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Abstract

We prove that a closed set K of a finite dimensional space is invariant under the
stochastic control system

dX = b(X, v(t))dt + o (X, v(t))dW (1), v(t) €U,

if and only if it is invariant under the deterministic control system with two controls
1 m

2’ = b(x,v(t)) — 3 > " Daj(x,v(t))o;(x,v(t) + oz, v(t)u(t), u(t) € Hy, v(t) € U.
j=1

This extends the well known result of stochastic differential equations to stochastic
control systems. Furthermore, we ask only C1! regularity of the diffusion o instead
of the usual assumption o € C2. In this way our result is new even for stochastic
differential equations. The arguments of the proof are based on estimates between
solutions of the stochastic control system with time independent controls and fam-
ilies of solutions {xy(-)}weq to the deterministic control system

¥ = o(z,v,)u,(t), u,(t) € Hy.
with appropriately chosen controls u,(t) and v, € U.
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1 Introduction

We are given two finite dimensional spaces H and H;, a complete filtered probability
space (0, F,{Fi}i>0,P) such that {F;}i>o is right continuous, Fy contains all P—null
sets of F and a standard H-valued {F;};>o-Brownian motion W (t),t > 0.

This paper is devoted to the problem of invariance of closed sets under the stochastic
control system

dX = b(X,v(t))dt + (X, v(t))dW(t), v(t) € U, (1.1)

where U is a complete separable metric space and b : H x U — H, and o : H x U —
L(H,, H) are bounded continuous mappings which are Lipschitz with respect to the first
variable, and controls v(t) are U—valued mappings which are progressively measurable
with respect to the family F;, called admissible controls.

A set K C H is invariant under the control system (1.1) if for every Fy-random
variable Xy € L*(Q) such that X, € K almost surely and every admissible control v(-),
the solution X to (1.1) starting at X satisfies for all ¢ > 0, X (¢) € K almost surely. We
refer to [27] for the definition of solutions to stochastic control systems.

When b and o are control independent, the above system reduces to the stochastic
differential equation

dX = b(X)dt + o(X)dW (t). (1.2)

Recently a number of papers were written on stochastic viability and invariance of
closed sets. In the case of stochastic equation (1.2) conditions for the invariance were
expressed using the Stratonovitch drift [15] (see also [17] when K is the closure of an open
set with smooth boundary) or stochastic contingent sets [2, 3]. Next, a characterization
of invariance, based on [15], in terms of curvature of the boundary of K was proposed in
6].

For stochastic control systems and differential inclusions different authors used stochas-
tic contingent sets [4, 5|, viscosity solutions of second order partial differential equations
8, 9, 10] and derivatives of the distance function [14], see also [18, 19, 20, 22, 23, 25] for
several other approaches.

The method based on the second order partial differential equations deals with value
functions of some associated optimal control problems. In [8] it is the exit time function,
while in [10] it is the value function of an infinite horizon problem. These tools use the
second order jets of continuous solutions to PDE’s. So the second order normal cones to
K arise naturally in characterizations of invariance.

In contrast, the results of [15, Doss| obtained in the context of stochastic equations
use only first order normals to K. This approach is based on an equivalence between
invariance of stochastic equation (1.2) and that of an associated deterministic control
system. Namely it was shown in [15] that if o € C® and has bounded derivatives up to
the order three, then K is invariant under the stochastic equation (1.2) if and only if K
is invariant under the (well understood) deterministic control system

¥ = b(z) — %Z Doj(2)o(x) + o(@)ult), ue Ll (Ry, Hy). (1.3)



Theory of [15] needs however more regularity of the diffusion term o (C} instead of
bounded and Lipschitz continuous) and is based on the support theorem which is not
applicable in the presence of controls.

In this paper we prove a similar first order characterization of invariance for stochastic
control systems, when o € C’; ! That is we extend the Doss theorem into two directions :
to control systems and less regular o. Furthermore, we propose a very direct “deterministic
proof”, while in [15] arguments are based on the support theorem of stochastic analysis.

Recall that in the deterministic case a necessary and sufficient condition for invariance
of K under (1.3) can be expressed by using tangents to K :

——ZDUJ z)+o(z)ueTk(z), Vee K, Yue H

(see Section 2 for the definition of Tk (z) and [1] for the thorough study of invariance in
the deterministic case). The result of Doss implies that K is invariant under the stochastic
system (1.2) if and only if the so called Stratonovitch drift is tangent to K:

__ZDJJ ) € Tg(z), Vo € K (1.4)

and the image of the diffusion o is tangent to K :
o(x)u € Tk(x), Y € K, Yue€ H. (1.5)

In Section 2 we show that condition (1.5) in turn is equivalent to the invariance of the
boundary of K under the deterministic control system

7' = o(z)u(t), ue L, (R, H). (1.6)

Instead of using the support theorem, we take the deterministic control system (1.6)
as a starting point. We first show in Section 3 that if K is invariant under (1.2), then
(1.5) holds true. In fact we prove even a much stronger result for continuous data and
weak solutions. Hence K is also invariant under the deterministic control system (1.6).
Consider next a solution X () to (1.2) starting at some x € K. If K is invariant under
(1.2), then for all h > 0, X (h) € K almost surely. For almost every w € © we extend then
X,(h) by an invariant solution of the deterministic system (1.6) with an appropriately
chosen constant control u,,. In Section 4, from an analysis of these extensions, we deduce
(1.4). In this way we get two necessary conditions for the invariance (1.4) and (1.5), which
are stated (equivalently) using proximal normals.

To prove that conditions (1.4) and (1.5) are also sufficient for the invariance of K under
(1.2), consider a solution X () to (1.2) starting at some random variable Xy € L*(2) with
Xo € K almost surely. In Section 4 we check that for all ¢ > 0, ¥(¢) := Ed%(X(¢)) = 0,
where dg(z) denotes the distance from z to K. The idea is to define for every fixed
t > 0 with ¢(¢) > 0 and all h > 0 an F,,—random variable y(h) € K such that
E|X(t + h) —y(h)|* < ¥(t) + Lhp(t) + o(h), with L independent from ¢. This leads to
the inequality di)(t) < Li(t), where di)(t) is the lower right derivative of ¢ at ¢t. Then
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an extension of the Gronwall inequality proposed in Section 2 (Proposition 2.7) allows to
conclude that ¢ = 0. In order to construct y(h) we use again invariant solutions to (1.6)
with appropriately chosen controls.

In Section 5 we turn to stochastic control system (1.1). Taking constant controls
v € U, the necessary conditions for the invariance of K under (1.1) may be written as

b(x,v) — %ZDO’j(l’,U)O’j(Z‘,U) € Tk(x), Im(o(x,v)) C Tk(x), Voe U, z € K. (1.7)

When controls are piecewise constant with respect to the time, by the same constructions
as those used for stochastic equations in Section 4, we show that conditions (1.7) are
also sufficient for the invariance. Then we approximate solutions corresponding to any
admissible control by solutions with piecewise constant controls to prove the invariance
of K in the full generality.

In conclusion, K is invariant under the stochastic control system (1.1) if and only if
it is invariant under the deterministic control system with two (deterministic) controls

' =b(z,v(t) — 3 2275 Doy, v(t))oj(x, v(t)) + oz, v(t))u(t),

uwe L} (Ry,Hy), v:Ry — U is measurable.

loc

In Section 5 the tangential characterization (1.7) of the invariance is also stated in terms
of proximal normals and normal cones. Finally, using the same idea as in [6], but a
slightly different definition, we also characterize the invariance of K under (1.1) using the
curvature of K.

2 Preliminaries

We are given two euclidean finite dimensional spaces H = R™ and H; = R™, (norm | - |,
inner product (-, -)) and denote by B; the closed unit ball in Hy, and by || - || the norm of
L(H,, H).

Consider a complete filtered probability space (2, F, {F;}+>0, P) such that {F;}i>0 is
right continuous, Fy contains all P—null sets of F and a standard H;-valued {F;}i>o0-
Brownian motion W (t),t > 0 (see for instance [27] for the corresponding definitions).
The following result is well known, since W (t) is a Gaussian random variable with mean
0 and covariance operator t/.

Proposition 2.1 There exists Cy > 0 such that for allt > 0
E[W()|* < Cit?, E|W(t)° < Oyt?.

