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Abstract

The well-known finite-dimensional first-order open mapping theorem says that
a continuous map with a finite-dimensional target is open at a point if its
differential at that point exists and is surjective. An identical result, due to
Graves, is true when the target is infinite-dimensional, if “differentiability”
is replaced by “strict differentiability.” We prove general theorems in which
the linear approximations involved in the usual concept of differentiability is
replaced by an approximation by a map which is homogeneous relative to a
one-parameter group of dilations, and the error bound in the approximation
involves a “homogeneous pseudonorm” or a “homogeneous pseudodistance,”
rather than the ordinary norm. We outline how these results can be used
to derive sufficient conditions for openness involving higher-order derivatives,
and carry this out in detail for the second-order case.
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1 Introduction

Open mapping theorems (abbr. OMTs) are key tools in the derivation of
necessary conditions for an optimum in optimization theory, and in particular
in optimal control. For example, the usual Lagrange multipliers rule is a trivial
corollary of the following OMT.

Theorem 1 Let X, Y be normed spaces, let Ω be an open subset of X, and
let F : Ω 7→ Y be a continuous map. Let x∗ ∈ Ω be such that F is Fréchet
differentiable at x∗ and the differential DF (x∗) is a surjective linear map from
X to Y . Assume that Y is finite-dimensional. Then F is open at x∗, that is,
F maps neighborhoods of x∗ to neighborhoods of F (x∗).

(To deduce the Lagrange rule from Theorem 1, let us consider the problem
of minimizing the quantity f0(x) subject to finitely many equality constraints
f1(x) = · · · = fm(x) = 0, where f0, f1, . . . , fm are continuous real-valued
functions on an open subset Ω of a normed space X, and assume that x∗ is a
solution. We then define F : Ω 7→ Rm+1 by letting

F (x) = (f0(x), f1(x), . . . , fm(x)) for x ∈ Ω ,

and observe that, if we let y∗(ε) = (f0(x∗)−ε, 0, . . . , 0) ∈ Rm+1 for ε ∈ R, then
F (x∗) = y∗(0), and y∗(ε) /∈ F (Ω) whenever ε > 0, so F is not open at x∗. If
f0, f1, . . . , fm are Fréchet differentiable at x∗, then F is Fréchet differentiable
at x∗, so Theorem 1 implies that DF (x∗) is not surjective. Therefore the
m+1 vectors ∇f0(x∗),∇f1(x∗), . . . ,∇fm(x∗) are not linearly independent. It
follows that there exist numbers λ0, λ1, . . . , λm that are not all zero and satisfy∑m

i=0 λi∇fi(x∗) = 0.)
Theorem 1 is only valid if Y is finite-dimensional. (Precisely: if Y is any

normed space, then Y is finite-dimensional if and only if it has the property
that whenever F : Y 7→ Y is a continuous map such that F (0) = 0, F is
Fréchet differentiable at 0, and the differential DF (0) is the identity map of
Y , it follows that F is open at 0.) On the other hand, L.M. Graves proved in
[4] (cf. also Dontchev [3]) the following infinite-dimensional result.

Theorem 2 Let X, Y be Banach spaces, let Ω be an open subset of X, and
let F : Ω 7→ Y be a continuous map. Let x∗ ∈ Ω be such that F is strictly
differentiable at x∗ and the differential DF (x∗) is a surjective linear map from
X to Y . Then F is open at x∗.
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(Graves actually proved a stronger result, in which strict differentiability with
a surjective differential is replaced by the weaker condition that there exist a
surjective bounded linear map L : X 7→ Y such that

lim sup
x→x∗,x′→x∗,x 6=x′

‖F (x)− F (x′)− L(x− x′)‖
‖x− x′‖

< ‖L−1‖−1 , (1)

where ‖L−1‖ is the infimum of the numbers C such that for every y ∈ Y there
exists x ∈ X such that L(x) = y and ‖x‖ ≤ C‖y‖. The definition of “strict
differentiability” is as follows: F is strictly differentiable at x∗ with differential
L if the left-hand side of (1) vanishes.)

The purpose of this note is to present “higher-order” sufficient conditions
for openness at a point, generalizing Theorems 1 and 2.

Remark 3 Stronger results can also be proved, in which

1. in the infinite-dimensional case, the analogue of strict differentiability is
replaced by the analogue of condition (1);

2. in the finite-dimensional case, the analogue of differentiability is replaced
by the analogue of the condition that

lim sup
x→x∗,x 6=x∗

‖F (x)− F (x∗)− L(x− x∗)‖
‖x− x∗‖

< ‖L−1‖−1 ;

3. F is only required to be defined on a “conic neighborhood” of x∗, i.e., a
set S of the form

S = SX(x∗, ε, C)def={x : ‖x− x∗‖ < ε ∧ x− x∗ ∈ C} ,

where ε > 0 and C is a convex cone in X with nonempty interior such
that 0 ∈ C ;

4. the conclusion says that the map F is “directionally open” at x∗ in
the direction of a given vector v∗ ∈ Y , provided that v∗ ∈ intLC.
(Precisely: for every positive ε there exists a positive δ such that the
image F (SX(x∗, ε, C)) contains the set SY (F (x∗), δ, D) for some convex
cone D in Y such that v∗ ∈ intD.)

In this paper, however, we will only carry out the simpler task of generalizing
the non-directional theorems 1 and 2. ♦
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Naturally, “higher-order” means “involving higher-oder derivatives.” A
map F of class Cm has a Taylor approximation

F (x∗ + h) ∼ F (x∗) + P1(h) +
1
2
P2(h, h) + · · ·+ 1

m!
Pm(h, h, . . . , h) ,

where Pj = DjF (x∗) for j = 1, . . . ,m, so each Pj is a Y -valued, continuous,
symmetric, multilinear map defined on the Cartesian product Xj of j copies
of X. Openness at x∗ follows from the first-order theorems if the linear map
P1 is surjective. When P1 is not surjective, the high-order results will give
openness if the missing directions in the image P1X can somehow be realized
as image directions using higher-order derivatives. On the other hand, if the
“first-order effect” P1(h) of a particular direction h is nonzero, then this effect
will dominate whatever contributions h may make through higher-order terms.
This suggests that one should only look at the second-order effects P2(h, h) of
vectors h belonging to the kernel K2 of P1. So, if m = 2, we take K1 = X,
K2 = kerP1, and consider the approximation

F (x∗ + h1 + h2) ∼ F (x∗) + P1(h1) + P1(h2)

+
1
2
P2(h1, h1) +

1
2
P2(h2, h2) + P2(h1, h2) ,

where h1 ∈ K1, h2 ∈ K2. The remainder is clearly o(‖h1‖2+‖h2‖2), which is in
particular o(‖h1‖+‖h2‖2). Furthermore, the terms 1

2P2(h1, h1) and P2(h1, h2)
are o(‖h1‖), so they are o(‖h1‖+ ‖h2‖2) as well, and can be absorbed into the
remainder. Finally, P1(h2) vanishes, because h2 ∈ ker P1, and we end up with
the approximation

F (x∗ + h1 + h2) = F (x∗) + P1(h1) +
1
2
P2(h2, h2) + o(‖h1‖+ ‖h2‖2)

as h1 → 0, h2 → 0, h1 ∈ K1, h2 ∈ K2 . (2)

Such an approximation is valid under more general situations, even if F is not
of class C2 near x∗. (For example, if F : R3 7→ R is given by

F (x, y, z) = x + |x|3/2(1 + |y|1/2) + y2 − z2 ,

then F (x, y, z) = x + y2 − z2 + o(|x| + y2 + z2), so (2) holds with K1 = R3,
K2 = {0}×R2, and obvious choices of P1 and P2.) If we define X = K1×K2,
and write

