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1 Information on the course

1.1 Course schedule

Our class (Introduction to Mathematical Reasoning, Mathematics 300, sec-
tion 12) meets on Tuesdays and Thursdays, 8th period (7:40pm to
9:00pm) in Room B5, Hardenbergh Hall (College Avenue Campus).

1.2 About the instructor

My name is H.J. Sussmann. My office is Hill 538.
My Rutgers phone extension is 5-5407.
My e-mail address is sussmann@math.rutgers.edu.

1.3 Web page

I have set up a Web page for our Math 300 section:

http://www.math.rutgers.edu/̃ sussmann/math300page-Fall06.html

All the instructor’s notes will be available there.

1.4 Office hours

My office is Hill 538. My office hours will be:

• Tuesday and Thursday, 3:30pm to 5:00pm, in my office,
• any other time (possibly including weekends), by appointment, in my

office.

1.5 Lectures and exams

We will have 26 lectures, on

• September 5, 7, 12, 14, 19, 21, 26, 28,
• October 3, 10, 12, 17, 19, 24, 26, 31,
• November 2, 7, 9, 14, 16, 28, 30,
• December 5, 10, 12,

and two midterm exams, on Thursday, October 5 and Tuesday Novem-
ber 21.

The Final exam date will be announced as soon as it becomes available.
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1.6 Your final grade

Homework and quizzes will count for about 20% of your grade. (Homework
problems labeled “optional” will not be counted towards the 20% of your
grade, but you will get bonus points for doing them correctly, and you will
lose nothing for not doing them or for doing them incorrectly, so you have
nothing to lose by submitting solutions.)

The two midterms, which will count—together—for about 40%. The final
exam will count for the remaining 40%.

In addition, I will give you another option: if your grade based on the
final exam alone is higher than the one computed with the formula of the
previous paragraph, then you will get the higher grade.

1.7 The textbook and the instructor’s notes

We will be using:

• the book A Transition to Advanced Mathematics (sixth edition), by
Douglas Smith, Maurice Eggen, and Richard St. Andre;

• the notes written by the instructor.

The material of the instructor’s notes is
an integral part of the course, as much
as that of the book. Furthermore, the notes
contain all kinds of important information.
For example, in this set of notes there are lots
of things you need to know in order to do your
homework.

1.8 Always bring the book to class!

In the lectures, we are going to spend a lot of time looking at the book and
analyzing definitions, arguments and proofs given there. So

Please always bring the book to
class! You are going to need it.
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1.9 Readings for the first 4 days (September 5, 7, 12
and 14)

• the book’s “Preface to the student,”

• the book’s Chapter 1 (all of it!),

• the instructor’s notes, Pages 1 to 52 (omitting §3.3 and §3.4).

1.10 Homework assignment no. 1, due on Thursday
September 14

Before you start writing your homework, read carefully the rest of
this handout, in particular §1.11 on writing mathematics and sub-
mitting homework.” Pay special attention to §1.12, on “answering
questions in this course.”

1. Book, Exercises 1.1. (pages 8-9-10-11): Problems 1 (non-starred
items), and 10 (non-starred items),

2. (i) Prove that there exist integers x, y such that x2−y2 = 28 , (ii) Prove
that there exist integers x, y such that x2 − y2 = 29 , (iii) Prove that
there exist integers x, y such that x2 − y2 = 30 .

3. Prove that every prime number greater than 2 is odd. (NOTE: The
definitions of “odd” and “prime number” are given in the book, page
xii. A natural number is an integer n such that n ≥ 1.)

4. (Optional) Prove that every year must have a Friday the 13th.

5. (Optional) In the planet of the Klingons, they have a calendar exactly
like the one we use here on Earth (there are 12 months, January has
31 days, February has 28 or 29, March has 31, April has 30, etc.),
except for one thing: the order of the months is different. We do not
know what it is, but we know for sure that it is different from ours.
(For example, it may be that June is the first month, September is the
second one, etc.) Is it still necessarily true that every year must have a
Friday the 13th? Prove that it is true, no matter what the order of the
months is, or prove that it need not be true (that is, that there is a way
to reorder the months so that not every year has a Friday the 13th).
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1.11 Some remarks about mathematical writing

1.11.1 Write clearly in complete sentences

You should write so that you can be easily understood by a properly trained
English-speaking individual. In particular, this means that you must

• Use complete English sentences, that make clearly identifiable state-
ments with a clear meaning that can can be understood by anyone
reading what you wrote. For example:

– If you tell me that “she is very smart,” but you haven’t told me
who “she” is, then I don’t know who you are talking about, so
you haven’t made a statement with a clear meaning.

