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In ancient Egypt and India the art of rope-stretching was practiced
in order to produce segments and other geometrical figures, showing
knowledge of the fact that a segment solves the problem of maxi-
mizing the distance between the endpoints of an arc given the length
of the arc.

In Egypt, according to Democritus, geometric constructions were
carried out with the help of specialized workers—whom Democritus
describes as experts in “composing lines,” and calls by the Greek
word “harpenodaptai,” which means “rope-strethcers’—by means
of pegs and cords. T heir skills were used to build altars and temples,
where it was deemed necessary to produce certain geometric shapes
that would obey very precise specifications, such as being made of
perfectly straight segments or perfect circles.



THE EULER-LAGRANGE EQUATION
Problem:
minimize I = [? L(£(t), £(t),t) di
in the space W of “all curves” € : [a,b] — €2 such that &(a) = 7
and £(b) = z. (Here 2 is a given open subset of R"?, and (z,z,t) —
L(x,z,t) € R is a given function on Q x R" x [a,b], known as the
Lagrangian.)

Necessary condition for a solution:

Suppose &« : [a,b] — 2 solves the problem Let 7 : [a,b] — R, be the
momentum along &« given by |m(t) = a—é’(f*(t),é*(t),t).

Then ||7(t) = g—é(f*(t),f'*(t),t). for a.e. t.|| (More precisely,

is absolutely continuous and the double-boxed condition holds.)
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The words “Calculus of Variations’ were introduced by Euler in
1754, when he got a letter from an 18-year youngster from Turin,
called Joseph-Louis Lagrange, who suggested a method for proving
results such as the one of the previous slide.

Lagrange’s idea: make “variations” of &, replacing &« by &« 4+ 6&,
where o is an “infinitesimal variation” of &, chosen in such a way
that 6£(a) = 86(b) = 0. Then, if =x(t) = (&«(t),&4(8), 0),

/b<L(£*(t) + 0E(t), £x(t) + 0E(E), 1) — L(E(1), & (2), 1)) dt
I b<_(—*(t)) 5§(t)+—(—*(t)) 0E(t)) dt
(5
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=) - d—a—L<_*<t>>) BE(t)) dt
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= [z - #w) - 5ew)) dr.

But 7 = O for all ¢. Since 6€ is arbitrary, we get ‘g—é’ =«(t)) = 7 (¢).
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Euler liked Lagrange's method of ‘variations” so much that he
named the study of these problems *“Calculus of Variations.”

The above argument can be made completely rigorous by just writing
&« +eC instead of £x+40&, and differentiating the integral with respect
toe at e =0.

Technical conditions are needed: for example, the proof works if the
function (z,4,t) — L(z,,t) is of class C!, and “all curves” means
“all maps in Wb ([a,b],Q)" (i.e., all Lipschitz curves).

But it does not work, even if L is very smooth (for example, a poly-
nomial) if “all curves” is taken to mean “all maps in Whl([a,b], Q)"
(i.e., all absolutely continuous curves), because of the “Lavrentiev
phenomenon.”



Adrien-Marie Legendre (1752-1833) found in 1786 an additional nec-
essary condition for a minimum.

His condition, derived by him for the scalar case, is

0 L(Z4(t)) > 0.

With an appropriate reinterpretation, Legendre’'s condition is also
necessary in the vector case: all We have to do is read it as as-
serting that the Hessian matrix {a 57 (Zx(8)) }1<i j<n IS NONNegative
definite.

Here are our three conditions together:

r(t) = JE(Z.(t))| | 7(t) = LE(1)| | LEE() = 0.

DO YOU SEE ANYTHING HERE?



Define a function H(x,p,z,t) of the three sets of variables z,p,u,
and of t € R, by letting

H(CE,p,dﬁ,t) — <p7 $> o L($,CE,t) .

(Really, H is defined on the fiber product of the tangent and cotangent bundles
of the configuration space 2.)

