
Needle Variations and Almost

Lower Semicontinuous Differential Inclusions1
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1 Introduction and overview

The classical version of the “Pontryagin Maximum Principle,” presented in
the book [8], relies on the construction of “needle variations” at various
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times τ in the domain [a, b] of the given reference trajectory ξ∗. The effects
of these variations are then propagated to the terminal time b by means of
the differentials DΦb,τ (ξ∗(τ)) of the reference flow maps Φb,τ . This produces
a convex cone (the “Pontryagin cone”) which in some sense is a first-order
approximation to the attainable set near the point ξ∗(b). The proof is then
concluded by means of a topological argument, based on some variant of the
Brower fixed point theorem, to pass from the separation of two sets to the
separation of their approximating cones.

The purpose of this note is to explain how the construction of needle
variations can be carried out for differential inclusions rather than for the
case of vector fields of class C1 considered in [8]. This is part of a broader
research program whose ultimate goal is to unify and generalize the various
existing versions of the finite-dimensional maximum principle by developing
a general “primal” technique based on mimicking the proof of [8], but
modifying it by using flows instead of vector fields, generalized differentials
instead of ordinary ones, and abstract variations instead of classical needle
variations (cf. Sussmann [9, 10, 11, 12, 13, 14, 15, 16]).

A needle variation involves a time-varying vector field (abbr. TVVF)
IRn × IR 3 (x, t) 7→ f(x, t) ∈ IRn. The “effect” of the variation at a point
(x̄, t̄) is a vector related to the differential DΦf (q̄) of the flow map Φf (cf.
Definition 8 in §2.9 for the meaning of Φf ) at the point q̄ = (x̄, t̄, t̄). More
precisely, it is easy to see that, if f is regular enough (for example, of class C1

as a function of x and t) then Φf is differentiable at every point q̄ = (x̄, t̄, s̄)
of its domain. If q̄ is of the special form (x̄, t̄, t̄), then the differential DΦf (q̄)
is the linear map

IRn × IR × IR 3 (v, h, k) 7→ Λw(v, h, k) = v + (h − k)w ∈ IRn ,

where w = f(x̄, t̄), because Φf (x̄+v, t̄+h, t̄+k) ∼ x̄+v+(h−k)f(x̄, t̄) and
x̄ = Φf (x̄, t̄, t̄), so that Φf (x̄+v, t̄+h, t̄+k)−Φf (x̄, t̄, t̄) ∼ v+(h−k)f(x̄, t̄).
The vector w is then the “effect of the variation at (x̄, t̄).” (A detailed
explanation of the notion of a needle variation, and why it is important to
differentiate the flow at points of the form (x̄, t̄, t̄), is given in §1.2 below.)

For the optimal control of a system ẋ = f(x, u, t), x ∈ IRn, u ∈ U ,
the TVVFs that are used to construct needle variations are of the special
form IRn × IR 3 (x, t) 7→ f(x, η(t), t) def= fη(x, t), where t 7→ η(t) is some
open-loop control, which is usually either the reference control or a constant
control. For such vector fields, the argument given above to establish that
DΦfη(x̄, t̄, t̄) = Λfη(x̄,t̄) is not rigorous, even if the map (x, u, t) 7→ f(x, u, t)
is very smooth, because η could be the reference control, which will typically
not be continuous. It is possible, however, to render the argument rigorous
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for almost all t̄, by invoking the Scorza-Dragoni theorem and using a notion
of approximate continuity analogous to the concept of a Lebesgue point.

The question discussed here is how to carry out the construction of
needle variations—and obtain flows that are differentiable at (x̄, t̄, t̄) and
have a prescribed effect w for various points (x̄, t̄)—when, instead of using
solutions of a differential equation ẋ = f(x, u, t), we want to work with
solutions of differential inclusions ẋ ∈ F (x, t). A natural idea would be to
use single-valued selections f of the set-valued map F , and then study the
differentiability of the flows Φf . Ideally, one might hope that for every (x̄, t̄)
and every w ∈ F (x̄, t̄) there exists a good enough selection f = fx̄,t̄,w such
that f(x̄, t̄) = w. However, this line of attack leads to dead end, because

• set-valued maps (x, t) 7→ F (x, t) with nonconvex values typically do
not admit continuous selections, even if they are very regular (for
example continuous, or Lipschitz),

while, on the other hand,
• the application of the Scorza-Dragoni theorem requires that one deal

with vector fields (x, t) 7→ f(x, t) that are continuous with respect to
x and measurable with respect to t.

It turns out, remarkably, that this difficulty can be overcome by adopting
a more sophisticated perspective and no longer requiring the selections to be
continuous with respect to x. The first evidence that this approach might
be feasible appeared in papers by Cambini and Querci [6], and Pucci [7],
who studied some discontinuous “directionally continuous” vector fields that
are as good as continuous ones as far as existence of solutions goes, and in
addition have other desirable related properties such as upper semicontinuity
of the flow. Subsequently, A. Bressan proved that lower semicontinuous
set-valued maps with nonempty closed values admit selections in this class
(cf. Bressan [1, 2, 3, 4, 5]).

In this paper, we pursue these ideas further, by exhibiting a natural class
of discontinuous time-varying vector fields (x, t) 7→ f(x, t)—that we call
“admissible vector fields”—larger than that studied by Bressan, that has all
the properties needed to make needle variations. The defining property of
these vector fields is that the map that assigns to each curve [a, b] 3 t 7→ ξ(t)
the indefinite integral [a, b] 3 t 7→

∫ t
a f(ξ(s), s) ds is continuous on a suitably

large space A of curves. This condition is exactly what is required to make
it possible to apply the Schauder fixed point theorem to establish existence
of trajectories on small time intervals. (We prove existence in Theorem 3.)
These vector fields have other useful properties, that we study in detail.

We prove that Bressan’s directional continuity implies admissibility, but
admissibility is a much more general property. In particular, admissible
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vector fields have the “measurable intertwining property” (cf. Theorem 1
below). This makes it possible to construct plenty of admissible selections
for set-valued maps F that are “almost lower semicontinuous” (abbr. ALSC)
by first constructing conically continuous selections of lower semicontinuous
maps, and then intertwining them.

In order to be able to differentiate the flow Φf of an admissible vector
field f at a point (x̄, t̄, t̄), one needs f to be “approximately continuous” at
(x̄, t̄). We prove that for ALSC maps there always exist many admissible
selections with this extra property

Finally, it is well-known that differentiability of the flow in the most
obvious sense (that is, existence of a linear map that approximates the map
to first order) is not enough to make the topological arguments applicable.
For example, the function f : IR 7→ IR given by f(x) = 1

n if n ∈ IN, n > 0, and
1
n ≤ x < 1

n−1 , and f(x) = x if x ≤ 0, is differentiable at 0, and its derivative
at 0 is equal to 1. However, it is not true that f maps neighborhoods of 0
to neighborhoods of 0. This illustrates the fact that in the open mapping
theorem—that is, the statement that if f : IRn 7→ IRm maps 0 to 0 and Df(0)
exists and is surjective then f maps neighborhoods of 0 to neighborhoods of
0—it is essential to assume that f is continuous near 0. Since this is already
true for single-valued maps, something similar must be true for set-valued
maps. That is, the set-valued analogue of the open mapping theorem, if it
exists, cannot just involve the existence and surjectivity of the differential
at 0, and must contain a supplementary condition, playing a similar role
in the set-valued case as continuity does in the single-valued case. It turns
out that the set-valued version of the open mapping theorem does exist, and
the supplementary condition that plays the role of continuity is “regularity.”
(For a detailed account of this, cf., for example, Sussmann [11].)

Hence the differentiability property of the flow needed for the maximum
principle for differential inclusions is regular differentiability, that is, the fact
that the flow is both differentiable at (x̄, t̄, t̄) and regular in a neighborhood
of (x̄, t̄, t̄). Our main result (Theorem 10 in §4.5) says precisely that if
a differential inclusion ẋ ∈ F (x, t) in IRn has a right-hand side F with
nonempty closed values, then for almost every t̄ it is possible to make a
needle variation using F at any point x̄ generating the direction of any vector
ȳ ∈ F (x̄, t̄), provided that F is almost lower semicontinuous and satisfies in
addition a technical “locally integrable lower boundedness” condition.

The use of the results of this paper to prove a maximum principle for
differential inclusions is outlined in Sussmann [10]. The work carried out
here is essentially that of filling in all the details for the half of the results
of [10] that has to do with the needle variations. The other part—not
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considered here—is the one dealing with the differentiability of the reference
flow along the reference trajectory. This requires a different set of tools, and
will be the subject of another paper.

1.1 A brief outline of the logical structure of the paper

• As indicated above, our main result is Theorem 10 in §4.5, in which
the set-valued map F is required to be “almost lower semicontinuous”
and “locally integrably lower bounded.”

• “Almost lower semicontinuity” is, essentially, the property that would
follow from the condition that the set-valued map x 7→ F (x, t) is
lower semicontinuous for each t, and the set-valued map t 7→ F (x, t) is
measurable for each x, if the Scorza-Dragoni theorem was true for lower
semicontinuous set-valued maps. Since the Scorza-Dragoni theorem is
not true in this situation, its conclusion is turned into the definition
of a new concept. This is done in Definition 19 in §4.3.

• “Local integrable lower boundedness” means that, locally, there exists
an integrable function t 7→ ϕ(t) such that {y ∈ F (x, t) : ‖y‖ ≤ ϕ(t)}
is nonempty, as explained in Definition 23 in §4.5.

• The conclusion of Theorem 10 is that for almost every t̄ there exists,
for each x̄ and each ȳ ∈ F (x̄, t̄), a single-valued selection f of F which
is such that the flow map (x, t, s) 7→ Φf (x, t, s) of the vector field f
is “regularly differentiable” at (x̄, t̄, t̄) and its differential is the linear
map (v, h, k) 7→ v + (h − k)ȳ def= Λȳ(v, h, k).

• Flow maps are introduced in Definition 8 in §2.9.
• The meaning of “regular differentiability” is explained in Definition

4 in §2.5. Basically, a set-valued map is regularly differentiable at a
point q if it is “regular” q and differentiable at q in the usual sense of
admitting a first-order linear approximation.

• The notion of a “regular map” is reviewed in Definition 3 in §2.4.
As explained above, it is a natural set-valued analogue of continuity
of a single-valued map. (This is also discussed sketchily in §2.4—
cf. especially Remark 3 in §2.4—and in much greater detail in, for
example, Sussmann [11, 15, 16].) A regular map is a set-valued map
that can be approximated in a particular way by ordinary continuous
maps. The precise sense of the approximation is that of “inward graph
convergence,” introduced in Definition 2 in §2.5.

• The differentiability conclusion of Theorem 10 is derived from the other
conclusions in conjunction with Theorem 6 of §3.9.
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• The other conclusions of Theorem 10 assert the existence of an “admis-
sible selection” f that has (x̄, t̄) as a “point of approximate continuity”
(abbr. PAC) and is such that f(x̄, t̄) = ȳ.

• Theorem 6 says that, if a vector field (x, t) 7→f(x, t) is admissible and
(x̄, t̄) is a PAC of f , then the flow map (x, t, s) 7→Φf (x, t, s) is regularly
differentiable at (x̄, t̄, t̄) and its differential is Λȳ.

• Theorem 6 arises from combining Theorem 3 of §3.5 with Theorem 4
of §3.7 and Theorem 5 of §3.8. Theorem 3 gives the local existence of
solutions and upper semicontinuity of the flow, Theorem 4 gives the
differentiability and Theorem 5 gives the regularity.

• The concept of a “point of approximate continuity” is presented in
Definition 17 in §3.6. It is, roughly, a generalization to maps
(x, t) 7→ f(x, t) of the usual notion of a Lebesgue point of a function
t 7→ f(t). For a Lebesgue point t̄ of a function t 7→ f(t), the bound∫ t̄+h
t̄−h ‖f(t) − f(t̄)‖ dt = o(h) implies that the integral t 7→

∫ t
a f(s) ds is

differentiable at t̄ with derivative f(t̄). Theorem 4 is proved by using
a similar argument to establish differentiability of the flow at a point
of approximate continuity and compute the differential of the flow.

• “Admissibility” is introduced in Definition 14 in §3.5. As explained
above, it is exactly what is required to be able to apply a fixed point
argument to establish existence of trajectories on small time intervals.
The existence result is Theorem 3 (cf. also Remark 7 in §3.5).

• Remarkably, the admissibility condition has several other important
consequences besides the existence of trajectories. One of them is the
result of Theorem 5, which says that if (x, t) 7→ f(x, t) is an admissible
vector field, then the flow map (x, t, s) 7→ Φf (x, t, s) is regular on a
sufficiently small neighborhood of any point (x̄, t̄, t̄). This is proved
by showing that the regularized vector fields fρ (obtained in the usual
way, by convolution with smooth functions x 7→ ϕρ(x) that converge to
a Delta function as ρ ↓ 0) give rise to flows Φfρ (which are continuous
single-valued maps) that converge to the flow Φf (which in general is
set-valued, because the equation ẋ = f(x, t) need not have uniqueness
of trajectories) in the sense of inward graph convergence.

• Theorem 10, on the existence of an admissible selection that has a
given point (x̄, t̄) as a PAC and takes a prescribed value ȳ at (x̄, t̄), is
derived from Theorem 9 of §4.4, which gives the existence of selections
that are “integrally continuous” on suitably large sets and satisfy the
prescribed conditions involving x̄, t̄, and ȳ.

• Theorem 9 is derived from Theorem 8 in §4.4, together with the
“measurable intertwining ” Theorem 1 of §3.1 and Theorem 2 of §3.3.
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• Theorem 8 gives the existence, for a sequence {Jk}∞k=1 of pairwise
disjoint compact subsets of IR such that meas

(
IR\(∪∞

k=1Jk)
)

= 0,
of a selection f that has, when t varies on each of the Jk, a “conic
continuity” property. Using this, the argument leading from Theorem 8
to Theorem 9 proceeds as follows: conic continuity implies integral
continuity by Theorem 2, and integral continuity on the individual
sets Jk implies full integral continuity by Theorem 1.

• Theorem 8 is derived from Theorem 7 of §4.2, on the existence of
conically continuous single-valued selections for lower semicontinuous
set-valued maps. This result is essentially due to A. Bressan. The
main technical point where we depart from Bressan’s work is that we
prove existence of conically continuous selections that in addition are
continuous (rather than just directionally continuous) at a given point
(x̄, t̄), and have a prescribed value there. This technical improvement
is the crucial step enabling us to get selections having a given point as
a PAC, and prove differentiability of the flow.

1.2 Needle variations

One constructs variations for a triple (f, η∗, ξ∗) consisting of a control system
ẋ = f(x, u, t), x ∈ IRn, u ∈ U , a “reference control” [a, b] 3 t 7→ η∗(t) ∈ U ,
and a corresponding “reference trajectory” [a, b] 3 t 7→ ξ∗(t) ∈ IRn. This
is done as follows. Starting with the flow Φ∗={Φ∗

t,s}a≤s≤t≤b of the ref-
erence TVVF (x, t) 7→ f(x, η∗(t), t), one constructs a one-parameter family
{Φε}0≤ε≤ε̄ of flows Φε = {Φε

t,s}a≤s≤t≤b, defined for small nonnegative ε, such
that Φ0 = Φ∗. (That is, one “draws a curve ε 7→ Φε in the space of flows,
starting at Φ∗ for ε = 0.”) Needle variations are obtained by doing this
in a particular way: Φε is the flow of the control ηε obtained from η∗ by
replacing the value η∗(t) by a constant control ū on the interval [τ, τ + ε],
for some time τ ∈ [a, b[. In other words, we replace the reference flow by the
flow Ψ = {Ψt,s}a≤s≤t≤b of the time-varying vector field (x, t) 7→ f(x, ū, t) on
the interval [τ, τ + ε]. Equivalently, we define Φε

t,s by

Φε
t,s =



Φ∗
t,s if a ≤ s ≤ t ≤ τ or τ + ε ≤ s ≤ t ≤ b ,

Ψt,s if τ ≤ s ≤ t ≤ τ + ε ,
Ψt,τ o Φ∗

τ,s if a ≤ s ≤ τ ≤ t ≤ τ + ε ,

Φ∗
t,τ+ε o Ψτ+ε,s if τ ≤ s ≤ τ + ε ≤ t ≤ b ,

Φ∗
t,τ+ε o Ψτ+ε,τ o Φ∗

τ,t if a ≤ s ≤ τ and τ + ε ≤ t ≤ b .

As explained before, the differential at a point (x̄, t̄) ∈ IRn × IR of the
flow Φg of a vector field IRn × IR 3 (x, t) 7→ g(x, t) ∈ IRn is the linear map
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IRn × IR × IR 3 (v, h, k) 7→ v + (h − k)g(x̄, t̄), if g is sufficiently regular.
Applying this with g(x, t) = f(x, ū, t), and with g(x, t) = f(x, η∗(t), t), we
find that Ψτ+ε,τ (x̄) = x̄ + εf(ξ∗(τ), ū, τ) + o(ε + ‖x̄ − ξ∗(τ)‖) and also that
Φ∗

τ+ε,τ (x̄) = x̄ + εf(ξ∗(τ), η∗(τ), τ) + o(ε + ‖x̄ − ξ∗(τ)‖), so that

Φε
b,τ (x̄) − Φ∗

b,τ (x̄) = Φ∗
b,τ+ε o Ψτ+ε,τ (x̄) − Φ∗

b,τ+ε o Φ∗
τ+ε,τ (x̄)

∼ DΦ∗
b,τ+ε(x̄) ·

(
Ψτ+ε,τ (x̄) − Φ∗

τ+ε,τ (x̄)
)

∼ DΦ∗
b,τ (x̄) ·

(
Ψτ+ε,τ (x̄) − Φ∗

τ+ε,τ (x̄)
)

∼ εDΦ∗
b,τ (x̄) · w ,

where w = f(ξ∗(τ), ū, τ) − f(ξ∗(τ), η∗(τ), τ). This gives the expansion

Φε
b,τ (x̄) ∼ Φ∗

b,τ (x̄) + εDΦ∗
b,τ (x̄) · w , (1.2.1)

showing that the difference between “following the modified flow starting
at x̄ from time τ to time b minus doing the same thing for the unmodified
flow” is, to first order, equal to ε times the vector w propagated forward by
the differential DΦ∗

b,τ (x̄).
In the proof of the maximum principle, x̄ might be ξ∗(τ), if we are

applying our variation directly to the reference trajectory. But x̄ might also
be some other point close to ξ∗(τ) if, for example, another variation—at
an earlier time τ ′ < τ , corresponding to a constant control ū′—has already
been applied, and we want to study the combined effect of both variations.

In that case, we really have to deal with a two-parameter variation, and
the terminal point map that we want to analyze is the map

x 7→ Φε2,ε1

b,τ ′ (x) = Φ∗
b,τ+ε2

o Ψū
τ+ε2,τ o Φ∗

τ,τ ′+ε1
o Ψū′

τ ′+ε1,τ ′(x) ,

where, naturally, Ψū and Ψū′
are the flows of the TVVFs (x, t) 7→ f(x, ū, t)

and (x, t) 7→ f(x, ū′, t), respectively.
To get a linear approximation for Φε2,ε1

b,τ ′ (x), we use (1.2.1) taking ε = ε2

and x̄ = Φε2,ε1

τ,τ ′ (x) = Φ∗
τ,τ ′+ε1

o Ψū′
τ ′+ε1,τ ′(x). This gives

Φε2,ε1

b,τ ′ (x) = Φε2
b,τ (x̄) ∼ Φ∗

b,τ (x̄) + ε2DΦ∗
b,τ (x̄) · w , (1.2.2)

while on the other hand, using (1.2.1) again, we find

x̄ ∼ Φ∗
τ,τ ′(x) + ε1DΦ∗

τ,τ ′(x)(w′) ,
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where w′ = f(ξ∗(τ ′), ū′, τ ′) − f(ξ∗(τ ′), η∗(τ ′), τ ′). Therefore

Φ∗
b,τ (x̄) ∼ Φ∗

b,τ

(
Φ∗

τ,τ ′(x) + ε1DΦ∗
τ,τ ′(x)(w′)

)
∼ Φ∗

b,τ

(
Φ∗

τ,τ ′(x)
)

+ ε1DΦ∗
b,τ

(
Φ∗

τ,τ ′(x)
)(

DΦ∗
τ,τ ′(x)(w′)

)
∼ Φ∗

b,τ ′(x) + ε1DΦ∗
b,τ ′(x)(w′) ,

using the flow identity Φ∗
b,τ o = Φ∗

τ,τ ′Φ∗
b,τ ′ as well as the chain rule

DΦ∗
b,τ

(
Φ∗

τ,τ ′(x)
)

o DΦ∗
τ,τ ′(x) = D

(
Φ∗

b,τ o Φ∗
τ,τ ′

)
(x) = DΦ∗

b,τ ′(x) .