F(h1, h2) = F (x∗ + h1 + h2)− F (x∗) ,

G(h1, h2) = P1(h1) +
1
2
P2(h2, h2) ,

ν(h1, h2) = ‖h1‖+ ‖h2‖2 ,
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for h1 ∈ K1, h2 ∈ K2, then (2) says that

F(ξ) = G(ξ) + o(ν(ξ)) as ξ → 0 , ξ ∈ X . (3)

Moreover, if we let

δt(h1, h2) = (th1, t
1/2h2) for h1 ∈ K1, h2 ∈ K2, t > 0 ,

then

(HA.1) δδδ = {δt}t>0 is a continuous one-parameter group of dilations on X ,

(HA.2) G is δδδ-homogeneous, in the sense that G(δt(ξ)) = tG(ξ) whenever
ξ ∈ X and t > 0,

(HA.3) ν is δδδ-homogeneous, in the sense that ν(δt(ξ)) = tν(ξ) whenever
ξ ∈ X and t > 0,

(HA.4) ν is a “pseudonorm on X ,” that is, a continuous nonnegative real-
valued function that satisfies the conditions (i) ν(ξ) = 0 ⇐⇒ ξ = 0
and (ii) lim‖ξ‖→+∞ ν(ξ) = +∞.

So, when we rewrite (2) as (3), we find that we are really dealing with an
approximation of a map F by another map G which is homogeneous with
respect to a continuous one-parameter group of dilations. Furthermore, the
approximation is of exactly the same kind as the approximation by a linear
map involved in the usual concept of differentiability, except that the ordinary
norm on X is replaced by a dilation-homogeneous pseudonorm.

Similar considerations apply to higher-order approximations. For example,
if F ∈ C3, and we choose three linear subspaces K1, K2, K3 of X, then

F (x∗ + h1 + h2 + h3) = F (x∗) + P1(h1) + P1(h2) + P1(h3)

+
1
2

(
P2(h1, h1) + P2(h2, h2) + P2(h3, h3)

)
+P2(h1, h2) + P2(h1, h3) + P2(h2, h3) + P3(h1, h2, h3)

+
1
6

(
P3(h1, h1, h1) + P3(h2, h2, h2) + P3(h3, h3, h3)

)
+

1
2

(
P3(h1, h2, h2) + P3(h1, h1, h2) + P3(h1, h3, h3)

+P3(h1, h1, h3) + P3(h2, h3, h3) + P3(h2, h2, h3)
)

+o(‖h1‖3 + ‖h2‖3 + ‖h3‖3)
as h1 → 0, h2 → 0, h3 → 0, h1 ∈ K1, h2 ∈ K2, h3 ∈ K3 .
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If we choose the Ki such that K1 = X, and K2 and K3 are subsets of kerP1

(so that P1(h2) = P1(h3) = 0), and absorb into the remainder all the terms
that are obviously o(‖h1‖+ ‖h2‖2 + ‖h3‖3)), we find

F (x∗ + h1 + h2 + h3) = F (x∗) + P1(h1) +
1
2

(
P2(h2, h2) + P2(h3, h3)

)
+P2(h2, h3) +

1
6
P3(h3, h3, h3) + o(‖h1‖+ ‖h2‖2 + ‖h3‖3) .

(The term P3(h2, h3, h3) is eliminated because

‖P3(h2, h3, h3)‖ ≤ ‖P3‖ ‖h2‖ ‖h3‖2 ≤ ‖P3‖(‖h2‖7/3 + (‖h3‖2)7/4)
= ‖P3‖(‖h2‖7/3 + ‖h3‖7/2) = o(‖h2‖2 + ‖h3‖3) ,

using the fact that the inequality ab ≤ ap + bq holds if a ≥ 0, b ≥ 0, p > 1,
q > 1, and (1/p) + (1/q) = 1, and taking p = 7/3, q = 7/4.)

If we require in addition that “K3 ⊆ ker P2,” in the precise sense that every
h ∈ K3 must satisfy P2(h, h′) = 0 whenever h′ ∈ K2, then we find

F (x∗ + h1 + h2 + h3) = F (x∗) + P1(h1) +
1
2
P2(h2, h2)

+
1
6
P3(h3, h3, h3) + o(‖h1‖+ ‖h2‖2 + ‖h3‖3)

as h1 → 0, h2 → 0, h3 → 0, h1 ∈ K1, h2 ∈ K2, h3 ∈ K3 .

So, once again, we find that (3) holds, if we define X = K1×K2×K3, and let

F(h1, h2, h3) = F (x∗ + h1 + h2 + h3)− F (x∗) ,

G(h1, h2, h3) = P1(h1) +
1
2
P2(h2, h2) +

1
6
P3(h3, h3, h3) ,

ν(h1, h2, h3) = ‖h1‖+ ‖h2‖2 + ‖h3‖3 ,

for h1 ∈ K1, h2 ∈ K2, h3 ∈ K3. In addition, if we let

δt(h1, h2, h3) = (th1, t
1/2h2, t

1/3h3) for h1 ∈ K1, h2 ∈ K2, h3 ∈ K3, t > 0 ,

then the four homogeneous approximation conditions HA.1-4 hold.
Our higher-order generalization of Theorem 1 involves a condition closely

resembling the usual formula F(ξ) = L(ξ)+o(‖ξ‖) that characterizes ordinary
differentiability of F at 0. The crucial difference is that (a) the linear map L
is replaced by a map G which is homogeneous with respect to some suitable
group of dilations, and (b) a pseudonorm ν is substituted for the ordinary
norm. The requirement that L be surjective, which occurs in the first-order
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theorems, will be replaced by the condition that G have a surjective differential
at some point ξ∗ ∈ X such that G(ξ∗) = 0. We will show that these conditions
imply that F is open at 0 if the target space Y of F is finite-dimensional,
generalizing Theorem 1. To get the generalization of Theorem 2, in which Y
is allowed to be infinite-dimensional, we will have use the appropriate “strict”
analogues of differentiability: the map G will have to be assumed to be strictly
differentiable at ξ∗, and the approximation formula (3) will have to be replaced
by

E(ξ)− E(ξ′) = o(ν(ξ, ξ′)) as ξ → 0 , ξ′ → 0 , ξ ∈ X , ξ′ ∈ X , (4)

where the error E is defined by E(ξ) = F(ξ)− G(ξ), and ν is a “homogeneous
Lipschitz-bounded pseudodistance,” in a sense to be defined below.

From the general theorems involving homogeneous approximations, it will
then be possible to derive high-order open mapping theorems by means of the
construction sketched above, using the obvious fact that, when F is defined
in terms of F as we have done in our second- and third-order examples, then
if F is open at 0 it follows that F is open at x∗.

This will be done here for the second-order case in §5, where it will be
shown that our sufficient conditions for openness apply in particular when the
Hessian of the map has a regular zero, and in the cases considered by Avakov
in [1, 2].

2 Preliminaries

Metric spaces, normed spaces, balls, openness at a point. If X is a
metric space with distance d, x is a point of X, and r ≥ 0, we will use BX(x, r)
to denote the closed r-ball with center x, i.e., the set {x′ ∈ X : d(x′, x) ≤ r}.

We use the word “neighborhood” in the usual sense of point set topology:
if X is a topological space, and x∗ ∈ X, a neighborhood of x∗ in X is a subset
U of X such that x∗ is an interior point of U .