Then our conditions so far say, if ©«(t) = (&«(t), w(t),&«(¢),t), that,
along Oy,

o =0,  EM="7(0.), () =2 (Ou(1)).
T P L

02 H
W(@*(t)) <0.

The first system of three equations, usually written as

do _ 0H  dp _ _0H  OH _ g
dt — 9p° dt — "9z’ 9z — Y

is exactly equivalent to Euler-Lagrange. And, of course, the fourth
inequality is Legendre’'s condition.




Meom=0,  &w="@w), «n=-2"T@.0)
T D L

02 H
W(@*(t)) <0.

DO YOU SEE ANYTHING NOW?



Meom=0,  &w="@w), «n=-2"T@.0)
T D L

0°H
W(@*(t)) <0.

Clearly, what must be going on is that the Hamiltonian
H(&«(t),n(t),z,t) is being maximized, as a function of z,
by the value z = &« (¢).

This is indeed true! And it could have been discovered, or at least
guessed, in the 1830s. But it took until the 1870s for Weierstrass
to discover it. And he didn’t quite discover it all the way.



Weierstrass introduced the “excess function”

L L
S(CL',’U,,’U,t)ZL(CC,’U,t)—a (LE,’U,,t)"U—(L(CU,’U,,t)—a (LU,’U,,t)"U/),
ov ov

depending on three sets of independent variables z, v and v. He
then proved his side condition:

E(&(t), (), v,t) >0 for all v.
If we plug z = &(t), u = &«(¢), in the formula for &€, we find

E(&«(1),&x(t), v, 1)

= L&), v,t) — () - v — (L&), & (2), 1) — (2) - £4(1))
H(&(t), m(t), Ex(t), t) — H(Ex(t), m(t),v,1),
so the Weierstrass condition says, precisely, that H(&«(t), w(t), z,t)
iS maximized, as a function of z, by the value z = &« (¢).
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But the Weierstrass condition only amounts to saying that the
Hamiltonian is maximized if one substitutes = (t) for g—fg(g*(t),é*(t),t).

This substitution, however, is redundant, Dbecause the equation
9H (0,(t)) = 0 already implies that m(t) = 9£(& (1), &(t),t). (Recall:
H = p-xz—L.) And Hamiltonian maximization implies %—Ig(@*(t)) = 0.

2
Furthermore, the condition %Tg(@*(t)) < 0 is also implied by Hamil-
tonian maximization.

2
So we can drop the conditions %—g(@*(t)) = 0 and %Tg(@*(t)) <0,
and just write our full system of conditions as

() =(0u), D) =~ (Ox()),
p x

H (& (), m(t), &«(t), 1) = max{H (&(t), m(t),u,t) 1 v € U}

where U is the set of all possible velocity values (which in Weier-
strass’ setting would just be R").
11



The system of conditions

L =70(0.0), D)= (0u1)
D x

H(&(t), m(t),&«(t),t) = max{H (& (), n(t),u,t) 1 u € U}

IS exactly equivalent to ELLW (Euler+Lagrange+Legendre+Weierstrass)
under Weierstrass' assumptions, namely:

1. U =R", or at least U open,
2. L is differentiable with respect to z.

But now the conditions make sense even without these assumptions!
(For example, they contain no derivatives of L with respect to z.)

Therefore it is reasonable to guess that the conditions are still nec-
essary in this more general situation.

And that is indeed true. (Almost.)
12



Tentative necessary conditions for &« @ [a, b] — €2 to be @ minimizer of
the cost fC’j L(&(t),E(t),t) dt in the class of all absolutely continuous
curves ¢ : [a,b] — Q such that £&(¢t) € U for a. e. t and £(a) = 7,

£(b) =z

For some absolutely continuous = : [a, b] — Ry:

G =5 ©uD), i) =~ (Ou(1))

H (& (t), m(1),&+(1), t) = max{H (&(t), 7(t), u,t) 1 u € U}

Recall: H(xz,p,u,t) =p-u— L(x,u,t).
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This is very nice, but it doesn’'t quite work.
We need the abnormal multiplier.

That is, we must redefine the Hamiltonian as
Hpo($7p7 ’U,,t) — pPp-u-— pOL(xauat) )

and allow pg > 0 but not necessarily = 1.

