

t

b(X(s))ds

〉
≤ E 〈X(t)− ζ, hb(ζ)〉+

+E
(
|X(t)− ζ|

∫ t+h

t

(|b(X(s))− b(X(t))|+ |b(X(t))− b(ζ)|)ds
)
≤

≤ hE 〈X(t)− ζ, b(ζ)〉+ hc8ψ(t) +O(h3/2).

Furthermore, E
〈
X(t)− ζ,

∫ t+h
t

(σ(X(s))− σ(ζ))dW (s)
〉

= 0 and, by (4.27) and the

Hölder inequality for a constant c9 > 0

E| 〈X(t)− ζ,Φ(t)〉 | ≤ c9
√

E|W (t+ h)−W (t)|6 = O(h3/2).

Consequently,
E(J6(h)) ≤ hE 〈X(t)− ζ, b(ζ)〉+ hc8ψ(t) +O(h3/2).

Finally

2E(J7(h)) = E

〈
X(t)− ζ,

(∑
j

〈∇σij(ζ), σ(ζ)(W (t+ h)−W (t))〉 (W j(t+ h)−W j(t))

)〉

= E

(∑
i

(X i(t)− ζ i)
∑
j,k,r

∂σij
∂xk

(ζ)σkr(ζ)(W
r(t+ h)−W r(t))(W j(t+ h)−W j(t))

)

= hE

(∑
i

(X i(t)− ζ i)
∑
j,k

∂σij
∂xk

(ζ)σkj(ζ)

)
= hE

〈
X(t)− ζ,

∑
j

Dσj(ζ)σj(ζ)

〉
.

The above inequalities and (4.25) imply that for L := 2(c7 + c8) and for all 0 < h ≤ 1,

ψ(t+ h) ≤ ψ(t) + Lhψ(t) + 2hE

〈
X(t)− ζ, b(ζ)− 1

2

∑
j

Dσj(ζ)σj(ζ)

〉
+O(h3/2).

Thus, by (4.1), ψ(t + h) ≤ ψ(t) + Lhψ(t) + O(h3/2) and therefore dψ(t) ≤ Lψ(t). By
Proposition 2.7, ψ ≡ 0 implying that dK(X(t)) = 0 almost surely. 2

5 Invariance of Stochastic Control Systems

Let U be a complete separable metric space and b : H×U → H, and σ : H×U → L(H1, H)
be bounded continuous mappings. Assume that there exists a constant C > 0 such that

∀ x, y ∈ H, ∀ v ∈ U, |b(x, v)− b(y, v)|+ ‖σ(x, v)− σ(y, v)|| ≤ C|x− y|. (5.1)
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Denote by A the set of all L1(Ω, U)−valued mappings v(·) defined on R+ which are
progressively measurable with respect to the family Ft, i.e. for every t ≥ 0, v(t) ∈ U a.s.
and the mapping [0, t] × Ω 3 (s, ω) 7→ vω(s) is B1 × Ft−measurable. Elements of A are
called admissible controls.

We associate to the above data the stochastic control system

dX = b(X, v(t))dt+ σ(X, v(t))dW (t), v(·) ∈ A. (5.2)

Let X0 ∈ L2(Ω) be an F0-random variable, v(·) ∈ A and consider the differential
stochastic equation 

dX = b(X, v(t))dt+ σ(X, v(t))dW (t),

X(0) = X0.
(5.3)

Under the above assumptions (5.3) has a unique solution X(·), i.e. for all t ≥ 0,

X(t) = X0 +

∫ t

0

b(X(s), v(s))ds+

∫ t

0

σ(X(s), v(s))dW (s) a.s..

(see [27, Chapters 1, 2]).

Definition 5.1 A set K ⊂ H is called invariant under the control system (5.2) if for ev-
ery F0-random variable X0 ∈ L2(Ω) such that X0 ∈ K almost surely and every admissible
control v(·) ∈ A, the solution X to (5.3) satisfies for all t ≥ 0, X(t) ∈ K almost surely.