Definition 4 If X, Y are topological spaces, x∗ ∈ X, and F : X 7→ Y is a
map, then F is said to be open at x∗ if whenever U is a neighborhood of x∗
in X, it follows that the image F (U) is a neighborhood of 0 in Y . ♦

All linear spaces will be over R, the field of real numbers. If X is a normed
linear space, then we will write BX(r) instead of BX(0, r). If X, Y are normed
linear spaces, then Lin(X, Y ) will denote the space of all bounded linear maps
from X to Y . If A ∈ Lin(X, Y ) and x ∈ X, then we will use interchangeably
the expressions Ax, A ·x and A(x) to denote the value of A at x. Convergence
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in Lin(X, Y ) is uniform convergence, i.e., convergence relative to the operator
norm Lin(X, Y ) 3 A 7→ ‖A‖ def= sup{‖Ax‖ : x ∈ X, ‖x‖ ≤ 1}.

Differentiability and strict differentiability. The word “differentiable”
will only be used to refer to maps between normed spaces, and will mean
“Fréchet differentiable.” That is, if we assume that

(A) X and Y are normed spaces, Ω is an open subset of X, x∗∈Ω, F : Ω 7→Y
is a map, and L : X 7→ Y is a bounded linear map,

then we say that F is differentiable at x∗ with differential L if

lim
x→x∗,x 6=x∗

‖F (x)− F (x∗)− L.(x− x∗)‖
‖x− x∗‖

= 0 . (5)

A stronger concept of differentiability is “strict differentiability,” defined as
follows.

Definition 5 Let X, Y , Ω, x∗, F , L be such that (A) above holds. We say
that F is strictly differentiable at x∗ with strict differential L if the equality

lim
x→x∗,x′→x∗,x 6=x′

‖F (x)− F (x′)− L.(x− x′)‖
‖x− x′‖

= 0 (6)

holds. ♦

Clearly, if F is strictly differentiable at x∗ with strict differential L, then F
is differentiable at x∗ with differential L, since we can obtain (5) by taking
x′ = x∗ in (6).

Dilations, pseudonorms, pseudodistances, homogeneous maps.

Definition 6 Assume that X is a normed real linear space. A continuous
one-parameter group of dilations on X is a family δδδ = {δt}t>0 of bounded
linear maps δt : X 7→ X such that

D1. δ1 is the identity map idX of X ,

D2. δt ◦ δs = δts whenever t > 0 and s > 0,

D3. the map ] 0,+∞[3 t 7→ δt ∈ Lin(X ,X ) is continuous with respect to
the uniform operator norm on Lin(X ,X ) (that is, limt→s ‖δt − δs‖ = 0
whenever s > 0),

D4. limt↓0 ‖δt‖ = 0 . ♦
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Lemma 7 If X is a normed linear space and δδδ = {δt}t>0 is a continuous
one-parameter group of dilations on X , then

lim
t→+∞

‖δt(x)‖ = +∞ for all x ∈ X\{0} , (7)

and

the map ] 0,+∞ [3 t 7→ δt(x) ∈ X is one-to-one whenever x ∈ X\{0} . (8)

Proof. If x 6= 0 and it is not true that limt→+∞ ‖δt(x)‖ = +∞, then there
exists a sequence {tj}∞j=1 such that limj→∞ tj = +∞ while, on the other hand,
the set S = {δtj (x) : j ∈ N} is bounded. Then, if we let ξj = δtj (x), we can
pick a constant C such that ‖ξj‖ ≤ C for all j, and conclude that x = δt−1

j
(ξj),

so ‖x‖ ≤ C‖δt−1
j
‖. Since ‖δt−1

j
‖ → 0—because t−1

j → 0—it follows that x = 0.

This completes the proof of (7).
To prove (8), we observe that if x 6= 0, δt(x) = δs(x), and 0 < t < s,

then δτ (x) = x, if τ = s/t. Then τ > 1, and δτk(x) = x for k = 1, 2, . . ., so
the norm ‖δτk(x)‖ does not go to +∞ as k → ∞ but τk → +∞ as k → ∞,
contradicting (7). ♦

Definition 8 Assume that X , δδδ are as in Definition 6. A δδδ-pseudonorm
is a continuous map ν : X 7→ R such that (1) ν(x) ≥ 0 for all x ∈ X ,
(2) ν(x) = 0 ⇐⇒ x = 0, (3) lim‖x‖→+∞ ν(x) = +∞, and (4) ν(δt(x)) = tν(x)
whenever x ∈ X , t ∈ R, and t > 0. ♦

Definition 9 Assume that the space X and the dilation group δδδ are as in
Definition 6. A δδδ-pseudodistance is a continuous map ν : X × X 7→ R+ such
that (1) ν(x, x′) = ν(x′, x) ≥ 0 for all x, x′ ∈ X , (2) ν(x, x′) = 0 ⇐⇒ x = x′,
(3) lim‖x‖→+∞ ν(x, 0) = +∞, and (4) ν(δt(x), δt(x′)) = tν(x, x′) whenever
x, x′ ∈ X , t ∈ R, and t > 0. ♦

If ν : X × X 7→ R is a δδδ-pseudodistance on X , we define, for each positive
number R,

κν(R) def= sup

{
ν(x, x′)
‖x− x′‖

: x, x′ ∈ BX (R) , x 6= x′

}
, (9)

Then

κν(R) < ∞ for some positive R ⇐⇒ κν(R) < ∞ whenever R > 0. (10)
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(Indeed, if R0 is such that R0 > 0 and κν(R0) < ∞, then there exists a positive
t̄ such that R0‖δt̄‖ < R, since limt↓0 ‖δt‖ = 0. Then δt̄(BX (R)) ⊆ BX (R0). If
x, x′ ∈ BX (R), then

ν(x, x′) = t̄−1ν(δt̄(x), δt̄(x
′))

≤ t̄−1κν(R0)‖δt̄(x)− δt̄(x
′)‖

≤ t̄−1κν(R0)‖δt̄‖ ‖x− x′‖ ,

so κν(R) ≤ t̄−1κν(R0)‖δt̄‖ < +∞ .)

Definition 10 A pseudodistance ν : X × X 7→ R is Lipschitz-bounded if
κν(R) < ∞ for some (and hence every) positive number R. ♦

Definition 11 Assume that X , δδδ are as in Definition 6, Y is a normed
linear space, and G : X 7→ Y is a map. We say that G is δδδ-homogeneous
if G(δt(x)) = tG(x) whenever x ∈ X and t ≥ 0. ♦

Regular zeros. If X, Y are normed spaces, Ω is open in X, and F is a map
from Ω to Y , then a regular zero (resp. a strictly regular zero) of F is a point
x∗ ∈ Ω such that F (x∗) = 0, F is Fréchet differentiable (resp. strictly Fréchet
differentiable) at x∗, and the differential DF (x∗) : X 7→ Y is surjective.

3 The finite-dimensional theorem

Theorem 12 Assume that X and Y are real linear normed spaces, Y is finite-
dimensional, δδδ = {δt}t>0 is a continuous one-parameter group of dilations
of X , ν : X 7→ R+ is a δδδ-pseudonorm, and G : X 7→ Y is a continuous
δδδ-homogeneous map. Let Ω be an open subset of X such that 0 ∈ Ω, and let
F : Ω 7→ Y be a continuous map such that F(0) = 0 and

lim
ξ→0

‖F(ξ)− G(ξ)‖
ν(ξ)

= 0 . (11)

Assume that G has a regular zero. Then F is open at 0.

Proof. Let V be a neighborhood of 0 in X such that V ⊆ Ω. Let R be such
that R > 0 and BX (2R) ⊆ V . Let ξ∗ be a regular zero of G. For t > 0, let
ξ∗,t = δt(ξ∗). Let t̄ be such that t̄ > 0 and the inequalities

‖δt‖ ≤ 1 , ‖ξ∗,t‖ ≤ R ,
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hold whenever 0 < t ≤ t̄. Let L = DG(ξ∗), so L is surjective. Let M : Y 7→ X
be a linear map such that L ◦M = idY . Then M is bounded, because Y is
finite-dimensional. Let r be such that 0 < r < R and

‖G(ξ)− G(ξ∗)− L(ξ − ξ∗)‖ ≤
‖ξ − ξ∗‖
4‖M‖

whenever ‖ξ − ξ∗‖ ≤ r .