REMARK: “Abnormal multipliers” occur in very old problems (e.g.,
the catenary), even though Bolza around 1910 seems to have been
the first one to notice them.
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Necessary conditions for &« @ [a,b] — €2 to be a minimizer of the cost
f(fL(g(t),é(t),t) dt in the class of all absolutely continuous curves
¢ [a,b] —  such that &(t) € U for a. e. t and £(a) =z, &(b) = Z:

For some absolutely continuous = : [a,b] — R, and some
mo > 0 such that (wg,w(t)) # (0,0):

OH 0

E(t) = 8;0(@*@)), w(t) = —

JCRON

Hig (6+(1), m(¢), & (), 1) = max{Hno(&(t), 7(t),u,t) 1 u € U}

Recall: Hpy(z,p,u,t) =p-u—poL(z,u,t).
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Technical assumptions:

B w N

U is a subset of R",

z+— L(z,u,t) is of class C1 for each t,u,

t — L(xz,u,t) is measurable for each z,u,

for each u € U there exist §, > O, ky : [a,b] — [0, +o0] integrable,
such that |L(z,u,t)| 4+ ||VaeL(z,u,t)|| < kyu(t) for ||z — & ()| < du,
a <t<hb,

there exist d« > 0, k« : [a,b] — [0, +4oc] integrable, such that
|L(x, &x(t), )| + Ve L(z, &(1), || < ki (t) for |lz — &) < s,
a<t<b.
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To see the difference between the ELLW conditions and our new
form, in which the momentum is a completely independent variable,
consider these examples:

1. Minimize (that is, find all the minimizers) f01 1E()|| dt in the class
of all Lipschitz curves € : [0, 1] — R" such that £(0) = A and

£(1) = B. Here || -|| is a general (not necessarily smooth) norm
on R™.

2. Minimize [39¢(t)2dt in the class of all Lipschitz functions
€ :[0,1] = R with Lipschitz constant < 1, such that £(0) =1
and £(10) = 1.

Notice that for Problem 2 Euler-Lagrange would give g—é’ = 0, and
then £(t) = 0, which is of course impossible.

17



Furthermore, we can now take the velocity to be much more general,
f(z,u) rather than u, and we get the Pontryagin Maximum

Principle:

Necessary conditions for &« @ [a,b] — 2, n« : [a,b] — U, to be a
minimizer of the cost [? L(£(t),n(t),t) dt in the class of all pairs (¢, n)
such that & : [a,b] — € is absolutely continuous, n : [a,b] — U,

E(t) = f(€(t),n(t),t) for a.e. t, and &(a) =z, &(b) = Z:

For some absolutely continuous = : [a,b] — R, and some
mo > 0 such that (mg,w(t)) # (0,0):
OH OH

3p°(@*(t)), m(t) = — 8x°(@*(t))-

&(t) =

Hro(§«(t), (1), mx(t),t) = max{Hnry(&«(t), 7 (1), u,t) 1 u € U}
Now: Hp,(z,p,u,t) =p- f(x,u,t) — poL(z,u,t).

Hamiltonian = momentum times velocity minus abnormal multiplier

times Lagrangian.
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Technical assumptions:
(Letting f(z,u,t) = (L(z,u,t), f(z,u,t)).)

U is a set,

z +— f(z,u,t) is of class C1 for each t,u,

t — f(x,u,t) is measurable for each z,u,

for each u € U there exist 6, > 0, ky : [a,b] — [0, 4+o0] integrable,
such that |[f(z, u, O[] + |1 2 (@, u, O[] < ku(t) for [z — &®)] < du,
a <t<hb,

5. there exist d« > 0, k« : [a,b] — [0, 4+o0] integrable, such that
1£(z, (), DI + 195, 7 (1), )| < ku () ToOr |Jz — &x(B)]| < S+,
a<t<b.

W N
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THE TRANSVERSALITY CONDITION

Suppose that, instead of fixing the initial and terminal conditions
£(a) =z, £&(b) = z, we impose conditions

£(a) =7z, £&(b) € S, where S is some given set.

Suppose C is a tangent cone to S at &(b). (For example, S is, up
to a C! diffeomorphism, a closed convex set near £(b), and C is the
tangent cone in the obvious sense.)