Furthermore for any bounded adapted process f : Ry — L*>(Q, L(Hy, H)) there exists
¢ > 0 independent from f such that

B | F) AW () < | fL, Vi 0.



Let b: H — H, 0 : H — L(Hy,H) be bounded Lipschitz continuous mappings.
Denote by o*(x) the transpose of o(z), by o;(x) the column j of the matrix o(z) and by
Do the jacobian of o;.

Then for every Fo- random variable X, € L?(2), the differential stochastic equation

dX = b(X)dt + o(X)dW (1),
(2.1)
X(O) = XOa

has a unique strong solution X (t), i.e. for all ¢ > 0,

t t
X(t) = Xo —I—/ b(X(s))ds—I—/ (X (s))dW (s).
0 0
Furthermore, for every ¢y > 0 there exists My > 0 such that
E|X(Sg) — X(81)|2 S M0($2 — 81), YO0 S S1 < 89 S t(). (22)

Consider a closed non empty subset K of H. We denote by K the boundary of K
and by dx the distance of x € H from K :

dic(w) = Inf o =y, = € H.

Definition 2.2 The set K is called invariant under the system (2.1) if for every Fo-
random variable Xo € L*(Q) such that Xo € K almost surely, the strong solution X to
(2.1) satisfies for allt >0, X(t) € K almost surely.

Recall that the contingent cone Tk (x) to K at € K is the set of all vectors v € H
such that liminf;, o dx(x+ hv)/h = 0 and the normal cone Ng(z) to K at € K is the
negative polar cone of Tk (x).

Consider the set-valued map

OK >x~ Ng(z) CH

and fix z € 0K and p € Ng(z). The contingent derivative DNk (x,p)(u) of Nk at (z,p)
in the direction u € H is defined by

v € DNk (z,p)(u) <

3 h; — 0+, 3 (u;,v;) — (u,v) such that = + hyu; € 0K, p+ hv; € Ng(x + hyuy).

It is clear that DNk (z,p)(u) = O, whenever u ¢ Tyx(z). See [7] for properties of set-
valued derivatives.
The contingent curvature of K at (z,p) € Graph(Nk) is defined by

Vu, v € Tok(x), Curvg(z,p)(u,v)= sup  (u,v).
HEDNK (x,p)(u)

It was introduced in [6] by the same formulae, but with the set K instead of K.
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Lemma 2.3 Assume that o : H — L(Hy, H) is differentiable and for every v € 0K and
p € Ni(z), o*(x)p = 0. Then for all v; € DNg(z,p)(o;(x))

Curve (2, p)(0;(x), 0;(x)) = (vj,05(x)) = = {p, Doj(w)o;(x)) .

In particular, if for every x € OK there exists a unique unit outward normal n(x) to K
at x and if n(-) is differentiable on 0K, then

Te[n/(z)o(x) == (n(x), Doj(x)o;(x)). (2.3)

J=1

Proof — Let {e;};—1. . be an orthonormal basis of Hy, z € 0K, p € Nk(x), u=
(ul,...,u™) € Hy, p € DNg(z,p)(o(x)u) and consider hy — 0+, up — i, vy, — o(x)u
such that « + hyvy € OK, p+ hgpy, € Ni(x + hyvg). Then (p + hypg, o(x + hpog)u) = 0.

Thus

.....

whd@@+<p§]v%umd@wm>:qmym.

r

Taking the limit when k£ — oo implies

</’L7 U(ZL’)’U,) + <p, Z<VO};T<1’>, U(l‘)u)ur> =

T

Setting in the last equality u = e; yields

V 11 € DN (e,p)(0,(x)), (.0,(2)) = — (p, Do()o; () (2.4)

To prove the last statement, observe that (2.4) yields

(o(x)™n'(v)o(x)ej, e5) = — (n(z), Doj(z)o;(x)) .

Adding the above expressions for 7 = 1,...,m implies

Tr[o(2)*n/(z) == (n(x), Doj(x)o;(z)).

J=1

Since Tr[o(x)*n'(x)o(x)] = Tr[n/(z)o(x)o(x)*] the proof is complete. O

A vector p € H is called a proximal normal to K at x € K if |p| = dx(z + p). Clearly
p = 0 is a proximal normal and it is the only proximal normal when z is in the interior of
K. Tt is well known that if p is a proximal normal to K at x, then for some ¢ > 0

VyeK, (py—z)<cy—azf (2.5)

Proposition 2.4 Assume that 0 : H — L(Hy,H) is continuous. Then the following
conditions are equivalent :

(1) for all x € K and for any proximal normal p to K at x, o(x)*p =0,

(i7) for all x € K, Im(o(z)) C Tk(x),

(13i) for all z € K and for any p € Nk(z), o(x)*p = 0.
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Proof — Denote by N}/ (y) the cone spanned by all proximal normals to K at
y € K. The Clarke normal cone to K at z € K is defined by

prox

Ny (x) :=7co Limsupy 2Nk (y) ],
ye K

where Limsup denotes the Painlevé-Kuratowski upper limit (see for instance [7]) and co
the closed convex hull. The tangent cone Ck(x) to K at x is the negative polar cone to
Ni.(z) for x € K. It is well known that Ck(z) C Tk(z) (see [7]). From the definition of
normal cone we deduce that if (7) holds true, then for all p € Ni(z), o(x)*p = 0 implying
that Im(o(x)) C Ck(x) C Tk (x).

Observe next that if p is a proximal normal to K at x, then for every v € T (z), (p,v) <
0. Consequently (¢7) implies (7). Clearly (i) yields (¢ii). Since for any proximal normal p
to K at x we have p € Nk(x), (iii) implies (). O

Proposition 2.5 Assume that o : H — L(Hy, H) is locally Lipschitz. Then K and 0K
are invariant under the deterministic control system

v =ou(t), u() € Li(Ry, Hy) (2.6)
if and only if and for all x € K and any proximal normal p at x we have o(x)*p = 0.

Proof — If K (or 0K) is invariant under the deterministic control system (2.6), then,
by taking constant controls in (2.6), from the definition of contingent cone we deduce
that for all x € K, Im(o(z)) C Tk(x). Proposition 2.4 implies then that for all x € K
and any proximal normal p at « we have o(x)*p = 0. Conversely, if for all z € K and
any proximal normal p at  we have o(z)*p = 0, then by Proposition 2.4 for all z € K,
Im(o(x)) C Tk (z). This and [1] imply that the set K is invariant under the deterministic
control system (2.6).

To prove that 0K is invariant, assume by a contradiction that for some control u(-) €
Li . (R., H;) and some T > 0, a solution y to (2.6) satisfies y(0) € 9K, y(T) € K\0K.
Since o is locally Lipschitz, when the control u(-) is fixed, solutions to (2.6) depend
continuously on the initial condition. Hence there exists y; ¢ K such that the solution z
to

2 = o(2)ult), #0) =
satisfies z(T') € Int(K). Set x(s) = 2(T" — s). Then z(T) =y, ¢ K, z(0) = 2(T) € K
and 2'(s) = o(z(s))(—u(T — s)). Since K is invariant under (2.6) we also have z(7T) € K,
contradicting the choice of y; and completing the proof. O

Corollary 2.6 Assume that o : H — L(Hy, H) is locally Lipschitz. Then the following
conditions are equivalent :

(1) for all x € K and for any proximal normal p to K at x, o(x)*p =0,
(i7) for all x € OK, Im(o(z)) C Thx(x).



Proof — By Proposition 2.5, if (i) holds true, then 0K is invariant under the deter-
ministic control system (2.6). From the very definition of the contingent cone we deduce
(7). If (i) holds true, then for all x € K, Im(o(x)) C Tk (). Proposition 2.4 completes
the proof. O

For ¢ : R, — R the lower right derivative is defined by di(¢) := liminfj,_o, w

Proposition 2.7 Consider T > 0 and a continuous function ¢ : [0,T] — Ry with
¥(0) = 0. Assume that for some L > 0 and every t € [0,T] such that ¥ (t) > 0 we have
diy(t) < La(t). Then ip = 0.