Theorem 5.2 Assume that K is closed, b, σ are bounded and continuous, that there exists
a constant C > 0 such that (5.1) holds true and for all v ∈ U , σ′(·, v) is C−Lipschitz.
Then K is invariant under (5.2) if and only if for every x ∈ ∂K and for all proximal
normal p to K at x we have〈

p, b(x, v)− 1

2

m∑
j=1

Dxσj(x, v)σj(x, v)

〉
≤ 0, σ(x, v)∗p = 0, ∀ v ∈ U, (5.4)

where σj(x, v) denotes the column j of the matrix σ(x, v) and Dxσj(x, v) the jacobian of
σj(·, v) at x.

Remark 5.3 Exactly as in Remark 4.2 and Corollary 4.3 in the above theorem proximal
normals may be replaced by the elements of normal cone NK(x) or by those of Clarke’s
normal cone.

Corollary 5.4 If all the assumptions of Theorem 5.2 hold true, then K is invariant under
(5.2) if and only if K is invariant under the deterministic control system with two controls

x′ = b(x, v(t))− 1
2

∑m
j=1Dσj(x, v(t))σj(x, v(t)) + σ(x, v(t))u(t),

u ∈ L1
loc(R+, H1), v : R+ → U is measurable

(5.5)

or, equivalently, if and only if

b(x, v)− 1

2

m∑
j=1

Dσj(x, v)σj(x, v) ∈ TK(x), Im(σ(x, v)) ⊂ TK(x), ∀ v ∈ U, ∀ x ∈ K.

23



Proof — By Remark 5.3, (5.4) holds true, if and only if it holds true for all p ∈ NK(x).
By the separation theorem, relations (5.4) may be equivalently written as

∀ x ∈ K, ∀ v ∈ U, b(x, v)− 1

2

m∑
j=1

Dσj(x, v)σj(x, v) ∈ coTK(x) & Im(σ(x, v)) ⊂ coTK(x).

By [7, Theorem 4.1.10] and continuity of b, σ, in the above coTK(x) may be replaced by
TK(x). Hence, by [1], (5.4) is a necessary and sufficient condition for the invariance of K
under the deterministic control system (5.5). 2

Theorem 5.2 and Lemma 2.3 imply the following result.

Corollary 5.5 Under the assumptions of Theorem 5.2 suppose that for every x ∈ ∂K,
p ∈ NK(x) and v ∈ U , DNK(x, p)(σj(x, v)) 6= Ø for all j = 1, ...,m. Then the set K is
invariant under the system (5.2) if and only if for every x ∈ ∂K and p ∈ NK(x)

〈p, b(x, v)〉+
1

2

m∑
j=1

CurvK(x, p)(σj(x, v), σj(x, v)) ≤ 0, σ(x, v)∗p = 0, ∀ v ∈ U. (5.6)

Furthermore, for all v ∈ U and µj ∈ DNK(x, p)(σj(x, v))

CurvK(x, p)(σj(x, v), σj(x, v)) = 〈µj, σj(x, v)〉 = −〈p,Dσj(x, v)σj(x, v)〉 .

Proof of Theorem 5.2 — If the set K is invariant under the system (5.2), then for
every v0 ∈ U the mapping v ≡ v0 belongs to A. Thus, for every F0-measurable random
variable X0 ∈ L2(Ω) such that X0 ∈ K a.s., the solution X to (5.3) satisfies X(t) ∈ K
a.s. This and Theorem 4.1 imply that for every x ∈ ∂K and for all proximal normal p to
K at x relations (5.4) hold true.

Assume next that (5.4) holds true for every x ∈ ∂K and any proximal normal p to K
at x. To prove the invariance we proceed in several steps. We first show that (5.4) implies
the invariance for time independent controls, then for piecewise constant (with respect to
the time) controls and, finally, in the general case.

Case 1 of constant controls. The proof is essentially the same as the one of the
invariance of differential stochastic equations, but the setting is slightly different because
of the presence of the control v. Let t0 ≥ 0. Consider an Ft0-measurable v : Ω 3 ω 7→ U ,
an Ft0-random variable X0 ∈ K a.s. and the strong solution X(t) to

dX = b(X, v)dt+ σ(X, v)dW (t), X(t0) = X0, t ≥ t0.