Then we get the extra necessary condition:

—7(b) € ct

where Ct={p:p-¢<0 for all ce C}, i.e., Ct is the polar cone
of C.

20



THE MEANING OF THE MOMENTUM

If the momentum need no longer be equal to g—lgg, then what does it
mean?

ANSWER: Suppose we want to end up in a “target set” S at time
T. Define the “value function” V(z,t) by

T |
Vi, t) = inf{/t L(&(s),E(s),s) ds : € such that &(t) = z,£(T) € S} .

Then (modulo lots of technical conditions) ||w(t) = — V.V (&£(),t)
And one can think of «(¢) as a “shadow price” for your control:

Maximizing H(x,p,u,t) =p- f(x,u,t) — L(x,u,t)

(ignoring the abnormal multiplier) means: if you are paid p-vdt for
moving in the v = f(z,u,t) direction during time dt, and in addition
you have to pay L(z,u,t)dt, then H(xz,p,u,t) tells you how much you
should value choosing the control u, and Hamiltonian maximization
just says that you should choose the control that gives you the best

value.
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PROVING AND GENERALIZING THE
MAXIMUM PRINCIPLE

The method of proof introduced by Pontryagin et al. in their 1962
book is based on four key ideas:

1. SYSTEM AUGMENTATION
2. NEEDLE VARIATIONS
3. PROPAGATION

4. SEPARATION

22



I. AUGMENTATION

We augment our controlled dynamics by adding the running cost as
a new state variable. Now the state x = (xg,x) evolves in R x 2.
The dynamical equations are

:EO:L(:U,u,t), x:f(x7u7t)7

that is |x = f(x,u,t)|, where f = (fo, f), and f(x,u,t) only depends
on z, that is, does not depend on zg.

Let R be the set of all pairs (g, z) that are reachable from (0,x) over
the time-interval [a,b] by means of a trajectory of the new system.

Then (zg,z) € R if and only if £ can be reachable from z over [a, }]
with cost c.

Let 50,*(15) = f;L(f*(S)aﬂ*(S)aS) ds, cx = &«(b), = = (Eo,*,ﬁ*), SO
=x(b) = (cx,&x(b)).

Hence (&«,m«) is optimal if and only if RNS = {=«(b)}, where S =
{(zo,z) 1z € SAmg < cx — [l — &(B)I?}.

23



So we now have a set separation problem.

Any general necessary condition for two sets A and B to be separated
at a point ¢ (meaning “AnN B C {q}") will give rise to a necessary
condition for optimal control by applying it to our sets R, S.

Presumably, a necessary condition for separation of two sets at a
point g should involve their “tangent approximations” at q, whatever
those may be.

EXAMPLE. Suppose S; and S, are two submanifolds of class C1 of
R"™, and g € S1NS>. Then a necessary condition for §1 and S, to be
separated at ¢ is that the following should not be true:

One has to generalize this to more irregular sets, having ‘“tangent
cones”’ instead of ‘‘tangent subspaces.”
24



From now on, we look for conditions for the separation problem for
a system

z = f(xz,u,t).

We fix £ = £(a), and let R be the reachable set from x over [a,b].
We let S be some other given set.
We look for necessary conditions for RN S = {&«(b)}.

It is then trivial to apply the result to an augmented problem and
get a necessary condition for optimal control.

25



II. NEEDLE VARIATIONS

We make needle variations of the reference control at various times.
(This idea comes from Weierstrass.)

These variations depend on a parameter ¢, and have the effect of
moving us away from the reference trajectory in certain directions
by a certain amount, so that the effect at time ¢t of a variation is,
to first order, v, where v is a certain vector.

The vectors v are propagated from time ¢t to time b by means of the
reference flow, to vectors Py (v).