If we substitute our approximate expression for Φ∗
b,τ (x̄) into (1.2.2), observe

that DΦ∗
b,τ (x̄) ∼ DΦ∗

b,τ (ξ∗(τ)) (because x̄ is close to ξ∗(τ)), write τ2 = τ ,
τ1 = τ ′, x2 = ξ∗(τ2), x1 = ξ∗(τ1), u2 = ū, u1 = ū′, and then define
wi = f(xi, ui, τi) − f(xi, η∗(τi), τi) for i = 1, 2, we find that

Φε2,ε1

b,τ1
(x1) ∼ Φ∗

b,τ (x1) + ε1DΦ∗
b,τ1(x1) · w2 + ε2DΦ∗

b,τ2(x2) · w2 . (1.2.3)

It is clear that (1.2.3) can be generalized to a formula expressing the
combined effect of several variations. For our purposes in this paper, the
crucial observation is that for the flows Ψui that are used to define the
variations, one needs approximate expressions not only for quantities such
as Ψui

τi+εi,τi
(ξ∗(τi)), but also for Ψui

τi+εi,τi
(x) where x is close to ξ∗(τi). The

reason for this, as has been explained above, is that the point x to which
the approximation will be applied will not in general lie on the reference
trajectory ξ∗ itself, due to the fact that x will already contain the cumulative
effect of previously applied variations. In other words, it is not enough to be
able to differentiate flows (x, t, s) 7→ Φt,s(x) with respect to the time variables
t and s, for a fixed x. One has to be able to differentiate the flow at a point
with respect to x, t, and s.

Remark 1. The preceding explanation may suggest that one only needs to
differentiate flow maps (x, t, s) 7→ Φt,s(x) with respect to (x, t) for fixed s,
since in our discussion of needle variations s (called τ or τ ′) was fixed.
However, there are several reasons for wanting to consider the joint
differentiability of the flow map with respect to x, t, and s. The simplest one
is the fact that one may want to combine several “needle variations applied at
the same time τ .” For this purpose, it turns out to be convenient to perturb
the reference flow by inserting different constant controls on non-overlapping
intervals close to a point τ . For example, one may want to consider a two-
parameter variation such that Φε1,ε2

b,τ = Φb,τ+ε1+ε2 o Ψu2
τ+ε1+ε2,τ+ε1

o Ψu1
τ+ε1,τ .
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It is easy to see that, to compute the effect of such a variation to first order,
the flow map (x, t, s) 7→ Ψu2

t,s(x) has to be differentiated jointly with respect
to x, t, and s, at the point (ξ∗(τ), τ, τ). ♦

2 Notations and preliminary definitions

2.1 Numbers, intervals, metric spaces, neighborhoods

We use IN to denote the set {0, 1, 2, . . . } of all nonnegative integers, and
write IN to denote the set IN ∪ {+∞}. We use IR to denote the set of real
numbers. A real interval is an arbitrary connected subset of IR. We use
the notations [a, b], ]a, b[, [a, b[, ]a, b] for the closed, open, left-closed right-
open and right-closed left-open intervals with endpoints a, b. The expression
(a, b) will always denote the ordered pair whose components are a and
b. An interval is nontrivial if it contains more than one point. We write
IR+ = [0, +∞[, IR = IR ∪ {−∞, +∞}, IR+ = IR+ ∪ {+∞} = [0, +∞].

If X is a metric space, we use dX to denote the distance function on X,
and write IBX(x, r), IBX(x, r), to denote, respectively, the open and closed
balls with center x and radius r. We use Comp(X) to denote the set of all
nonempty compact subsets of X. If X = IRn, we write IBn(x, r), IBn(x, r),
rather than IBIRn(x, r), IBIRn(x, r).

The word “neighborhood” will always be used in the standard sense of
point-set topology: a neighborhood of a point a (resp. of a set S) in a
topological space A is any set U ⊆ A such that a is an interior point of U
(resp. such that S ⊆ Int(U)).

If X and Y are metric spaces, the product X × Y is equipped with the
product metric dX×Y , given by

dX×Y

(
(x, y), (x′, y′)

)
= dX(x, x′) + dY (y, y′) if x, x′ ∈ X , y, y′ ∈ Y .

2.2 Set-valued maps

A set-valued map is a triple F = (X, Y, G) such that X and Y are sets and
G is a subset of X × Y . If F = (X, Y, G) is a set-valued map, then we refer
to X, Y and G as the source, target and graph of F , and write X = So(F ),
Y = Ta(F ), G = Gr(F ). We write F : X →7→ Y to indicate that F is a set-
valued map from X to Y , and we use SV M(X, Y ) to denote the set of all
such set-valued maps, so “F ∈ SV M(X, Y )” is equivalent to “F : X →7→ Y .”

If F = (X, Y, G) is a set-valued map, and x is any object, we write
F (x) def= {y : (x, y) ∈ G}. More generally, if S is any set, we define
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F (S) =
⋃

x∈S F (x). The domain Dom(F ) is the set {x : F (x) 6= ∅}, and
the image Im(F ) of F is the set F (So(F )). We call F everywhere defined
if Dom(F ) = So(F ), and say that F is surjective if Im(F ) = Ta(F ). Then
Dom(F ) ⊆ So(F ) and Im(F ) ⊆ Ta(F ), and F is everywhere defined iff
Dom(F ) = So(F ).

If X is a set, we use idX to denote the identity map of X, i.e. the
set-valued map (X, X, Diag(X)), where Diag(X) = {(x, x) : x ∈ X}.

If F = (X, Y, G) is a set-valued map, and S is a subset of X, then the
restriction F dS is the set-valued map (X ∩ S, Y, G ∩ (S × Y )). Therefore
So(F dS) = X ∩ S, Ta(F dS) = Ta(F ), and (F dS)(x) = F (x) when x ∈ S,
while (F dS)(x) = ∅ if x /∈ S.

The composite F = F2 o F1 of two set-valued maps Fi = (Xi, Yi, Gi),
i = 1, 2, is defined if and only if Y1 = X2. In that case, F

def= (X1, Y2, G2 o G1),
where G2 o G1

def= {(x, z) : (∃y)((x, y) ∈ G1 ∧ (y, z) ∈ G2}.
A set-valued map F is single-valued if F (x) consists of a single point

of Ta(F ) for every x ∈ Dom(F ). An ordinary map is a set-valued map
that is single-valued and everywhere defined. We write F : X 7→ Y to
indicate that F is an ordinary map with source X (so that Dom(F ) = X as
well) and target Y . Notice that according to these conventions the notation
F : X →7→ Y allows for the possibility that F be multivalued, or partially
defined, or both, but the notation F : X 7→ Y automatically implies that
F is both single-valued and defined on the whole set X. A selection of
a set-valued map F : X →7→ Y is a single-valued map f : X 7→ Y such that
f(x) ∈ F (x) for all x ∈ X. With our definitions, the Axiom of Choice
implies that a set-valued map has selections iff it is everywhere defined.

2.3 Upper semicontinuous set-valued maps

If X and Y are topological spaces, a set-valued map F : X →7→ Y is upper
semicontinuous (abbr. USC) if the inverse image under F of every closed
subset of Y is closed in X. The following observation is then easily verified.

Fact 1. Assume that X and Y are metric spaces, X is compact, and
F : X →7→ Y . Then Gr(F ) is compact if and only if F is USC and F (x) is
compact for each x ∈ X. ♦

Remark 2. For ordinary real-valued functions, the words “upper
semicontinuous” will always refer to upper semicontinuity in the classical
sense of real function theory. (That is, f is upper semicontinuous if the set
{x : f(x) < α} is open for every α ∈ IR.) If we want to say that such an f
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is USC in the set-valued sense, we will say that f is “upper semicontinuous
as a set-valued map.” ♦

2.4 Regular Set-Valued Maps

As was explained in the introduction, the classical proof of the maximum
principle involves a topological argument, based on the Brouwer fixed point
theorem. In order to carry out similar arguments for set-valued maps, one
needs a good set-valued analogue of the notion of a continuous single-valued
map. This is provided by the concept of a “regular map,” which we now
proceed to define. (It will be explained in Remark 3 why this notion is the
right one.)

If X is a metric space and L1, L2 ∈ Comp(X), we define the “Hausdorff
semidistance” ∆X(L1, L2) from L1 to L2 by letting

∆X(L1, L2) = sup
{

dist(x, L2) : x ∈ L1 } . (2.4.1)

This function is not in general symmetric. (For example, if L1 ⊆ L2 and
L1 6= L2, then ∆X(L1, L2) = 0 but ∆X(L2, L1) > 0.) On the other hand,
∆X satisfies the “triangle inequality”:

∆X(L1, L3) ≤ ∆X(L1, L2)+∆X(L2, L3) if L1, L2, L3 ∈ Comp(X) . (2.4.2)

Definition 1. Let X be a metric space, let L ∈ Comp(X), and let {Lj}j∈IN

be a sequence in Comp(X). We say that Lj inward converges to L if
limj→∞ ∆X(Lj , L) = 0. ♦

If K, Y are metric spaces, and K is compact, we write SV Mcomp(K, Y )
to denote the set of all set-valued maps F : K →7→ Y whose graph is compact
and nonempty. In view of our definitions, it is clear that SV Mcomp(K, Y ) is
exactly the same as the set {K}×{Y }×Comp(K ×Y ), so SV Mcomp(K, Y )
can be canonically identified with Comp(K × Y ).

Definition 2. Let K, Y be metric spaces such that K is compact. Let
F ∈ SV Mcomp(K, Y ), and let {Fj}j∈IN be a sequence in SV Mcomp(K, Y ).
We say that {Fj}j∈IN inward graph converges to F as j → ∞ if the graphs
Gr(Fj) inward converge to Gr(F ) in the space Comp(K × Y ), i.e., if

limj→∞ ∆K×Y (Gr(Fj), Gr(F )) = 0. We write Fj
igr→F to indicate that the

sequence {Fj}j∈IN inward graph converges to F as j → ∞. ♦

Definition 3. Let K, Y be metric spaces such that K is compact. A regular
set-valued map from K to Y is a set-valued map F ∈ SV Mcomp(K, Y ) which
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is a limit in SV Mcomp(K, Y ) of a sequence {Fj}j∈IN of ordinary—i.e., single-
valued and everywhere defined—continuous maps from K to Y .

We use REG(K, Y ) to denote the set of all regular set-valued maps from
K to Y . ♦

Remark 3. Regular maps have good fixed point properties analogous to
those of single-valued continuous maps. For example, a regular set-valued
map F : IBn(0, 1) 7→ IBn(0, 1) must have a fixed point. (Proof: let {Fj}j∈IN be

a sequence of continuous maps from IBn(0, 1) to IBn(0, 1) such that Fj
igr→F .

For each j pick xj such that Fj(xj) = xj . Then (xj , xj) ∈ Gr(Fj). Assume,
after passing to a subsequence if necessary, that x = limxj exists. Pick
(x′

j , yj) ∈ Gr(F ) closest to (xj , xj). Then ‖x′
j − xj‖ + ‖yj − xj‖ → 0. So

(x′
j , yj) → (x, x). Therefore (x, x) ∈ Gr(F ), because Gr(F ) is compact.) ♦

2.5 Regular differentiability

Definition 4. Assume that n, m ∈ IN, F : IRn →7→ IRm, C is a closed convex
cone in IRn, and x̄ ∈ IRn. We say that F is regularly differentiable at x̄ in
the direction of C if

(D4.1) there exists a compact neighborhood N of x̄ in IRn such that
the restriction F d(N ∩ (x̄ + C)) is a regular set-valued map from
N ∩ (x̄ + C) to IRm;

(D4.2) F (x̄) consists of a single point ȳ ∈ IRm;

(D4.3) there exists a linear map L : IRn 7→ IRm such that

lim
h→0 , h∈C

sup
{
‖y − ȳ − L · h‖ : y ∈ F (x̄ + h)

}
‖h‖ = 0 . (2.5.1)

If L is a linear map such that (2.5.1), then L is said to be a differential of
F at x̄ in the direction of C. ♦

2.6 Essential measurability

If n ∈ IN, we use Bor(IRn), Leb(IRn) to denote, respectively, the σ-algebras
of Borel and Lebesgue measurable subsets of IRn. We use BL(IRn, IR) to
denote the σ-algebra whose members are the Borel⊗Lebesgue-measurable
subsets of IRn × IR, that is, the σ-algebra of subsets of IRn × IR generated
by all the products A × B such that A ∈ Bor(IRn) and B ∈ Leb(IR). If
S ⊆ IRn × IR, we use BL(IRn, IR;S) to denote the class of subsets of S that
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belong to BL(IRn, IR). Also, we use Bor(IRn × IR) ∩ S, BL(IRn, IR) ∩ S,
to denote, respectively, the σ-algebras {E ∩ S : E ∈ Bor(IRn × IR)} and
{E ∩ S : E ∈ BL(IRn, IR)}.

We use meas(E) to denote the Lebesgue measure of a measurable subset
E of IR. A null subset of IR is a subset E of IR such that meas(E) = 0. A
full subset of IR is a subset F of IR such that IR\F is a null set.

If S ⊆ X × IR for some set X, and J ⊆ IR, we write

SJ
def= S ∩ (X × J) = {(s, t) ∈ S : t ∈ J} . (2.6.1)

Definition 5. Let n, m ∈ IN, and let S be a subset of IRn × IR. We say
that S is essentially measurable if there exists a full subset J of IR such
that SJ ∈ BL(IRn, IR). We use EM(IRn, IR) to denote the set of essentially
measurable subsets of IRn × IR. If S ⊆ IRn × IR, we use EM(IRn, IR;S) to
denote the set of all subsets of S that belong to EM(IRn, IR), and write
EM(IRn, IR) ∩ S to denote the set of all sets of the form E ∩ S,
E ∈ EM(IRn, IR). ♦

It is clear that EM(IRn, IR) is a σ-algebra, and that, if S ⊆ IRn×IR, then
EM(IRn, IR;S) is a σ-algebra of subsets of S if and only if S ∈ EM(IRn, IR),
in which case EM(IRn, IR;S) = EM(IRn, IR) ∩ S. Moreover, the following
inclusions hold

Bor(IRn × IR) ⊆ BL(IRn, IR) ⊆ EM(IRn, IR) ⊆ Leb(IRn × IR) ,

and they are all strict if n > 0.

Remark 4. A subset S of IRn × IR is essentially measurable if and only
if there exists a full Borel subset J of IR such that SJ ∈ Bor(IRn × IR).
(In other words, “essential Borel⊗Lebesgue-measurability is equivalent to
essential Borel⊗Borel-measurability.”) Indeed, let Σ be the set of all subsets
S of IRn × IR such that SJ ∈ Bor(IRn × IR) for some full J ∈ Bor(IR). Then
Σ is obviously a σ-algebra, and Σ ⊆ EM(IRn, IR). Clearly, every set S of the
form E × F , with E ∈ Bor(IRn) and F ∈ Leb(IR) belongs to Σ. Therefore
BL(IRn, IR) ⊆ Σ. If S ∈ EM(IRn, IR;S), then we can pick a full subset J
of IR such that S ∩ (IRn × J) ∈ BL(IRn, IR). Then S ∩ (IRn × J) ∈ Σ, from
which it follows that

(
S ∩ (IRn × J)

)
∩ (IRn × L) ∈ Bor(IRn × IR) for some

full L ∈ Bor(IR). If M ∈ Bor(IR) is such that M ⊆ J and meas(J\M) = 0,
and we let N = M ∩ L, then N is a full Borel subset of IR, and

SN =

((
S ∩ (IRn × J)

)
∩ (IRn × L)

)
∩ (IRn × M) ∈ Bor(IRn × IR) ,

so S ∈ Σ. Therefore EM(IRn, IR) ⊆ Σ. So Σ = EM(IRn, IR). ♦
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Definition 6. Let n, m ∈ IN, and let S be a subset of IRn × IR. A map
f : S 7→ IRm is said to be essentially measurable on S if f−1(B) belongs to
EM(IRn, IR;S) for every Borel subset of IRm. ♦

Fact 2. If n, m ∈ IN, S ⊆ IRn × IR, and f : S 7→ IRm, then f is essentially
measurable if and only if there exists a full Borel subset J of IR such that
SJ belongs to Bor(IRn × IR) and the restriction fdSJ of f to SJ is Borel
measurable.

Proof. Assume that f is essentially measurable. Let A be a countable set
of Borel subsets of IRm that generates the σ-algebra Bor(IRm). For each
A ∈ A, the fact that f−1(A) ∈ EM(IRn, IR), together with Remark 4, imply
that we can choose a full Borel subset JA of IR such that f−1(A)∩(IRn×JA)
belongs to Bor(IRn × IR). Let J =

⋂
A∈A JA. Then J is a full Borel subset

of IR, and

f−1(A) ∩ (IRn × J) =
(
f−1(A) ∩ (IRn × JA)

)
∩ (IRn × J) ∈ Bor(IRn × IR)

for every A ∈ A. Therefore f−1(B) ∩ (IRn × J) ∈ Bor(IRn × IR) for every
B ∈ Bor(IRm). So fdSJ is Borel measurable. This proves one of the two
implications of our statement. The other implication is trivial. ♦

2.7 Curves, arcs, and spaces of arcs

Definition 7. Let n ∈ IN. A curve in IRn is a continuous map ξ : I 7→ IRn

whose domain I = Dom(ξ) is a nonempty real interval. An arc in IRn is a
curve ξ in IRn whose domain is a compact subinterval [aξ, bξ] of IR. We use
ARC(IRn) to denote the set of all arcs in IRn, regarded as a metric space
with the distance dARC : ARC(IRn) × ARC(IRn) 7→ IR+ given by

dARC(ξ, η) = |aξ − aη| + |bξ − bη| + sup
{
‖ξ̃(t) − η̃(t)‖ : t ∈ IR

}
,

where, for ζ ∈ ARC(IRn), ζ̃ denotes the extension of the arc ζ to a map
ζ̃ : IR 7→ IRn given by ζ̃(t) = ζ

(
min(max(t, aζ), bζ)

)
for t ∈ IR .

If S is a subset of IRn × IR, an arc in S is a ξ ∈ ARC(IRn) such that
(ξ(t), t) ∈ S for all t ∈ Dom(ξ). We use ARC(IRn; S) to denote the set of
all arcs in S, regarded as a subspace of the metric space ARC(IRn). ♦

It is clear that convergence in ARC(IRn) is uniform convergence, in the
following precise sense:
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(CARC) If ξ ∈ ARC(IRn), then a sequence {ξj}j∈IN of arcs belonging to
ARC(IRn) converges to ξ in ARC(IRn) if and only if

(i) aξj → aξ and bξj → bξ as j → ∞,

and

(ii) whenever {tj}j∈IN is a sequence in IR such that aξj ≤ tj ≤ bξj

for every j ∈ IN, and t ∈ IR is such that tj → t as j → ∞ (so
that aξ ≤ t ≤ bξ), it follows that ξj(tj) → ξ(t) as j → ∞.