Define ψ(t) = Ed2
K(X(t)). Then ψ(t0) = 0. As in the proof of sufficient conditions

for stochastic differential equations, we check that for some L > 0 and all t > t0 with
ψ(t) > 0, we have dψ(t) ≤ Lψ(t). Fix such t > t0 and an element X̃(t) in the class of

functions equivalent to X(t) ∈ L2(Ω;H). Set ϕω(t) = d2
K(X̃ω(t)).

Consider an Ft-measurable map ω 7→ ζω ∈ K satisfying ϕω(t) = |X̃ω(t)− ζω|2.
Fix h ∈ (0, 1), and also an element W̃ (t) in the class of functions equivalent to W (t) ∈

L2(Ω;H1), an element W̃ (t+h) in the class of functions equivalent toW (t+h) ∈ L2(Ω;H1).
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Define uω(h) as in (4.24). For every ω ∈ Ω, consider the solution zω(·) to the deterministic
system

z′(s) = σ(z(s), vω)uω(h), zω(0) = ζω.

By (5.4) and Proposition 2.5, zω(s) ∈ K for all s ≥ 0.
On the other hand, by (4.7), for all ω ∈ Ω

zω(|W̃ω(t+ h)− W̃ω(t)|) = ζω + σ(ζω, vω)(W̃ω(t+ h)− W̃ω(t))+

+
1

2

(∑
j

〈
∇xσij(ζω, vω), σ(ζω, vω)(W̃ω(t+ h)− W̃ω(t))

〉
(W̃ j

ω(t+ h)− W̃ j
ω(t))

)
+ Φω(t),

where for some M > 0, |Φω(t)| ≤M |W̃ω(t+ h)− W̃ω(t)|3. Set

yω(h) = zω(|W̃ω(t+ h)− W̃ω(t)|).

We claim that y(h) is Ft+h-measurable and y(h) ∈ L2(Ω, H). Indeed let (x0, u0, v0) ∈
H×H1×U and consider the solution z(·;x0, u0, v0) to z′ = σ(z, v0)u0 satisfying z(0) = x0.
Define the closed set

Π := {(s, x0, u0, v0, z(s;x0, u0, v0)) | s ≥ 0, x0 ∈ H, u0 ∈ H1, v0 ∈ U}

and the set Γ(h) := {(ω, |W̃ω(t + h) − W̃ω(t)|, ζω, uω, vω, r) | ω ∈ Ω, r ∈ H} ∈ Ft+h ×
B1×BH ×BH1 ×BU ×BH , where BU denotes the σ− algebra of Borel subsets of U . Then
Γ(h) ∩ (Ω× Π) ∈ Ft+h × B1 × BH × BH1 × BU × BH . Since

Γ(h) ∩ (Ω× Π) = {(ω, |W̃ω(t+ h)− W̃ω(t)|, ζω, uω, vω, yω(h)) | ω ∈ Ω},

by the projection theorem (see for instance [11]), ω 7→ yω(h) is Ft+h-measurable. Since σ

is bounded, we deduce that y(h) ∈ L2(Ω, H). Notice that X̃ω(t)−ζω is a proximal normal
to K at ζω and (4.25) holds true. By exactly the same arguments as those used in the
proof of sufficiency of Theorem 4.1, we check that for some L > 0 independent from t
and all h ∈ [0, 1], ψ(t + h) ≤ ψ(t) + Lhψ(t) + O(h3/2) and therefore dψ(t) ≤ Lψ(t). By
Proposition 2.7, ψ ≡ 0 implying that dK(X(t)) = 0 almost surely for t ≥ t0.

Case 2 of piecewise constant controls. Let v ∈ A be such that for some 0 = s0 <
s1 < ... < sk < ... and for all k ≥ 0, v is time independent on the time interval [sk, sk+1).
Fix an F0-random variable X0 ∈ L2(Ω) such that X0 ∈ K a.s. and consider the solution
X(s) to

dX = b(X, v)dt+ σ(X, v)dW (t), X(0) = X0, t ∈ [s0, s1).