Let s be such that s > 0, s‖M‖ ≤ r, and ν̄ < ∞, where

ν̄ = sup
{

ν(ξ) : ξ ∈ BX (ξ∗; s‖M‖)
}

.

Let Ψ be the map from BY(s) to Y given by Ψ(y) = G(ξ∗ +M · y). Then, if
y ∈ BY(s), M(y) belongs to BX (r), so

‖Ψ(y)− y‖ = ‖G(ξ∗ +M · y)− L(M(y))‖
= ‖G(ξ∗ +M · y)− G(ξ∗)− L(M(y))‖

≤ 1
4‖M‖

‖M‖ · ‖y‖

≤ s

4
,

using the fact that G(ξ∗) = 0. Next, we define Wt = δt

(
BX (ξ∗, s‖M‖)

)
, and

observe that Wt ⊆ BX ( ‖ξ∗,t‖+ s‖δt‖ ‖M‖ ) . In particular,

lim
t↓0

(
sup{‖ξ‖ : ξ ∈ Wt}

)
= 0 ,

0 < t ≤ t̄ =⇒ Wt ⊆ BX (2R) ,

and
lim
t↓0

λt = 0 ,

where

λt
def= sup

{ ‖F(ξ)− G(ξ)‖
ν(ξ)

: ξ ∈ Wt

}
.

Define

Φt(y) = t−1(F ◦ δt)(ξ∗ +M · y) for y ∈ BY(s) , 0 < t ≤ t̄ .

(The definition is possible because, if y ∈ BY(s) and 0 < t ≤ t̄, then

‖δt(ξ∗ +M · y)‖ = ‖ξ∗,t + δt(M · y)‖ ≤ ‖ξ∗,t‖+ s‖δt‖ ‖M‖ ≤ R + r < 2R ,
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so δt(ξ∗ +M · y) ∈ BX (2R) and then (F ◦ δt)(ξ∗ +M · y) is well defined.)
Then, if we let

µ(t, y) = ‖(F ◦ δt)(ξ∗ +M · y)− (G ◦ δt)(ξ∗ +M · y)‖ ,

µ̃(t, y) =
µ(t, y)

ν(δt(ξ∗ +M · y))
,

µt = sup
{

µ(t, y) : y ∈ BY(s)
}

,

we have
µ̃(t, y) ≤ sup

{ ‖F(ξ)− G(ξ)‖
ν(ξ)

: ξ ∈ Wt

}
= λt ,

so that

µt = sup
{

µ̃(t, y) · ν(δt(ξ∗ +M · y)) : y ∈ BY(s)
}

≤ λt sup
{

ν(δt(ξ)) : ξ ∈ BX (ξ∗; s‖M‖)
}

= λt sup
{

tν(ξ) : ξ ∈ BX (ξ∗; s‖M‖)
}

= t λt sup
{

ν(ξ) : ξ ∈ BX (ξ∗; s‖M‖)
}

= t λt ν̄ .

Furthermore,

‖Φt(y)− y‖ ≤ t−1µ(t, y) + ‖t−1G(δt(ξ∗ +M · y))− y‖
≤ t−1µ(t, y) + ‖G(ξ∗ +M · y)− y‖
≤ t−1µt + ‖Ψ(y)− y‖

≤ λt ν̄ +
s

4
.

Now choose t such that ν̄λt ≤ s
4 . Then ‖Φt(y) − y‖ ≤ s

2 . Let B = BY( s
2),

B̃ = BY(s). If y ∈ B, define a map ζy : B̃ 7→ Y by letting ζy(y′) = y′−Φt(y′)+y
if y′ ∈ B̃. Then, if y′ ∈ B̃, the inequalities

‖ζy(y′)‖ ≤ ‖y′ − Φt(y′)‖+ ‖y‖ ≤ s

2
+

s

2
= s

imply that ζy(y′) ∈ B̃ as well. Hence ζy is a continuous map from B̃ to B̃, so
ζy has a fixed point by Brouwer’s theorem. If ȳ′ is a fixed point of ζy, then
ȳ′ − Φt(ȳ′) + y = ζy(ȳ′) = ȳ′, so Φt(ȳ′) = y. Then

t−1F
(
δt(ξ∗ +M · ȳ′)

)
= y ,
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and δt(ξ∗+M· ȳ′) ∈ Wt. So, if we let z = δt(ξ∗+M· ȳ′), it follows that z ∈ V
(because Wt ⊆ BX (2R) ⊆ V ) and F(z) = ty. Since y is an arbitrary member
of B, we have shown that

tB ⊆ F(V ) .

Therefore tB is a neighborhood of 0 in Y, and tB ⊆ F(V ). This completes
our proof. ♦

4 The infinite-dimensional theorem

Theorem 13 Assume that X and Y are real Banach spaces, δδδ = {δt}t>0

is a continuous one-parameter group of dilations of X , ν : X × X 7→ R+

is a Lipschitz-bounded δδδ-pseudodistance, and G : X 7→ Y is a continuous
δδδ-homogeneous map. Let Ω be an open subset of X such that 0 ∈ Ω, and let
F : Ω 7→ Y be a continuous map such that F(0) = 0 and

lim
ξ→0,ξ′→0,ξ 6=ξ′

∥∥∥(
F(ξ)− G(ξ)

)
−

(
F(ξ′)− G(ξ′

)∥∥∥
ν(ξ, ξ′)

= 0 . (12)

Assume that G has a strictly regular zero. Then F is open at 0.

Proof. We define the error functions E : Ω 7→ Y, Ẽ : X × X 7→ Y, by letting

E(ξ) = F(ξ)− G(ξ) for ξ ∈ Ω ,

Ẽ(ξ, ξ′) = G(ξ)− G(ξ′)− L(ξ − ξ′) for ξ, ξ′ ∈ X .

Let V be a neighborhood of 0 in X such that V ⊆ Ω. Let R be such that
R > 0 and BX (2R) ⊆ V . Let ξ∗ be a strictly regular zero of G. For t > 0, let
ξ∗,t = δt(ξ∗). Let t̄ be such that t̄ > 0 and the inequalities

‖δt‖ ≤ 1 , ‖ξ∗,t‖ ≤ R ,

hold whenever 0 < t ≤ t̄. Let L = DG(ξ∗), so L is a bounded, surjective linear
map from X to Y. Then the Banach open mapping theorem implies that there
is a positive constant C such that

(#) for every y ∈ X there exists a ξ ∈ X such that L(ξ) = y and ‖ξ‖ ≤ C‖y‖.
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Using the strict differentiability of G at ξ∗, we choose r such that 0 < r < R
and

‖Ẽ(ξ, ξ′)‖ ≤ ‖ξ − ξ′‖
4C

whenever ‖ξ − ξ∗‖ ≤ r and ‖ξ′ − ξ∗‖ ≤ r .

Let s be such that s > 0, sC ≤ r, and ν̄ < ∞, where

ν̄ = sup
{

ν(ξ, 0) : ξ ∈ BX (ξ∗; sC)
}

.