Proof — By contradiction assume first that for some 0 < ty < T, ¥(t2) > 0. Let
to = max{s € [0,t2] | ¥(s) = 0}. Fix any t. € (ty,t2) and set U(s) = ¥(s) if s € [t., lo]
and W(s) = ¢(ty) for all s > t5. Then ¥ > 0 on [t., +00). Let K denote the epigraph of
U. Then K is closed and for all (¢,7) € K, (1,L¥(t)) € Tk(t,r). Hence, by the viability
theorem (see [1]) the solution (¢,y(t)) to the system

t'(s) =1, t(0) = t.
y'(s) = L¥(t: +s), y(0)=V(t)
satisfies (t,y(t)) € K. Thus W(t. +1t) < U(t.)+ fot LY (t. + s)ds. The Gronwall inequality

implies that W(t. +t) < U(t.)elt. Taking the limit when t. — to+ we get W(to+1t) =0
for all ¢ > 0. In particular ¢ (t5) = 0. The obtained contradiction yields the result. O

3 A Necessary Condition for Viability

Consider a closed nonempty subset K C H. We first study a necessary condition for the
viability of K under (1.2) and deduce from it a necessary condition for the invariance in
terms of proximal normals and the diffusion. The result below may be applied to any
weak solution of (1.2). See for instance [26] or [21] for the definition of weak solution.

A mapping X : R, — L*(Q, H) is called an adapted process if for every t > 0, X(t)
is F;—measurable.

Let b, o be bounded and continuous. Assume that an adapted process X (+) is contin-
uous and for some x € H,

Vt>0, X(t)=a+ /Otb(X(s))ds + /OtO'(X(S))dW(S) a.s., (3.1)

where a.s. states for almost surely. In the other words X is a solution to (1.2) on
a complete filtered probability space (€2, F,{F:}i>0, P) corresponding to the {F;}i>o-
Brownian motion W and the initial condition = (in general, such solution may not exist
for the given data, but it may be obtained with another probability space and Brownian
motion, see [26] or [19]).

The process X (-) is called viable in K, if for all t > 0, X(t) € K a.s.



Theorem 3.1 Assume that b and o are bounded and continuous. If an adapted process
X () is continuous, satisfies (3.1) with x € K and for some h; — 0+, X(h;) € K a.s.,
then for any proximal normal p to K at x we have o(z)*p = 0.

In particular, if (1.2) has a weak solution starting at some x € K which is viable in
K, then for any proximal normal p to K at x we have o(z)*p = 0.

Corollary 3.2 Assume that b, o are bounded and Lipschitz continuous. If K is invariant
under the system (2.1), then for all x € K and any prozimal normal p to K at x we have

o(z)*p=0.

Proof of Corollary 3.2 By [26, Theorem 5.1.1] for every Fy—initial condition X, €
L*(Q)) there exists a continuous version of the strong solution to (2.1). Theorem 3.1
completes the proof. O

Theorem 3.1 follows from a more general result below.

Theorem 3.3 Let f : [0,T] — LY, H), g : [0,T] — L*(Q, L(Hy, H)) be adapted and
continuous at zero, and f € L'([0,T] x Q), g € L*([0,T] x Q). Let x € K and define the
adapted process

t t
X(t) ::$~|—/ f(s)ds+/ g(s)dW(s).
0 0
Assume that at least one of the following two conditions is satisfied

(i) X(-) is almost surely continuous at zero,

(ii) f(0) € L*(Q), g(0) € L}().

If for some h; — 0+, X (h;) € K a.s., then for any proximal normal p to K at x we have
g(0)*'p =0 a.s.

Proof of Theorem 3.1 Consider a continuous version of X. It is enough to set
f(t) = b(X(t)) and g(t) = o(X(t)). Since b, o are bounded and continuous, f(-) and
g(+) are continuous at zero. All other assumptions of Theorem 3.3 are verified as well by
boundedness of b, ¢. O

Proof of Theorem 3.3 It is not restrictive to suppose that z = 0 and
p

— =(0,...,1).

]

Fix A € (0,1/4]. Then dg(Ap + X (h;)) < Alp|, for all ¢ > 1. Denote by B¢(p,|p|) the
complement of the ball B(p, |p|). Set
4
YY) = Aoy (A0 +9)] -

Clearly 9 is continuous, bounded, vanishing outside of B(p, |p|) — Ap. Moreover

(Il = [p = Ap—y|)*, if \p+y € B(p,|pl),
Y(y) =

0 otherwise.



If |Ap+vy—p| <|p| and p # A\p + y, then

pP—Ap—y
D =A(lp| = |p— Ip —y|)? ———=.
Y(y) = 4(|p| — | yl) e w—
If |Ap +y — p| > |pl|, then Dy (y) = 0. Consequently for all y # p — Ap,
3 P—Ap—y

4(lp| = [p = Ap — ) if \p +y € B(p,|p|),

" —ul’
Diy(y) = p p — Y|
0 otherwise.
So D(y) is bounded on {y € H: Ap+y ¢ B(p,: [p|)} . and Dy (0) = 4)\*|p|?p.
If |Ap+vy — p| < |p| and p # Ap + y, then

D¥(y) = 12| — lp— - yl)P——

(p=Ap—y)®@(—Ap—y)+

lp—Ap —y|?

+4(|pl = [p— Ap — y\)‘?’; (p—Ap—y)@(p—Ap—y)—
lp—Ap —yl?

T VY | s —
lp — Ap — |

If |A\p+ vy —p| > |p|, then D?y(y) = 0. Consequently D?1) is continuous and bounded
outside of B(p — )\p,}1 Ip|). Differentiating again we find that D33 is continuous and
bounded on the set

{vermwivese i}

Moreover
3 3

— 4|p|? Id.
p@p =4l

4\
D*)(0) = 12X *p @ p + T
Let p € C*™ be such that 0 < p <1 and

0, ifxp+yeBpilpl),

ply) =
1, ifAp+yeB(p3 ).

Define the function ((y) = p(y)¥(y). Then ¢ € C?, is bounded and has bounded deriva-
tives up to order 3. Furthermore,

C(y) < Apl*, VyeK. (3.2)

From Itd’s formula (see for instance [21, Theorem 4.2.1]) and (3.2), since X (h;) € K a.s.
we get

X = Al [ (G DA+ DO, 6D ) ds

= [ DX (). 9w (5) < Mol as.
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Taking the expectation and using Fubini’s theorem to bring the expectation inside the
integrals, we obtain

h; 1 h;
| E@x ). fends 4 [ BT (g0l s 0. (33)
0 0
Since D( is bounded, for a constant ¢; independent of s

(DC(0), £(0)) < (DC(X(5)), f(s)) + erl f(s) = FO)| + [DC(X(s)) — DC(O)[[£(0)]. (3.4)

If the assumption (7) holds true, then |D{(X (s)) — D¢(0)||f(0)] — 0 a.s. when s — 0+ .
This and the dominated convergence theorem yield

h;
/ E[D¢(X(s)) — DC(0)[[f(0)|ds = o(hy). (3.5)
0
If (i7) is satisfied, then, by the Lipschitz continuity of D¢, for some L > 0,

|DC(X (s)) — DCO)|1f(0)] < LIX (s)]].f(0)]

and, by the Hoder inequality and (2.2), for some ¢, > 0 and all 4,

/0 "EIDC(X(s)) — DCO)|f(O))ds < L / () 2L £(O) 2

< oL|f(0)] / ' /ads = o{hy).

Thus also in this case we have (3.5).
Taking the expectation in (3.4) and integrating on [0, h;], we deduce from (3.5) and
the continuity of f at zero that

hi
hi E(D¢(0), f(0)) < /0 E(DC(X(s)), f(s))ds + o(hy). (3.6)
On the other hand, since D?( is bounded, for some c3 > 0 independent from s,
Tr [D?¢(0)g(0)g(0)*] < Tr [D*C(X(s))g(s)g(s)*]+

+HD*¢(X (5)) = D*CO) g (O)I* + esllg(s) — 9O (lg(s)ll + llg(O)]]) -

If () holds true, then ||D?¢(X(s)) — D¢(0)]]||g(0)]]* — 0 a.s. when s — 0+ . This and
the dominated convergence theorem yield

(3.7)

/0 EJ|DX(X (s)) — DC(0)[l9(0)]1%ds = (). (3.8)

If (i7) is satisfied, then, by the Lipschitz continuity of D?(, for some L > 0,

ID*C(X () = D*C(O)[llg(0)II* < LIX (s)lllg(0)]*
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and, by the Holder inequality, for some ¢4 > 0 independent from s
E(1X(s)l190)[?) < IX ()22 llg(0)[|74 < eallg(0)[[74 V5
Thus also in this case we have (3.8). On the other hand, by the Hélder inequality,
E ([lg(s)llllg(s) — g(O)I]) < llg(s)llz2llg(s) — g (0}l 2,

and
E (Ilg(0)llllg(s) — g(0)II) < [lg(0)]I2]lg(s) — g(0)]| 2.