We then get a set of tangent vectors at the terminal point &«(b)
These vectors form a “tangent cone” C to the reachable set at

E«(b).
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A needle variation of the reference control at time 7 is a 1-parameter
family of controls {ne}o<c<z given by

ne(t) = n«(t) if t&[r, 7+ €]
ne(t) = uw if te[r,r4+¢].
Let UU,T — f(‘g*(T)a u, T) — f(g*(’r)a 77*(7-)7 7-)-

Then the effect of the variation at time 7 is ||evu,r + o(e) ||.
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III. PROPAGATION

The reference vector field (z,t) — f(z,n«(¢),¢) has flow maps &f .
These flow maps have differentials ch;is(g*(s)) T, (5)S2 = Te, (S2.

Write B s = ch;‘,s(g*(s)). Then the B, can be used to propagate
tangent vectors from Tg*(S)Q to Tg*(t)Q-

In particular, if we propagate all the vectors vy, from Tg (y€2.t0
Tg*(b)Q, we get a huge set V of tangent vectors to the reachable set

at &«(b).
Let P be the convex cone generated by the vectors By vy, r.

Then P is a "“tangent cone” to R.

28



IV. SEPARATION

Now we have a “tangent cone” P to R at &«(b), and a tangent cone
C to S at &« (b).

It is natural to guess that if the sets are separated then the cones
are linearly separated, that is, there is a nonzero covector w € T (5)$2
such that

m-w <0 whenever weP,

m-c>0 whenever ce(C,

Now let w(t) = 7o Pyy. Then w(t) vyt <0, SO

m(t) - f(&x(t),u,t) <m(t) - f(E« (), m<(E), 1) .
And = (b) € C+.
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How does one translate all the above heuristics into rigorous argu-
ments?

Pontryagin et al., in their 1962 book, did it in one way (Type T),
for systems of class Cclin z.

Later, Clarke 1972 did it in a different way (Type L), for systems
Lipschitz in x.

In 1991, S. Lojasievicz Jr. discovered a way to go beyond the Clarke
hypotheses via Type T methods. (Technically, Lojasiewicz was able
to include systems that were only continuous with respect to the
state z, exceot that the rerefence vector field had to be Lipschitz.)

My own work comes after this, extending the use of Type T methods
as well as the understanding of when they work and when they do
not, and reaching the conclusion that there are two non-comparable
proof techniques that cannot be combined.
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V. A ROUGH CLASIFICATION OF VERSIONS OF THE
FDPMP (FINITE-DIMENSIONAL PONTRYAGIN
MAXIMUM PRINCIPLE)

Every known version of the FDPMP is of one of the following two
types:

— Type T. (The “T" stands for “topological.”)
— Type L. (The “L” stands for “limiting.”)
In the transversality condition:

— Type T versions involve some kind of Boltyanskii tangent cone
to the terminal set.

— Type L versions involve the Clarke tangent cone to the ter-
minal set, or the Mordukhovich normal cone

31



The proofs of Type T versions typically use a topological separation
argument, based on the Brouwer fixed point theorem or some variant
thereof.

All versions of the finite-dimensional Pontryagin maximum princi-
ple with high-order conditions (Knobloch, Krener, Bianchini-Stefani,
Agrachev, Sarychev, Gamkrelidze, and many others) appear to be
Type T.

The finite dimensionality comes in where the Brouwer fixed-point
theorem is used, since that theorem depends esssentially on being
in a finite-dimensional space.
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The proofs of Type L versions usually produce a sequence {p}reN
of “approximate terminal adjoint covectors” (using, for example,
the Ekeland variational principle) and then extract a convergent (or
weakly convergent) subsequence whose limit poo is the terminal value
of the adjoint covector.

The finite dimensionality comes in when one tries to establish that
Poo = 0. The p, can be normalized so that ||pg|| = 1, and the exis-
tence of a weak*-convergent subsequence (if, say, we are working on
a Hilbert space) follows from the weak*-compactness of the closed
unit ball, but in infinite dimensions one cannot prove in general that
Poo 7 0, since the unit sphere is not weak*compact.
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NATURAL QUESTIONS:

— Is it possible to unify all these versions, and their proofs, into
a single general theorem?

— If so, would that theorem be Type T, Type L, or of some
new type, involving techniques that somehow combine or go
beyond those of the two basic types?