Define

Wt = δt

(
BX (ξ∗, sC)

)
,

ωt = sup
{
‖ξ‖ : ξ ∈ Wt

}
,

and observe that ωt ≤ ‖ξ∗,t‖+ s‖δt‖C for every t. In particular,

lim
t↓0

ωt = 0 ,

0 < t ≤ t̄ =⇒ Wt ⊆ BX (ωt) ⊆ BX (2R) ,

and
lim
t↓0

λt = 0 ,

where

λt
def= sup

{ ∥∥∥E(ξ)− E(ξ′)
∥∥∥

ν(ξ, ξ′)
: ξ ∈ BX (ωt), ξ′ ∈ BX (ωt), ξ 6= ξ′

}
.

The Lipschitz-boundedness of ν implies that the constant κ̄
def=κν(R+‖ξ∗‖)

is finite. For each t, we let

αt
def=

1
4

+ Cλtκ̄ .

We now fix a t such that

0 < t ≤ t̄ , 4λtν̄ ≤ s , and 2αt ≤ 1 , (13)

write τ = 1/t, and prove that the ball BY(tλtν̄) is contained in F(Wt). For
this purpose, we fix a y ∈ Y such that ‖y‖ ≤ tλtν̄, and construct a ξ ∈ Wt

such that F(ξ) = y. This ξ will be the limit of a sequence {ξj}∞j=0 of points
of Wt.
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To begin with, we let ξ0 = ξ∗,t, and observe that ξ0 ∈ Wt, and the error

e0def=F(ξ0)− y satisfies

e0 = F(ξ∗,t)− G(ξ∗,t)− (F(0)− G(0))− y ,

since G(ξ∗,t) = G(0) = F(0) = 0. So

‖e0‖ ≤ ‖F(ξ∗,t)− G(ξ∗,t)− (F(0)− G(0))‖+ ‖y‖
≤ λtν(ξ∗,t, 0) + ‖y‖
= λtν(δt(ξ∗), δt(0)) + ‖y‖
= tλtν(ξ∗, 0) + ‖y‖
≤ tλtν̄ + ‖y‖
= 2tλtν̄ .

We then choose ζ1 ∈ X such that L(ζ1) = −t−1e0 and ‖ζ1‖ ≤ t−1C‖e0‖ , and
define η1 = δt(ζ1), ξ1 = ξ0 + η1 = δt(ξ∗ + ζ1). Then tL(δτ (η1)) = −e0, and
‖ζ1‖ ≤ 2Cλtν̄ . Therefore ‖δτ (ξ1)− ξ∗‖ = ‖ζ1‖ ≤ 2Cλtν̄ ≤ 4Cλtν̄ ≤ sC , from
which it follows that δτ (ξ1) ∈ BX (ξ∗, sC), so that ξ1 ∈ Wt.

We then let e1 = F(ξ1)− y. It follows that

e1 = E(ξ1) +
(
G(ξ1)− y

)
=

(
E(ξ1)− E(ξ0)

)
+

(
F(ξ0)− G(ξ0)

)
+

(
G(ξ1)− y

)
= E(ξ1)− E(ξ0) +

(
F(ξ0)− y

)
+

(
G(ξ1)− G(ξ0)

)
= E(ξ1)− E(ξ0) + e0 + t

(
G(δτ (ξ1))− G(δτ (ξ0))

)
= E(ξ1)− E(ξ0) + e0 + tẼ(δτ (ξ1), δτ (ξ0)) + tL(δτ (η1))
= E(ξ1)− E(ξ0) + tẼ(δτ (ξ1), δτ (ξ0)) .

On the other hand,

‖E(ξ1)− E(ξ0)‖ ≤ λtν(ξ1, ξ0)
= tλtν(δτ (ξ1), δτ (ξ0))
≤ tλtκ̄‖δτ (ξ1)− δτ (ξ0))‖
= tλtκ̄‖δτ (η1)‖
= tλtκ̄‖ζ1‖
≤ 2Ctλ2

t κ̄ν̄ ,
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and

‖Ẽ(δτ (ξ1), δτ (ξ0))‖ ≤ ‖δτ (ξ1)− δτ (ξ0)‖
4C

=
‖ζ1‖
4C

≤ 2Cλtν̄

4C
=

1
2
λtν̄ .

Therefore

‖e1‖ ≤ 2Ctλ2
t κ̄ν̄ +

t

2
λtν̄ = tλtν̄

(
2Cλtκ̄ +

1
2

)
= 2tλtν̄αt .

Next, we choose ζ2 ∈ X such that L(ζ2) = −t−1e1 and ‖ζ2‖ ≤ t−1C‖e1‖ ,
and define η2 = δt(ζ2), ξ2 = ξ1 + η2 = ξ1 + δt(ζ2) = δt(ξ∗ + ζ1 + ζ2). Then
tL(δτ (η2)) = −e1, and ‖ζ2‖ ≤ 2Cλtν̄αt . Therefore

‖δτ (ξ2)− ξ∗‖ = ‖ζ1 + ζ2‖ ≤ 2Cλtν̄(1 + αt) ≤ 4Cλtν̄ ≤ sC ,

from which it follows that δτ (ξ2) ∈ BX (ξ∗, sC), so that ξ2 ∈ Wt.
We then let e2 = F(ξ2)− y. It follows that

e2 = E(ξ2) +
(
G(ξ2)− y

)
=

(
E(ξ2)− E(ξ1)

)
+

(
F(ξ1)− G(ξ1)

)
+

(
G(ξ2)− y

)
= E(ξ2)− E(ξ1) +

(
F(ξ1)− y

)
+

(
G(ξ2)− G(ξ1)

)
= E(ξ2)− E(ξ1) + e1 + t

(
G(δτ (ξ2))− G(δτ (ξ1))

)
= E(ξ2)− E(ξ1) + e1 + tẼ(δτ (ξ2), δτ (ξ1)) + tL(δτ (η2))
= E(ξ2)− E(ξ1) + tẼ(δτ (ξ2), δτ (ξ1)) .

On the other hand,

‖E(ξ2)− E(ξ1)‖ ≤ λtν(ξ2, ξ1)
= tλtν(δτ (ξ2), δτ (ξ1))
≤ tλtκ̄‖δτ (ξ2)− δτ (ξ1))‖
= tλtκ̄‖δτ (η2)‖
= tλtκ̄‖ζ2‖
≤ tλtκ̄(2Cλtν̄αt)
≤ 2Ctλ2

t κ̄ν̄αt ,

and

‖Ẽ(δτ (ξ2), δτ (ξ1))‖ ≤ ‖δτ (ξ2)− δτ (ξ1)‖
4C

=
‖ζ2‖
4C

≤ 2Cλtν̄αt

4C
=

1
2
λtν̄αt .

16



Therefore

‖e2‖ ≤ 2Ctλ2
t κ̄ν̄αt +

t

2
λtν̄αt = 2tλtν̄

(
Cλtκ̄ +

1
4

)
αt = 2tλtν̄α2

t .

We continue this construction inductively. Suppose we have defined

ξ0, . . . , ξk ∈ Wt , e0, . . . , ek ∈ Y , ζ1, . . . , ζk ∈ X , η1, . . . , ηk ∈ Y ,

such that

ξj = ξj−1 + ηj for j = 1, . . . , k ,

ej = F(ξj)− y for j = 0, . . . , k ,

tL(ζj) = −ej−1 for j = 1, . . . , k ,

ηj = δt(ζj) for j = 1, . . . , k ,

‖ζj‖ ≤ 2Cλtν̄αj−1
t for j = 1, . . . , k ,

‖ej‖ ≤ 2tλtν̄αj
t for j = 0, . . . , k .

We then choose ζk+1 ∈ X such that

L(ζk+1) = −t−1ek and ‖ζk+1‖ ≤ t−1C‖ek‖ ,

and define

ηk+1 = δt(ζk+1) ,

ξk+1 = ξk + ηk+1 = ξk + δt(ζk+1) = δt(ξ∗ + ζ1 + . . . + ζk+1) .