Taking the expectation in (3.7) and integrating on [0, h;], we deduce from (3.8), the
continuity of g at zero and the last two inequalities that

%EﬂwD%mwmmmrhsé[fE%ﬂD%oa@mwmwru&+dm> (3.9)

Consequently, by (3.3), (3.6), (3.9)

E ((DG0) F0) + 5 T [D*C0)90)9(0)]) < ok

Dividing by h; and taking the limit, we obtain

E(DC(0). 7(0)) + 5 ETr [D%((0)(0)g(0)"] <0.
Thus
AN [pIE(p, £(0)) + 6A° ETr [(p @ p)g(0)g(0)*]+

PN |2 ETr (0@ p)(0)9(0)°] — . IPETx [6(0)g(0)] | < 0.

Dividing by A\? and letting A — 0 we deduce that

ETr [(p @ p)g(0)g(0)] < 0.
But p ® p = (a; ;) with o, , = 1 and «; ; = 0 for ¢ + j < 2n. Thus

ETr[(p @ p)g(0)g(0)] =E D _ gai(0)* < 0.

S0 ¢,,i(0) = 0 a.s. for all 7 and ¢(0)*p = 0 a.s. as required. O

Remark 3.4 In [2] the authors investigate invariance by using stochastic tangent sets.
Namely a pair of F;-random variables (3,7) € L*(Q, H) x L*(Q, L(Hy, H)) is tangent to
K at (t,x) € Ry x K if there exist continuous adapted processes ((s) and 7(s) converging
to zero when s — t+ such that for all small h > 0,

z+ /t (B+¢(s))ds + /t (v+n(s)dW(s) € K as.

If for some T' > t, ¢ € LY([t,T] x Q), n € L*([t,T] x Q) and v € L*(2), then Theorem 3.3
may be applied and thus we get v*p = 0 a.s. for every proximal normal p to K at x.
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4 Necessary and Sufficient Conditions for the Invari-
ance

We denote by Cp'(H; L(Hy, H)) the set of all functions ¢ : H — L(H,, H) such that o
and its derivative ¢’ are bounded and o'(-) is Lipschitz.

In this section we assume that K is closed, b is Lipschitz and bounded, and that
o € Cp'(H; L(H,, H)). Recall that o;(z) denotes the column j of the matrix o(z) and
Do the jacobian of ;.

Theorem 4.1 Assume that K is closed, b is Lipschitz and bounded, and that o € C;’l.
The set K is invariant under the system (2.1) if and only if for every x € 0K and for all
proximal normal p to K at x we have

<p, b() — %Z Daj(x)oj(:v)> <0, o(x)p=0. (4.1)

Remark 4.2

a) In Theorem 4.1 instead of taking proximal normals p, we may take vectors p €
N (z) (the Clarke normal cone to K at z). Indeed, it is enough to apply the same
arguments as those from the proof of Proposition 2.4 to show that if (4.1) holds true for
all proximal normals, then it is also valid for all p € N§(z). Conversely, since N *(z) C
Ni:(z), if (4.1) holds true for all p € N§,(z), then it is also valid for all proximal normals
to K at x.

b) In [8] invariance is defined in a different way. Namely the initial conditions are
elements of H instead of random variables.

From the proof of Theorem 4.1 provided below it follows that (4.1) is also a necessary
and sufficient condition for the invariance of K with this different definition.

Since N7/ (z) C Ni(z) C Ni(z) the above remark implies the following corollary.

Corollary 4.3 Assume that K is closed, b is Lipschitz and bounded, and that o € C’,}’l.
Then K is invariant under (2.1) if and only if for every x € OK and for all p € Nk (z)
the relations (4.1) hold true.

Theorem 4.1 allows to extend to a less regular o a result from [15] :

Corollary 4.4 Assume that K is closed, b is Lipschitz and bounded, and that o € C’bl’l.
Then K is invariant under the stochastic system (2.1) if and only if K is invariant under
the deterministic control system

1 m
Y = ()~ 3 3" Doy()oy(a) +olault), ue L (e, Hy) (42)
j=1
or, equivalently, if and only if

b(z) — %Z Doy(2)0;(x) € T(x), Tm(o(x)) C Ti(x), Va € K.
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Proof — By Corollary 4.3, relations (4.1) may be equivalently written with p € Ng(z)
instead of proximal normals. Thus, by the separation theorem, (4.1) is equivalent to

VzekK, bz ——Zﬁhj z) €@ Tk(z) & Im(o(z)) C o Tx(x),

where @6 denotes the closed convex hull. By [7, Theorem 4.1.10] and continuity of b, o
in the above €6 Tk (x) may be replaced by Tk (z). Hence, by [1], (4.1) is a necessary and
sufficient condition for the invariance of K under (4.2). O

Theorem 4.1 and Lemma 2.3 imply the following two corollaries.

Corollary 4.5 Assume that b is Lipschitz and bounded, that o € C’bl’l, K s closed and
for every x € OK there exists a unique unit outward normal n(x) to K at x. If n(-) is
differentiable on 0K, then K is invariant under (2.1) if and only if for every x € 0K

(n(x),b(x)) + %Tr[n/(x)a(x)a*(a:)] <0, o(xz)'n(x)=0. (4.3)

Corollary 4.6 Assume that K is closed, b is Lipschitz and bounded and that o € C’bl’l
Further assume that for every x € 0K and p € Nk(x), DNk (x,p)(oj(x)) # O for all
j = 1,...,m. Then K is invariant under (2.1) if and only if for every v € 0K and

p c NK< )
(p,b(z) ZCurvK z,p)(oj(x),0i(x)) <0, o(x)'p=0. (4.4)

Furthermore, for all v; € DNk(x,p)(o;(x))
Curvg (z, p)(0;(x), 0;(x)) = (v5,0;(x)) = = {p, Do;j(x)o;(x)) -

In order to prove Theorem 4.1 we shall need the following lemma. Let x € H and let
X(+) be the strong solution to (2.1) with X, = z. Set

Lij(t) = 0i(X(t)) — 0ij(x)—
: ‘ (4.5)
- / (Vo (X(5)). b(X (3)) ds — / (Vo (X(5)), o(X (5))dIV (5)) .

Lemma 4.7 There exists a constant My > 0 independent from x such that for all 1 <
1<n,1<j<m

E(L; () < Mit?, E(L;(t)* < Myt*, Vt>0. (4.6)

Proof — We first assume that in addition ¢ € C?. By the It6 formula

oy X(0) = o)+ [ ((Tou(X(EN XN + yTilotioo ) (X(s) ) dt

+ /0 (Vi (X (5)), o (X(5))dVV (s))
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Thus E(Z;(¢))" =E (% fot Tr[aé}aa*](X(s))ds)r for r = 2, 4. Since o7; and o are bounded,

it is enough to take M; = n* (1 + max; ||0%00*||00)4, where n =dim(H).
Consider next a mollifier ¢» : H — [0, 1] and the sequence of C'* functions {ij}kzl

defined by
ok (2) = / 033z — y/k)(y)dy.

Then afj and its first and second derivatives are bounded with the same bounds than those
of 0. Furthermore, ij, Vafj converge pointwise to o;; and Vo;; respectively. Define Ifj(t)
as in (4.5) with o;; replaced by afj. By the first part of the proof for some ¢ > 0 and all
k>1, E(I5(t)? < ct®. Set

t
Ty /0 ((0"Vay — (0*)"Vak) (X(s)), dW(s)).
Then for some constant o > 1

LE(L(1)? < E(I5(6)* + E (03(X (1) = o5(X (1)))” + (035(2) — oy (2))*+

v v

+E (/0 ((Voi; = Vi) (X (), b(X(s))) dS) +E(Ji)? <

< et + E (055(X (t) — ok (X (1)) + (03;(x) — o (2)) 2+

) )

e / E|(Voy, — Vok)(X(s))[2ds + / E|(0" Vo — (0%)" Vol )(X(s))|2ds.