– If you write “x > 0,” but you haven’t told me who “x” is, then
I don’t know what you are talking about, so you haven’t made a
statement.

– If I ask you to state Pythagoras’ theorem and your answer only
says “a2 + b2 = c2,” then nobody will know what you are talking
about1, because you have not said what “a,” “b,” and “c” are
supposed to be.2

• Avoid exaggerated or incorrect use of cryptic mathematical notation.

• Explain what you are doing.

• Make sure that letter “variables” are used correctly, that is that either:
(i) it has been said before what these letters stand for, or (ii) they are
“closed variables” (or “dummy variables,” or “bound variables”) in the
sense that will be discussed in detail in class, and will also be explained
later in these notes.

• Provide proper connectives between equations as well as between ideas.

1Of course, your teacher will know what you are trying to say, and anybody who already
knows the statement of Pythagoras’ theorem will know. But when you are asked to state
a theorem or a definition you should write it as if you were talking to somebody
who does not know yet what the theorem or the definition say.

2Here is a correct statement of Pyhtagoras’ theorem: Let c be the lenght of the hy-
pothenuse of a right triangle, and let a, b be the lengths of the other two sides. Then
a2 + b2 = c2.
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• Make sure that all the rules of English grammar (including those of
spelling and punctuation) are strictly obeyed. (Here are two very enter-
taining books about punctuation that I recommend to you: (1) Eats,
Shoots and Leaves; the Zero Tolerance Approach to Punctuation, by
Lynne Truss, (2) Eats, Shoots and Leaves; why Commas Really Do
Make a Difference!, by Lynne Truss and Bonnie Timmons.)

• Try to say things correctly, following all the rules, but in your own
words. Please no rote learning. If you have to memorize a definition or
a statement, then that is not a good sign, because it indicates lack of
understanding.

• Please proofread carefully what you hand in. Ideally, you should read
and reread and revise almost any formal communication. Neatness
and clarity count, as you well know if you’ve tried to read any com-
plicated document.

• Do not assume that the people reading your paper
can read your mind. Do assume that they are in-
telligent, but also assume that they are busy, and
cannot and will not spend an excessive amount of
time puzzling out your meaning. Communication
is difficult, and written technical communication
is close to an art.

Effective written exposition will be
worth at least 50% of your grade. Con-
versely, bad or unclear exposition may
be penalized as much as 50% of the grade
or even more.

• The best reference known to me on effective writing is The Elements
of Style by Strunk and White, a very thin paperback published by
Macmillan. It isn’t expensive, and it is easy to read. I recommend it.
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1.11.2 Your written work

You should pay attention to presentation, especially for
the homework:

• A nicely typed homework (e.g., using a word processor) is preferable
to handwritten work. Handwritten work is acceptable too, but in that
case:

– If you have to cross out lots of words, then you should rewrite the
whole thing anew, cleanly and neatly. If you are not willing to
spend some of your time doing this; if what you hand in shows
that you were in a hurry and that you did not make the effort to
write things neatly and properly, then there is no reason for the
instructor or the grader to spend any of our time reading what
you wrote, and we will not do it.

– Use a pen. Never use a pencil.

– Use any color other than red (for example, black, blue, or green),
but DO NOT USE RED. (Reason: The use of red is reserved for
the instructor’s and grader’s comments.)

– If you tear off the sheets from a spiral notebook, please make
sure before you hand them in that there are none of those ugly
hanging shreds of paper at the margins. Use scissors, or a cutter,
if necessary.

• Make sure that your name appears in every sheet of paper you
hand in, and that if you are handing in more than one sheet then the
sheets are stapled and numbered.
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If you hand in a homework assignment that has
one of the following flaws:

• it is written carelessly or in a hurry,

• it has lots of words crossed out,

• it has unreadable handwriting,

• it has unstapled sheets,

• it has unnumbered sheets,

• it has sheets that fail to show your name,

• it has shreds of paper at the margins,

• it is written using pencil rather than a pen,

• it is written in red,

then you will lose points. If it has two or
more of those flaws, then the assignment will
be marked “unacceptable” and returned
unread and, from Assignment No. 3 on, you
will not get a chance to redo it and hand it in
again.