Then tL(δτ (ηk+1)) = −ek, and

‖ζk+1‖ ≤ t−1C‖ek‖ ≤ 2Cλtν̄αk
t .

Therefore

‖δτ (ξk+1)− ξ∗‖ = ‖ζ1 + . . . + ζk+1‖ ≤ 2Cλtν̄

k∑
j=0

αj
t =

2Cλtν̄

1− αt
≤ 4Cλtν̄ ,

so ‖δτ (ξk+1)− ξ∗‖ ≤ sC, from which it follows that δτ (ξk+1) ∈ BX (ξ∗, sC), so
that ξk+1 ∈ Wt.
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We then let ek+1 = F(ξk+1)− y. It follows that

ek+1 = E(ξk+1) +
(
G(ξk+1)− y

)
=

(
E(ξk+1)− E(ξk)

)
+

(
F(ξk)− G(ξk)

)
+

(
G(ξk+1)− y

)
= E(ξk+1)− E(ξk) +

(
F(ξk)− y

)
+

(
G(ξk+1)− G(ξk)

)
= E(ξk+1)− E(ξk) + ek + t

(
G(δτ (ξk+1))− G(δτ (ξk))

)
= E(ξk+1)− E(ξk) + e1 + tẼ(δτ (ξk+1), δτ (ξk)) + tL(δτ (ηk+1))
= E(ξk+1)− E(ξk) + tẼ(δτ (ξk+1), δτ (ξk)) .

On the other hand,

‖E(ξk+1)− E(ξk)‖ ≤ λtν(ξk+1, ξk)
= tλtν(δτ (ξk+1), δτ (ξk))
≤ tλtκ̄‖δτ (ξk+1)− δτ (ξk))‖
= tλtκ̄‖δτ (ηk+1)‖
= tλtκ̄‖ζk+1‖
≤ tλtκ̄(2Cλtν̄αt)
≤ 2Ctλ2

t κ̄ν̄αk
t ,

and

‖Ẽ(δτ (ξk+1), δτ (ξk))‖ ≤ ‖δτ (ξk+1)− δτ (ξk)‖
4C

=
‖ζk+1‖

4C
≤ 1

2
λtν̄αk

t .

Therefore

‖ek+1‖ ≤ 2Ctλ2
t κ̄ν̄αk

t +
t

2
λtν̄αk

t = 2tλtν̄
(
Cλtκ̄ +

1
4

)
αk

t = 2tλtν̄αk+1
t ,

and our inductive construction is complete.
The bound ‖ζj‖ ≤ 2Cλtν̄αj−1

t implies—since 2αt ≤ 1—that the series∑∞
j=1 ζj converges, and the sum ζ of the series satisfies ‖ζ‖ ≤ 4Cλtν̄ ≤ sC.

Therefore the limit Ξ = limj→∞ δτ (ξj) exists and satisfies Ξ ∈ BX (ξ∗, sC).
So the limit ξ = δt(Ξ) = limj→∞ ξj exists and belongs to Wt. Furthermore,
F(ξ) − y = limj→∞(F(ξj) − y) = limj→∞ ej = 0, because of the bound
‖ej‖ ≤ 2tλtν̄αj

t . Therefore F(ξ) = y, and our proof is complete. ♦
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5 Second-order open mapping theorems

If X and Y are real linear spaces, and X ×X 3 (x, x′) 7→ B(x, x′) ∈ Y is a
symmetric bilinear map, we write QB to denote the quadratic map associated
with B, i.e., the map X 3 x 7→ B(x, x)def=QB(x) ∈ Y . It is well known that B
is completely determined by QB, since

B(x, y) =
1
4

(
QB(x + y)−QB(x− y)

)
. (14)

A quadratic map from X to Y is a map Q such that Q = QB for some
(unique) bilinear symmetric map B : X ×X 7→ Y . If Q is a quadratic map,
then we will use BQ to denote the corresponding symmetric bilinear map.

If X, Y are normed, then a bilinear map B : X × X 7→ Y is continuous
if and only if it is bounded, in the sense that there exists a constant C such
that ‖B(x, x′)‖ ≤ C‖x‖ ‖x′‖ for all x, x′ ∈ X. It follows from (14) that a
quadratic map Q : X → Y is continuous if and only if the bilinear map BQ is
continuous.

Definition 14 If X, Y are normed spaces, Ω is open in X, x∗ ∈ Ω, and F is
a map from Ω to Y , then a linear-quadratic approximation (abbreviated LQA)
of F at x∗ is a triple A = (L,K, Q) such that

LQA1. L is a bounded linear map from X to Y ,

LQA2. K is a closed linear subspace of X,

LQA3. Q is a continuous quadratic map from K to Y .

LQA4. F (x∗+ x+ k) = F (x∗) +Lx+ 1
2Q(k) + o(‖k‖2 + ‖x‖) as (x, k) goes

to zero via values in X ×K. ♦

If (L,K, Q) is a LQA of F at x∗, then it is clear that F is Fréchet differentiable
at x∗ and DF (x∗) = L, K ⊆ ker L, and the quadratic map Q is completely
determined by K, by means of the formula.

Q(k) = 2 lim
t↓0

t−2(F (x∗ + tk)− F (x∗)) for x ∈ K .

The error bound of LQA4 is important because it gives an estimate of the the
error in terms of the function X×K 3 (x, k) 7→ ‖x‖+‖k‖2, which is positively
homogeneous of degree 1 relative to an appropriate group of dilations on X×K.
We make this observation precise in the following statement, whose proof is
trivial.
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Lemma 15 Assume that (a) X, Y , Ω, x∗, F are as in Definition 14, and
(b) A = (L,K, Q) is a linear-quadratic approximation of F at x∗. Let

X def= X ×K , Ω̃ =
{

(x, k) ∈ X : x∗ + x + k ∈ Ω
}

,

and define maps ν : X 7→ R, δt : X 7→ X for t > 0, F : Ω̃ 7→ Y , G : X 7→ Y,
E : Ω̃ 7→ Y , by

ν(x, k) = ‖x‖+ ‖k‖2 for (x, k) ∈ X ,

δt(x, k) = (tx,
√

tk) for (x, k) ∈ X , t > 0 ,

F(x, k) = F (x∗ + x + k)− F (x∗) for (x, k) ∈ Ω̃ ,

GA(x, k) = Lx +
1
2
Q(k) for (x, k) ∈ X ,

E(x, k) = F (x∗ + x + k)− F (x∗)− GA(x, k)
= F(x, k)− GA(x, k) for (x, k) ∈ Ω̃ .

Then δδδ = {δt}t>0 is a continuous one-parameter group of dilations of X , GA

is δδδ-homogeneous, ν is a δδδ-pseudonorm, and the error bound

lim
x→0, k→0

‖E(x, k)‖
ν(x, k)

= 0 (15)

is satisfied. ♦

Definition 16 Assume that X, Y , Ω, x∗, F are as in Definition 14. A strict
linear-quadratic approximation (abbreviated SLQA) of F at x∗ is a triple
A = (L,K, Q) that satisfies conditions LQA1,2,3 of Definition 14 and is such
that

(SLQA)
(
F (x∗ + x + k)−Lx− 1

2Q(k)
)
−

(
F (x∗ + x′ + k′)−Lx′− 1

2Q(k′)
)

= o
(
‖x−x′‖+(

√
‖x‖+ ‖x′‖+‖k‖+‖k′‖).‖k−k′‖

)
as (x, k, x′, k′)

goes to zero via values in X ×K ×X ×K. ♦

If A = (L,K, Q) is a SLQA of F at x∗, then A is a LQA of F at x∗ , F is
strictly Fréchet differentiable at x∗, and DF (x∗) = L .