]

Taking the limit when k& — oo we end the proof of the first inequality in (4.6) with the
constant M; = ac.
To prove the second inequality, observe that for some constant 3 > 1

1

7 Bl ()" < EUI(6)" +E (03(X (1) — o, (X (1)) + (o35(x) — oy (@))'+

v v

4
+E (/Ot ((Voy; — Voi)(X(s)),b(X(s))) ds) +E(Jp)".
We may apply the same limiting argument provided we show that
IJL%E|Jk|4 =0.
By Proposition 2.1 for a constant ¢y > 0
E|Ji|* < cot?||o* Vo — (ak)*VUfjHio.

The right-hand side of the above inequality converging to zero, the proof follows. O
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Fix u = (u',...,u™) € B; and consider the ordinary differential equation

y' =o(yu, y0)=uz.

Since o € C"', its solution y(-) verifies

2

J

y(s) =z + so(x)u + = (Z (Voij(x),0(x)u) uj> + 0,(s%), (4.7)

where for some M > 0 independent from x, and all s > 0
|0,(s*)| < Ms®, (4.8)
Proof of Theorem 4.1 —

Necessity. Assume that K is invariant. Then, by Corollary 3.2, o*(y)p, = 0 for all
y € K and any proximal normal p, to K at y.
Fix z € K and a proximal normal p to K at x. Then for some ¢ > 0 we have

VzeK, (pz—2z)<clz—z* (4.9)

Consider the strong solution X to (2.1) with Xy = z. Then for a constant M, > 0 and
to = 1 the inequality (2.2) holds true. Fix 0 < ¢ < 1, and also an element W (t) in the
class of functions equivalent to W(t) € L2(; H,), and an element X (¢) in the class of
functions equivalent to X (t) € L?(Q2; H). For every w € (2 define

0 if W, (t) =0,
uy =19 Wo(?)
W.(1)]

otherwise.

For all w € Q, let 2,(-) be the solution to the deterministic system
Z'(s) = o (2(5))uw, 2(0) = X, (1). (4.10)

Since X (t) € K almost surely, by Proposition 2.5 we know that for almost all w € 2 and
for all s >0, z,(s) € K.
For all £ € H define F(t,€) : Q — L(Hy, H) by

F(t,8) = (fi;(t,€)), fij(t,w = (V0i;(§), ()WL (1))
By (4.7)

2 (IWa(t)]) = Xo(t) — o (X (6) W) + %F(t, Xo()Wa(t) + u(t), (4.11)

where |D,,(t)| < M|Ww(t)|3. Set y,(t) = zw(|Ww(t)|) We claim that y(t) is F;—measurable
and y(t) € L*(Q, H). Indeed for all (xg,v9) € H x H; consider the solution z(+; xg,vg) to
2! = o(2)vy satisfying z(0) = x¢ and define the closed set

IT := {(s, 0, vo, 2(8; X0, v0)) | s >0, xg € H, vy € Hy}.
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Observe that the set I'(t) = {(w, |Ww(t)|,)?w(t),uw,r) | w € Q, r € H} belongs to
Fi x By X By x By, x By, where B; denotes the o— algebra of Borel subsets of R, By
denotes the o— algebra of Borel subsets of H and By, denotes the o— algebra of Borel
subsets of H;. Then I'(t) N (2 x IT) € F; x By X By X By, x By. Since

D(t) N (2 x IT) = {(w, W ()], Xo(t), e, 4 () | w € Q},

by the projection theorem (see for instance [11]) w +— y,(t) is F;—measurable. Since o is
bounded, we deduce that y(t) € L*(Q, H). Define G(t) : Q@ — L(H,, H) by

G(t) = (9:(1)), gz-j(t)Z/O(Vcnj(X(S))aO(X(S))dW(S)>-

Applying Lemma 4.7 to (4.11) we obtain

yit) = = +/O b(X(s))ds — (/0 (Voi;(X(s)),b(X(s)))ds + G(t)> W(t)+ .

- /0 (0(X(s)) — o)) dW (s) + %F(t, X ()W (t) + (1) + U (6)W(2),

where |®,(t)] < M|W,(#)]* and E|U(t)|2 < Ct2, E|U(t)|[* < Ct* for some constant
C' > 0 independent from ¢. Since y(t) € K almost surely, by (4.9),

E(p,y(t) — x) < cEly(t) — af* (4.13)

By (4.12) for some a > 1

1 —~
~ly(t) =« < & [blle + W (@) max [(Vos, )2+
17.7

HW ()25, (/ <V%~(X(8)),U(X(S))dW(S)>) +
0 (4.14)
+ |W(t)|4nggx lo" Vo2 + [2(t)]*+

n / (0(X(s)) — o(2))dVV (s)

HITOIPIW (@O = Li(8) + L) + (1) + L) + I5(t) + To(t) + In(0).

Then E(I;(t)) = O(¢*) and since E|W (¢)]* = t, E(I3(t)) = O(¢*). By Proposition 2.1 for
some ¢; > 0 independent from ¢ € (0, 1]

4

(E(L(1)))? < aEW(O)]* maxE ( / <wz~j<X<s>>,a(X(s))dW<s>>) — o(th.

2y

Consequently, E(I3(t)) = O(t?). By the Lipschitz continuity of o and (2.2)
t
E(I4(t)) = / Elo(X(s)) — o(x)|*ds = O(t*).
0
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By Proposition 2.1, E(I5(t)) = O(t*). We also know that E|®(¢)|* < ME]| fot dW (s)|®. By
Proposition 2.1,

E|®(t)]> = O(t?). (4.15)
Thus, E(Is(t)) = O(?). Finally observe that
E(I7(t)) <E[®@)]* + E[W ()" = O(t*).

The above estimates and (4.14) imply that for all 0 <t < 1, E|y(t) — z|*> = O(¢?) and, by
(4.13),

E (p, y(t) — z) = O(F). (4.16)

By (4.12) we have

E(p, th(a)) — E {p, GOW (1)) + 5 (p, F(t, XA (1)) =

— E(p,y(t) — ) — Elp, / (b(X(s)) — b(a))ds)+
0 (4.17)

2 (n( [ t<v%<x<s>>,b<x<s>>>ds) W(E)) = Bl 0(t) + O (D) =

= Ay (t) + Ao(t) + As(t) + Ay(t).

By the Lipschitz continuity of b, Fubini’s theorem, the Hélder inequality and (2.2) for
some cy > 0,

t
Ag(t) S CQ/\/ECZS S Cgtg/z.
0
Furthermore, for some c¢3 > 0

As(t) < csty/E|W (1)]2 = est®?.

Moreover

E(—p, ¥(t)W (1)) < [p|VEIOPEW ()P < [pVCE

and, by (4.15),
E(—p, (1)) < |p|VE®(1)2 = O(t*?.

Hence from (4.16) and (4.17) we deduce that for all 0 < ¢ <1
E(p, th(z)) — E (p, GE)W (1)) + %E <p, Ft, )?(t))vv(t)> — O(%2). (4.18)

By the Lipschitz continuity of o and Vo;; and by (2.2), for some ¢, > 0 and all s € [0, 1]

E|o* (X (s))Voi;(X(s)) — U*(ZL’)VO'Z'j<.T)|2 < ¢48. (4.19)
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This and the Holder inequality imply that for all 1 <i<n, 1 <j3<m
E[(Voy (X (), o (X @)W ()W (t) = (Vo (), o (x)W (&)W (t)] <

<Vt /EIW (t)]4 = O(#3/?).

Consequently,
E|F(t, X (t))W(t) — F(t, )W (t)| = O(#*?).