Then, by Case 1, for all 0 ≤ s < s1, X(s) ∈ K a.s. Since b, σ are bounded, X can be
extended by continuity to s1 and X(s1) ∈ K a.s. Assume, that we already proved that
for some k ≥ 1, X(s) ∈ K a.s. for all s ≤ sk. Set X0 := X(sk) and consider the solution
X(t) to

dX = b(X, v)dt+ σ(X, v)dW (t), X(sk) = X0, t ∈ [sk, sk+1).
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By Case 1, for all s ∈ [sk, sk+1), X(s) ∈ K a.s. and again we extend X by continuity to
sk+1. This and the induction argument yield that X(s) ∈ K a.s. for all s ≥ 0.

The general case. Consider v ∈ A, F0-random variable X0 ∈ L2(Ω) such that
X0 ∈ K a.s. and the solution X(t) to (5.3) (see for instance [27, p. 42]).

Fix t > 0. Then for some M0 > 0, the inequality (2.2) holds true with t0 = t. We
have to show that X(t) ∈ K a.s. For this end let us fix 0 < ε < 1 and define the mapping

R+ 3 s 7→ g(s) := b(X(s), v(s)) ∈ L2(Ω, H).

Then for all ω ∈ Ω, the mapping s 7→
∫ s

0
gω(τ)dτ ∈ H is absolutely continuous on bounded

intervals. Define the mapping f : [0, t]× (R+\{0}) → L2(Ω, H) by

f(s, h) =
1

h

∫ s+h

s

g(τ)dτ.

Then, by the absolute continuity and boundedness of b, for all ω ∈ Ω,

lim
h→0+

∫ t

0

|fω(s, h)− gω(s)|ds = 0.

Hence, by the dominated convergence theorem,

lim
h→0+

E
∫ t

0

|f(s, h)− g(s)|ds = 0.

Next, applying the Fubini theorem, we obtain that

lim
h→0+

∫ t

0

E|f(s, h)− g(s)|ds = 0. (5.7)

Let hi → 0+ be such for all i ≥ 1, hi ≤ ε2.

Claim. We claim that for all i large enough, there exist δi → 0+ and 0 = τ i0 ≤ si1 <
τ i1 ≤ si2... ≤ simi

< τ imi
≤ t such that for all 1 ≤ j ≤ mi, τ

i
j = sij + hi and

0 ≤ t−mihi ≤ δi + hi, E|
∫ si

j+hi

si
j

g(τ)dτ − hig(s
i
j)| ≤ εhi. (5.8)

Indeed, define the measurable sets Ai := {s ∈ [0, t] | E|f(s, hi)− g(s)| > ε}. By (5.7) the
Lebesgue measures µ(Ai) converge to zero when i → ∞. Set δi = µ(Ai) + 1/i. Consider
open in [0, t] sets Oi such that Ai ⊂ Oi and µ(Oi) ≤ δi. Then the sets Ci := [0, t]\Oi are
closed subsets of [0, t]. Fix i ≥ 1 such that there exists s ∈ Ci with s+ hi ≤ t.

Set si1 := min{s | s ∈ Ci} and τ i1 := si1 + hi. Inductively, assume that we already
constructed for some k ≥ 1, the numbers 0 = τ i0 ≤ si1 < τ i1 ≤ ... < τ ik ≤ t such that for all
1 ≤ j ≤ k, τ ij − sij = hi, s

i
j ∈ Ci and [τ ij−1, s

i
j) ⊂ Oi.

If Ci ∩ [τ ik, t] = Ø, then put mi = k. If Ci ∩ [τ ik, t] 6= Ø, then define

sik+1 := min{s | s ∈ Ci ∩ [τ ik, t]}.
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Clearly [τ ik, s
i
k+1) ⊂ Oi. If sik+1 + hi ≤ t, then define τ ik+1 := sik+1 + hi, otherwise put

mi = k.
Since the interval [0, t] is finite and hi > 0 is fixed, this construction ends in a finite

number of steps. In this way we defined also mi. On the other hand, for all 0 ≤ j ≤ mi−1,
[τ ij , s