— In particular, is there a FDPMP with high-order conditions
that would apply to a dynamical law that in some portion of
the reference trajectory is only Lipschitz, and with a transver-
sality condition involving a Clarke or Mordukhovich cone?
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It turns out that the key issue is whether the following property is
true:

The Transversal Intersection Property (TIP)

If two subsets 51, S» of R"™ have tangent cones
C'1, C> at a point p € R", and the cones (', C5
are strongly transversal, then S1 NS> contains

a sequence of points p; converging to p and

7 P-

35



VI. CONES

A. Definition

A conein a real linear space X is a subset C of X which is nonempty,
and closed under multiplication by nonnegative scalars. (In particular,
if C is a cone then necessarily 0 € C.)

B. Definition

The polar of a cone C in a real linear normed space X is the
set C1 of all w € XT such that (w,c) < 0 for all ¢ € C. Clearly,
C+ is always a closed convex cone . If X is finite-dimensional (so X ~ X't canon-
ically), then C11 is the smallest closed convex cone containing C, from which it
follows in particular that Ct!t = C if and only if C is closed and convex .

REMARK: X' is the dual of X.
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C. Definition

Assume that S C R™ and p € S. The Bouligand tangent cone to S
at p is the set of all vectors v € R™ such that there exist

(i) a sequence {p;};cn Of points of S converging to p,

(ii) a sequence {hj}jeN of positive real numbers converging to O,

such that

. Pj—Pp
v= lim :
J—00

hj
D. Notation

We use TZFS to denote the Bouligand tangent cone to S at p. (Itis

then clear that TpBS is always a closed cone. )
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E. Definition

Assume that S C R"™ and p € S. A Boltyanskii approximating cone
to S at p is a convex cone C in R"™ having the property that there
exist

(i) a nonnegative integer m,

(ii) a closed convex cone D in R™,
(iii) a neighborhood U of 0 in R™,
(iv) a continuous map F:UND — S,
(v) a linear map L : R™ — R",

such that

F(z)=p+ Lzx+o(||z]]) a z—=0, z€D,
and LD = C.
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F. Definition

Assume that S C R", Sisclosed, and p € S. The Clarke tangent cone
to S at p is the set of all vectors v € R™ such that, whenever {p;},cN
IS a sequence of points of S converging to p, it follows that there
exist Bouligand tangent vectors v; € T£.S such that lim,_,ovj = v.

G. Notation
We use TES to denote the Clarke tangent cone to S at p. Then

TpCS is a closed convex cone.
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VII. TRANSVERSALITY

A. Definition

Two convex cones (1, C> in R™ are transversal if
Ci1—Cr=R",
i.e., if for every x € R" there exist ¢1 € (1, ¢» € C», such that
r = c]—C>.
B. Remark

This is a very natural generalization to cones of the ordinary notion
of transversality of linear subspaces. For subspaces Si, So, it is
customary to require that S1 + S = R", but it would make no
difference if we required S1 — So = R" instead.

C. Intuition

The basic idea of transversality is that, if two objects O1, O> have
first-order approximations A1, A> near a point p, and A1 and A, are
transversal, then O1 N O5 looks, near p, like A1 N As.
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VIII. NON-TRANSVERSALITY = LINEAR SEPARATION

Suppose C1, C> are convex cones in R™. Then the following condi-
tions are equivalent:

e (1 and (5 are not transversal,
e Ci N (—Cr)* # {0},

e there exists a nonzero linear functional p : R" — R such that

(p,c1) <0 for all ¢1 €Cq,
and

<}3, CQ> >0 for all cye(Cs.
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IX. STRONG TRANSVERSALITY

A. Definition

Two convex cones C1, C> in R" are strongly transversal if they are
transversal and in addition |[C1 N Cy #= {0}

B. Intuition:

If two sets S1, So> have first-order approximations C1, C> near a point
p, and the cones (1, C5 are strongly transversal, it should follow that
S1 N Sy contains points p; converging to p and # p.

Reason:

Near p, S1 NS> should look like C1 N C5, because C7 and C> are
transversal.