It is also clear that ARC(IRn) is a complete metric space, and ARC(IRn; S)
is a closed subset of ARC(IRn) if and only if S is a closed subset of IRn × IR.

If n, m ∈ IN, S ⊆ IRn × IR, f : S 7→ IRm, and ξ ∈ ARC(IRn; S), then f o ξ
denotes the map [aξ, bξ] 3 t → f(ξ(t), t) ∈ IRm.

Fact 3. If n, m ∈ IN, S ⊆ IRn × IR, and f is EM(IRn, IR) ∩ S-measurable,
then f o ξ is measurable for every member ξ of ARC(IRn; S).

Proof. Let ξ : [a, b] 7→ IRn be continuous and such that (ξ(t), t) ∈ S for each
t ∈ [a, b]. Let K = {(ξ(t), t) : a ≤ t ≤ b}, so K is a compact subset of S.

If B is a Borel subset of IRm, then f−1(B) ∈ EM(IRn, IR) ∩ S, so
f−1(B) = A ∩ S for some A ∈ EM(IRn, IR). Then

(f o ξ)−1(B) = {t ∈ [a, b] : (ξ(t), t) ∈ f−1(B)}
= {t ∈ [a, b] : (ξ(t), t) ∈ f−1(B) ∩ K}
= Ξ−1

(
f−1(B) ∩ K

)
,

where Ξ is the map [a, b] 3 t 7→ (ξ(t), t) ∈ IRn × IR. But

Ξ−1(f−1(B) ∩ K) = Ξ−1(A ∩ S ∩ K) = Ξ−1(A ∩ K) ,

since K ⊆ S. Clearly, A ∩ K ∈ EM(IRn, IR). So it suffices to show that
Ξ−1(E) is a Lebesgue measurable subset of [a, b] whenever E belongs to
EM(IRn, IR).

Now, if E ∈ EM(IRn, IR), then there exists a full Borel subset J of IR
such that EJ is Borel measurable. Then

Ξ−1(E)=Ξ−1(EJ)∪{t∈J ∩ [a, b] :Ξ(t)∈E} ,

so Ξ−1(E) is Lebesgue measurable if Ξ−1(EJ) is Lebesgue measurable. So
it suffices to show that the set Ξ−1(E) is Lebesgue measurable whenever
E ∈ Bor(IRn × IR). This conclusion will be true for all E ∈ Bor(IRn × IR)
provided it is true for all E of the form F × G, F ∈ Bor(IRn), G ∈ Bor(IR).
But, if F ∈ Bor(IRn) and G ∈ Bor(IR), then Ξ−1(F × G) = ξ−1(F ) ∩ G, so
Ξ−1(F × G) is actually Borel measurable, completing our proof. ♦



almost lower semicontinuous differential inclusions 17

2.8 Points of density and Lebesgue points

If ϕ : IR 7→ IR is a measurable function, a Lebesgue point of ϕ is a point
t ∈ IR such that |ϕ(t)| < ∞ and

lim
h→0+

1
h

∫
[t−h,t+h]

∣∣∣ϕ(s) − ϕ(t)
∣∣∣ ds = 0 . (2.8.1)

A point of density of a measurable subset E ⊆ IR is a point of E that
is a Lebesgue point of the indicator function5 χE of E. Equivalently, a real
number t is a point of density of E if and only if t ∈ E and

lim
h↓0

1
2h

meas
(
E ∩ [t − h, t + h]

)
= 1 . (2.8.2)

It is well known that if ϕ : IR 7→ IR is locally integrable then almost
every point of IR is a Lebesgue point of ϕ. In particular, almost every point
of a measurable subset E of IR is a point of density of E. It follows that if
E ⊆ IR is measurable and meas(E) > 0, then E has a point of density.

2.9 Trajectories and flows

Definition 8. Let n ∈ IN, and let F : IRn × IR →7→ IRn be a set-valued map.

(D8.i) A trajectory of F (or a “trajectory of the differential inclusion
ẋ ∈ F (x, t)”) is a locally absolutely continuous map ξ : I 7→ IRn,
whose domain Dom(ξ) is a nonempty subinterval I of IR, such
that ξ̇(t) ∈ F (ξ(t), t) for almost every t ∈ I.

(D8.ii) We use Traj (F ) to denote the set of all trajectories of F , and
Traj c(F ) to denote the set of all ξ ∈ Traj (F ) whose domain is a
compact interval.

(D8.iii) If V is a subset of IRn, we write Traj c(F, V ) to denote the set of
all ξ ∈ Traj c(F ) such that (ξ(t), t) ∈ V for all t ∈ Dom(ξ).

(D8.iv) A maximal trajectory of F is a trajectory ξ : I 7→ IRn that
cannot be extended to a trajectory of F defined on a strictly
larger interval.

(D8.v) For (x, t, s) ∈ IRn × IR × IR, we define

ΦF (x, t, s) = {ξ(t) : ξ ∈ Traj (F ) , ξ(s) = x} . (2.9.1)

The set-valued map ΦF : IRn×IR×IR →7→ IRn is called the flow of F .
5The indicator function of E is the function whose value is 1 on E and 0 outside E.
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(D8.vi) For (t, s) ∈ IR × IR, we define a set-valued map ΦF
t,s : IRn →7→ IRn

by letting

ΦF
t,s(x) def= ΦF (x, t, s) for x ∈ IRn . (2.9.2)

The set-valued maps ΦF
t,s : IRn →7→ IRn are the flow maps of F . ♦

The sets Traj c(F ) are subsets of the metric space ARC(IRn) defined in §2.7.
With our definitions, if F : IRn × IR →7→ IRn, (x, t) ∈ IRn × IR, I = {t},

and ξ : I 7→ IRn is given by ξ(t) = x, then ξ is a trajectory of F , even if
(x, t) /∈ Dom(F ). Therefore the identity

ΦF
t,t = idIRn (2.9.3)

holds. In addition, the flow maps ΦF
t,s also satisfy the flow identity

ΦF
t,s o ΦF

s,r = ΦF
t,r if r ≤ s ≤ t . (2.9.4)

Remark 5. The equality of (2.9.4) may fail to be true if it is not true that
r ≤ s ≤ t. For example, if F is a time-varying vector field on IRn (i.e., a
single-valued map F : IRn×IR →7→ IRn) that does not have unique trajectories,
a < b, and ξ1, ξ2 : [a, b] 7→ IRn are two trajectories of ẋ = F (x, t) that satisfy
ξ1(a) = ξ2(a) and ξ1(b) 6= ξ2(b), then ξ2(b) belongs to (ΦF

b,a o ΦF
a,b)(ξ1(b)), so

ΦF
b,a o ΦF

a,b 6= idIRn = ΦF
b,b. ♦

Zorn’s Lemma easily implies that

Fact 4. If n ∈ IN and F : IRn × IR →7→ IRn, then every trajectory of the
differential inclusion ẋ ∈ F (x, t) can be extended to a maximal trajectory.♦
The following is an immediate consequence of Fact 4.

Fact 5. If n ∈ IN and F : IRn × IR →7→ IRn, then for every (x, t) ∈ IRn × IRn

there exists a maximal trajectory ξ of ẋ ∈ F (x, t) such that ξ(t) = x. ♦
Naturally, it may turn out that Dom(ξ) is just {t}.

3 Discontinuous vector fields and their flows

3.1 Integrally continuous time-varying maps

Definition 9. Assume that n, m ∈ IN, S is a subset of IRn × IR, and
f : S 7→ IRm. An integral bound for f is a Lebesgue integrable function
IR 3 t 7→ ϕ(t) ∈ [0, +∞] such that

‖f(x, t)‖ ≤ ϕ(t) for all (x, t) ∈ S . (3.1.1)
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We say that f is integrably bounded if there exists an integral bound for f .
We say that f is locally integrably bounded (abbr. LIB) if for every compact
subset K of S the restriction of f to K is integrably bounded.

A set F of maps from S to IRm is uniformly LIB if every f ∈ F is LIB
and, in addition, the integral bounds for the restriction of f to K can be
chosen, for each compact subset K of S, independently of f . ♦

Definition 10. Assume that n, m ∈ IN, S ⊆ IRn × IR, f : S 7→ IRm, and
A ⊆ ARC(IRn; S). We say that f is integrable along arcs on A, or arc-
integrable on A, if f o ξ is Lebesgue integrable for every ξ ∈ A. ♦

Fact 6. If n, m ∈ IN, S ⊆ IRn × IR, f : S 7→ IRm, and f is EM(IRn, IR)∩ S-
measurable and LIB, then f is arc-integrable on ARC(IRn; S).

Proof. If ξ ∈ ARC(IRn; S), then Fact 3 implies that f o ξ is measurable, and
the integral bound (3.1.1) implies that f o ξ is integrable. ♦
If f is arc-integrable on A, we can define a map T A

f : A 7→ ARC(IRm)—the
integral operator associated to f on A—by letting T A

f (ξ) be, for each ξ ∈ A,
the arc η : [aξ, bξ] 7→ IRm given by

η(t) =
∫ t

aξ

f(ξ(s), s) ds . (3.1.2)

Definition 11. Assume that n, m ∈ IN, S ⊆ IRn × IR, f : S 7→ IRm, and
A ⊆ ARC(IRn; S). We say that f is integrally continuous on A if

(IC.1) f is EM(IRn, IR) ∩ S-measurable,
(IC.2) f is arc-integrable on A,
(IC.3) the map T A

f : A 7→ ARC(IRm) is continuous. ♦

We also define maps T A
f,E : A 7→ IRm, if E is a measurable subset of IR, by

T A
f,E(ξ) def=

∫
E∩Dom(ξ)

f(ξ(s), s) ds for ξ ∈ A , (3.1.3)

and maps T A
f,a,b : A 7→ IRm, if a, b ∈ IR and a ≤ b, by

T A
f,a,b(ξ)

def=
∫
[a,b]∩Dom(ξ)

f(ξ(s), s) ds for ξ ∈ A . (3.1.4)

We observe that

T A
f,a,b(ξ) = T A

f (ξ)
(
λ(ξ, b)

)
− T A

f (ξ)
(
λ(ξ, a)

)
for ξ ∈ A , (3.1.5)

where λ(ξ, s) def= min
(

max(aξ, s) , bξ

)
.
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Proposition 1. Assume that n, m ∈ IN, S ⊆ IRn × IR, A is a subset of
ARC(IRn; S), and f is EM(IRn, IR)∩S-measurable and LIB. Then Condition
(IC.3) is equivalent to the following “strong integral continuity condition”:

(SIC) for every E ∈ Leb(IR), the map T A
f,E : A 7→ IRm is continuous,

as well as to the “weak integral continuity condition”:

(WIC) the map T A
f,a,b : A 7→ IRm is continuous whenever a, b ∈ IR and

a ≤ b.

Proof. To prove the equivalence of (IC.3), (SIC) and (WIC), we first
observe that the implication (SIC)⇒(WIC) is trivial, and the implication
(IC.3)⇒(WIC) follows immediately from (3.1.5).

Next, we consider a sequence {ξj}j∈IN of arcs ξj that belong to A and
converge to a ξ∞ ∈ A. Then aξj → aξ∞ and bξj → bξ∞ as j → ∞. In
addition, it is easy to see that the set

K =
{

(x, t) : (∃j ∈ IN)
(

t ∈ Dom(ξj) ∧ x = ξj(t)
) }

is a compact subset of S. Therefore there exists an integrable function
ϕK : IR 7→ [0,∞] such that the bound ‖ξ̇j(t)‖ ≤ ϕK(t) holds for every pair
(j, t) such that j ∈ IN and t ∈ Dom(ξj).

Fix real numbers α , β such that α ≤ aξj and β ≥ bξj for all j ∈ IN.
Define maps θj , ηj : [α, β] 7→ IRm by letting

θj(t) =

{
f(ξj(t), t) if t ∈ [aξj , bξj ] ,
0 if t ∈ [α, β] \ [aξj , bξj ] ,

ηj(t) =
∫ t

α
θj(s) ds .

Then the θj satisfy ‖θj(t)‖ ≤ ϕK(t) for all t, j, and therefore the ηj

are absolutely continuous and satisfy the bound ‖η̇j(t)‖ ≤ ϕK(t) for all t, j.
Therefore the sequence {ηj}j∈IN is uniformly bounded and equicontinuous.
Moreover, ηj(b) − ηj(a) = T A

f,a,b(ξj) for all j and all a, b ∈ [α, β] such that
a ≤ b. If (WIC) holds, it follows that the ηj converge pointwise to η∞,
and the equicontinuity implies that the convergence is uniform on [α, β]. In
particular, if aξj ≤ tj ≤ bξj and tj → t as j → ∞, then ηj(tj) → η∞(t),
showing that T A

f (ξj) → T A
f (ξ∞) in ARC(IRm). This proves the implication

(WIC)⇒(IC.3).
Furthermore, given any ε > 0 there is a δ = δ(ε) > 0 such that

∫
G ϕK < ε

whenever G is a measurable subset of [α, β] of measure < δ. If E is an
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arbitrary measurable subset of IR, and ε > 0, then we can let Ẽ = E∩ [α, β],
choose δ = δ( ε

3), and find a subset F of [α, β] which is a finite union of
pairwise disjoint intervals and is such that the symmetric difference Ẽ∆F
has measure < δ. Then |

∫
Ẽ θj −

∫
F θj | ≤ ε

3 for all j. If (WIC) holds, then∫
F θj →

∫
F θ∞, so we can find a j0 ∈ IN such that |

∫
F θj −

∫
F θ∞| ≤ ε

3
for j ≥ j0, and then |

∫
Ẽ θj −

∫
Ẽ θ∞| ≤ ε for j ≥ j0, from which it clearly

follows that T A
f,E(ξj)− T A

f,E(ξ∞) ≤ ε for j ≥ j0. This proves the implication
(WIC)⇒(SIC).

We have thus established that (WIC)⇒(SIC)⇒(WIC)⇒(IC.3)⇒(WIC),
which completes the proof of the equivalence of (IC.3), (SIC) and (WIC).♦

The equivalence of (SIC) and (IC.3) implies the following measurable
intertwining property:

Theorem 1. Assume that n, m ∈ IN and S ⊆ IRn × IR. Let {fj}j∈IN be
a uniformly LIB sequence of EM(IRn, IR) ∩ S-measurable maps S 7→ IRm.
Let A ⊆ ARC(IRn; S) be such that the fj are integrally continuous on A.
Let {Ej}j∈IN be a sequence of pairwise disjoint Lebesgue measurable subsets
of IR such that IR =

⋃
j∈IN Ej . Define a map f : S 7→ IRm by letting

f(x, t) = fj(x, t) for j ∈ IN , (x, t) ∈ S , t ∈ Ej . (3.1.6)

Then f is integrally continuous on A.

Proof. The EM(IRn, IR)∩S-measurability of f is obvious, and it is clear that
f is LIB, so f is arc-integrable on ARC(IRn; S) (cf. Fact 6). Let {ξ`}`∈IN

be a sequence in A that converges to a ξ∞ ∈ A. Let E be a measurable
subset of IR. Let K be a compact subset of S such that (ξ`(t), t) ∈ K for all
` ∈ IN and all t ∈ Dom(ξ`). Let α, β be real numbers such that α ≤ t ≤ β
whenever (x, t) ∈ K. Let ϕ : IR 7→ [0, +∞] be integrable and such that
‖fj(x, t)‖ ≤ ϕ(t) whenever (x, t) ∈ K and j ∈ IN, and ‖f(x, t)‖ ≤ ϕ(t)
whenever (x, t) ∈ K.

Let ε > 0. Let δ > 0 be such that
∫
H ϕ ≤ ε whenever H ⊆ IR is

measurable and meas(H) ≤ δ. Let j∗ be such that∑
j>j∗

meas(E ∩ Ej ∩ [α, β]) ≤ δ .

Using (SIC), we find that for each j∫
E∩Ej∩Dom(ξ`)

f o ξ` →
∫

E∩Ej∩Dom(ξ∞)
f o ξ∞ as ` → ∞ . (3.1.7)
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Therefore, if we let Ẽ = E ∩ (E0 ∪ E1 ∪ . . . ∪ Ej∗), we see that∫
Ẽ∩Dom(ξ`)

f o ξ` →
∫

Ẽ∩Dom(ξ∞)
f o ξ∞ as ` → ∞ , (3.1.8)

since Ẽ = ∪j≤j∗(E ∩ Ej) and the sets Ej are pairwise disjoint.
On the other hand, meas((E\Ẽ) ∩ [α, β]) ≤ δ, and Dom(ξ`) ⊆ [α, β].

Therefore ∥∥∥∥∥
∫
(E\Ẽ)∩Dom(ξ`)

f o ξ`

∥∥∥∥∥ ≤ ε for ` ∈ IN . (3.1.9)

It follows that

lim sup
`→∞

∥∥∥∥∥
∫

E∩Dom(ξ`)
f o ξ` −

∫
E∩Dom(ξ∞)

f o ξ∞

∥∥∥∥∥ ≤ 2ε . (3.1.10)

Since this is true for every ε > 0, we see that∫
E∩Dom(ξ`)

f o ξ` →
∫

E∩Dom(ξ∞)
f o ξ∞ ,

and our proof is complete. ♦

3.2 Conic continuity

Let n∈ IN, S⊆ IRn×IR. If ψ :S 7→ IR+ is a function, we use ARCψ(IRn; S) to
denote the set of all absolutely continuous ξ ∈ ARC(IRn; S) such that
‖ξ̇(t)‖≤ψ(ξ(t), t) for almost all t∈Dom(ξ). Also, we write ÃRCψ(IRn; S)
to denote the (much larger) set of all ξ ∈ ARC(IRn; S) such that

lim sup
t↓t̄

‖ξ(t) − ξ(t̄)‖
t − t̄

≤ ψ(ξ(t̄), t̄) for a.e. t̄ ∈ Dom(ξ) . (3.2.1)

If C > 0, and (x̄, t̄) ∈ IRn × IR, we write

ΓC(x̄, t̄) def=
{
(x, t) ∈ IRn × IR : t ≥ t̄ , ‖x − x̄‖ ≤ C(t − t̄)

}
Γ2

C(x̄, t̄) def=
{
(x, x′, t)∈ IRn×IRn×IR: (x, t)∈ΓC(x̄, t̄), (x′, t)∈ΓC(x̄, t̄)

}
.

Definition 12. Let n, m ∈ IN, S ⊆ IRn × IR, f : S 7→ IRm. Let C > 0, and
let (x̄, t̄) be a point of S.
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1. We say that f is forward ΓC-continuous at (x̄, t̄) if

lim
(x,t)→(x̄,t̄) , (x,t)∈ΓC(x̄,t̄)∩S

f(x, t) = f(x̄, t̄) . (3.2.2)

2. We call f weakly forward ΓC-continuous at (x̄, t̄) if

lim
(x,x′,t)→(x̄,x̄,t̄) , (x,x′,t)∈Γ2

C(x̄,t̄)∩S̃

(
f(x, t) − f(x′, t)

)
= 0 , (3.2.3)

where S̃ = {(x, x′, t) : (x, t) ∈ S ∧ (x′, t) ∈ S}.
If S 3 (x, t) 7→ C(x, t) ∈ IR+ is a function, we say that the map f is
forward ΓC-continuous (resp. weakly forward ΓC-continuous) if it is forward
(resp. weakly forward) ΓC(x̄,t̄)-continuous at every point (x̄, t̄) ∈ S such that
C(x̄, t̄) < ∞. ♦

Remark 6. The forward ΓC-continuity property of Definition 12 is a “conic
continuity” condition, because it says that f(x, t) approaches f(x̄, t̄) when
(x, t) approaches (x, t) along the cone ΓC(x̄, t̄) in IRn × IR. ♦

3.3 Conic continuity implies integral continuity

If S ⊆ IRn × IR, and t ∈ IR, we write St to denote the set

St
def= {x ∈ IRn : (x, t) ∈ S} .