i
j+1) ⊂ Oi. Furthermore, by our construction, either [τ imi

, t] ⊂ Oi, or there exists simi+1

such that [τ imi
, simi+1) ⊂ Oi and t− simi+1 < hi. Since

mi∑
j=1

(τ ij − sij) +

mi−1∑
j=0

(sij+1 − τ ij) + (t− τmi
) = t,

we have

t−mihi =

mi−1∑
j=0

(sij+1 − τ ij) + (t− τmi
) ≤ δi + hi

and our claim is proved.
Define piecewise constant controls

ui(s) :=


v(sij) if for some 1 ≤ j ≤ mi − 1, s ∈ [sij, τ

i
j),

v(τ ij) if for some 0 ≤ j ≤ mi − 1, s ∈ [τ ij , s
i
j+1),

v(τ imi
) if s ≥ τ imi

,

and piecewise constant functions

Xi(s) :=


X(sij) if for some 1 ≤ j ≤ mi − 1, s ∈ [sij, τ

i
j),

X(τ ij) if for some 0 ≤ j ≤ mi − 1, s ∈ [τ ij , s
i
j+1)

X(τ imi
) if s ≥ τ imi

.

Then, be the very definition of the Itô integral, for all s ∈ [0, t],

lim
i→∞

E|
∫ s

0

(σ(X(ρ), u(ρ))− σ(Xi(ρ), ui(ρ)))dW (ρ)|2 = 0. (5.9)

Consider solutions Yi to

dY = b(Y, ui)dt+ σ(Y, ui)dW (t), X(0) = X0.

Then by the Case 2, Yi(s) ∈ K a.s. for all s ≥ 0. Set ψεi (s) := E|X(s)−Yi(s)|2 and notice
that

Ed2
K(X(t)) ≤ ψεi (t), (5.10)
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and that for some α > 1 and all s ∈ [0, t],

1

α
ψεi (s) ≤

∫ s

0

E|b(X(ρ), ui(ρ))− b(Yi(ρ), ui(ρ))|2dρ+

+E|
∫ s

0

(σ(X(ρ), ui(ρ))− σ(Yi(ρ), ui(ρ)))dW (ρ)|2+

+E|
∫ s

0

(σ(X(ρ), ui(ρ))− σ(Xi(ρ), ui(ρ)))dW (ρ)|2+

+E|
∫ s

0

(g(ρ)− b(X(ρ), ui(ρ))dρ|2+

+E|
∫ s

0

(σ(X(ρ), u(ρ))− σ(Xi(ρ), ui(ρ)))dW (ρ)|2 =

= I i1(s) + I i2(s) + I i3(s) + I i4(s) + I i5(s).

(5.11)

Since b and σ are C−Lipschitz in the first variable,

I i1(s) + I i2(s) ≤ 2C

∫ s

0

E|X(ρ)− Yi(ρ)|2dρ = 2C

∫ s

0

ψεi (ρ)dρ. (5.12)

By the Lipschitz continuity of σ with respect to x, using that E|X(ρ)|2 ≤ Mt for all
ρ ∈ [0, t], for a constant C1 > 0 independent from s ∈ [0, t]

I i3(s) ≤ C

∫ s

0

E|X(ρ)−Xi(ρ)|2dρ ≤ C1

mi∑
j=1

∫ τ i
j

si
j

(ρ− sij)dρ+ 2MCt(δi + hi) ≤

≤ C1

mi∑
j=1

(τ ij − sij)
2 + 2MCt(δi + hi) ≤ C1ε

2t+ 2MCt(δi + ε2).

(5.13)

On the other hand∣∣∣∣∫ s

0

(g(ρ)− b(X(ρ), ui(ρ)))dρ

∣∣∣∣ ≤ mi∑
j=1

|
∫ τ i

j

si
j

(g(ρ)− b(X(sij), v(s
i
j)))dρ|+

+2‖b‖∞(ε2 + δi) +

mi∑
j=1

∫ τ i
j

si
j

|b(X(ρ), ui(ρ))− b(X(sij), v(s
i
j))|dρ.