Since C1 N C5 contains a full half-line through 0, S1 NS> should also
contains a nontrivial curve through p.
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C. An important caveat:

The above intuition is, of course, not a proof, and when one does
things carefully, it turns out that, for very reasonable notions of
“first-order approximation,” all one can prove is that S$1 NS> must
contain a nontrivial connected set through p, but this set could fail
to be path-connected. And for other reasonable notions one can
prove even less. (For example, that S1 NS> contains a sequence of
points p; # p that converges to p.)
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The following lemma says that transversality and strong transversality
are almost equivalent.

More precisely, the only gap between the two conditions occurs when
the cones C'1 and (5 are linear subspaces such that C1 & C> = R", in
which case C7 and (5 are transversal but not strongly transversal.

D. Lemma

If 1, C> are convex cones in R", then C7; and C5 are transversal if
and only if either

(i) C1 and C» are strongly transversal,
or

(ii) C1 and C» are linear subspaces and C1 @ Co, = R",
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PROOF.

It suffices to assume that C7 and C5 are transversal but not strongly
transversal and show that (ii) holds. (Recall that (ii) says: “C: and C» are
linear subspaces and C1 & Cy = R*.")

Let us prove that 5 is a linear subspace. Pick ce€ C1. Using the
transversality of C7 and C» write

—c=c1—c¢cp, c1€C1, cope (.

Thenci4+c=cy. Butci+ceCqy and co € Cr. SO c1+ce€ C1NCh,
and then ¢ 4+ ¢ = 0, since C'{ and (5 are not strongly transversal.
Therefore —c = c¢q, SO —c € C1. This shows that ce€ C;1 = —c € (.
So (7 is a linear subspace. A similar argument shows that C5 is a
linear subspace. Then the transversality of C1 and C5 implies that
C1 + C> = R"”, and the fact that they are not strongly transversal
implies that C1NCy = {0}. Hence C1 & Cr =R". END OF PROOF.
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X. Set separation

Two subsets 51, So of a Hausdorff topological
Space space T are locally separated at a point
p € T If there exists a neighborhood U of p in T
such that

S1NS>NU C{p}.
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XI. The Transversal Intersection Property

If two subsets S1, S» of R™ have tangent cones
C'1, C> at a point p, and the cones (', C5 are

strongly transversal, then S;1 and S, are not
locally separated at p.

The statement that “S; and S, are not locally separated at p” means
the following:

S1 NS> contains a sequence of points p; converging to p and # p.
A. Remark. This is exactly the “intuition” discussed earlier.

B. Question. For what notions of “tangent cone to a set at a point”
is the TIP (Transversal Intersection Property) true?
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XII. How the TIP is applied to prove versions of the FDPMP

To apply the TIP to prove a version of the FDPMP for optimal
control, one carries out the following steps:

St 1. Reduce the optimal control problem to a separation problem

in which, for a dynamics

, and an interval [a,b],

it is required that the reachable set R(/, [a,b], z;,) be locally
separated from some other given set S. (This reduction is well
known. It amounts to “augmenting the system by adding the cost as a

new dynamical variable”.)

St 2. Construct a “tangent cone” C1 to R(/f, [a,b], x) at the terminal

point x¢erm Of the reference trajectory.

NOTE: R(f,[a,b],z) is the set of all points reachable from the initial point z;,

over the interval [a,b] for the dynamics f.
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St 3.

St 4.

St 5.

St 6.

Compare C1, the tangent cone to R(/f,[a,b]l,x) at Tiepm, tO
C>, the tangent cone to S at ZTierm.-

Use the TIP to conclude that 4 and Cs cannot be strongly
transversal, because R(f, [a,b], x;,) and S are locally separated

at Tterm.

If we can go from “not strongly transversal” to “not transver-
sal,” then the non-transversality is exactly the existence of a
nontrivial covector linearly separating C; and C5, and this
yields the desired “adjoint vector’ of the Maximum Principle.

How do we go from “not strongly transversal” to “not transver-
sal” 7 In optimal control this is easy, because the cone C5 is,

typically, the product of a tangent cone to the set of admis-

sible terminal states times a half-line, so it is never a linear

subspace.
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Naturally, for all this to work one needs the notion of “tangent cone”
used in the above steps to be such that the TIP is true.