1.12 Answering questions in this course

In this course, whenever you are given a problem where
you are asked to do something, your answer should be
either:

(a) doing what you were asked to do,

or

(b) showing—that is proving—that it cannot be done.
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(See, for example, Problems 2, 4, 6, 7 below, where the correct answer is
“what you asked me to do cannot be done.”)

Notice that, when the answer is that “it cannot be done,” it is not enough
for you to say that it cannot be done. You have to tell me why. In other
words, you have to prove that it cannot be done.

This remark is very important, and will apply
throughout the semester, not just during the
first week. And it applies to all your work,
to the homework, the quizzes, the midterm
exams, and the final exam. So please read it
until you are sure you got the point. ♦

1.13 Some examples of problems with correct answers

Here are some examples of problems with correct solutions:

PROBLEM 1: Express the number 26 as a sum of two odd natural numbers.

ANSWER: 26 = 3 + 23. ♦

REMARK: There are lots of other solutions, of course! For example, here are
two solutions different from the one given above: 26 = 7 + 19, 26 = 13 + 13.

PROBLEM 2: Express the number 27 as the sum of two odd natural num-
bers.

SOLUTION: This is impossible. REASON: the sum of two odd numbers is
always even. Since 27 is odd, it cannot be the sum of two odd numbers. ♦

PROBLEM 3: Prove that the number 26 can be expressed as the sum of the
squares of two integers. That is, prove that there exist integers m,n such
that 26 = m2 + n2.

ANSWER: 26 = 51 + 12. So, if we take m = 5, n = 1, then 26 = m2 +n2. ♦

REMARK: What we have used here is the standard technique for prov-
ing that an object of a certain kind exists, namely, exhibiting one. We
wanted to show that a pair m,n of integers having a certain property, namely,
m2 + n2 = 26, exists, so we produced one such pair.
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PROBLEM 4: Prove that the number 22 can be expressed as the sum of the
squares of two integers. That is, prove that there exist integers m,n such
that 22 = m2 + n2.

SOLUTION: This cannot be proved because it is not true. REASON: Sup-
pose it was possible to express 22 as the sum of the squares of two integers.
Pick two integers m, n such that m2 + n2 = 22. Then we may assume that
m ≥ 0 and n ≥ 0, because if m or n was < 0 then we could replace it by its
negative and the equality m2 + n2 = 22 would still hold. Now, m cannot be
> 4, because if m > 4 then m ≥ 5, so m2 ≥ 25, and then m2 + n2 cannot be
equal to 22, since n2 ≥ 0. So the only possible values of m are 0, 1, 2, 3, and
4. If m = 0, then m2 + n2 = n2, so n2 = 22, which is not possible because
22 is not the square of an integer. If m = 1, then 22 = m2 + n2 = 1 + n2, so
n2 = 21, which is not possible because 21 is not the square of an integer. If
m = 2, then 22 = m2 +n2 = 4+n2, so n2 = 18, which is not possible because
18 is not the square of an integer. If m = 3, then 22 = m2 + n2 = 9 + n2, so
n2 = 13, which is not possible because 13 is not the square of an integer. If
m = 4, then 22 = m2 +n2 = 16+n2, so n2 = 6, which is not possible because
6 is not the square of an integer. So all five cases m = 0, 1, 2, 3, 4 have been
excluded. Since we have shown that these are all the possible values of m, it
follows that m,n cannot exist. ♦

PROBLEM 5: Prove that the number 22 can be expressed as the sum of the
squares of three integers. That is, prove that there exist integers m,n, q such
that 22 = m2 + n2 + q2.

SOLUTION: 22 = 32 + 32 + 22. So we can take m = 3, n = 3, q = 2. ♦

PROBLEM 6: Prove that 2 + 2 = 5.