Theorem 2. Let n, m ∈ IN, S ⊆ IRn × IR, f : S 7→ IRm. Let C, ψ be
IR+-valued functions on S such that,

for a.e. t ∈ IR , ψ(x, t) < C(x, t) < ∞ for all x ∈ St . (3.3.1)

Assume that f is EM(IRn, IR) ∩ S-measurable, locally integrably bounded,
and weakly forward ΓC-continuous. Then f is integrally continuous on the
set ÃRCψ(IRn; S).

Proof. It follows from Fact 6 that f is arc-integrable on ARC(IRn; S), since
f is LIB and EM(IRn, IR) ∩ S-measurable.

To prove integral continuity, we use Proposition 1, and show that (SIC)
holds. We will actually prove the stronger fact that

(#) if {ξj}j∈IN is a sequence in ARC(IRn; S) that converges in ARC(IRn)
to a limit ξ∞ ∈ ÃRCψ(IRn; S), then∫

E∩Dom(ξj)
f(ξj(s), s) ds →

∫
E∩Dom(ξ∞)

f(ξ∞(s), s) ds (3.3.2)

for every measurable subset E of IR.
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For this purpose, we fix a sequence {ξj}j∈IN in ARC(IRn; S) that converges
in ARC(IRn) to a ξ∞ ∈ ÃRCψ(IRn; S). We write aj = aξj , bj = bξj ,
Ij = Dom(ξj) = [aj , bj ], for j ∈ IN.

Since ξj → ξ∞ in ARC(IRn; S), the sequences {aj}j∈IN and {bj}j∈IN

converge to the limits a∞, b∞, respectively. So we can pick a compact
interval J = [a, b] such that a ≤ aj ≤ bj ≤ b for all j ∈ IN. It is then clear
that it suffices to prove that (3.3.2) holds for all measurable subsets of J ,
since

∫
E∩Ij

f(ξj(s), s) ds =
∫
(E∩J)∩Ij

f(ξj(s), s) ds for all j ∈ IN.
For each ε such that ε > 0, let E(ε) be the set of all measurable E ⊆ J

having the property that there exists an N = N(ε, E) ∈ IN such that∥∥∥ ∫
E∩Ij

f o ξj −
∫

E∩I∞
f o ξ∞

∥∥∥ ≤ ε meas(E)

for j ≥ N . It is clear that E(ε) is closed under finite disjoint unions.
Now fix ε and a measurable subset E of J , and let H(ε, E) denote the

collection of all subsets U of E(ε) such that

(i) every member U of U is a measurable subset of J such that U ⊆ E
and meas(U) > 0,

(ii) U1 ∩ U2 = ∅ whenever U1, U2 ∈ U and U1 6= U2.

It is clear that every U ∈ H(ε, E) is finite or countable, since the members of
U are pairwise disjoint measurable subsets of J of strictly positive measure.
Moreover, it is clear that every increasing union of members of H(ε, E) is
in H(ε, E). Finally, H(ε, E) 6= ∅, since ∅ ∈ H(ε, E). It then follows from
Zorn’s Lemma that there is a U ∈ H(ε, E) which is maximal with respect
to inclusion.

We now show that ∑
U∈U

meas(U) = meas(E) . (3.3.3)

Suppose that (3.3.3) does not hold. Let

Û =
⋃

{U : U ∈ U} .

Then Û is measurable and satisfies

Û ⊆ E and meas(Û) =
∑
U∈U

meas(U) < meas(E) , (3.3.4)
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because the members of U are pairwise disjoint measurable subsets of E.
Let V = E\Û . Then meas(V ) > 0 and V ⊆ E. Let V ′ = V \I∞. We

claim that
meas(V ′) = 0 . (3.3.5)

Indeed, assume that meas(V ′) > 0. Then there exist a compact interval L
such that L ∩ I∞ = ∅ and meas(V ′ ∩ L) > 0. Since aj → a∞ and bj → b∞,
there must exist a j∗ ∈ IN such that L∩ Ij = ∅ whenever j ∈ IN and j ≥ j∗.
Then

∫
V ′∩L∩Ij

f o ξj = 0 if j ∈ IN and j ≥ j∗. Therefore

lim
j→∞

∫
V ′∩L∩Ij

f o ξj =
∫

V ′∩L∩I∞
f o ξ∞ .

Hence V ′ ∩ L ∈ E(ε). Since V ′ ∩ U = ∅ whenever U ∈ U , V ′ ∩ L ⊆ E, and
meas(V ′∩L) > 0, the set U ∪{V ′∩L} also belongs to H(ε, E), contradicting
the maximality of U . This contradiction shows that (3.3.5) holds.

Now let V1 = V ∩ I∞. Then V = V ′ ∪ V1, so (3.3.5) implies that
meas(V1) > 0. Let V2 be the set of all t ∈ IR such that

a∞ < t < b∞ ,

ψ(x, t) < C(x, t) < ∞ for all x ∈ St

and

lim sup
t′→t+

‖ξ∞(t′) − ξ∞(t)‖
t′ − t

≤ ψ(ξ∞(t), t) .

It then follows from (3.3.1) and the fact that ξ∞ ∈ ÃRCψ(IRn; S) that
meas(I∞\V2) = 0, so meas(V1 ∩ V2) = meas(V1) > 0. We can therefore pick
a point of density t̄ of V1 ∩ V2.

Let x̄ = ξ∞(t̄). Set C̄ = C(x̄, t̄), B̄ = ψ(x̄, t̄), and choose D such that
B̄ < D < C̄. Using the weak ΓC̄-continuity of f at (x̄, t̄), find a δ > 0 such
that (

t̄ < t ≤ t̄ + δ ∧ ‖x − x̄‖ ≤ C(t − t̄) ∧ ‖x′ − x̄‖ ≤ C(t − t̄)
)

=⇒ ‖f(x, t) − f(x′, t)‖ ≤ ε . (3.3.6)

By making δ smaller, if necessary, we may assume that

a∞ < t̄ − δ < t̄ + δ < b∞ , (3.3.7)

meas
(
V1 ∩ V2 ∩ [t̄ − δ, t̄ + δ]

)
≥ 3

2
δ , (3.3.8)
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and

‖ξ∞(t) − ξ∞(t̄)‖ ≤ D(t − t̄) whenever t̄ < t ≤ t̄ + δ . (3.3.9)

Let ρ = δ
3 . Pick N ∈ IN such that

‖ξj(t) − ξ∞(t)‖ ≤ (C − D)ρ for t̄ ≤ t ≤ t̄ + δ , j ∈ IN , j ≥ N .

Then, if j ∈ IN, j ≥ N and t̄ + ρ ≤ t ≤ t̄ + δ, we have

‖ξj(t) − x̄‖ ≤ ‖ξj(t) − ξ∞(t)‖ + ‖ξ∞(t) − x̄‖
≤ (C − D)ρ + D(t − t̄)
≤ C(t − t̄) .

Therefore

‖f(ξj(t), t) − f(ξ∞(t), t)‖ ≤ ε whenever t̄ + ρ ≤ t ≤ t̄ + δ , j ∈ IN , j ≥ N .

So, if j ≥ N , the inequality∫
V1∩V2∩[t̄+ρ,t̄+δ]

‖f(ξj(t), t)− f(ξ∞(t), t)‖ dt ≤ ε meas(V1 ∩V2 ∩ [t̄ + ρ, t̄ + δ]) .

holds. On the other hand,

meas(V1 ∩ V2 ∩ [t̄ + ρ, t̄ + δ]) > 0 , (3.3.10)

because if meas(V1 ∩ V2 ∩ [t̄ + ρ, t̄ + δ]) = 0 then we would have

meas(V1 ∩ V2 ∩ [t̄ − δ, t̄ + δ]) = meas(V1 ∩ V2 ∩ [t̄ − δ, t̄ + ρ])
≤ δ + ρ

=
4δ

3
,

contradicting (3.3.8). So, if we define W = V1 ∩ V2 ∩ [t̄ + ρ, t̄ + δ], we see
that W ∈ E(ε) and meas(W ) > 0. Moreover, W ∩ U = ∅ whenever U ∈ U .
Therefore U ∪{W} ∈ H(ε, E), contradicting the maximality of U . So (3.3.3)
is proved.

Given any δ > 0, (3.3.3) implies that we can find a finite subset V of U
such that ∑

U∈V
meas(U) ≥ meas(E) − δ . (3.3.11)

If we let V =
⋃{U : U ∈ V}, we see that V ∈ E(ε). So we have shown that
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(A) If E is a measurable subset of J and ε > 0, δ > 0, then there is a
measurable subset V of E such that meas(E\V ) ≤ δ and∥∥∥ ∫

V
f o ξj −

∫
V

f o ξ∞
∥∥∥ ≤ ε meas(V )

for all sufficiently large j.

Now let
K =

⋃
j∈IN

{
(ξj(t), t) : aj ≤ t ≤ bj

}
.

Then K is a compact subset of S. Using the fact that f is LIB, choose an
integrable function ϕ : IR 7→ [0, +∞] such that ‖f(x, t)‖ ≤ ϕ(t) whenever
(x, t) ∈ K. Given ε, choose δ such that

∫
L ϕ < ε whenever L is a measurable

subset of IR such that meas(L) ≤ δ. If we apply (A) with this choice of δ,
we see that ∥∥∥ ∫

E
f o ξj −

∫
E

f o ξ∞
∥∥∥ ≤ ε(2 + meas(E))

for all sufficiently large j. Since ε is arbitrary, we can conclude that∥∥∥∫
E

f o ξj −
∫

E
f o ξ∞

∥∥∥ → 0 as j → ∞ , (3.3.12)

and the proof is complete. ♦

3.4 Time-varying vector fields

Definition 13. Let n ∈ IN. A time-varying vector field (abbr. “TVVF”)
on IRn is a—possibly partially defined—single-valued map from IRn × IR to
IRn. We use TV V F (IRn) to denote the set of all TVVFs on IRn. If S is a
subset of IRn × IR, we use TV V F (IRn; S) to denote the set of all TVVFs on
IRn whose domain is S. ♦

A TVVF on IRn is therefore a set-valued function f : IRn × IR →7→ IRn that
happens to be single-valued. It follows that all the definitions introduced in
§2.9 for differential inclusions ẋ ∈ F (x, t), and all the results stated there,
apply to TVVFs. So we have a well defined concept of “trajectory of a
TVVF f ,” or “trajectory of the ordinary differential equation ẋ = f(x, t),”
and every TVVF f has a flow Φf .

We now prove some elementary estimates for LIB TVVFs.
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If x̄ ∈ IRn, t̄ ∈ IR, and δ > 0, we write

Nδ(x̄, t̄) def=
{

(x, t) ∈ IRn × IR : ‖x − x̄‖ ≤ δ ∧ t̄ − δ ≤ t ≤ t̄ + δ
}

,

N (2)
δ (x̄, t̄) def=

{
(x, t, s) : (x, t) ∈ Nδ(x̄, t̄) ∧ (x, s) ∈ Nδ(x̄, t̄)

}
.

Lemma 1. Let ϕ : IR 7→ [0, +∞] be an integrable function. Let n ∈ IN, and
let f ∈ TV V F (IRn). Let δ1, δ be positive numbers such that

δ +
∫ t̄+δ

t̄−δ
ϕ < δ1 , (3.4.1)

and

‖f(x, t)‖ ≤ ϕ(t) whenever (x, t) ∈ Nδ1(x̄, t̄) ∩ Dom(f) . (3.4.2)

Then

‖y−x̄‖ ≤ δ1 whenever y∈Φf (x, t, s) for some (x, t, s)∈N (2)
δ (x̄, t̄) . (3.4.3)

Proof. Pick x, t, s, y such that (x, t, s) ∈ N (2)
δ (x̄, t̄) and y ∈ Φf (x, t, s).

Let ζ be a trajectory of f such that ζ(s) = x and ζ(t) = y. Let I be the
compact interval [min(s, t), max(s, t)]. Let ξ be the restriction of ζ to I.
Then I ⊆ [t̄ − δ, t̄ + δ], and ξ ∈ C0(I, IRn).

Let L be the set of those τ ∈ I such that ‖ξ(σ) − x̄‖ ≤ δ1 for all σ that
lie between s and τ . Then L is a compact interval, and s ∈ L ⊆ I. So
L = [τ, σ], where τ ∈ I, σ ∈ I, and s ∈ {τ, σ}.

Clearly, (ξ(r), r) ∈ Nδ1(x̄, t̄) whenever r ∈ L. Moreover, (ξ(r), r) belongs
to Dom(f) and ξ̇(r) = f(ξ(r), r) for almost all r ∈ L.

It follows that, if r ∈ L, then

‖ξ(r) − x̄‖ ≤ ‖ξ(r) − x‖ + ‖x − x̄‖
= ‖ξ(r) − ξ(s)‖ + ‖x − x̄‖

=
∥∥∥ ∫ r

s
f(ξ(u), u) du

∥∥∥ + ‖x − x̄‖

≤
∫ t̄+δ

t̄−δ
ϕ(u) du + δ

< δ1 .

We know that one of the endpoints of L is s. Let ρ be the other endpoint.
Assume that ρ 6= t. Then ρ is an interior point of I. But ‖ξ(ρ) − x̄‖ < δ1,
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because ρ ∈ L. Therefore there exists a number ε such that ε > 0,
[ρ − ε, ρ + ε] ⊆ I, and ‖ξ(t) − x̄‖ < δ1 whenever t ∈ [ρ − ε, ρ + ε]. But
then the interval [ρ− ε, ρ+ ε] must be entirely contained in L, contradicting
the fact that ρ was a boundary point of L. This contradiction shows that
the assumption that ρ 6= t is false. So ρ = t, and then L = I. Then t ∈ L,
so ‖y − x̄‖ = ‖ξ(t) − x̄‖ ≤ δ1. ♦

The following continuity property of the flow is a trivial consequence of
Lemma 1:

Corollary 1. Let n ∈ IN, f ∈ TV V F (IRn). Assume that f is LIB. Assume
also that for some positive number δ the restriction of f to Nδ(x̄, t̄) ∩ Dom(f)
is integrably bounded. Then

lim
(x,t,s)→(x̄,t̄,t̄) , Φf (x,t,s) 6=∅

sup
{
‖y − x̄‖ : y ∈ Φf (x, t, s)

}
= 0 . (3.4.4)

Proof. Let ε > 0. Pick δ1 such that 0 < δ1 ≤ ε and the restriction of
f to Nδ1(x̄, t̄) ∩ Dom(f) is integrably bounded. Then choose an integrable
ϕ : IR 7→ [0, +∞] such that (3.4.2) is true, and pick δ for which (3.4.1) is
satisfied. Then Lemma 1 implies that ‖y − x̄‖ ≤ ε whenever ‖x − x̄‖ ≤ δ,
‖t − t̄‖ ≤ δ, ‖s − t̄‖ ≤ δ, and y ∈ Φf (x, t, s). So (3.4.4) is true. ♦

3.5 Admissible time-varying vector fields

We will be interested in time-varying vector fields f ∈ TV V F (IRn) that
satisfy the following property:

(AD) The map f is EM(IRn, IR) ∩ Dom(f)-measurable, and for every
compact subset K of Dom(f) there exists an integrable function
ϕ : IR 7→ [0, +∞] such that

(AD.i) ‖f(x, t)‖ ≤ ϕ(t) for all (x, t) ∈ K,
(AD.ii) f is integrally continuous on ARCϕ(IRn; K).

Definition 14. A time-varying vector field on IRn for which (AD) holds
will be called admissible. We use ADM(IRn) to denote the class of all
admissible time-varying vector fields on IRn. If S is a subset of IRn × IR,
we use ADM(IRn; S) to denote the class of all f ∈ ADM(IRn) such that
Dom(f) = S. ♦

Definition 15. Let n ∈ IN, f ∈ TV V F (IRn). We call f trajectory-compact
if the set Traj c(f, K) is compact for every compact subset K of Dom(f).♦
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In addition to the sets Nδ(x̄, t̄), N (2)
δ (x̄, t̄) defined earlier, we introduce

their “one-sided” versions:

Nδ,+(x̄, t̄) def=
{

(x, t) ∈ IRn × IR : ‖x − x̄‖ ≤ δ ∧ t̄ ≤ t ≤ t̄ + δ
}

,

Nδ,−(x̄, t̄) def=
{

(x, t) ∈ IRn × IR : ‖x − x̄‖ ≤ δ ∧ t̄ − δ ≤ t ≤ t̄
}

,

N (2)
δ,+(x̄, t̄) def=

{
(x, t, s) : (x, t) ∈ Nδ,+(x̄, t̄) ∧ (x, s) ∈ Nδ,+(x̄, t̄)

}
,

N (2)
δ,−(x̄, t̄) def=

{
(x, t, s) : (x, t) ∈ Nδ,−(x̄, t̄) ∧ (x, s) ∈ Nδ,−(x̄, t̄)

}
.

Definition 16. Assume that n ∈ IN, f ∈ TV V F (IRn), S = Dom(f), and
(x̄, t̄) ∈ S. We say that f is flow-upper semicontinuous (resp. forward
flow-upper semicontinuous, backward flow-upper semicontinuous) near (x̄, t̄)
if there exists a δ ∈ IR such that δ > 0 and the restriction to the set
N (2)

δ (x̄, t̄) (resp. N (2)
δ,+(x̄, t̄), N (2)

δ,−(x̄, t̄)) of the set-valued map Φf is upper
semicontinuous and has nonempty compact values. ♦

Theorem 3. Let n ∈ IN, f ∈ ADM(IRn), S = Dom(f). Then f is
trajectory-compact. Moreover,

(T3.i) f is flow-upper semicontinuous at every interior point (x̄, t̄) of S,
(T3.ii) f is forward flow-upper semicontinuous at every point (x̄, t̄) such

that Nδ,+(x̄, t̄) ⊆ S for some positive δ,
(T3.iii) f is backward flow-upper semicontinuous at every point (x̄, t̄) such

that Nδ,−(x̄, t̄) ⊆ S for some positive δ.

Proof. We first prove trajectory-compactness. Let K ⊆ S be compact,
and let {ξj}j∈IN be a sequence in Traj c(f, K). Let ϕ : IR → [0, +∞] be
integrable and such that ‖f(x, t)‖ ≤ ϕ(t) for all (x, t) ∈ K and the integral
map T ARCϕ(IRn;K)

f : ARCϕ(IRn; K) 7→ ARC(IRn) is continuous.
Then the arcs ξj are entirely contained in K. Moreover, the ξj are

absolutely continuous and satisfy ‖ξ̇j(t)‖ ≤ ϕ(t) for almost all t ∈ Dom(f).
Therefore the sequence {ξj}j∈IN is uniformly bounded and equicontinuous,
so there is a subsequence {ξj(`)}`∈IN that converges in ARC(IRn) to an
arc ξ∞. Then ξ∞ ∈ ARC(IRn; K), since K is compact. Moreover, if we
write Dom(ξj) = [aj , bj ] for j ∈ IN, then aj(`) → a∞, bj(`) → b∞, and
‖ξj(`)(t) − ξj(`)(s)‖ ≤

∫ t
s ϕ whenever j ∈ IN and aj ≤ s ≤ t ≤ bj . It follows

that ‖ξ∞(t) − ξ∞(s)‖ ≤
∫ t
s ϕ whenever a∞ ≤ s ≤ t ≤ b∞. Therefore

ξ∞ ∈ ARCϕ(IRn; K).
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Let ηj = T ARCϕ(IRn;K)
f for j ∈ IN. Then ηj ∈ ARC(IRn), and the

continuity of T ARCϕ(IRn;K)
f on ARCϕ(IRn; K) implies that ηj(`) → η∞ as

` → ∞. Since ξj ∈ Traj c(f) for j ∈ IN, the equalities

ξj(t) = ξj(aj) +
∫ t

aj

f(ξj(s), s) ds = ξj(aj) + ηj(t)

hold if j∈ IN, aj ≤ t≤bj . Taking j =j(`) and letting `→∞, we see that

ξ∞(t) = ξ∞(a∞) + η∞(t) = ξ∞(a∞) +
∫ t

a∞
f(ξ∞(s), s) ds

if a∞≤ t≤b∞. So ξ∞∈Traj c(f, K), proving that f is trajectory-compact.
We now prove Conclusion (T3.i). Pick an interior point (x̄, t̄) of S. For

δ ∈ IR, δ > 0, write K(δ) def= Nδ(x̄, t̄). Let δ1 be such that δ1 > 0 and
K(δ1) ⊆ S. Let ϕ be an integrable function on IR such that ‖f(x, t)‖ ≤ ϕ(t)
whenever (x, t) ∈ K(δ1) and f is integrally continuous on ARCϕ(IRn;K(δ1)).
Let δ be such that δ > 0 and (3.4.1) holds. Let G be the graph of the
restriction to N (2)

δ (x̄, t̄) of the set-valued map Φf , so that

G =
{

(x, t, s, y)∈ IRn×IR×IR×IRn :y∈Φf (x, t, s), (x, t, s)∈N (2)
δ (x̄, t̄)

}
.