As in the case of (non-strict) LQAs, the error bound of condition (SLQA)
is important because it estimates the error in terms of a function which
is positively homogeneous of degree 1 relative to an appropriate group of
dilations. We make this precise in the following statement, whose proof is
trivial.
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Lemma 17 Let X, Y , Ω, x∗, F , A, L, K, Q, X , Ω̃, F , GA, δδδ, E be as
in the statement of Lemma 15. Assume that A is a strict linear-quadratic
approximation of F at x∗. Define a map ν : X × X 7→ R by letting

ν(x, k, x′, k′)=‖x−x′‖+
(√

‖x‖+‖x′‖+‖k‖+‖k′‖
)
.‖k−k′‖ (16)

for (x, k, x′, k′) ∈ X × X . Then

1. δδδ is a continuous one-parameter group of dilations of X ,
2. GA is δδδ-homogeneous,
3. ν is a Lipschitz-bounded δδδ-pseudodistance,
4. the error bound

lim
x→0,x′→0,x′ 6=x

‖E(x, k)− E(x′, k′)‖
ν(x, k, x′, k′)

= 0 (17)

is satisfied. ♦

An important class of maps that necessarily admit strict linear-quadratic
approximations consists of the maps of class C1 with a differentiable derivative.
Precisely, let us assume that

(#) X, Y are normed spaces, Ω is an open subset of X, F : Ω 7→ Y is a
map of class C1, x∗ ∈ Ω, and the map Ω 3 x 7→ DF (x) ∈ Lin(X, Y ) is
differentiable at x∗ .

Then DF is a continuous map from Ω to the space Lin(X, Y ) of bounded
linear maps from X to Y , and the second derivative D(DF )(x∗) = D2F (x∗)
is a bounded linear map from X to Lin(X, Lin(X, Y )). Furthermore, this map
is symmetric, i.e., D2F (x∗)(x) · x′ = D2F (x∗)(x′) · x for all x, x′ ∈ X . (This
is true because of the identity

D2F (x∗)(x) · x′ =

lim
α↓0

α−2
(
F (x∗ + αx + αx′)− F (x∗ + αx)− F (x∗ + αx′) + F (x∗)

)
,

whose right-hand side is clearly symmetric under the interchange of x and x′.)
It follows that we can regard D2F (x∗) as a bounded symmetric bilinear

map B : X ×X 7→ Y , given by B(x, x′) = D2F (x∗)(x) · x′. Then B = BQ,
where Q : X 7→ Y is the quadratic map given by Q(x) = B(x, x), so that
Q = QB and B = BQ. Even more important for us will be the restriction Q
of Q to the kernel K = kerL, where L = DF (x∗).
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It turns out that the triple A = (L,K, Q) is a strict linear-quadratic
approximation of F at x∗, as we now show.

First, we write

M(x) = L · x +
1
2
Q(x) ,

GA(x, k) = L · x +
1
2
Q(k) ,

E(x) = F (x∗ + x)− F (x∗)−M(x) ,

E(x, k) = F (x∗ + x + k)− F (x∗)− GA(x, k) ,

for x ∈ X, k ∈ K.

Lemma 18 Let X, Y , Ω, F , L, K, Q, Q, M , GA, A, E, E, be as above.
Then

lim
x→0,x′→0,x′ 6=x

‖E(x)− E(x′)‖
(‖x‖+ ‖x′‖)‖x− x′‖

= 0 , (18)

and A is a strict linear-quadratic approximation of F at x∗.

Proof. Without loss of generality, we assume that x∗ = 0 and F (x∗) = 0. We
fix a positive R such that BX(R) ⊆ Ω. For 0 < r ≤ R, let

θ(r) = sup

{
‖DF (x)− L−BQ(x, · )‖

‖x‖
: 0 < ‖x‖ ≤ r

}
.

Then θ is monotonically nondecreasing, and the differentiability assumption
implies that limr↓0 θ(r) = 0. Clearly, the bound

‖DF (ξ).v − L.v −BQ(ξ, v)‖ ≤ θ(r) ‖ξ‖ ‖v‖ (19)

is satisfied whenever 0 < r ≤ R, ξ ∈ BX(r), and v ∈ X.
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Then, if x, x′ ∈ BX(R), and we write v = x− x′ ξs = x′ + sv, we have

E(x)− E(x′) = F (x)− F (x′)− L · v − 1
2

(
Q(x)−Q(x′)

)
=

( ∫ 1

0
DF (ξs) ds

)
· v − L · v − 1

2

(
Q(x)−Q(x′)

)
=

( ∫ 1

0
(DF (ξs)− L) ds

)
· v − 1

2

(
Q(x)−Q(x′)

)
=

∫ 1

0

(
(DF (ξs)− L).v −BQ(ξs, v)

)
ds

+
∫ 1

0
BQ(ξs, v) ds− 1

2

(
BQ(x, x)−BQ(x′, x′)

)
=

∫ 1

0

(
(DF (ξs)− L).v −BQ(ξs, v)

)
ds

+BQ(x′, v) +
1
2
BQ(v, v)− 1

2

(
BQ(x, x)−BQ(x′, x′)

)
=

∫ 1

0

(
(DF (ξs)− L).v −BQ(ξs, v)

)
ds ,

using the identities BQ(x′, v)+ 1
2BQ(v, v)− 1

2

(
BQ(x, x)−BQ(x′, x′)

)
= 0 and∫ 1

0 BQ(ξs, v) ds = BQ(x′, v) + 1
2BQ(v, v). Then (19), with ξ = ξs, yields

‖(DF (ξs)− L).v −BQ(ξs, v)‖ ≤ θ(‖x‖+ ‖x′‖) · (‖x‖+ ‖x′‖) · ‖x− x′‖ ,

since ‖ξs‖ ≤ ‖x‖ + ‖x′‖ whenever 0 ≤ s ≤ 1. Integrating this inequality, we
get the bound

‖E(x)− E(x′)‖ ≤ θ(‖x‖+ ‖x′‖) · (‖x‖+ ‖x′‖) · ‖x− x′‖ , (20)

and (18) follows.

To prove that A is a strict linear-quadratic approximation of F at 0, we
have to show that

E(x, k)− E(x′, k′) = o
(
‖x− x′‖+ (

√
‖x‖+ ‖x′‖+ ‖k‖+ ‖k′‖).‖k − k′‖

)
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as (x, x′, k, k′) → (0, 0, 0, 0). But

E(x, k)− E(x′, k′) = (F (x + k)− GA(x, k))− (F (x′ + k′)− GA(x′, k′))

=
(
F (x + k)− L · x− 1

2
Q(k)

)
−

(
F (x′ + k′)− L · x′ − 1

2
Q(k′)

)
=

(
F (x + k)− L · (x + k)− 1

2
Q(x + k)

)
−

(
F (x′ + k′)− L · (x′ + k′)

−1
2
Q(x′ + k′)

)
+

1
2

(
Q(x + k)−Q(x′ + k′)−Q(k) +Q(k′)

)
= E(x + k)− E(x′ + k′) +

1
2

(
Q(x + k)−Q(x′ + k′)−Q(k) +Q(k′)

)
= E(x + k)− E(x′ + k′) +

1
2

(
Q(x)−Q(x′)

)
+ BQ(x, k) + BQ(x′, k′)

= E(x + k)− E(x′ + k′)

+
1
2
Q(x− x′) + BQ(x′, x′ − x) + BQ(x− x′, k) + BQ(x′, k − k′) .