THEOREM: The TIP is true if “tangent cone”
IS taken to mean “Boltyanskii approximating

CONE." (The proof of this is Type T.)

HEOREM: The TIP is true if *tangent cone”

IS interpreted to mean “Clarke tangent cone.”
(The proof of this is Type L.)
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The first TIP result leads to a number of versions of the FDPMP
with a Boltyanskii or Boltyanskii-like tangent cones in the transver-
sality condition. In these versions, high-order conditions can easily
be included. (Classical work by Pontryagin et al., work by Knobloch,
Krener, Agrachev, Sarychev, Gamkrelidze, Bianchini, Stefani, HJS,
and lots of others.) These results are all proved using the TIP for
Boltyanskii cones or for some generalization of them, such as the
“approximating multicones” used by HJS.

The second TIP result leads to a number of versions of the FDPMP
with a Clarke or Mordukhovich normal cone in the transversality con-
dition. (Work by Clarke, Vinter, Rockafellar, Ioffe, Mordukhovich,
Loewen, da Pinho, Franskowska, and lots of others.) In these ver-
sions, it does not seem that high-order conditions can be incorpo-
rated. Most of these results are not proved by explicitly using the
TIP for Clarke cones or for some generalization thereof, but work is
now in progress by HJS which, it is hoped, will show that they can
be proved that way.

51



It may seem natural to expect that a more general TIP might be
true, containing both results. I conjectured (and even briefly believed
I had proved) about 10 years ago that such a result was true.

The problem was solved in January, 2006, by Alberto Bressan, who
proved the following:

XIII. Bressan’s Theorem

There exist two closed subsets S1, S> of R*, and two closed
convex cones Cq, C» in R#, such that

e (1 is a Boltyanskii approximating cone to S1 at O;

e (> Iis the Clarke tangent cone to S5 at O;

e (1, (o are strongly transversal,

e S1 NS>, ={0}.
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Using Bressan's example, one can construct an example of a La-
grange optimal control problem in R® with a terminal state con-
straint, and an optimal trajectory-control pair (&£4,7mx), defined on an
interval [a«, b«], such that

e the dynamics and Lagrangian satisfy conditions that lend them-
selves to Type T arguments,

e the terminal set S has a Clarke tangent cone C at the
terminal point of &« (b),

e there does not exist a nontrivial multiplier («(-),mg) (consist-
ing of an adjoint covector w«(-) and “abnormal multiplier” mg)
that satisfies the adjoint equation, the Hamiltonian maximiza-
tion condition, and the transversality condition —x(bs) € C+.

The actual construction is done in complete detail in my 2006 CDC paper, and
it’'s sort of technical.

Remark: In this particular example, the usual nonsmooth “adjoint differential
inclusion” is actually a true "adjoint differential equation.”
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A |lot remains to be done. For example,

e find a good counterexample as above, with a very smooth op-
timal control problem, for which one can get lots of high-order
necessary conditions for optimality involving high-order varia-
tions in the direction of Lie brackets, but for which the terminal
condition on the state involves a set with a Clarke tangent cone.

e carry out the program of proving all Type L versions of the
FDPMP using the “Type L"” TIP. A first step in that direc-
tion was my paper in the Sevilla CDC, where I introduced a
concept of “approximating multicones” (called “Mordukhovich-
Warga approximating multicones” ) adapted to Type L argu-
ments, and prove the TIP.
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e find a good example of failure of the FDPMP for which the dy-
namics are appropriate to Type L arguments, but the terminal
condition on the state involves a set with a Boltyanskii approx-
imating cone. (Conjecture: this will probably happen for some
problem which is governed by a differential inclusion z € F(xz,t),
and whose adjoint equation is the “intrinsic adjoint equation”

involving a partial convexification of the Mordukhovich normal
cone to the graph of F.)

Argument for the conjecture: 1 have tried and tried to derive the intrinsic equation
in the Type T setting and wasn’t able to. This suggest to me that perhaps the
intrinsic equation can only be derived with Type L methods, in which case it is

reasonable to expect that it will not “go well” with a Boltyanskii tangent cone to
the terminal set.
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