Furthermore, by the Hélder inequality and (4.19), for a constant ¢5 > 0

E

<p, ( / (o (X()" Vo (X(s)) - a<x>*wij<m>,dw<s>>> W<t>>] <

1/2

< eVt max (EI/O (0(X(s))"Voy(X(s)) = U(Jf)*VUij(fU),dW(S))IQ) =

J

¢ 1/2
— ¢5V/t max (/ E|lo*(X(s))Voi;(X(s)) — J*(x)VU(x)]2ds> = O(t*?).
1,j 0
Thus it follows from (4.18), (4.20) and (4.21) that for all 0 <t <1

Ep,th(r) + 5E (p, F(t,2)W (1)~

(5. ([ (Vos(alo@am(sn) wi) = o6

Finally observe that

B {p. [ (Vouta o)) w)

=k <p7 (ZW%(?U% U(HU)W(t))Wj(t)) > = E(p, F(t,2)W (1)) =

J

¢ Jkr

001-4 :
= sz‘ ax;: (z)owi(2)E(WI () =t <p, Z Doj(x)o; (m)> :
i ak J
and from (4.22), (4.23) we obtain that for every 0 < ¢ <1,

t <p, b(x) — % Z Daj(x)aj(x)> = O(t3/?).
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Dividing by ¢ and taking the limit completes the proof of necessary conditions.

Sufficiency. Fix an Fy-random variable X, € L?(Q2) such that Xy € K a.s. and
consider the strong solution X (¢) to (2.1).

Set 1 (t) = Ed%(X(¢)). To prove that X (¢) € K almost surely, we have to show that
(t) = 0. Since ¥(0) = 0, by Proposition 2.7 it is enough to prove that for some L > 0
and all t > 0 such that ¢ (t) > 0 we have

dy(t) < Lp(1).

Fix ¢ > 0 such that ¢(¢) > 0, and also an element X (¢) in the class of functions equivalent
to X (t) € L2(Q; H). Set @, (h) = d% (X, (h)).

By the measurable selection theorem [7, p.317] there exists an F;-measurable map
w — (, € K such that

Qow(t) = |),ZW(t) - Cw|2'

In particular, )Z'w(t) — (,, is a proximal normal to K at (.
Fix h € (0,1), and also an element W (#) in the class of functions equivalent to W (t) €

L?(2; Hy), and an element W (¢ + h) in the class of functions equivalent to W (t + h) €
L*(; Hy). For all w €  set

0 if W, (t+ h) = W, (t)

uy(h) :={ Wyt +h) — W,(t)
Wt + h) — W, (t)]

(4.24)

otherwise.

For every w € 2 consider the solution z,(-) to the deterministic system

Z(s) = o(2(s))uw(h), 2,(0) = Cu-

By (4.1) and Proposition 2.5, z,(s) € K for all s > 0. On the other hand, by (4.7), for
all w e Q

([ Walt+h) = Wo(B)]) = G+ o () Walt + h) = W (1) +

i (Z (Voi(C), o (C)Wolt + B) = Wo()) ) (WA(t+ ) - Wi(t))) + (1),

J
where for some M > 0, |®,(t)| < M|W,(t+ h) — W,(t)]3. Set
yw(h) = zw(|Ww(t + h) - Ww(t)l)

By the same arguments as in the proof of necessary conditions, replacing X () by ¢,
we show that y(h) is F;,—measurable and y(h) € L*(Q; H). Observe next that

A (X(t+h) <[X(t+h) —y(h)* (4.25)
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Since

t+h t+h
X(t+h)=X(t)+ /t b(X(s))ds + /t o(X(s))dW(s) a.s.,

for a constant a > 1 independent from ¢

t+h
IX@+h%ﬂMM2§ﬁ@%HMWWi+MLH(dX@D—dOMW@W+

2

+a + ad(t)*+

S (Vo0 QYW -+ 1) = W) (W (¢ + h) — (1)

J

r2(x(0) - / s+ [ h<a<X<s>>—a<<>>dw<s>—<1><t>>—

-2 <X<t> 63 (Z (Voi(Q), o QW (t+ ) = W (1) ) (W (t+ ) - Wﬂ<t>>>>

= Ji(h) + Jo(h) + J3(h) + Ja(h) + J5(h) + 2Js(h) — 2J7(h).

Then E(Jy(h)) = O(h?). In the same way as we have shown the estimate of E(I,(t)) we
prove that

IEl/j (0(X(s)) — o (X (t)))dW (s)]* = O(h?).

Thus for a constant ¢g := 2«
JR) < okl / W(s)P +O(h?)

= cshElo(X(t) — o(O* + O(h?).
Since o is Lipschitz continuous we deduce that for a constant ¢; > 0 independent from ¢
E(Js3(h)) < crhap(t) + O(h?). (4.26)
Similarly to Proposition 2.1
E|W (t 4+ h) — W()[* = O(R?), E|W (t 4+ h) — W (t)|® = O(R?) (4.27)

and therefore E(Jy(h)) + E(J5(h)) = O(h?) for 0 < h < 1. By (2.2) and the Holder
inequality, for some My > 0 and all s € [¢,¢ + 1],

E|X(s) — X(1)] < v/Mov/s — 1.
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This and the Lipschitz continuity of b imply that for a positive constant cg independent
from ¢
t+h
B(x(0-¢. [ b<X<s>>ds> <E(X() — ChO)+
t

( g|/ (Ib(X X))+ [b(X ())—b(é)|)d8> <

< BE(X(t) = ¢, b(C)) + hegih(t) + O(h/?).

Furthermore, IE<X Cth a(C))dW(s)> = 0 and, by (4.27) and the

Holder inequality for a constant cq > 0

E[(X(t) = ¢, (1)) | < ¢y VE|W(t +h) — W(1)[0 = O(h*?).

Consequently,
E(Js(h)) < hE (X () = C,b(¢)) + hest(t) + O(h*?).

Finally

2E(J7(h)) = E <X(t) S (Z (Vi (Q), o (Q)(W(t + h) — W () (W(t+h) — Wj(ﬂ)) >

J

O (W (t+h) — W) (WI(t + h) — Wj(t)))

~2 (X -3

A 7.k,

= hE (Z Z Qo (¢ ) — hE <X(t) — ¢, Z Daj(g)aj(g)> :

The above inequalities and (4.25) imply that for L := 2(c7 + ¢g) and for all 0 < h < 1,
Y(t+h) < P(t) + Lhap(t) + 2hE <X - — —ZDJJ >+O(h3/2).

Thus, by (4.1), ¥(t + k) < ¥(t) + Lhib(t) + O(h*?) and therefore di(t) < Li(t). By
Proposition 2.7, ¢ = 0 implying that dx (X (¢)) = 0 almost surely. O
5 Invariance of Stochastic Control Systems

Let U be a complete separable metric space and b : HxU — H,and o : HxU — L(Hy, H)
be bounded continuous mappings. Assume that there exists a constant C' > 0 such that

Ve, ye H YoveU [blx,v)—0by,v)|+|o(x,v)—0c(yv)| <Clz—yl (5.1)
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Denote by A the set of all L'(Q, U)—valued mappings v(-) defined on R, which are
progressively measurable with respect to the family F, i.e. for every ¢t > 0, v(t) € U a.s.
and the mapping [0,%] x Q 3 (s,w) — v,(s) is By x Fy—measurable. Elements of A are
called admissible controls.

We associate to the above data the stochastic control system

dX = b(X,v(t))dt + o(X,v(t)dW(t), v(:) € A. (5.2)
Let Xy € L*() be an Fy-random variable, v(-) € A and consider the differential
stochastic equation
dX = b(X,v(t))dt + o(X,v(t))dW(t),
(5.3)

Under the above assumptions (5.3) has a unique solution X (-), i.e. for all t > 0,

X(t) = Xo +/O b(X(s),v(s))ds —1—/0 o(X(s),v(s))dW (s) a.s..
(see [27, Chapters 1, 2]).

Definition 5.1 A set K C H is called invariant under the control system (5.2) if for ev-

ery Fo-random variable Xy € L*(Q) such that Xy € K almost surely and every admissible
control v(-) € A, the solution X to (5.3) satisfies for allt >0, X(t) € K almost surely.