We will prove that G is compact. For this purpose, we pick a sequence
{(xj , tj , sj , yj)}j∈IN of points of G, and show that it has a subsequence that
converges to a point (x, t, s, y) ∈ G. It is clear that the sequences {xj}j∈IN,
{tj}j∈IN, {sj}j∈IN, are bounded. We may therefore assume that the limits
x∞ = limj→∞ xj , t∞ = limj→∞ tj , s∞ = limj→∞ sj , exist.

For each j ∈ IN, let ζj be a trajectory of f such that ζj(sj) = xj and
ζj(tj) = yj . Let Ij be the compact interval [min(sj , tj), max(sj , tj)], and let
ξj be the restriction of ζj to Ij . Then ξj is a trajectory of f , ξj(sj) = xj ,
ξj(tj) = yj , and Dom(ξj) = Ij . If t ∈ Ij , then (xj , t, sj) ∈ N (2)

δ (x̄, t̄), and
Lemma 1 implies that ‖ξj(t) − x̄‖ ≤ δ1, so (ξj(t), t) ∈ K(δ1).

It follows that ξj ∈ Traj c(f,K(δ1)) for every j ∈ IN. Since f is trajectory-
compact, there is a subsequence {ξj(`)}`∈IN of {ξj}j∈IN that converges in
ARC(IRn) to a limit ξ∞ ∈ Traj c(f,K(δ1)). Let y∞ = ξ∞(t∞). Then

lim
`→∞

yj(`) = lim
`→∞

ξj(`)(tj(`)) = ξ∞(t∞) = y∞ ,

so lim`→∞(xj(`), tj(`), sj(`), yj(`)) = (x∞, t∞, s∞, y∞). Moreover,

ξ∞(s∞) = lim
`→∞

ξj(`)(sj(`)) = lim
`→∞

xj(`) = x∞ .
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Therefore y∞∈Φf (x∞, t∞, s∞). Since (xj , tj , sj)∈N (2)
δ (x̄, t̄) for every j∈ IN,

it is clear that (x∞, t∞, s∞) ∈ N (2)
δ (x̄, t̄). Therefore (x∞, t∞, s∞, y∞) ∈ G.

This completes the proof that G is compact. Equivalently, we have shown
that the set-valued map Φf has compact values and is upper semicontinuous
on the set N (2)

δ (x̄, t̄).
To conclude our proof, we have to show (cf. Remark 7) that

Φf (x, t, s) 6= ∅ whenever (x, t, s) ∈ N (2)
δ (x̄, t̄) . (3.5.1)

Fix a point (x, t, s) of N (2)
δ (x̄, t̄). Let J = [t̄− δ, t̄+ δ]. Let X be the Banach

space of all continuous maps ξ : J 7→ IRn, endowed with the sup norm. Let C
be the subset of X consisting of those ξ ∈ X that are absolutely continuous
and satisfy ‖ξ(r) − x̄‖ ≤ δ1 for all r ∈ J and ‖ξ̇(r)‖ ≤ ϕ(r) for a.e. r ∈ J .
Then C is a compact convex subset of X . Define a map µ : C 7→ X by letting

µ(ξ)(r) = x +
∫ r

s
f(ξ(u), u) du for ξ ∈ C , r ∈ J . (3.5.2)

(The map µ is clearly well defined, because (i) if ξ ∈ C and u ∈ J then
(ξ(u), u) ∈ K(δ1), so f(ξ(u), u) is defined; (ii) the essential measurability of
f implies that the map J 3 u 7→ f(ξ(u), u) ∈ IRn is measurable, and (iii) the
integrable bound

‖f(ξ(u), u)‖ ≤ ϕ(u) (3.5.3)

implies that J 3 u 7→ f(ξ(u), u) ∈ IRn is integrable.)
If ξ ∈ C, and η = µ(ξ), then it follows from (3.5.2) and (3.5.3) that η

is absolutely continuous and ‖η̇(r)‖ ≤ ϕ(r) for all r ∈ J . Moreover, since
‖x − x̄‖ ≤ δ, (3.4.1) implies that ‖η(r) − x̄‖ ≤ δ1 for all r ∈ J . Therefore
µ(ξ) ∈ C. So µ is a map from C to C.

We now prove that the map µ is continuous. To see this, we write
A = ARCϕ(IRn;K(δ1)), and observe that C ⊆ A. The definition of µ implies
the identity

µ(ξ)(r) = x+T A
f (ξ)(r)−T A

f (ξ)(s) whenever ξ ∈ C , r ∈ J . (3.5.4)

Since T A
f is continuous on A, the continuity of µ follows.

By the Schauder Fixed Point Theorem, µ has a fixed point. Clearly, if ξ
is a fixed point of µ, then

ξ(r) = x +
∫ t

s
f(ξ(u), u) du for r ∈ J . (3.5.5)
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Then ξ is a trajectory of f defined on J , and ξ(s) = x. If we let y = ξ(t),
then y ∈ Φf (x, t, s), so Φf (x, t, s) 6= ∅. This completes the proof of (T3.i).

The proofs of (T3.ii) and (T3.iii) are identical, with obvious trivial
modifications. Alternatively, one can derive (T3.ii) and (T3.iii) directly
from (T3.i) by applying (T3.i) to suitably chosen TVVFs. For example, to
derive (T3.ii) we pick (x̄, t̄) and a positive δ such that Nδ,+(x̄, t̄) ⊆ S, write

Ŝ =
(
IRn× ]−∞, t̄ [

) ⋃ (
S ∩

(
IRn × [t̄, +∞ [

) )
,

and define a map g : Ŝ 7→ IRn by letting

g(x, t) =

{
f(x, t) if (x, t) ∈ S and t ≥ t̄ ,
f(x̄, t̄) if x ∈ IRn and t < t̄ .

Then g ∈ ADM(IRn), Dom(g) = Ŝ, and (x̄, t̄) is an interior point of Ŝ. So
we can apply (T3.i) and conclude that Φg is upper semicontinuous and has
compact nonempty values on N (2)

δ (x̄, t̄) for some positive δ. If we restrict
Φg to N (2)

δ,+(x̄, t̄), (T3.ii) follows. The proof of (T3.iii) is similar. ♦

Remark 7. The assertion that the values of the flow are nonempty (that
is, Statement 3.5.1), is the existence of solutions theorem for differential
equations ẋ = f(x, t) with f ∈ ADM(IRn). It is therefore not surprising
that the proof of this statement depends on a fixed point argument. ♦

A special case of Theorem 3 is the usual Carathéodory existence theorem:

Corollary 2. Assume that n ∈ IN, Ω is open in IRn, and I is a nonempty
subinterval of IR. Let S = Ω × I. Let f : S 7→ IRn be a LIB time-varying
vector field such that the map Ω 3 x 7→ f(x, t) ∈ IRn is continuous for
almost every t ∈ I, and the map I 3 t 7→ f(x, t) ∈ IRn is measurable for
every x ∈ Ω. Then f is integrally continuous on the space ARC(IRn; S), so
f ∈ ADM(IRn; S). In particular,

(C2.i) f is trajectory-compact,
(C2.ii) f is flow-upper semicontinuous at every (x̄, t̄) ∈ Ω × Int(I),
(C2.iii) f is forward flow-upper semicontinuous at every point (x̄, t̄) such

that x̄ ∈ Ω and [t̄, t̄ + δ] ⊆ I for some positive δ,
(C2.iv) f is backward flow-upper semicontinuous at every point (x̄, t̄) such

that x̄ ∈ Ω and [t̄ − δ, t̄] ⊆ I for some positive δ.



34 héctor j. sussmann

Proof. It follows easily from the hypotheses that f is essentially measurable.
Let A = ARC(IRn; S). Then Fact 6 tells us that f is arc-integrable on A.

Let {ξj}j∈IN be a sequence in A that converges in ARC(IRn) to a ξ∞ ∈ A.
For j ∈ IN, let Lj = Dom(ξj) = [aj , bj ], and write ηj = T A

f (ξj). Then
limj→∞ aj = a∞ and limj→∞ bj = b∞.

Let K be a compact subset of S such that (ξj(t), t) ∈ K whenever
j ∈ IN and aj ≤ t ≤ bj . Choose an integrable function ϕ on IR such that
‖f(x, t)‖ ≤ ϕ(t) whenever (x, t) ∈ K. Then, if {tj}j∈IN is a sequence such
that aj ≤ tj ≤ bj for every j ∈ IN, and tj → t as j → ∞, we have

ηj(tj) =
∫ tj

aj

f(ξj(s), s) ds →
∫ t

a
f(ξ∞(s), s) ds = T A

f (a, t, ξ) (3.5.6)

by the Lebesgue Dominated Convergence Theorem, since ξj(s) → ξ∞(s) for
each s, and ‖f(ξj(s), s)‖ ≤ ϕ(s) for each j and each s ∈ Lj ].

This proves the integral continuity of f on A. Therefore f is admissible,
and then all the other conclusions are consequences of Theorem 3. ♦

3.6 Points of approximate continuity

Definition 17. Assume that n, m ∈ IN, S ⊆ IRn × IR, f : S 7→ IRm,
and (x̄, t̄) ∈ S. We say that (x̄, t̄) is a point of approximate continuity
(abbreviated PAC) of f if there exist positive numbers h̄, δ̄ such that

(D17.1) IBn(x̄, δ̄) × [t̄ − h̄, t̄ + h̄] ⊆ S,
(D17.2) there exist measurable functions σδ : [t̄ − h̄, t̄ + h̄] 7→ [0,∞], for

0 < δ < δ̄, such that
(D17.2.1) the bound ‖f(x, t) − f(x̄, t̄)‖ ≤ σδ(t) holds whenever (x, t)

belongs to IBn(x̄, δ) × [t̄ − h̄, t̄ + h̄]
(D17.2.2) limδ↓0 , h↓0 1

h

∫ t̄+h
t̄−h σδ(t) dt = 0.

The concepts of a point of forward approximate continuity and a point of
backward approximate continuity are defined similarly, with the interval
[t̄ − h̄, t̄ + h̄] replaced by [t̄, t̄ + h̄] and [t̄ − h̄, t̄], respectively. ♦

Proposition 2. Assume that n, m ∈ IN, S ⊆ IRn × IR, f : S 7→ IRm, and
(x̄, t̄) ∈ S. Assume that there exist K, E, ϕ such that

(P2.a) E ∈ Leb(IR), K is a compact subset of S, ϕ : IR 7→ [0, +∞] is an
integrable function, (x̄, t̄) is an interior point of K, and t̄ is a
point of density of E and a Lebesgue point of ϕ,
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(P2.b) lim
(x,t)→(x̄,t̄) , (x,t)∈K , t∈E

f(x, t) = f(x̄, t̄);

(P2.c) ‖f(x, t)‖ ≤ ϕ(t) for all (x, t) ∈ K.

Then (x̄, t̄) is a point of approximate continuity of f . ♦

Proof. Pick positive numbers δ̄, h̄ such that IBn(x̄, δ̄) × [t̄ − h̄, t̄ + h̄] ⊆ K.
For 0 < δ ≤ δ̄, t̄ − h̄ ≤ t ≤ t̄ + h̄, define σδ(t) by

σδ(t)=

{
sup

{
‖f(x, s)−f(x̄, t̄)‖ :‖x−x̄‖≤δ, |s− t̄|≤|t− t̄|, s∈E

}
if t∈E,

ϕ(t) + ϕ(t̄) if t /∈E.

Then σδ is measurable, because it is monotonically nondecreasing on the set
E ∩ [t̄, t̄+ h̄] and monotonically nonincreasing on E ∩ [t̄− h̄, t̄], and coincides
with the integrable function t 7→ ϕ(t) + ϕ(t̄) on [t̄ − h̄, t̄ + h̄]\E. It is clear
that the bound of (D17.2.1) holds. Moreover,∫ t̄+h

t̄−h
σδ(t)dt =

∫
[t̄−h,t̄+h]∩E

σδ(t) dt +
∫
[t̄−h,t̄+h]\E

σδ(t) dt

≤
∫
[t̄−h,t̄+h]∩E

ω(δ, h) dt +
∫
[t̄−h,t̄+h]\E

(ϕ(t) + ϕ(t̄)) dt

≤ 2 hω(δ, h) +
∫
[t̄−h,t̄+h]\E

(ϕ(t) − ϕ(t̄) + 2ϕ(t̄)) dt

≤ 2 hω(δ, h) +
∫ t̄+h

t̄−h
|ϕ(t) − ϕ(t̄)| dt +

∫
[t̄−h,t̄+h]\E

2 ϕ(t̄) dt

≤ 2 hω(δ, h) +
∫ t̄+h

t̄−h
|ϕ(t) − ϕ(t̄)| dt + 2ϕ(t̄)µ(h) ,

where ω(δ, h) def= sup{‖f(x, t) − f(x̄, t̄)‖ : ‖x − x̄‖ ≤ δ, ‖t − t̄‖ ≤ h, t ∈ E}
and µ(h) def= meas

(
[t̄ − h, t̄ + h]\E

)
.

It follows from (P2.b) that limδ↓0,h↓0 ω(δ, h) = 0. The fact that t̄ is a
Lebesgue point of ϕ implies that limh↓0 1

h

∫ t̄+h
t̄−h |ϕ(t) − ϕ(t̄)| dt = 0. Finally,

limh↓0 1
hµ(h) = 0, because t̄ is a point of density of E. Therefore (D17.2.2)

holds, and our proof is complete. ♦

3.7 Differentiability of the flow

The differentiation theorem will say, roughly, that if (x̄, t̄) is a PAC of f ,
then

Φf (x, t, s) = x + (t − s)f(x̄, t̄) + o
(
‖x−x̄‖+|t− t̄|+|s− t̄|

)
(3.7.1)
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as (x, t, s) → (x̄, t̄, t̄).
Since Φf is set-valued, Equation (3.7.1) requires interpretation. The

precise meaning of (3.7.1) is that, if we use Λw to denote, for a given w ∈ IRn,
the linear map Λw : IRn × IR × IR 7→ IRn given by

Λw(v, h, k) = v + (h − k)w for v ∈ IRn , h, k ∈ IR , (3.7.2)

then Λf(x̄,t̄)(v, h, k) is a “first-order approximation” to the set-valued map

(x, t, s) 7→ Φf (x, t, s) − Φf (x̄, t̄, t̄) = Φf (x, t, s) − x̄

near (x̄, t̄, t̄). Precisely, this means that

lim
sup

{
‖y − x̄ − Λf(x̄,t̄)(x − x̄, t − t̄, s − t̄)‖ : y ∈ Φf (x, s, t)

}
‖x − x̄‖ + |t − t̄| + |s − t̄| = 0 (3.7.3)

as (x, s, t) → (x̄, t̄, t̄). If we set v = x − x̄, h = t − t̄, k = s − t̄ in (3.7.2), we
see that (3.7.3) says that

lim
(x,s,t)→(x̄,t̄,t̄)

sup
{
‖y − x − (t − s)f(x̄, t̄)‖ : y ∈ Φf (x, s, t)

}
‖x − x̄‖ + |t − t̄| + |s − t̄| = 0 (3.7.4)

When this happens, we say that Φf is differentiable at (x̄, t̄, t̄) and the
differential of Φf at (x̄, t̄, t̄) is the linear map Λf(x̄,t̄).

The one-sided concepts of forward and backward differentiability are
defined similarly, replacing “(x, t, s) → (x̄, t̄, t̄)” by “(x, t, s) → (x̄, t̄, t̄) via
values of t, s such that t ≥ t̄ and s ≥ t̄” and “(x, t, s) → (x̄, t̄, t̄) via values
of t, s such that t ≤ t̄ and s ≤ t̄,” respectively.

Theorem 4. Assume that n ∈ IN, S ⊆ IRn × IR, f ∈ TV V F (IRn; S), and
(x̄, t̄) ∈ S. Then, if (x̄, t̄) is a point of approximate continuity of f it follows
that the flow Φf is differentiable at (x̄, t̄, t̄), and the differential of Φf at
(x̄, t̄, t̄) is the map Λf(x̄,t̄) defined by (3.7.2).

Proof. Let δ̄, h̄, and the functions σδ : [t̄ − h̄, t̄ + h̄] 7→ [0,∞] be as in
Definition 17. For 0 < δ ≤ δ̄, write

ω(δ) = sup
{
‖y − x̄‖ : y ∈ Φf (x, s, t) : (x, s, t) ∈ N (2)

δ (x̄, t̄)
}

. (3.7.5)

Then ω(δ) → 0 as δ ↓ 0 by Corollary 1. Choose δ∗ such that 0 < δ∗ ≤ δ̄ and
ω(δ∗) ≤ δ̄.
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Let 0 < δ ≤ δ∗. Suppose y ∈ Φf (x, s, t), (x, s, t) ∈ N (2)
δ (x̄, t̄). Let ζ be a

trajectory of f such that ζ(s) = x and ζ(t) = y. Let I be the interval with
endpoints s, t. Let ξ be the restriction of ζ to I. Then

y = x +
∫ t

s
f(ξ(r), r) dr = x + (t − s)f(x̄, t̄) + R ,

where the error term R is given by R =
∫ t
s

(
f(ξ(r), r) − f(x̄, t̄)

)
dr.

To estimate R, we first observe that for each r ∈ I the point ξ(r) belongs
to Φf (x, r, s), and (x, r, s) ∈ N (2)

δ (x̄, t̄), so ‖ξ(r) − x̄‖ ≤ ω(δ). Then

r ∈ I =⇒ ‖f(ξ(r), r) − f(x̄, t̄)‖ ≤ σω(δ)(r) .

Therefore

‖R‖ ≤
∫ t̄+h

t̄−h
σω(δ)(r) dr , (3.7.6)

where h = max(|t − t̄|, |s − t̄|).
Inequality (3.7.6) has been proved for arbitrary (x, t, s) ∈ N (2)

δ (x̄, t̄) and
y ∈ Φf (x, t, s), provided that 0 < δ ≤ δ∗. For given (x, t, s), we can take
δ = ‖x − x̄‖, and define h = max(|t − t̄|, |s − t̄|) as before. This yields

‖y − x − (t − s)f(x̄, t̄)‖
‖x − x̄‖ + |t − t̄| + |s − t̄| =

‖R‖
δ + |t − t̄| + |s − t̄|

≤ ‖R‖
h

≤ 1
h

∫ t̄+h

t̄−h
σω(‖x−x̄‖)(r) dr ,

so (3.7.3) holds. ♦

Corollary 3. Assume that n ∈ IN, S ⊆ IRn × IR, f ∈ TV V F (IRn; S), and
(x̄, t̄) ∈ S. Then, if (x̄, t̄) is a point of forward (resp. backward) approximate
continuity of f it follows that the flow Φf is forward (resp. backward)
differentiable at (x̄, t̄, t̄), and the forward (resp. backward) differential of
Φf at (x̄, t̄, t̄) is the map Λf(x̄,t̄) defined by (3.7.2).