SOLUTION: This cannot be done. REASON: The statement “2 + 2 = 5” is
false, and false statements cannot be proved. ♦
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2 First remarks on reasoning and proofs

This course is about reasoning and proofs, so perhaps it is not a bad idea to
start by discussing the meaning of the words reasoning and proof. A proof
is a special type of argument, so we will have to talk about arguments. An
argument (and in particular a proof) has hypotheses and a conclusion,
so we will have to analyze those two concepts as well. (Usually, the number
of hypotheses is zero—that is, no hypoteses at all—or one or two, but there
could be more.)

Furthermore, arguments consist of steps, and each step involves an as-
sertion and a justifications, so we will have to talk about explain how
steps, assertions and justifications. Arguments can be convincing or un-
convincing, so we will describe what makes an argument convincing. A
proof which is convincing in a very strong sense will be said to be valid, so
we will explain what makes a proof valid. It will turn out that a proof is valid
when all the steps are valid proof steps, so we will need to study what a
valid proof step is. This will bring us to the notion of logical form of a
sentence and of a proof step, so we will have to introduce the very important
notion of logical form. The study of all these concepts, which we have to
understand in order to understand what a valid proof is, is called logic, so
you may think of this chapter as an “Introduction to Logic”.

2.1 Reasoning and arguments

It is one of those cases where the art of the rea-
soner should be used rather for the sifting of de-
tails than for the acquiring of fresh evidence. ...
The difficulty is to detach the framework of fact—
of absolute undeniable fact—from the embellish-
ments of theorists and reporters. Then, having
established ourselves upon this sound basis, it is
our duty to see what inferences may be drawn.

(Words spoken by Sherlock Holmes in A. Conan
Doyle’s Silver Blaze)

What, exactly, is “reasoning”? The dictionary3 says that reasoning is “form-
ing or trying to reach conclusions by connected thought.”

As a starting point, this is a fairly adequate explanation. When we reason,

3Concise Oxford Dictionary, 8th Ed., Copyright 1991, Oxford Univ. Press. Henceforth,
this will be referred to as COD8.
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we express thoughts (by speaking or writing), and we do it in a connected
way, one step after the other, explaining what the connection is.

We reason by producing arguments. An argument is a “reasoning pro-
cess” (as COD8 says). Or “an episode of thinking.” (S. Guttenplan, The
Languages of Logic, Blackwell, 1998, p. 1). I like “reasoning process” better,
because it conveys the idea of movement: in an argument (especially a “se-
quential argument”, which is the kind that will concern us): we move from
thought to thought; an argument is a series of thoughts; each thought follows
from the previous ones or from some external reason, as will be explained
below; and we end up with the conclusion. Notice that the word “follows”
means both “comes after“ and “is a consequence of”, and “conclusion” means
both “what you have at the end” and “the thought that is intended to be
the consequence of all the others”.

I will, however, add some extra ingredients to these explanations of the
meaning of “reasoning” and “argument.” To understand these, let me start
by giving a few examples of arguments:

Example 1. Here is our first example of an argument. You should imagine
that Mr. and Mrs. Nice are talking to each other; Mr. Nice has just suggested
that they might invite Mr. and Mrs. Awful for dinner tomorrow, and then
Mrs. Nice reasons as follows:

• Suppose we invite Mr. and Mrs. Awful to come to dinner tomorrow.

Step 1. We know that if we invite the Awfuls for dinner, they will come.
Step 2. It follows that tomorrow the Awfuls will come to dinner.
Step 3. We also know that every time they come to dinner the Awfuls smoke a lot,

without asking us for permission to smoke.
Step 4. Therefore, tomorrow the Awfuls will smoke a lot, without asking us for permis-

sion to smoke.
Step 5. And we know that when someone smokes a lot in hour house, without asking

us for permission to smoke, we get very upset.
Step 6. So tomorrow we will get very upset.

End of Example 1.

In the argument of Example 1 there is a hypothesis, that is, a statement
that we imagine to be true “for the sake of the argument”. This means that
we set out to explore an imaginary world in which the hypothesis
is true, in order to find out what other things of interest to us are
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true there. The hypothesis of the argument of Example 1 is the statement
that “we invite Mr. and Mrs. Awful to come to dinner tomorrow.)”

We then move step by step. Each of our steps consists of an assertion
as well as a justification.