Theorem 5.2 Assume that K is closed, b, o are bounded and continuous, that there exists
a constant C' > 0 such that (5.1) holds true and for all v € U, o'(-,v) is C— Lipschitz.
Then K is invariant under (5.2) if and only if for every x € 0K and for all proximal
normal p to K at x we have

1 m
<p, b(x,v) — 3 ZDxaj(x,v)aj(x,v)> <0, o(z,v)'p=0, YVveU, (5.4)
j=1

where o;(z,v) denotes the column j of the matriz o(x,v) and Dyo;(x,v) the jacobian of
oi(-,v) at .

Remark 5.3 Exactly as in Remark 4.2 and Corollary 4.3 in the above theorem proximal
normals may be replaced by the elements of normal cone Nk (z) or by those of Clarke’s
normal cone.

Corollary 5.4 If all the assumptions of Theorem 5.2 hold true, then K is invariant under
(5.2) if and only if K is invariant under the deterministic control system with two controls

' = b(x,v(t)) = 3 2251, Doj(x, v(t))oj(@, v(t) + oz, v(t))u(t), 55
5.9
we L] (R,,Hy), v:R. — U is measurable

loc

or, equivalently, if and only if

b(x,v) — %ZDaj(x,v)aj(x,v) € Tk (z), Im(o(z,v)) C Tk(x), YoeU, VaeK.

J=1
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Proof — By Remark 5.3, (5.4) holds true, if and only if it holds true for all p € Nk (z).
By the separation theorem, relations (5.4) may be equivalently written as

Vee K, Vv €U, b(x,v)—% ZDaj(x,v)aj(x,v) € coTk(x) & Im(o(z,v)) C @6 Tk(x).

j=1

By [7, Theorem 4.1.10] and continuity of b, o, in the above ¢ Tk (z) may be replaced by
T (z). Hence, by [1], (5.4) is a necessary and sufficient condition for the invariance of K
under the deterministic control system (5.5). O

Theorem 5.2 and Lemma 2.3 imply the following result.

Corollary 5.5 Under the assumptions of Theorem 5.2 suppose that for every x € 0K,
p € Ng(x) and v € U, DNg(z,p)(oj(z,v)) # O for all j = 1,...,m. Then the set K is
invariant under the system (5.2) if and only if for every x € OK and p € Nk(x)

(p,b(z,v)) + % Z Curvg(z,p)(oj(z,v),0i(x,v)) <0, o(z,v)'p=0, Vve U  (56)

j=1
Furthermore, for allv e U and pj € DNg(x,p)(o;(z,v))

CUI"VK(I,p)(O'j(x,U>,O'j(.%,v)) = </Lj,0'j($,1))> = <p7 DUj(S(Z,U)O’j(I,U)>.

Proof of Theorem 5.2 — If the set K is invariant under the system (5.2), then for
every vg € U the mapping v = vy belongs to A. Thus, for every Fy-measurable random
variable Xy € L*(Q) such that X, € K a.s., the solution X to (5.3) satisfies X (¢) € K
a.s. This and Theorem 4.1 imply that for every z € K and for all proximal normal p to
K at z relations (5.4) hold true.

Assume next that (5.4) holds true for every z € K and any proximal normal p to K
at . To prove the invariance we proceed in several steps. We first show that (5.4) implies
the invariance for time independent controls, then for piecewise constant (with respect to
the time) controls and, finally, in the general case.

Case 1 of constant controls. The proof is essentially the same as the one of the
invariance of differential stochastic equations, but the setting is slightly different because
of the presence of the control v. Let ¢, > 0. Consider an F;,-measurable v: 3> w — U,
an Fy,-random variable X, € K a.s. and the strong solution X (¢) to

dX = b(X,v)dt + o(X,0)dW (1), X(to) = Xo, t>t,.

Define ¢(t) = Ed3.(X(¢)). Then 1(ty) = 0. As in the proof of sufficient conditions
for stochastic differential equations, we check that for some L > 0 and all ¢ > ¢, with
Y(t) > 0, we have dip(t) < Li(t). Fix such t > o and an element X (¢) in the class of
functions equivalent to X (t) € L2(Q; H). Set ¢, (t) = d2 (X, (t)).

Consider an F,-measurable map w — , € K satisfying @, (t) = | X, (t) — C|>

Fix h € (0,1), and also an element W(t) in the class of functions equivalent to W (t) €
L2(2: Hy), an element W (t+) in the class of functions equivalent to W (t+h) € L2(2: Hy).
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Define u,(h) as in (4.24). For every w € €2, consider the solution z,(+) to the deterministic
System

Z(s) = o (2(s), v)uu(h), 2.(0) = Cu-

By (5.4) and Proposition 2.5, z,(s) € K for all s > 0.
On the other hand, by (4.7), for all w € €2

(Wt + 1) = Wa()]) = G+ oG, ) (Wo(t + ) — Wo(6)+

+% (Z <vxoij(@, Vi), 0 (G Vo) (Wes(t + h) — Ww(t))> (W (t+h) — Wg(t))) + D, (1),

J

where for some M > 0, |®,(t)] < M|W,(t +h) — W,(t)]*. Set
Yol(h) = 2o ([Wo(t + h) = Wo(B)]).
We claim that y(h) is F;,p-measurable and y(h) € L*(Q, H). Indeed let (g, ug,vo) €
H x Hy x U and consider the solution z(+; xq, ug, vg) to 2’ = o(z,vg)ug satisfying z(0) = xo.
Define the closed set

IT := {(s, xo, ug, vo, 2(8; o, wo, v0)) | s >0, xg € H, ug € Hy, vy € U}

and the set T'(h) := {(w, |Ww(t +h) — Ww(tﬂ,@,uw,vw,r) |weQ, re H} € Fyp X
By x By x By, X By x By, where By denotes the o— algebra of Borel subsets of U. Then
F(h) N (Q X H) < ft+h x By X By % BHl X By x Bg. Since

D(h) N (Q x TT) = {(w, Wt + k) = Wo(t)], Cu, e, Ve, Y (R)) | w € Q,

by the projection theorem (see for instance [11}), w — y,(h) is Fiip-measurable. Since o
is bounded, we deduce that y(h) € L2(2, H). Notice that X,,(t)—(, is a proximal normal
to K at ¢, and (4.25) holds true. By exactly the same arguments as those used in the
proof of sufficiency of Theorem 4.1, we check that for some L > 0 independent from ¢
and all h € [0,1], ¥(t + h) < (t) + Lhi(t) + O(h*?) and therefore di)(t) < Li(t). By

Proposition 2.7, ¢ = 0 implying that dx (X (t)) = 0 almost surely for ¢ > ¢,.

Case 2 of piecewise constant controls. Let v € A be such that for some 0 = sy <
§1 < ... < 8¢ < ...and for all £ > 0, v is time independent on the time interval [sy, si11).
Fix an Fy-random variable Xy € L?(Q) such that X, € K a.s. and consider the solution
X(s) to
dX = b(X,v)dt + o(X,v)dW(t), X(0)= Xy, t€ [so,s1)

Then, by Case 1, for all 0 < s < s1, X(s) € K a.s. Since b, o are bounded, X can be
extended by continuity to s; and X (s1) € K a.s. Assume, that we already proved that
for some k > 1, X(s) € K a.s. for all s < s;. Set Xy := X(sx) and consider the solution
X(t) to

dX =b(X,v)dt + o(X,v)dW(t), X(sx) = Xo, t € [Sk,Sk+1)-
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By Case 1, for all s € [sy, sky1), X(s) € K a.s. and again we extend X by continuity to
Sky1- This and the induction argument yield that X (s) € K a.s. for all s > 0.

The general case. Consider v € A, Fy-random variable X, € L*(Q) such that
Xo € K a.s. and the solution X (¢) to (5.3) (see for instance [27, p. 42]).

Fix t > 0. Then for some M, > 0, the inequality (2.2) holds true with t, = t. We
have to show that X (¢) € K a.s. For this end let us fix 0 < € < 1 and define the mapping

R, 3 s+ g(s) := b(X(s),v(s)) € L*(Q, H).

Then for all w € €2, the mapping s — fos g.(7)dT € H is absolutely continuous on bounded
intervals. Define the mapping f : [0,¢] x (R, \{0}) — L*(Q2, H) by

F(s,h) = %/ o(7)dr.