Proof. This can be proved using exactly the same arguments as in the
proof of Theorem 4 with obvious one-sided modifications. Alternatively, the
result can be derived from Theorem 4 by applying Theorem 4 to the TVVF
g considered in the proof of Theorem 3. ♦
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3.8 Regularization

Fix an n ∈ IN, a nonempty open subset Ω of IRn, and a subinterval I of IR
of positive length. Let S = Ω× I, and fix an admissible time-varying vector
field f ∈ ADM(IRn; S). For ρ > 0, let Ωρ be the set of all x ∈ IRn such that

the closed ball IBn(x, ρ) def= {x′ ∈ IRn : ‖x′ − x‖ ≤ ρ} is entirely contained in
Ω. Then Ωρ is open. Let Sρ = Ωρ × I.

Fix, once and for all, a function θ : IRn → IR of class C∞, such that
θ(z) ≥ 0 for all y, θ(z) = 0 whenever ‖z‖ ≥ 1, and

∫
IRn θ = 1. Also fix, once

and for all, locally integrable functions ϕK : I 7→ [0,∞], for each compact
subset K of Ω, such that ‖f(x, t)‖ ≤ ϕK(t) whenever x ∈ K and t ∈ I. If K
is a compact subset of Ω and ρ > 0, we write Kρ = {x ∈ IRn : d(x, K) ≤ ρ},
and observe that Kρ ⊆ Ω if and only if K ⊆ Ωρ.

Define

fρ(x, t) =
∫
IRn

f(x − ρz, t)θ(z) dz for (x, t) ∈ Sρ . (3.8.1)

Then for almost all t ∈ I the integral is defined for all x ∈ Ωρ, because for
a.e. t the map x 7→ f(x, t) is measurable and bounded on compact sets.
Moreover, if K is a compact subset of Ωρ then fρ satisfies the bound

‖fρ(x, t)‖ ≤ ϕKρ(t) whenever x ∈ K , t ∈ I .

In particular, fρ is locally integrably bounded on Sρ. Since

fρ(x, t) = ρ−n
∫
IRn

f(y, t)θ
(x − y

ρ

)
dy for x ∈ Ωρ , t ∈ I , (3.8.2)

it is easy to see that fρ(x, t) is of class C∞ as a function of x for almost
every t. Moreover, fρ(x, t) is clearly measurable with respect to t for each
fixed x. Furthermore, using (3.8.2), we see that

fρ(x, t) − fρ(x′, t) = ρ−n
∫
IRn

f(y, t)

(
θ
(x − y

ρ

)
− θ

(x′ − y

ρ

))
dy (3.8.3)

for x, x′ ∈ Ωρ, t ∈ I. Therefore, if K ⊆ Ωρ is compact, and x, x′ ∈ K, t ∈ I,
we have∥∥∥fρ(x, t) − fρ(x′, t)

∥∥∥ ≤ ρ−nϕKρ(t)
∫
IRn

∣∣∣∣∣θ(x − y

ρ

)
− θ

(x′ − y

ρ

)∣∣∣∣∣dy . (3.8.4)
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Then(
K ⊆ Ωρ ∧ K compact ∧ x, x′ ∈ K ∧ t ∈ I

)
=⇒

∥∥∥fρ(x, t) − fρ(x′, t)
∥∥∥ ≤ κρ−n−1ϕKρ(t)‖x − x′‖ , (3.8.5)

where
κ = sup

{
‖∇θ(z)‖ : z ∈ IRn

}
. (3.8.6)

Clearly, (3.8.5) implies that

Fact 7. If ρ > 0 then the map Ωρ 3 x 7→ fρ(x, t) is locally Lipschitz for
almost all t ∈ I, and the Lipschitz constant CK(t) can be chosen, for each
compact subset K of Ωρ, to be a locally integrable function of t. ♦

It then follows that fρ has the usual uniqueness and continuous dependence
properties. In particular:

Fact 8. The flow Φfρ is single-valued and continuous on its domain of
definition Dom(Φfρ), which is a relatively open subset of Ωρ×I×I containing
the set {(x, t, t) : x ∈ Ωρ , t ∈ I}. ♦

If (x̄, t̄) ∈ IRn × I and δ > 0, we let

Ñδ(x̄, t̄) =


Nδ(x̄, t̄) if t̄ ∈ Int(I) ,
Nδ,+(x̄, t̄) if t̄ = min I ,
Nδ,−(x̄, t̄) if t̄ = max I ,

Ñ (2)
δ (x̄, t̄) =


N (2)

δ (x̄, t̄) if t̄ ∈ Int(I) ,

N (2)
δ,+(x̄, t̄) if t̄ = min I ,

N (2)
δ,−(x̄, t̄) if t̄ = max I .

Fix (x̄, t̄) ∈ Ω × I, and pick δ such that δ > 0 and

(#.1) Ñδ(x̄, t̄) ⊆ S and the set-valued map Φf is upper semicontinuous
and has compact nonempty values on Ñ (2)

δ (x̄, t̄).

Theorem 5. Let δ > 0 be such that (#.1) holds. Then there exists a positive
ρ̄ such that

(#.2) IBn(x̄, δ) ⊆ Ωρ̄,

(#.3) Ñ (2)
δ (x̄, t̄) ⊆ Dom(Φfρ) whenever 0 < ρ ≤ ρ̄,

and
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(#.4) the single-valued maps ΦfρdÑ (2)
δ (x̄, t̄) satisfy

ΦfρdÑ (2)
δ (x̄, t̄)

igr→ ΦfdÑ (2)
δ (x̄, t̄) as ρ → 0 . (3.8.7)

In particular, the set-valued map ΦfdÑ (2)
δ : Ñ (2)

δ →7→ IRn is regular.

Proof. The image L = Φf (Ñ (2)
δ (x̄, t̄)) is a compact subset of Ω. Let K be

a compact subset of Ω such that L ⊆ Int(K). We will show that

(*) if {(ρj , xj , tj , sj)}j∈IN is a sequence in IR × IRn × IR × IR such that
ρj > 0, (xj , tj , sj) ∈ Ñ (2)

δ (x̄, t̄), ρj → 0, (xj , tj , sj) → (x, t, s), then

(*.1) (xj , tj , sj) ∈ Dom(Φfρj ) for large enough j

and

(*.2) if yj = Φfρj (xj , tj , sj), then yj ∈ K for large enough j, and every
limit point y of the sequence {yj} satisfies y ∈ Φf (x, t, s).

It is clear that (*) implies our desired conclusion. To prove (*), we first
fix a ρ̄ > 0 such that Kρ̄ ⊆ Ω, and write ϕ = ϕKρ̄ .

Assume that the hypothesis of (*) holds. Define a compact interval Ĩ by
letting Ĩ = [t̄ − δ, t̄ + δ] if t ∈ Int(I), Ĩ = [t̄, t̄ + δ] if t = min I, Ĩ = [t̄ − δ, t̄]
if t = max I. Let ξj denote the maximal trajectory of fρj that goes through
xj at time sj . Let Jj = Dom(ξj), so that sj lies in the interior of Jj relative
to I. Let Ij = [min(sj , tj), max(sj , tj)], so that Ij ⊆ Ĩ. Let Hj denote the
set of all τ ∈ Ij ∩ Jj such that ξj(u) ∈ K for all u ∈ [min(sj , τ), max(sjτ)].
Then Hj is a compact interval, Hj ⊆ Jj ∩ Ij and sj is one of the endpoints
of Hj . We let τj be the other endpoint, so Hj = [min(sj , τj), max(sj , τj)].
Then, if we let ∂K = K\Int(K), it is easy to verify that

Fact 9. For each j, either τj = tj or ξj(τj) ∈ ∂K.

Let zj = ξj(τj). Then (xj , τj , sj , zj) ∈ Ñ (2)
δ (x̄, t̄) × K. Write ηj = ξjdHj .

Then ηj ∈ Traj c(fρj ), and ηj(t) ∈ K whenever t ∈ HJ , so ηj belongs to
ARC(IRn; K × Ĩ), and

‖η̇j(r)‖ ≤ ϕ(r) for r ∈ Hj . (3.8.8)

It then follows that the sequence ηηη = {ηj}j∈IN is uniformly bounded and
equicontinuous. Therefore every subsequence of ηηη has a subsequence that
converges to a limit in ARC(IRn). Equivalently, every infinite subset V



almost lower semicontinuous differential inclusions 41

of IN contains an infinite subset W such that the sequence ηηηW def= {ηj}j∈W

converges in ARC(IRn) to a limit ηW .
Let W be the set of all infinite subsets W of IN be such that ηηηW converges.

We will prove that
W ∈ W =⇒ ηW ∈ Traj (f) . (3.8.9)

We first show that (3.8.9) implies our conclusion. Let

W ′ = {j ∈ IN : tj 6∈ Jj} , W ′′ = {j ∈ IN : tj 6= τj} . (3.8.10)

Then
j ∈ W ′ ⇒ j ∈ W ′′ ⇒ zj ∈ ∂K , (3.8.11)

where the first implication follows because τj ∈ Jj , and the second one is
a consequence of Fact 9. If the set W ′′ was infinite, then we could pick W
to be a subset of W ′′ such that W ∈ W, and apply (3.8.9) to conclude that
ηW ∈ Traj (f). Since Dom(ηj) = Hj = [min(sj , τj), max(sj , τj)], and the
sequence {ηj}j∈W converges to ηW in ARC(IRn), it is clear that the limit
τW = limj→∞,j∈W exists, and Dom(ηW ) = HW = [min(s, τW ), max(s, τW )].
Let zW = ηW (τW ). Then zW = limj→∞ , j∈W zj , so (3.8.11) implies that
z ∈ ∂K. Since zW = ηW (τW ), (3.8.9) implies that zW ∈ Φf (x, τW , s).
Since (x, τW , s) ∈ Ñ (2)

δ (x̄, t̄) (because (xj , τj , sj) ∈ Ñ (2)
δ (x̄, t̄) for every j),

zW ∈ L ⊆ Int K. So we have reached a contradiction, proving that W ′′ is
finite. Then W ′ is finite as well, and this shows that (*.1) holds. Moreover,
the fact that W ′′ is finite shows that tj = τj for sufficiently large j, so zj = yj

for large j, proving that yj ∈ K for large enough j. Finally, let y be a limit
point of the sequence {yj}j∈IN. Pick an infinite subset W ′ of IN such that
yj → y as j → ∞ via values in W ′. Then pick W ∈ W such that W ⊆ W ′.
Then y = ηW (t). This shows that y ∈ Φf (x, s, t), and the proof of (*) is
complete.

To conclude our proof, we must establish (3.8.9). Fix W ∈ W, and
let τW = limj→∞,j∈W τj , HW = Dom(ηW ) = [min(s, τW ), max(s, τW )],
zW = ηW (τW ). Our conclusion is trivially true if s = τW . Assume that
s 6= τW . Pick a number u such that min(s, τW ) < u < max(s, τW ). Let
N = P ×Q, where P is a compact neighborhood of ηW (u) in Ω, and Q is a
compact interval which is contained in the interior of HW and is such that u
is an interior point of Q. Using the admissibility of f , choose an integrable
function γ : Q 7→ [0,∞] such that ‖f(x, t)‖ ≤ γ(t) for all (x, t) ∈ N , and f
is integrally continuous on ARCγ(IRn; N). Write A = ARCγ(IRn; N). Then
there exist an ε > 0 and a j∗ ∈ IN such that the following are true for j ≥ j∗:

(1) ρj ≤ ε,
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(2) Q ⊆ Hj ,

(3) (ηj(v) + z, v) ∈ N whenever |v − u| ≤ ε, ‖z‖ ≤ ε.

(Indeed, (2) holds if j is large enough because the endpoints of Hj converge
to the endpoints of HW and Q ⊆ Int(HW ). Given ε, (1) holds for large
enough j because ρj → 0. So all we need is to show that there exists an ε
such that (3) holds for large enough j. If ε did not exist, there would exist,
for each k ∈ IN, a j(k) such that j(k) ≥ k and a pair (vk, zk) such that
‖zk‖ ≤ 2−k, ‖vk − u‖ ≤ 2−k, and (ηj(k)(vk) + zk, vk) /∈ N . But then vk → u,
and zk → 0 as k → ∞, so (ηj(k)(vk)+zk, vk) → (ηW (u), u). Since (ηW (u), u)
is an interior point of N , this is a contradiction.)

Then, for j ≥ j∗, if v1, v2 ∈ [u − ε, u + ε] and v1 < v2, we have

ηj(v2) − ηj(v1) =
∫ v2

v1

fρj (ηj(w), w)dw

=
∫ v2

v1

( ∫
IRn

f(ηj(w) − ρjz, w)θ(z) dz
)

dw

=
∫
IRn

( ∫ v2

v1

f(ηj(w) − ρjz, w) dw
)
θ(z) dz

=
∫
IRn

( ∫ v2

v1

f(ηz
j (w), w) dw

)
θ(z) dz

=
∫
IRn

(
T A

f (ηz
j )(v2) − T A

f (ηz
j )(v1)

)
θ(z) dz ,

where ηz
j : [u − ε, u + ε] → Ω is defined by

ηz
j (w) = ηj(w) − ρjz for |w − u| ≤ ε ,

and the interchange of the integrals is justified by Fubini’s Theorem, using
the bound ‖f(ξj(w) − ρjz, w)‖ ≤ γ(w), which is valid because the point
(ξj(w) − ρjz, w) belongs to N . It is clear that the curves ηz

j belong to A
whenever ‖z‖ ≤ 1 and j ≥ j∗. Moreover, the ηz

j converge in ARC(IRn) to
the restriction ηW d[u − ε, u + ε]. Since f is integrally continuous on A, it
follows that T A

f (ηz
j )(v2)−T A

f (ηz
j )(v1) →

∫ v2
v1

f(ηW (w), w)dw for each z ∈ IRn

such that ‖z‖ ≤ 1. Since ‖T A
f (ηz

j )(v2)−T A
f (ηz

j )(v1)‖ ≤
∫ u+ε
u−ε γ(w)dw, and θ

is bounded and supported in {z : ‖z‖ ≤ 1}, we have

ηW (v2) − ηW (v1) = lim
j→∞

(
ηj(v2) − ηj(v1)

)
= lim

j→∞

∫
z∈IRn,‖z‖≤1

(
T A

f (ηz
j )(v2) − T A

f (ηz
j )(v1)

)
θ(z) dz

=
∫ v2

v1

f(ηW (w), w)dw .
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So every interior point u of HW has a neighborhood [u − ε, u + ε] with the
property that [u− ε, u + ε] ⊆ HW and ηW d[u− ε, u + ε] is a trajectory of f .
This clearly implies that ηW ∈ Traj (f), completing the proof. ♦

3.9 Regular differentiability of the flow

We now combine the results of the two previous subsections into a single
statement, asserting the regular differentiability of the flow of an admissible
vector field f ∈ ADM(IRn) at every point of approximate continuity of f ,
and explicitly exhibiting a differential.

Theorem 6. Assume that n ∈ IN, S ⊆ IRn × IR, f ∈ ADM(IRn; S). Let
(x̄, t̄) be a point of approximate continuity of f . Then the flow Φf is regularly
differentiable at (x̄, t̄, t̄), and the linear map Λf(x̄,t̄) defined by (3.7.2) is a
differential of Φf at (x̄, t̄, t̄).

Proof. Theorem 5 gives us a neighborhood of (x̄, t̄, t̄) where Φf is regular,
and Theorem 4 says that Λf(x̄,t̄) is a first-order approximation to Φf near
(x̄, t̄, t̄). ♦

Corollary 4. Assume that n ∈ IN, S ⊆ IRn × IR, and f ∈ ADM(IRn; S).
Let (x̄, t̄) be a point of forward (resp. backward) approximate continuity of
f . Then the flow Φf is forward (resp. backward) regularly differentiable at
(x̄, t̄, t̄), and the forward (resp. backward) differential of Φf at (x̄, t̄, t̄) is the
map Λf(x̄,t̄) defined by (3.7.2).

Proof. This follows by applying Theorem 6 to the TVVF g considered in
the proof of Theorem 3. ♦

4 Almost LSC differential inclusions

4.1 Lower semicontinuous set-valued maps

Definition 18. Assume that X and Y are topological spaces. A set-valued
map F : X →7→ Y is lower semicontinuous (abbr. LSC) if the inverse image
under F of every open subset of Y is open in X. ♦

The following observation is a trivial consequence of the definition.

Fact 10. If X, Y are topological spaces and F : X 7→ Y is an ordinary (i.e.
single-valued, everywhere defined) map, then F is LSC as a set-valued map
if and only if F is a continuous map. ♦
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In addition, the following fact is well known.

Lemma 2. Let S be a topological space and let Q be a metric space. Suppose
that F : S →7→ Q is a set-valued map with nonempty values. For each ordinary
map f : S 7→ Q, define a function ρf,F : S → IR by letting

ρf,F (s) def= dQ(f(s), F (s))

Then the following three conditions are equivalent:

(L2.a) F is lower semicontinuous;
(L2.b) ρf,F is upper semicontinuous for every continuous f ;
(L2.c) ρf,F is upper semicontinuous for every constant f .

Proof. We first prove that (L2.a) implies (L2.b). Assume F is LSC and
f is continuous. Let s ∈ S, and let ε > 0. Pick q ∈ F (s) such that
dQ(f(s), q) < ρf,F (s) + ε

3 . Then choose a neighborhood U of s such that,
whenever s′ ∈ U , (a) F (s′)∩BQ(q, ε

3) 6= ∅, and (b) dQ(f(s′), f(s)) < ε
3 . Then

dQ(f(s′), F (s′)) < ρf,F (s) + ε whenever s′ ∈ U , so ρf,F (s′) < ρf,F (s) + ε for
all s′ ∈ U . So ρf,F is upper semicontinuous.

It is cleat that (L2.b) implies (L2.c). We conclude by proving that
(L2.c) implies (L2.a). Assume that (L2.c) holds. Let U ⊆ Q be open.
Let s ∈ F−1(U), so F (s) ∩ U 6= ∅. Pick q ∈ F (s) ∩ U . Let ε be such that
ε > 0 and BQ(q, ε) ⊆ U . Let f : S 7→ Q be the constant function with value
q. Then ρf,F is continuous. Since ρf,F (s) = 0, because q ∈ F (s), there is a
neighborhood V of s in S such that ρf,F (s′) < ε for all s′ ∈ V . It follows
that F (s′) ∩ BQ(q, ε) 6= ∅ for all s′ ∈ V . Since BQ(q, ε) ⊆ U , we see that
V ⊆ {s′ ∈ S : F (s′) ∩ U 6= ∅} = F−1(U). So F−1(U) is a neighborhood of s
whenever s ∈ F−1(U). Therefore F−1(U) is open. So F is LSC. ♦

4.2 Conically continuous selections of LSC set-valued maps

Theorem 7. Assume that n, m ∈ IN, S ⊆ IRn × IR, and F : S →7→ IRm is
a lower semicontinuous set-valued map with nonempty closed values. Let
g : S 7→ IRm, β : S 7→ IR be continuous maps such that

β(x, t) > ρg,F (x, t) for all (x, t) ∈ S . (4.2.1)

Let (x̄, t̄) ∈ S, ȳ ∈ F (x̄, t̄), be such that

‖g(x̄, t̄) − ȳ‖ < β(x̄, t̄) . (4.2.2)

Let C : S 7→] 0,∞ [ be upper semicontinuous. Then there exists a single-
valued selection f : S 7→ IRm of F such that
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(T7.1) f(x̄, t̄) = ȳ,
(T7.2) f is continuous at (x̄, t̄),
(T7.3) f is forward ΓC-continuous,
(T7.4) ‖f(x, t) − g(x, t)‖ < β(x, t) for all (x, t) ∈ S,
(T7.5) f is Bor(IRn × IR) ∩ S-measurable.