The assertion of Step 1 is that “if we invite the Awfuls for dinner, they
will come”. The assertion of Step 2 is that “tomorrow the Awfuls will come
for dinner”. The assertion of Step 3 is that “every time they come for dinner
the Awfuls smoke a lot, without asking us for permission to smoke”. The
assertion of Step 4 is that “tomorrow the Awfuls will smoke a lot, without
asking us for permission to smoke”. The assertion of Step 5 is that “when
someone smokes a lot in hour house, without asking us for permission to
smoke, we get very upset”. The assertion of Step 6 is that “tomorrow we
will get very upset”.

Mrs. Nice’s argument ends with Step 6, and the assertion of this last step
is called the conclusion of the argument.

Now let me list the justifications of the six steps. The justification of
Step 1 consists of the words “we know that”, which state—or reaffirm—the
fact that we4 both agree on this. For Step 2, the justification is in the words
“it follows that”, which tell us that the assertion is a consequence of those
of the previous steps, that is, the hypothesis and Step 1. The justification
of Step 3 consists of the words “we also know”. That of Step 4 is the word5

“Therefore”. That of Step 5 is the phrase “we know that”. Finally, the
justification of Step 6 is the word “So”.

Notice that the steps are of two kinds, depending on the justification:

• An accepted fact step (or known fact step, or given fact step),
in which Mrs. Nice brings in a fact that both she and Mr. Nice know
to be true or accept as true.

• An inference step, in which a new fact is brought in because it is a
consequence of the assertions of the previous steps and the hypotheses.

The key point is that, as we move step by step towards the conclusion,
the assertion of every step ought to be accepted as true by both

4That is, Mr. and Mrs. Nice.
5This is, of course, only an incomplete justification, because all it is saying is that the

assertion of Step 4 follows from those of previous steps, but it does not tell us from which
steps it follows, and how. But one would imagine that Mr. Nice is smart enough to realize
that what Mrs. Nice has in mind is that the assertion of Step 4 follows from those of Steps
2 and 3.
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Mr. and Mrs. Nice. Why? Because in every new step the assertion is
either (a) something that both Mr. amd Mrs. Nice agree to accept as true, or
(b) something that follows from the previous steps, so that if the assertions
of the previous steps are true then that of the new step must be true as well.
(The assertion of Step 1 is true—or, at least, is accepted as such by Mr. and
Mrs. Nice—because they already know that it is true, and do not need to be
persuaded. The assertion of Step 2 is true because it is a consequence of
(that is, follows from) the assertion of Step 1 and the hypothesis6

The assertion of Step 3 is true—for Mr. and Mrs. Nice—because they
already know that it is true. The assertion of Step 4 is true because it is
a consequence of those of Step 2 and Step 3. The assertion of Step 5 is
true—for Mr. and Mrs. Nice—because they both agree that it is true. The
assertion of Step 6 is true because it follows from those of Step 4 and Step 5.

Since the assertions of all the steps are true, it follows that in particular
the conclusion is true.

So what the argument is supposed to do is persuade Mr. Nice
that the conclusion must be true in an imaginary world in which
the hypothesis is true. As long as Mr. Nice grants or accepts that all
the accepted facts that occur in the given fact steps are true, and that all
the inference steps are valid (in the sense that the assertion of each of these
inference steps really does follow from those of previous steps and the as-
sumptions), he has to accept the conclusion.

Is the argument truly convincing? That is, should Mr. Nice accept it?
Well, he could raise objections, by pointing out, for example, that one of
Mrs. Nice’s “known facts” isn’t really, true, so he does not have to accepot
it. (He might, for example, remind his wife that once, six months ago,
the Awfuls came to dinner and did not smoke.) Or he might argue that
one of the inference steps is invalid. (For example, he might say that Step
4 does not really follow from Steps 2 and 3 because, just because in the
past the Awfuls have always smoked when they came to dinner, it does not
follow that they will do it again tomorrow, because they may have changed
and quit smoking.) Any argument by Mr. Nice giving reasons why Mrs.
Nice’s argument might not be convincing is a refutation of Mrs. Nice’s
argument. If Mr. Nice provides a refutation, then Mrs. Nice may accept it,

6Keep in mind that, “for the sake of the argument”, both Mr. and Mrs. Nice have
agreed to accepot the hypothesis as true, that is, to put themselves in an imaginary world
in which the hypothesis is true.
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and withdraw her argument, or refute the refutation, by giving an argument
of her own showing that the refutation is not convincing. And this process
of arguments and refutations may go on and on, and never stop.