Therefore (20) implies, if we write κ = ‖BQ‖, Θ(s) = sθ(s), that

‖E(x, k)− E(x′, k′)‖ ≤ Θ
(
‖x‖+ ‖x′‖+ ‖k‖+ ‖k′‖)

)
·
(
‖x− x′‖+ ‖k − k′‖

)
+

κ

2
‖x− x′‖2 + κ‖x′‖.‖x− x′‖+ κ‖x− x′‖.‖k‖+ κ‖x′‖.‖k − k′‖ ,

which is clearly o
(
‖x− x′‖+ (

√
‖x‖+ ‖x′‖+ ‖k‖+ ‖k′‖).‖k − k′‖

)
. ♦

We can then apply Theorems 12 and 13 and obtain a number of open
mapping theorems. The crucial condition in all of them is, of course, the
existence of a regular zero (ξ∗, k∗) of the map GA associated to the LQA
A = (L,K, Q). (Such a point will then automatically be a strictly regular
zero, because GA is a polynomial map.) It turns out that this condition is
equivalent to a statement in terms of the “Hessian” HA of A, as we now
explain.

Let Z be the quotient space Y/LX, and let π be the canonical projection
from Y onto Z. The Hessian HA is the quadratic map

K 3 k 7→ π(Q(k, k)) def= HA(k) ∈ Z .

Definition 19 A regular zero of HA is a k∗ ∈ K such that HA(k∗, k∗) = 0
and the map K 3 k 7→ π(BQ(k∗, k)) ∈ Z is surjective. ♦
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Remark 20 If LX is a closed subspace of Y then Z is a normed space and
the quadratic map HA : K 7→ Z is continuous, and hence smooth. In that
case, k∗ is a regular zero of HA in the sense defined above if and only if it is
a regular zero in the sense defined earlier in §2. Here, however, we are not
requiring LX to be closed, and the concept of a “regular zero” of HA has to
be understood in the purely algebraic sense of Definition 19. ♦

Lemma 21 If A = (L,K, Q) is a LQA of a map F at a point x∗, and k∗ ∈ K,
then k∗ is a regular zero of HA if and only if there exists ξ∗ ∈ X such that
(ξ∗, k∗) is a regular zero of GA. In particular, HA has a regular zero if and
only if GA has a regular zero. ♦

Proof. Recall that a regular zero of GA is a pair (ξ∗, k∗) ∈ X ×K such that
Lξ∗ + 1

2Q(k∗) = 0 and the linear map X ×K 3 (x, k) 7→ Lx + BQ(k∗, k) ∈ Y
is surjective.

If k∗ is a regular zero of the Hessian HA, then π(Q(k∗)) = 0, so Q(k∗)
belongs to LX, and then there exists ξ∗ ∈ X such that 1

2Q(k∗) + L · ξ∗ = 0.
Therefore GA(ξ∗, k∗) = 0, and DGA(ξ∗, k∗)(x, k) = L · x + BQ(k∗, k) if x ∈ X,
k ∈ K. If y ∈ Y , then the surjectivity of the map K 3 k 7→ π(BQ(k∗, k)) ∈ Z
implies that there exists a k ∈ K such that π(BQ(k∗, k)) = π(y), i.e., that
y −BQ(k∗, k) belongs to LX. It follows that there exists x ∈ X such that
y = BQ(k∗, k) + Lx = DGA(h∗, k∗)(x, k). Since y is an arbitrary member of
Y , we have shown that the linear map DGA(ξ∗, k∗) : X×K 7→ Y is surjective,
so (ξ∗, k∗) is a regular zero of GA.

Conversely, if (ξ∗, k∗) is a regular zero of GA, then 1
2Q(k∗) + L · ξ∗ = 0,

so Q(k∗) ∈ LX, and then HA(k∗) = 0. Furthermore, if v ∈ Z, and y ∈ Y is
such that π(y) = v, then we can write y = DGA(ξ∗, k∗)(x, k) = Lx+BQ(k∗, k)
for some x ∈ X, k ∈ K. But then v = π(y) = π(BQ(k∗, k)). Therefore the
map K 3 k 7→ π(BQ(k∗, k)) ∈ Z is surjective, and we have shown that k∗ is a
regular zero of HA. ♦

Theorem 22 Assume that X, Y are normed spaces, Y is finite-dimensional,
Ω is open in X, x∗ ∈ Ω, F : Ω 7→ Y is a continuous map, and A = (L,K, Q)
is a linear-quadratic approximation of F at x∗ such that the Hessian HA has
a regular zero. Then F is open at x∗.

Theorem 23 Assume that X, Y are Banach spaces, Ω is open in X, x∗ ∈ Ω,
F : Ω 7→ Y is a continuous map and A = (L,K, Q) is a strict linear-quadratic
approximation of F at x∗ such that the Hessian HA has a regular zero. Then
F is open at x∗.
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In particular, we can take F to be a map of the kind considered in Lemma
18. In that case, the Hessian of F at x∗ is the Hessian of the strict LQA
(L,K, Q), where L = DF (x∗), K = kerL, and Q is the quadratic map
K 3 k 7→ D2F (x∗)(k, k).

Theorem 24 Assume that X, Y are Banach spaces, Ω is open in X, x∗ ∈ Ω,
F : Ω 7→ Y is a map of class C1 such that the derivative DF is differentiable
at x∗ and the Hessian H of F at x∗ has a regular zero. Then F is open at x∗.

Remark 25 Theorem 24 is very similar to the result proved by Avakov (cf.
[1, 2]). Avakov’s sufficient condition for openness—called “2-regularity” by
some authors, e.g., Ledzewicz and Schättler, cf. [5, 6]—is fomulated in slightly
different terms, but is easily seen to be equivalent to the existence of a regular
zero of the Hessian.

Precisely, the algebraic part of Avakov’s condition says—using

L = DF (x∗)(k∗, k∗) , K = kerL ,

and writing Q for the map X 3 x 7→ D2F (x∗)(x, x) ∈ Y , and Q for the
restriction of Q to K—that

Av1. Lk∗ = 0,

Av2. Q(k∗) ∈ LX,

and

Av3. the map X 3 x 7→ A(x) def= (Lx, π(BQ(k∗, x))) ∈ LX × Z is surjective.

Lemma 26 The algebraic part of Avakov’s condition holds if and only if k∗
is a regular zero of the Hessian.

Proof. If Avakov’s condition holds, then of course k∗ ∈ K, so Q(k∗) ∈ LX, and
then H(k∗) = 0. Furthermore, the surjectivity of A implies, in particular, that
given any z ∈ Z there exists a k ∈ X such that (Lk, π(BQ(k∗, k))) = (0, z).
But then Lk = 0, so k ∈ K, and π(BQ(k∗, k)) = z. This shows that the map
K 3 k 7→ π(BQ(k∗, k)) ∈ Z is surjective, so k∗ is a regular zero of H.

Conversely, suppose that k∗ is a regular zero of H. Then π(Q(k∗)) = 0, so
Q(k∗) ∈ LX. We now show that A is surjective. Pick (y, z) ∈ LX ×Z. Write
y = Lx, x ∈ X. Let v′ = BQ(k∗, x), z′ = π(v′). Then the fact that the map
K 3 k 7→ π(BQ(k∗, k)) ∈ Z is surjective implies that there exists a k ∈ K such
that π(BQ(k∗, k)) = z − z′. Then π(BQ(k∗, x + k)) = z′ + (z − z′) = z, and
L(x+k) = Lx = y, since Lk = 0. So A(x+k) = (y, z). Hence A is surjective,
and our proof is complete. ♦

26



We point out, however, that in the work of Avakov and Ledzewicz-Schättler it
also required, in addition to the algebraic condition described above, that the
space LX be closed, whereas we do not need to make that extra requirement,
because in our framework the purely algebraic condition on the Hessian suffices
to obtain the openness theorem. ♦
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