Proof. Let F̃ be the set-valued function given by

F̃ (x, t) =

{
F (x, t) if (x, t) ∈ S\{(x̄, t̄)} ,
{ȳ} if (x, t) = (x̄, t̄) .

Then F̃ is also LSC, and

ρg,F̃ (x, t) = ρg,F (x, t) when (x, t) 6= (x̄, t̄) ,

ρg,F̃ (x̄, t̄) = ‖g(x̄, t̄) − ȳ‖ .

Therefore ρg,F̃ (x, t) < β(x, t) for all (x, t) ∈ S. Then F̃ satisfies the same
hypotheses as F , and in addition F (x̄, t̄) = {ȳ}. So we may—and will—
assume, without loss of generality, that F (x̄, t̄) = {ȳ}.

If N ∈ IN and N > 0, we let SN = {(x, t) ∈ S : C(x, t) < N}. Then
the upper semicontinuity of C implies that every SN is relatively open in S,
and the fact that C has finite values implies that and S =

⋃∞
N=1 SN .

We define, for each (x, t) ∈ IRn × IR, each N ∈ IN\{0}, and each α such
that α > 0, a set A(x, t, α, N), by

A(x, t, α, N)=
{
(x′, t′)∈ IRn×IR: t≤ t′<t+α, ‖x′−x‖≤N(t′−t)

}
. (4.2.3)

We let A be the set of all sets A(x, t, α, N), for all (x, t) ∈ IRn×IR, α ∈ ]0, 1],
N ∈ IN\{0}, such that A(x, t, α, N) ∩ S ⊆ SN .

We then let A∗ be the set of all those sets E ∈ A such that (x̄, t̄) /∈ ∂E.
(Here ∂E

def= Clos(E)\Int(E), the closure and the interior being taken rela-
tive to IRn × IR.) We observe that

Fact 11. If (x, t) ∈ S is arbitrary, and V is a neighborhood of (x, t) in
IRn × IR, then V contains a set E ∈ A∗ which is a neighborhood of (x, t) in
IRn × IR.

Indeed, if suffices to pick E = A(x, t − α
2 , α, N) where N is such that

(x, t) ∈ SN , and α is sufficiently small. If this choice happens to result
in a set E such that (x̄, t̄) ∈ ∂E, then we take instead the smaller set
Ẽ = A(x, t− α

4 , α
2 , N), and observe that ∂E ∩ ∂Ẽ = ∅, so Ẽ has the desired

property, and Fact 11 is proved.
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We then let G be the Boolean algebra of subsets of S generated by the
sets E ∩ S, E ∈ A∗.

Let ΦG be the set of all maps f : S 7→ IRn such that there exists a
partition P of S into members of G with the property that the restriction of
f to each G ∈ P is continuous. Let Φ̄G be the closure of ΦG with respect to
uniform convergence on compact subsets of S. We claim that

Fact 12. If f∈ Φ̄G, then f is continuous at (x̄, t̄) and forward ΓC-continuous.

To prove Fact 12, we pick a sequence {(xj , tj)}j∈IN in S that converges to a
limit (x, t) ∈ S, and assume that either

x = x̄ and t = t̄ , (4.2.4)

or
‖xj − x‖ ≤ C(x, t)(tj − t) for all j . (4.2.5)

We must show that f(xj , tj) → f(x, t). Since f is a uniform limit on
compact sets of functions in ΦG , and the set {(x, t)} ∪ {(xj , tj) : j ∈ IN} is
compact, it suffices to assume that f ∈ ΦG . For this purpose, we show

Fact 13. Every member H of G has the following property:

(P) if (x, t) ∈ H then (xj , tj) ∈ H for sufficiently large j.

To prove Fact 13, we let Z be the set of all subsets H of S such
that both H and S\H have property (P). Then Z is clearly closed under
complementation (that is, H ∈ Z ⇒ S\H ∈ Z ) and under the binary
operations of union and intersection. So to prove that every H ∈ G has (P)
it suffices to show that E ∩ S ∈ Z whenever E ∈ A∗. That is, we must pick
E ∈ A∗ and show that (P) holds for H = E ∩S and also for H = S\E. Let
E = A(x′, t′, α, N).

Assume first that (4.2.4) holds, i.e that (x, t) = (x̄, t̄). Then (x, t) does
not belong to ∂E, so (x, t) is an interior point of E or of (IRn × IR)\E.
So (xj , tj) ∈ E for large j if (x, t) ∈ E, and (xj , tj) ∈ (IRn × IR)\E for
large j if (x, t) ∈ (IRn × IR)\E. Therefore (xj , tj) ∈ E ∩ S for large j if
(x, t) ∈ E ∩ S, and (xj , tj) ∈ S\E for large j if (x, t) ∈ S\E. So (P) holds
both for H = E ∩ S and H = S\E.

Now consider the case when (x, t) 6= (x̄, t̄), so that (4.2.5) holds. Then
tj ≥ t and ‖xj − x‖ ≤ C(x, t)(tj − t) for all j. If (x, t) is an interior point of
E or of (IRn × IR)\E, then the desired conclusion follows as in the previous
case. So let us assume that (x, t) ∈ ∂E. Then either t < t′ + α or t = t′ + α.
We will consider these two cases separately.
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If t < t′ + α, then ‖x − x′‖ = N(t − t′), and (x, t) ∈ E. But (x, t) ∈ S,
and E ∩ S ⊆ SN , so (x, t) belongs to SN , and then C(x, t) < N . Therefore
‖xj − x‖ ≤ N(tj − t) for all j, from which it follows that

‖xj − x′‖ ≤ N(tj − t) + N(t − t′) = N(tj − t′) for all j .

Since t < t′ + α and tj → t, we have tj < t′ + α for large j. So (xj , tj) ∈ E
for large j, and then (xj , tj) ∈ E ∩ S for large j, so (P) holds if H = E ∩ S.
Furthermore, (P) also holds, vacuously, if H = S\E, because the premiss
“(x, t) ∈ H” is false.

If t = t′ + α, then (x, t) ∈ S\E. Moreover, (xj , tj) /∈ E for all j, since
tj ≥ t ≥ t′ + α. So (xj , tj) ∈ S\E for all j, showing that (P) holds for
H = S\E. Since (x, t) /∈ E, (P) holds vacuously for H = E ∩ S.

We have thus shown that property (P) holds in all possible cases both
for H = E ∩ S and H = S\E, whenever E ∈ A∗. Therefore (P) holds for
all H ∈ G.

Having shown that (P) holds for all H ∈ G, Fact 12 follows easily:
as explained above, it suffices to show for our given (x, t) and our given
sequence {(xj , tj)} that f(xj , tj) → f(x, t) if f ∈ ΦG . But this is trivial, for
(x, t) belongs to a G ∈ G on which f is continuous, and then (xj , tj) ∈ G for
large j in view of (P), so f(xj , tj) → f(x, t). Therefore Fact 12 is proved.

We are now ready to construct the desired selection f of F .
First, we observe that, since the function ρg,F is upper semicontinuous,

(4.2.1) implies that there exists a continuous function γ : S 7→ IR such that

ρg,F (x, t) < γ(x, t) < β(x, t) for all (x, t) ∈ S . (4.2.6)

(Proof: for every q = (x, t) ∈ S, pick a relatively open bounded subset Uq

of S such that q ∈ Uq and a constant κq such that ρg,F (q′) < κq < β(q′)
for all q′ ∈ Uq. Then U = {Uq : q ∈ S} is an open covering of S. Since
S is metric and hence paracompact, there exists a locally finite set V of
relatively open subsets of S which is a covering of S and a refinement of U .
For each V ∈ V, pick a point qV of S such that V ⊆ UqV . Define functions
ψV : S 7→ [0,∞ [ by ψV (v) = dist(v, S\V ) for v ∈ S. Then the ψV are
continuous, nonnegative, and such that ψV (v) > 0 if and only if v ∈ V . Let
ψ =

∑
V ∈V ψV . Define ϕV = ψV

ψ . Then the ϕV are continuous, nonnegative,
and such that ϕV (v) > 0 if and only if v ∈ V , and

∑
V ∈V ϕV ≡ 1. Now

define γ(q) =
∑

V ∈V ϕV (q)κqV .)
We then let δ = 1

2(β − γ), and define δk = (1− 2−k)δ for k = 0, 1, . . ., so
δ and the δk are continuous functions from S to IR.
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Pick, for each (x, t) ∈ S, a point zx,t ∈ F (x, t) such that

‖g(x, t) − zx,t‖ < γ(x, t) . (4.2.7)

(This is possible because of (4.2.6)). Then find neighborhoods Gx,t of (x, t)
in IRn × IR such that Gx,t ∈ A∗, with the property that the inequalities

d(zx,t, F (x′, t′)) <
1
2
δ(x′, t′) , (4.2.8)

‖g(x′, t′) − zx,t‖ < γ(x′, t′) , (4.2.9)

hold for all (x′, t′) ∈ Gx,t ∩ S. (The fact that (4.2.8) can be achieved is a
consequence of the lower semicontinuity of F , together with the continuity
of δ, since d(zx,t, F (x, t)) = 0, and δ(x, t) > 0. The fact that (4.2.9) can also
be obtained follows from the continuity of γ and g, together with (4.2.7)).

Next, find a sequence (x1, t1), (x2, t2), . . . such that the sets Gxj ,tj ∩ S,
for j = 1, 2, . . . cover S. (This is possible because S is separable metric and
hence second countable.) Let W 0

1 = Gx1,t1 ∩ S, and define inductively

W 0
j = (Gxj ,tj ∩ S)\(W 0

1 ∪ W 0
2 ∪ . . . W 0

j−1) for j = 2, 3, . . . . (4.2.10)

Then P0 = {W 0
j : j = 1, 2, . . .} is a partition of S into members of G. Define

f0(x, t) = zxj ,tj if (x, t) ∈ W 0
j . Then f0 is constant on each member of P0,

and the inequalities

d(f0(x, t), F (x, t)) <
1
2
δ(x, t) , (4.2.11)

‖f0(x, t) − g(x, t)‖ < γ(x, t) , (4.2.12)

hold for all (x, t).
We now suppose that we have constructed maps f0, . . . , fk : S 7→ Y , and

finite or countable partitions P0, . . . ,Pk of S into members of G, such that

(i) fj is constant on each member of Pj for j = 0, . . . , k,

(ii) the inequalities

d(fj(x, t), F (x, t)) < 2−j−1δ(x, t)

‖g(x, t) − fj(x, t)‖ < γ(x, t) + δj(x, t)

hold for all (x, t) ∈ S, j ∈ {0, . . . , k},

(iii) ‖fj(x, t) − fj−1(x, t)‖ ≤ 2−jγ(x, t) for all (x, t) ∈ S, j ∈ {1, . . . , k},
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(iv) for each j ∈ {1, . . . , k}, Pj is a refinement of Pj−1.

(Notice that all these conditions hold for k = 0, since (i) and (ii) have
already been established, and (iii) and (iv) are vacuously true.)

We then construct fk+1 as follows. Pick a Q ∈ Pk. Let yk,Q be the
constant value of fk on Q. Then

d(yk,Q, F (x, t)) = d(fk(x, t), F (x, t)) < 2−k−1δ(x, t) (4.2.13)

and
‖g(x, t) − yk,Q‖ < γ(x, t) + δk(x, t) (4.2.14)

for all (x, t) ∈ Q. So we can pick, for each (x, t) ∈ Q, a zk,Q
x,t ∈ F (x, t) such

that
‖yk,Q − zk,Q

x,t ‖ < 2−k−1δ(x, t) . (4.2.15)

Then

‖g(x, t) − zk,Q
x,t ‖ < γ(x, t) + δk(x, t) + 2−k−1δ(x, t)

= γ(x, t) + δk+1(x, t) .

Using the lower semicontinuity of F and the continuity of δ, γ, g, and δk+1,
we can find for each (x, t) ∈ Q a relative neighborhood W k,Q(x, t) of (x, t)
in S such that the inequalities

d(zk,Q
x,t , F (x′, t′)) < 2−k−2δ(x′, t′) ,

‖yk,Q − zk,S
x,t ‖ < 2−k−1δ(x′, t′) ,

‖g(x′, t′) − zk,Q
x,t ‖ < γ(x′, t′) + δk+1(x′, t′) ,

hold for all (x′, t′) ∈ W k,Q(x, t). Using Fact 11, we can assume, after
shrinking W k,Q(x, t) if necessary, that W k,Q(x, t) ∈ G.

We then find for each Q ∈ Pk a finite or countable subset Mk,Q of Q
such that

Q ⊆
⋃ {

W k,Q(x, t) : (x, t) ∈ Mk,Q
}

.

We enumerate each Mk,Q in an arbitrary fashion as a finite or countably
infinite sequence

{
(xk,Q

j , tk,Q
j )

}
1≤j<m(k,Q)

, where m(k, Q) ∈ IN ∪ {∞}. We

then define
Ŵ k,Q

1 = Q ∩ W k,Q(xk,Q
1 , tk,Q

1 )

and, for 1 < ` < m(k, Q), we let

Ŵ k,Q
` =

(
Q ∩ W k,Q(xk,Q

` , tk,Q
` )

)
\(Ŵ k,Q

1 ∪ . . . ∪ Ŵ k,Q
`−1 ) .
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We then let Pk+1 be the collection of all sets Ŵ k,Q
` , for all Q ∈ Pk and

all ` ∈ IN such that 1 ≤ ` < m(k, Q). Then Pk+1 is a finite or countable
partition of S into members of G, and is a refinement of Pk. If (x, t) ∈ S,
we define

fk+1(x, t) = zk,Q

xk,Q
`

,tk,Q
`

, (4.2.16)

where Q is the unique member of Pk such that (x, t) ∈ Q, and ` is the
unique integer such that 1 ≤ ` < m(k, Q) and (x, t) ∈ Ŵ k,Q

` . Then fk+1

is constant on each member of Pk+1. Moreover, if (x, t) ∈ Ŵ k,Q
` , then

(x, t) ∈ W k,Q
` (xk,Q

` , tk,Q
` ), so that the inequalities

‖fk+1(x, t) − fk(x, t)‖ = ‖zk,Q

xk,Q
`

,tk,Q
`

− yk,Q‖ ≤ 2−k−1δ(x, t) ,

d(fk+1(x, t), F (x, t)) = d(zk,Q

xk,Q
`

,tk,Q
`

, F (x, t)) < 2−k−2δ(x, t) ,

‖g(x, t) − fk+1(x, t)‖ = ‖g(x, t) − zk,Q

xk,Q
`

,tk,Q
`

‖ < γ(x, t) + δk+1(x, t) .

are satisfied. It follows that the maps f0, . . . , fk+1 and the corresponding
partitions P0, . . . ,Pk+1 also satisfy (i),. . .,(iv).

The above inductive construction therefore leads to an infinite sequence
{fj} of members of ΦG . In view of (iii), this sequence converges uniformly
on compact subsets of S to a limit f . It then follows from (ii), together with
the fact that F has closed values, that f is a selection of F and

‖g(x, t) − f(x, t)‖ ≤ γ(x, t) + δ(x, t) < β(x, t) for all (x, t) ∈ S .

In view of Fact 12, f is continuous at (x̄, t̄) and forward ΓC-continuous on
S, since f ∈ Φ̄G by construction.

It is clear that f(x̄, t̄) = ȳ, because the map f is a selection of F and
F (x̄, t̄) = {ȳ}. In addition, the maps fj are obviously Bor(IRn × IR) ∩ S-
measurable, because G ⊆ Borel(IRn × IR) ∩ S, since A∗ ⊆ Borel(IRn × IR).
Since fj → f pointwise, we see that f is Bor(IRn × IR) ∩ S-measurable. So
f satisfies all our conditions, and our proof is complete. ♦

4.3 Almost lower semicontinuous set-valued maps

The natural analogue of the well known Scorza-Dragoni theorem for
continuous set-valued maps is not true in general for lower semicontinuous
set-valued maps.
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Example 1. Let h : [0, 1] 7→ [0, 1] be a function which is not Lebesgue-
measurable. Define F : [0, 1]×[0, 1] →7→ [0, 1] by letting F (x, t) = [0, 1] if x 6= t,
F (x, x) = {h(x)}. Then it is clear that x 7→ F (x, t) is LSC for each fixed
t, and t 7→ F (x, t) is measurable for each fixed x. If there existed for each
positive n ∈ IN a compact subset Kn of [0, 1] such that meas([0, 1]\Kn) ≤ 1

n

with the property that F d([0, 1]×Kn) is LSC, then in particular Fn = F dK̃n

would be LSC, where K̃n = {(x, x) : x ∈ Kn}. But then Fn would actually
have to be continuous, because it is single-valued. Since Fn(x, x) = h(x),
this implies that hdKn is continuous for each n. But then h is Lebesgue-
measurable, and we have reached a contradiction. ♦

In view of this fact, it is reasonable to turn the conclusion of the Scorza-
Dragoni theorem into a definition, and introduce the class of “almost lower
semicontinuous” set-valued maps.

Recall that, if X is a set and S is a subset of X × IR, then SJ denotes
the set S ∩ (X ×J). If X, Y are sets, S ⊆ X × IR, F : S →7→ Y is a set-valued
map, and J ⊆ IR, we write FJ to denote the restriction of F to SJ , so FJ is
a set-valued map from SJ to Y FJ(x, t) = F (x, t) whenever (x, t) ∈ SJ , and
Dom(FJ) =

(
Dom(F )

)
J
.

Definition 19. Let X, Y be topological spaces, let S be a subset of the
product X × IR, and let F : S →7→ Y be a set-valued map. We call F almost
lower semicontinuous (abbr. ALSC) if

(ALSC) for every ε > 0 there exists a closed subset J of IR such that
meas(IR\J) ≤ ε and FJ is lower semicontinuous. ♦

The following characterization of the ALSC property is easily proved.

Fact 14. If X, Y, S, F are as in Definition 19, then F is ALSC iff

(ALSC.a) there exists a sequence {Jk}∞k=0 such that
(ALSC.a.i) the Jk are pairwise disjoint subsets of IR, IR =

⋃∞
k=0 Jk,

J0 has measure zero, and the Jk for k > 0 are compact,
(ALSC.a.ii) FJk

is LSC whenever k > 0.

Proof. It is clear that (ALSC) implies (ALSC.a). To prove the converse,
assume that (ALSC.a) holds, and let {Jk}∞k=0 be a family of sets that satisfies
(ALSC.a.i). Let C be the set of all closed subsets L of IR such that FL is
LSC. Then it is easy to see that C is closed under restrictions (i.e., if L ∈ C,
L′ ⊆ S, and L′ is closed, then L′ ∈ C) and locally finite unions (i.e., if
{Lα}α∈A is a locally finite family of members of C, then L = ∪αLα also
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belongs to C). The sets Jk,n = Jk ∩ [n, n + 1], for k ∈ IN, k > 0, and n an
arbitrary integer, obviously belong to C. Pick ε > 0, and then pick, for each
n, a k∗(n) such that

meas

(
[n, n + 1]

∖( k∗(n)⋃
k=1

Jk,n

))
<

ε

3 · 2|n| .

Let J =
⋃

n

(
∪k∗(n)

k=1 Jk,n

)
. Then J is a locally finite union of members of C,

so J ∈ C. In addition, meas(IR\J) ≤ ε. So (ALSC) holds. ♦
In the special case when F is single-valued, we know from Fact 10 that

the LSC property is equivalent to ordinary continuity. Therefore

Fact 15. If X, Y, S, F are as in Definition 19, and in addition F is single-
valued and Dom(F )=S, then F is ALSC as a set-valued map if and only if

(ALSC.s) there exists a sequence {Jk}∞k=0 that satisfies (ALSC.a.i) and is
such that F dSJk

is continuous for every k > 0. ♦

Definition 20. If X, Y, S, F are as in Fact 15, we call F almost continuous
if it is ALSC as a set-valued map, i.e., if it satisfies (ALSC.s). ♦

Under more special conditions (for example, if X is a locally compact
separable metric space, Y is a separable metric space, and S = Ω×I with Ω
open in X and I an interval), almost continuity is equivalent, by the Scorza-
Dragoni Theorem, to the much simpler statement that g(x, t) is continuous
in x for almost every fixed t and measurable in t for all x.