(5.14)

By (5.8)

E

(
mi∑
j=1

|
∫ τ i

j

si
j

(g(ρ)− b(X(sij), v(s
i
j)))dρ|

)
≤ εt,
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which implies that

E

(
mi∑
j=1

|
∫ τ i

j

si
j

(g(ρ)− b(X(sij), v(s
i
j)))dρ|

)2

≤ 2εt2‖b‖∞. (5.15)

Furthermore, by the Lipschitz continuity of b with respect to x and by (2.2), for a
constant c1 > 0 independent from i, ε

E

(
mi∑
j=1

∫ τ i
j

si
j

|b(X(ρ), ui(ρ))− b(X(sij), v(s
i
j))|dρ

)2

≤

≤ 2t‖b‖∞
mi∑
j=1

∫ τ i
j

si
j

E|b(X(ρ), ui(ρ))− b(X(sij), v(s
i
j))|dρ ≤

≤ 2Ct‖b‖∞
mi∑
j=1

∫ τ i
j

si
j

E|X(ρ)−X(sij)|dρ ≤ c1

mi∑
j=1

∫ τ i
j

si
j

√
ρ− sij dρ ≤

≤ c1

mi∑
j=1

(τ ij − sij)
3/2 ≤ c1εt.

(5.16)

From (5.14) - (5.16) we deduce that for constant c2 > 0 independent from i, ε and s

I i4(s) ≤ c2(ε+ δi).

This and (5.11) - (5.13) imply for a constant c3 > 0 independent from i, ε and for all
s ∈ [0, t]

ψεi (s) ≤ c3
∫ s

0
ψεi (ρ)dρ+ c3(ε+ δi) + I i5(s).

Then it follows from the Gronwall inequality that for a constant c4 > 0 independent from
ε and for all i,

ψεi (t) ≤ c4(ε+ δi + I i5(t)) + c4
∫ t

0
I i5(s)ds. (5.17)

From (5.9) we know that for every s ∈ [0, t], limi→∞ I i5(s) = 0. On the other hand,

I i5(s) =

∫ s

0

E‖σ(X(ρ), u(ρ))− σ(Xi(ρ), ui(ρ))‖2dρ ≤ 2s‖σ‖2
∞.

From the Lebesgue dominated convergence theorem we deduce that

lim
i→∞

∫ t

0

I i5(s)ds = 0.

This and (5.10), (5.17) imply that Ed2
K(X(t) ≤ lim supi→∞ ψεi (t) ≤ c4ε. Since ε > 0 is

arbitrary and c4 does not depend on ε, we get X(t) ∈ K a.s. 2
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Remark 5.6 Recall that the second order normal cone N2
K(x) to K at x is the set of all

(p,Q) ∈ H × L(H,H) satisfying

∀ y ∈ K, 〈p, y − x〉+
1

2
Q(y − x, y − x) ≤ o(|y − x|2).

It is not difficult to realize that if (p,Q) ∈ N2
K(x), then p ∈ NK(x).

If K is invariant under the stochastic control system (5.2), then for every x ∈ ∂K, and
for all p ∈ NK(x) relations (5.4) hold true. Fix x ∈ K, v ∈ U . Applying Proposition 2.5
with u(t) ≡ ej and σ replaced by σ(·, v)we deduce that for all h > 0,

yh := x+
√
hσj(x, v) +

h

2
Dσj(x, v)σj(x, v) + o(h) ∈ K.

Using that 〈p, σj(x, v)〉 = 0, from the definition of second order normals it follows that
for all (p,Q) ∈ N2

K(x),

h

2
〈p,Dσj(x, v)σj(x, v)〉+

h

2
Q(σj(x, v), σj(x, v)) ≤ o(h).

Dividing by h and taking the limit yields Q(σj(x, v), σj(x, v)) ≤ −〈p,Dσj(x, v)σj(x, v)〉.
This and (5.4) imply that

∀ (p,Q) ∈ N2
K(x), 〈p, b(x, v)〉+

1

2
Tr[Qσ(x, v)σ∗(x, v)] ≤ 0, (5.18)

i.e. (5.4) yields a necessary condition for the invariance of stochastic control systems
proposed in [8]. We also observe that (5.18) is a simple consequence of the Itô formulae
and the definition ofN2

K(x). So (5.4) is not really needed to prove that (5.18) is a necessary
condition for the invariance.

The difference in the presentation of sufficient conditions seems to be however impor-
tant. Namely in [8] it is also proved, using the viscosity solutions approach, that the
second order condition (5.18) is sufficient for the invariance when the initial conditions
are deterministic (i.e. are elements of H). Since there is no calculus available for the
second order normal cones, it is not clear how to deduce directly from the second order
condition (5.18) our first order conditions (5.4), except in the case of smooth boundaries
∂K.
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