Then, by the absolute continuity and boundedness of b, for all w € €2,

lim /Ot (5, ) — gu(s)[ds = 0.

h—0+

Hence, by the dominated convergence theorem,

lim E/O |f(s,h) —g(s)|ds = 0.

h—0+

Next, applying the Fubini theorem, we obtain that

t

hlir& i E|f(s,h) —g(s)|ds = 0. (5.7)

Let h; — 0+ be such for all i > 1, h; < £2.

Claim. We claim that for all 7 large enough, there exist §; — 0+ and 0 = 7§ < 5! <

7 < sy <s), < 7, < tsuch that for all 1 < j <my, 77 = s’ + h; and

s |
0<t—mihi <6 +hi, E| / g(r)dr — hig(s})] < <. (5.9)

Indeed, define the measurable sets A; := {s € [0,t] | E|f(s, hi) — g(s)| > €}. By (5.7) the
Lebesgue measures pu(A;) converge to zero when i — oo. Set §; = u(A;) + 1/i. Consider
open in [0,t] sets O; such that A; C O; and u(O;) < ;. Then the sets C; := [0,t]\O; are
closed subsets of [0,¢]. Fix ¢ > 1 such that there exists s € C; with s + h; <.

Set st := min{s | s € C;} and 7} := s} + h;. Inductively, assume that we already
constructed for some & > 1, the numbers 0 = 7 < s} < 77 < ... < 74 <t such that for all
1<j<k 1 —s =hs;eCiand [1]_,s)) C O,

If C; N7, t] = O, then put m; = k. If C; N [1{,t] # O, then define

Sj1 :=min{s | s € C; N [}, 1]}
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Clearly [7},s,,,) C O;. If s, + h; < t, then define 7/, := s}, + h;, otherwise put
m; = k.

Since the interval [0,¢] is finite and h; > 0 is fixed, this construction ends in a finite
number of steps. In this way we defined also m;. On the other hand, for all 0 < j < m;—1,
[77,s% 1) C O;. Furthermore, by our construction, either [r}, ,t] C O;, or there exists si,

70 °7+1 - - ;
such that [7,, ,s;, 1) C O;and t — s, ., < h;. Since

m;) Om;+1 m
mg m;—1
S =)+ Y (s =)+ (= T) =1,
J=1 §=0
we have .
t —mih; = Z (S;‘+1 - 7';) + (t = Tm,) <6+ Dy
=0

and our claim is proved.
Define piecewise constant controls

v(sy)  if for some 1 <j<m;—1, s € [s},7]),

ui(s) == ¢ w(rj)  if for some 0 < j <m; —1, s€[1],5%,,),

o(r,) ifs>1l

m;
and piecewise constant functions

X(s%) ifforsomel<j<m;—1, sels,1}),

Xi(s) == X(T;) if for some 0 < j<m; —1, s€ [T]@"S;H)

X(rl,) ifs>7h .

m;

Then, be the very definition of the It6 integral, for all s € [0, ],

s

lim E| [ (o(X(p),u(p)) — o(Xi(p), ui(p)))dW (p)[* = 0. (5.9)

1—00 0
Consider solutions Y; to
dY = b(Y,u;)dt + o(Y,u;)dW(t), X(0) = Xo.

Then by the Case 2, Yi(s) € K a.s. for all s > 0. Set ¢ (s) := E|X (s) — Y;(s)|* and notice
that

Edjc (X (1)) < U5 (1), (5.10)

27



and that for some a > 1 and all s € [0, ],

20ie) < [ EBOK). w(0) — UYil0), ) P+

s

+E| i (0(X(p), ui(p)) — a(Yi(p), wi(p)))dW (p)|*+

+E| | (0(X(p),ui(p)) — o(Xi(p), ui(p)))dW (p)|*+
0 (5.11)

+E[ | (9(p) = b(X(p), ui(p))dp|*+

+E| | (0(X(p), ulp)) — o(Xi(p), ui(p)))dW (p)|* =

= Ii(s) + Ii(s) + Ii(s) + Ii(s) + Ii(s).

Since b and o are C'—Lipschitz in the first variable,

1i(s) + 13(s) < 2C [ EIX() = Yi(p)Pdp = 2C [ vi(p)dp. (5.12)
0 0
By the Lipschitz continuity of o with respect to x, using that E|X (p)]* < Mt for all
p € [0,¢], for a constant C; > 0 independent from s € [0, ]

m;

Iis) < C / EIX(p) ~ Xi(p)Pdp < O3 / (o — si)dp + 2MCH(, + hy) <
0 ]

j=1"%;

| (5.13)
S 01 ZZ(T; — S;‘-)2 -+ ZMCt((SZ + hz) S Cl€2t + ZMCt((SZ + 82).
On the other hand
[ (000 = 00 (an| < 301 [ ta(6) = 6. ool
o (5.14)

2l 40+ S [ ) w(0) — D). 0(51)

By (5.8)
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which implies that

g (Z [t - b(X(s;i),v(s;‘-)))dm) < 2202 (5.15)

Z,
J

Furthermore, by the Lipschitz continuity of b with respect to x and by (2.2), for a
constant ¢; > 0 independent from i, ¢

- (Z / bX (p), i) - b<X<s;>,v<s;>>,dp> <

<2l > [ BBCC ). 0(0) B (5),0(s1)ldp <
o (5.16)

<20t Y [ EX () - X(dp< ey [Ty fo- s o<
j=1"%; j=1"%;

< Z(T; — 33-)3/2 < ¢éet.
j=1

From (5.14) - (5.16) we deduce that for constant ¢, > 0 independent from i, € and s
LZI(S) < C2(€ + 61)

This and (5.11) - (5.13) imply for a constant ¢; > 0 independent from i, ¢ and for all
s € [0,

Ui(s) < e fy Ui(p)dp + cs(e +6;) + I5(s).

Then it follows from the Gronwall inequality that for a constant ¢4 > 0 independent from
¢ and for all 7,

YE(t) < cale + 6 + Ii(1)) + eq fy Ti(s)ds. (5.17)

From (5.9) we know that for every s € [0,1], lim; .o I:(s) = 0. On the other hand,

I3(s) = /OSEHU(X(p%U(p)) — a(Xi(p), wi(p)|*dp < 2slo]|2.

From the Lebesgue dominated convergence theorem we deduce that
t

lim [ Ii(s)ds = 0.

1—00 0

This and (5.10), (5.17) imply that Ed% (X (t) < limsup, . () < cse. Since € > 0 is
arbitrary and ¢, does not depend on ¢, we get X (¢) € K a.s. O
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Remark 5.6 Recall that the second order normal cone N2 (x) to K at z is the set of all
(p,Q) € H x L(H, H) satisfying

1
Vye K, (py—u)+5Q—zy—xz) <o(ly — z|*).

It is not difficult to realize that if (p,Q) € N&(z), then p € N (x).

If K is invariant under the stochastic control system (5.2), then for every € 9K, and
for all p € Ng(z) relations (5.4) hold true. Fix z € K, v € U. Applying Proposition 2.5
with u(t) = e; and o replaced by o(-, v)we deduce that for all h > 0,

h
yn = v+ Vhoj(z,v) + 5 Doj(z, v)o;(z,v) + o(h) € K.

Using that (p,o;(z,v)) = 0, from the definition of second order normals it follows that
for all (p, Q) € Nig (),
h

h
(0. Do . 0)o (. )) + 2 QU0 (.0). 0y, 0) < o).
Dividing by h and taking the limit yields Q(c;(x,v),0;(z,v)) < —(p, Do;(z,v)0;(z,v)).
This and (5.4) imply that

Y (@) € Ni(w), (0w, ) + 3TrlQa(z,v)o” (2, )] <0, (515)

i.e. (5.4) yields a necessary condition for the invariance of stochastic control systems
proposed in [8]. We also observe that (5.18) is a simple consequence of the It6 formulae
and the definition of N (z). So (5.4) is not really needed to prove that (5.18) is a necessary
condition for the invariance.

The difference in the presentation of sufficient conditions seems to be however impor-
tant. Namely in [8] it is also proved, using the viscosity solutions approach, that the
second order condition (5.18) is sufficient for the invariance when the initial conditions
are deterministic (i.e. are elements of H). Since there is no calculus available for the
second order normal cones, it is not clear how to deduce directly from the second order
condition (5.18) our first order conditions (5.4), except in the case of smooth boundaries
K.
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