By analogy with Definition 20, we can also introduce a concept of “almost
upper semicontinuity” for real-valued functions, related in the obvious way
to the notion of an upper semicontinuous function (which is, of course,
quite different from that of an “upper semicontinuous set-valued map that
happens to be an ordinary map with real values,” cf. Remark 2).

Definition 21. Let X, Y be topological spaces, let S be a subset of X × IR,
and let f : S 7→ IR be a real-valued function. We call f almost upper
semicontinuous if there exists a sequence {Jk}∞k=0 that satisfies (ALSC.a.i)
and is such that fdSJk

is upper semicontinuous for every k > 0. ♦

4.4 Selections of ALSC maps

Definition 22. Assume that n, m ∈ IN, S ⊆ IRn × IR, f : S 7→ IRm, and
C : S 7→ ]0,∞[ . We call f almost forward ΓC-continuous if there exists
a sequence {Jk}∞k=0 for which (ALSC.a.i) holds, such that the restriction
fJk

= fdSJk
is forward ΓC-continuous whenever k > 0. ♦
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Theorem 8. Assume that n, m ∈ IN, S ⊆ IRn × IR, and F : S →7→ IRm is
an ALSC set-valued map with nonempty closed values. Let g : S 7→ IRm

be an almost continuous single-valued map and let β : S 7→ IR be almost
continuous and such that

for a.e. t ∈ IR : β(x, t) > ρg,F (x, t) whenever x ∈ IRn , (x, t) ∈ S . (4.4.1)

Assume that both g and β are LIB. Let C : S 7→ ]0,∞[ be almost upper
semicontinuous. Then the following is true for almost all t̄∈ IR:

(T8.#) For every x̄ ∈ IRn such that (x̄, t̄) is an interior point of S, and
every ȳ ∈ F (x̄, t̄) such that

‖g(x̄, t̄) − ȳ‖ < β(x̄, t̄) . (4.4.2)

there exists a selection f : S 7→ IRm of F such that

(T8.1) f(x̄, t̄) = ȳ;
(T8.2) (x̄, t̄) is a point of approximate continuity of f ;
(T8.3) f is almost forward ΓC-continuous;
(T8.4) for a.e. t ∈ IR, ‖f(x, t) − g(x, t)‖ < β(x, t) for all x ∈ IRn

such that (x, t) ∈ S,
(T8.5) f is EM(IRn, IR) ∩ S-measurable.

Proof. Let Ω = Int(S). Let K be a finite or countably infinite set of
compact subsets of Ω such that Ω =

⋃{Int(K) : K ∈ K}. For each K ∈ K,
let ϕK : IR 7→ [0,∞] be integrable and such that ‖g(x, t)‖ + β(x, t) ≤ ϕK(t)
whenever (x, t) ∈ K, and let LK be the set of Lebesgue points of ϕK . Let
L =

⋂{LK : K ∈ K}. Then L is a full subset of IR.
Let J = {Jk}∞k=0 be a sequence for which (ALSC.a.i) holds, such that

that the maps βk = βdSJk
, gk = gdSJk

are continuous, the functions Ck =
CdSJk

are upper semicontinuous, and the set-valued maps Fk = F dSJk
are

LSC. (The existence of J is a trivial consequence of our hypotheses.)
For k > 0, let J̃k be the set of points of density t of Jk such that t ∈ L.

Let J̃ = ∪∞
k=1J̃k. Then meas(IR\J̃) = 0. We show that every t̄ ∈ J̃ has

Property (T8.#).
Let t̄ ∈ J̃ . Let k0 be the unique k ∈ IN such that t̄ ∈ Jk, so that t̄ ∈ J̃k0 ,

k0 > 0, and t̄ ∈ L. Let x̄ ∈ IRn be such that (x̄, t̄) ∈ Int(S).
Theorem 7 implies that for every k ∈ IN such that k > 0 there exists

a selection fk : SJk
7→ IRm of Fk which is forward ΓCk

-continuous and such
that the bound ‖gk(x, t) − fk(x, t)‖ < βk(x, t) holds for all (x, t) ∈ SJk

.
Moreover, when k = k0 we can choose fk such that fk(x̄, t̄) = ȳ and fk is
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continuous at (x̄, t̄). Define f0 to be an arbitrary selection of F dSJ0 . Then
define f by letting f(x, t) = fk(x, t) for (x, t) ∈ SJk

.
Clearly, f satisfies (T8.1), (T8.3), (T8.4), and (T8.5). Moreover, if we

let E = Jk0 , pick a K ∈ K such that (x̄, t̄) ∈ Int(K), and define ϕ
def= ϕK ,

then conditions (P2.a) and (P2.b) of Proposition 2 hold. Furthermore, since
‖f(x, t) − g(x, t)‖ < β(x, t) for all (x, t) ∈ S, and ‖g(x, t)‖ + β(x, t) ≤ ϕ(t)
for all (x, t) ∈ K, condition (P2.c) holds as well. Therefore Proposition 2
implies that (x̄, t̄) is a PAC of f . So (T8.2) holds. ♦

Theorem 9. Assume that n, m ∈ IN and S ⊆ IRn × IR. Let F : S →7→ IRm be
an ALSC set-valued map with nonempty closed values. Let ψ : S 7→ [0,∞]
be an almost continuous single-valued locally integrably bounded function
such that min

{
‖y‖ : y ∈ F (x, t)

}
< ψ(x, t) for every (x, t) ∈ S. Let

ζ : S 7→ [0,∞] be an almost upper semicontinuous single-valued function.
Then the following is true for almost all t̄ ∈ IR:

(T9.#) For every pair (x̄, ȳ) such that (x̄, t̄) ∈ Int(S), ȳ ∈ F (x̄, t̄), and
‖ȳ‖ < ψ(x̄, t̄), there exists a selection f : S 7→ IRm of F such that

(T9.1) f(x̄, t̄) = ȳ;
(T9.2) (x̄, t̄) is a point of approximate continuity of f ;
(T9.3) f is integrally continuous on ÃRCζ(S),
(T9.4) ‖f(x, t)‖ < ψ(x, t) for all (x, t) ∈ S.

Proof. We apply Theorem 8 with g ≡ 0, β = ψ, C = 1 + ζ. This yields
a selection f that satisfies (T9.1), (T9.2) and (T9.4), and in addition is
EM(IRn, IR)∩S-measurable and almost forward ΓC-continuous. Then there
exists a sequence {Jk}∞k=0 such that (ALSC.a.i) holds, having the property

that the restrictions ψk = ψdSJk
, Ck = CdSJk

, fk
def= fdSJk

are, respectively,
continuous, upper semicontinuous, and forward ΓCk

-continuous. Define
maps f̃k(x, t) : S 7→ IRm by:

f̃k(x, t) =

{
fk(x, t) if (x, t) ∈ S , t ∈ Jk ,
0 if (x, t) ∈ S , t /∈ Jk .

(Naturally, f̃k may fail to be a selection of F .) We then have

Fact 16. f̃k is weakly forward ΓC continuous on S for every k > 0.

To see this, we fix a k, and show that
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(&) if the following three conditions are true:

1. (x, t) ∈ S,
2. (x`, t`) ∈ S, (x′

`, t`) ∈ S, ‖x` − x‖ ≤ C(x, t)(t` − t) , and
‖x′

` − x‖ ≤ C(x, t)(t` − t) for ` = 1, 2, 3, . . .,
3. x` → x, x′

` → x, and t` → t, as ` → ∞,

then f̃k(x`, t`) − f̃k(x′
`, t`) → 0.

Define L1 = {` : t` ∈ Jk}, L2 = {` : t` /∈ Jk}. If L1 is infinite, then
lim`→∞ , `∈L1 t` = t, so t ∈ Jk, because Jk is closed. Then C(x, t) = Ck(x, t).
Clearly,

f̃k(x`, t`) − f̃k(x′
`, t`) = fk(x`, t`) − fk(x′

`, t`) (4.4.3)

if ` ∈ L1. Since fk is forward ΓCk
-continuous, fk(x`, t`) → fk(x, t) and

fk(x′
`, t`) → fk(x, t) as ` → ∞ via values in L1. So f̃k(x`, t`)− f̃k(x′

`, t`) → 0
as ` → ∞ via L1. If L2 is infinite, then f̃k(x`, t`) − f̃k(x′

`, t`) → 0 as ` → ∞
via L2, because f̃k(x`, t`) = f̃k(x′

`, t`) = 0 when ` ∈ L2. This completes the
proof of Fact 16.

Since each f̃k is LIB with integral bound ψ, EM(IRn, IR)∩S-measurable,
and weakly ΓC-continuous, Theorem 2 implies that all the f̃k are integrally
continuous on ÃRCζ(S). Moreover, the sequence {f̃k}∞k=1 is uniformly LIB.
It therefore follows from the measurable intertwining property (Theorem 1)
that f is integrally continuous on ÃRCζ(S). ♦

4.5 The main theorem

Definition 23. Assume that n, m ∈ IN, S ⊆ IRn × IR, and F : S →7→ IRm has
nonempty values. We say that F is locally integrably lower bounded (abbr.
LILB) if for every compact subset K of S there exists an integrable function
ϕ : IR 7→ [0,∞] such that inf

{
‖y‖ :y∈F (x, t)

}
≤ϕ(t) whenever (x, t)∈K. ♦

We recall that a subset S of a Euclidean space IRk is locally compact if
and only if it is the intersection of an open set and a closed set. Moreover, if
S is locally compact then there exists a sequence{Ki}∞i=1 of compact subsets
of S such that Ki ⊆ Int(Ki+1) for every i and S =

⋃∞
i=1 Ki. Such a sequence

then has the property that if K is an arbitrary compact subset of S then
K ⊆ Int(Ki) for some i.

Lemma 3. Assume that n, m ∈ IN, S is a locally compact subset of IRn× IR,
and F : S →7→ IRm is a set-valued map with closed nonempty values. Then F
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is LILB if and only if there exists an almost continuous single-valued locally
integrably bounded function ψ : S 7→ [0,∞] such that

min
{
‖y‖ : y ∈ F (x, t)

}
< ψ(x, t) for every (x, t) ∈ S . (4.5.1)

Proof. If ψ exists then it is clear that F is LILB. Conversely, suppose that
F is LILB. Let {Ki}∞i=1 be a sequence of compact subsets of S such that
Ki ⊆ Int(Ki+1) for every i, and S =

⋃∞
i=1 Ki. For each i, let ϕi : IR 7→ [0,∞]

be an integrable function such that

ρ0,F (x, t) = min
{
‖y‖ : y ∈ F (x, t)

}
< ϕi(t) for every (x, t) ∈ Ki .

Let L1 = K1, Li = Ki\Int(Ki−1) if i > 1. Also, let Ω1 = Int(K2),
Ω2 = Int(K3), and Ωi = Int(Ki+1)\Ki−2 for i > 2. Then the Li are
compact, the Ωi are relatively open subsets of S, and Li ⊆ Ωi for every i.
Moreover, if K is an arbitrary compact subset of S, then there is an i
such that K ⊆ Int(Ki), and then K ∩ Ωj = ∅ whenever j ≥ i + 2, so the
sequence {Ωi}∞i=1 is locally finite. Finally, it is clear that S =

⋃∞
i=1 Li. For

each i, let ηi : S 7→ IR be a nonnegative continuous function such that
ηi(x, t) = 1 whenever (x, t) ∈ Li and Clos

(
{(x, t) : ηi(x, t) 6= 0}

)
⊆ Ωi. Let

η(x, t) =
∑∞

i=1 ηi(x, t), so η is a continuous strictly positive function on S.
Let θi(x, t) = ηi(x,t)

η(x,t) , so the θi are nonnegative continuous functions on S

such that Clos
(
{(x, t) : θi(x, t) > 0}

)
⊆ Ωi for each i, and

∑∞
i=1 θi ≡ 1.

Define ψ(x, t) =
∑∞

i=1 ϕi+1(t)θi(x, t). Let (x, t) ∈ S. Let I(x, t) be
the set of all i such that θi(x, t) > 0. If i ∈ I(x, t), then (x, t) ∈ Ωi, so
(x, t) ∈ Ki+1, and then ρ0,F (x, t) ≤ ϕi+1(t). Therefore ψ(x, t) is a convex
combination of real numbers r such that ρ0,F (x, t) ≤ r. It follows that
ρ0,F (x, t) ≤ ψ(x, t) for all (x, t) ∈ S, so (4.5.1) holds.

If K is a compact subset of S, and i is such that K ⊆ Int(Ki), then
ψ(x, t) =

∑i+1
j=1 ϕj(t)θj(x, t), because K ∩ Ωj = ∅ whenever j ≥ i + 2.

So ψ(x, t) is bounded above, for (x, t) ∈ K, by the integrable function
IR 3 t 7→ ∑i+1

j=1 ϕj(t). Therefore ψ is locally integrably bounded.
Finally, we show that ψ is almost continuous. Given a positive ε, we

can use Lusin’s theorem to find, for each i, a closed subset Ci of IR such
that meas(IR\Ci) < 2−iε and ϕidCi is finite-valued and continuous. Let
C =

⋂∞
i=1 Ci. Then S is closed, meas(IR\C) < ε, and ϕidC is continuous.

It follows that the locally finite sum
∑∞

i=1 ϕi+1(t)θi(x, t) is continuous as a
function on S ∩ (IRn × C). In other words, the restriction of ψ to SC is
continuous, as desired. ♦

We are now ready to state and prove our main result.
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Theorem 10. Assume that n ∈ IN and S is a locally compact subset of
IRn × IR. Let F : S →7→ IRn be an ALSC LILB set-valued map with nonempty
closed values. Then the following is true for almost all t̄ ∈ IR:

(T10.#) For every x̄ such that (x̄, t̄) ∈ Int(S) and every ȳ ∈ F (x̄, t̄) there
exist a selection f : S 7→ IRn of F and an almost continuous LIB
function ψ : S 7→ [0,∞] such that

(T10.1) f(x̄, t̄) = ȳ;
(T10.2) (x̄, t̄) is a point of approximate continuity of f ;
(T10.3) ‖f(x, t)‖ ≤ ψ(x, t) for all (x, t) ∈ S;
(T10.4) f is integrally continuous on ÃRCψ(IRn; S);
(T10.5) f is an admissible time-varying vector field on some

neighborhood of (x̄, t̄);
(T10.6) the flow map Φf is regularly differentiable at (x̄, t̄, t̄) with

differential equal to the linear map

IRn × IR × IR 3 (v, h, k) 7→ v + (h − k)ȳ ∈ IRn .

Proof. It follows from Lemma 3 that there exists an almost continuous LIB
function ψ : S 7→ IR such that (4.5.1) holds. Let Ω = Int(S), and let {Ki}∞i=1

be a sequence of compact subsets of Ω such that Ki ⊆ Int(Ki+1) for every
i and Ω =

⋃∞
i=1 Ki. For each i, pick an integrable function ϕi : IR 7→ [0,∞]

such that ψ(x, t) ≤ ϕi(t) whenever (x, t) ∈ Ki+1. We define ζi : S 7→ [0,∞]
by letting

ζi(x, t) =

{
ψ(x, t) if (x, t) ∈ S\Ki ,
ϕi(t) if (x, t) ∈ Ki ,

and remark that ψ(x, t) ≤ ζi(x, t) for all (x, t) ∈ S.
We claim that ζi is almost upper semicontinuous for every i. To see this,

fix i and a positive number ε, and find a closed subset C of IR such that
meas(IR\C) < ε and the functions S ∩ (IRn × C) 3 (x, t) 7→ ψ(x, t) ∈ [0,∞]
and C 3 t 7→ ϕi(t) ∈ [0,∞] are finite-valued and continuous.

Let us show that ζi is upper semicontinuous on SC = S ∩ (IRn ×C). To
prove this, we fix α ∈ IR, let W = {(x, t) ∈ SC : ζi(x, t) ≥ α}, and prove that
W is relatively closed in SC . Let {(xj , tj)}j∈IN be a sequence of members
of W that converges to a limit (x, t) ∈ SC . Then ψ(xj , tj) → ψ(x, t) and
ϕi(tj) → ϕi(t) as j → ∞. If (x, t) /∈ Ki, then (xj , tj) /∈ Ki for large
enough j. Therefore ζi(x, t) = ψ(x, t) and ζi(xj , tj) = ψ(xj , tj) for large j,
so ζi(xj , tj) → ζi(x, t). Since ζi(xj , tj) ≥ α, we find that ζi(x, t) ≥ α, so
(x, t) ∈ W . Now suppose that (x, t) ∈ Ki. Then (xj , tj) ∈ Ki+1 for large
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enough j, because Ki ⊆ Int(Ki+1). Therefore ψ(xj , tj) ≤ ϕi(tj) for large j,
and then the definition of ζi shows that ζi(xj , tj) ≤ ϕj(tj) for large j. It
follows that ζi(x, t) = ϕi(t) = limj→∞ ϕi(tj) ≥ lim supj→∞ ζi(xj , tj) ≥ α.
Therefore (x, t) belongs to W in this case as well, concluding the proof that
ζi is almost upper semicontinuous.

Clearly, (4.5.1) holds as well if ψ is replaced by ψN , where ψN
def= ψ + N

and N is an arbitrary nonnegative integer. We can therefore apply Theorem
9, given any N and i, with ψN in the role of ψ, and ζN

i in the role of ζ,
where ζN

i (x, t) = ζi(t) + N . We can then find full subsets Ei
N of IR such

that, whenever t̄ ∈ Ei
N , (x̄, t̄) ∈ Int(S), ȳ ∈ F (x̄, t̄), and ‖ȳ‖ < ψN (x̄, t̄),

there exists a selection f of F that satisfies (T10.1) and (T10.2), as well as
the inequality ‖f(x, t)‖ ≤ ψN (x, t) for all (x, t) ∈ S, and is such that f is
integrally continuous on ÃRCζN

i
(IRn; S).

Let E =
⋂∞

N=0

⋂∞
i=1 Ei

N . Then E is a full subset of IR. Let us show
that (T10.#) is true for every t̄ ∈ E. To see this, pick a t̄ ∈ E, an x̄
such that (x̄, t̄) ∈ Int(S), and a ȳ ∈ F (x̄, t̄). Then choose an N such that
‖ȳ‖ < ψN (x̄, t̄) and an i such that (x̄, t̄) is an interior point of Ki. Then
t ∈ Ei

N , so there exists a selection f of F such that (T10.1) and (T10.2)
hold, (T10.3) holds with ψ replaced by ψN , and f is integrally continuous
on ÃRCζN

i
(IRn; S).

Since ψ(x, t) ≤ ζi(x, t) for all (x, t) ∈ S, we also have ψN (x, t) ≤ ζN
i (x, t)

for all (x, t) ∈ S, so f is integrally continuous on ÃRCψN (IRn; S), showing
that (T10.3) holds with ψ replaced by ψN .

Now, (x̄, t̄) ∈ Int(Ki), and ‖f(x, t)‖ ≤ ψN (x, t) ≤ ϕi(t) + N = ζi(x, t)
when (x, t) ∈ Ki. So f is bounded by the integrable function t 7→ ϕi(t) + N

on Ki, and f is integrally continuous on ÃRCϕi+N (IRn; Ki). Therefore f
is a fortiori integrally continuous on ARCϕi+N (IRn; Ki). So f is admissible
on Ki. This completes the proof that f satisfies (T10.1), (T10.2), (T10.3),
(T10.4), and (T10.5), with ψ replaced by ψN .

Finally, (T10.6) follows from (T10.5) and Theorem 6. ♦
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