2.1.1 Some examples of good and bad arguments

I am now going to give you a few examples of arguments, of which some are
convincing and others are not.

Example 2. Here is an example of an argument with no hypotheses. The
conclusion is that “The Earth is not round”. This argument is of course
unconvincing, as it should be, because we all know that the Earth is round7.

Step 1. If the Earth was round, then many things would fall off it.

Step 2. Things do not fall off the Earth.

Step 3. Therefore, the Earth is not round.

In real life, the argument would probably be presented in a more colloquial
way, as follows:

You will surely agree with me that if the Earth was
round then many things would fall off it. And I am
sure you also agree that things do not fall off the Earth.
Therefore, you must agree that the Earth is not round.

(The words “You will surely agree with me that” and “I am sure you also
agree that” are the justifications of Steps 1 and 2, intended to persuade you
that the sentences on these steps are “accepted facts”, or “known facts”, so
that you must agree with them. The word “Therefore” is the justification
of Step 3, telling you that this step follows from the previous ones.) End of
Example 2.

Example 3. Here is another argument, also without hypotheses. The con-
clusion is that “The Earth is not flat”.

7Well, not exactly round, but almost!
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Step 1. If the Earth was flat, then when you see a ship sailing into the
horizon, then all the parts of the ship would fade away gradually
at the same rate until they disappear.

Step 2. But what one actually sees is that the bottom disappears first,
then the middle, and finally the top.

Step 3. Therefore, the Earth is not flat.

Here again, the argument would probably be presented to you in a more
colloquial way, as follows:

You will surely agree with me that if the Earth was
flat then when you see a ship sailing into the horizon
all the parts of the ship would fade away gradually at
the same rate until they disappear. But you must have
noticed that what one actually sees is that the bottom
disappears first, then the middle, and finally the top.
Therefore, the Earth is not flat.

Is this argument convincing? Personally, I find it quite convincing, but
you have to be careful! Some people would say that “the argument is con-
vincing because the Earth is round, not flat”. In other words, they would
say that the argument is convincing because the conclusion is true. This is a
mistake that you should avoid. Just because the conclusion is true is
does not follow that the argument is convincing. To understand this,
look at my next example.

End of Example 3.

Example 4. Here is an argument which is obviously unconvincing, even
though the conclusion is true.

Step 1. The ghost of my late grandmother just whispered to me that the
earth is round.

Step 2. Therefore, the Earth is round.

End of Example 4.

Example 5. Here is an argument, adapted and simplified from A. Conan
Doyle’s short story Silver Blaze. Sherlock Holmes, the famous detective, is
speaking, and says
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1. The only people who could have stolen the horse were Mr. Straker, the
stable-boy, and Fitzroy Simpson—a perfect stranger.

2. The stable boy was sound asleep, because he had eaten curried mutton
heavily laced with powdered opium, which put him to sleep.

3. Therefore the stable boy was not the one who stole the horse.

4. The dog always barks when a stranger approaches the stables.

5. The dog did not bark that night.

6. Therefore Mr. Simpson did not steal the horse.

7. Therefore it was Mr. Straker that stole the horse.

End of Example 5.

Example 6. The following argument is adapted and simplified from an
episode of the TV series Columbo. Inspector Columbo is speaking, and says

1. You and Congressman Jones both said that you were together in your
office on the night of June 16 to 17, from 10pm to 2am

2. You both said that you arrived to your parking lot at 10pm and Con-
gressman Jones arrived at the same time, and then you both parked
there and walked uo to your office.

3. You both said that you two were in your office together all the time
from 10:00 to 2:00 and that at 2:00 you left together, you drove off in
your car and Congressman Jones drove off in his car.

4. However, on June 17 at 6am, when the police went to the building
where you work, they found that one parking place in the parking lot
was dry, but all the other places were wet.

5. According to the weather bureau, the only time it rained in the area
on June 16 or 17 was on June 16 from 11pm to midnight.

6. If both your car and Congressman Jones’ car had been there parked
during the time you both said they were, there would have been two
dry parking places rather than one.
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7. Therefore, there was only one car parked in your office’s parking lot
between 11pm and midnight.

8. Therefore, you and Congressman Jones are lying.

End of Example 6.

2.1.2 An argument part of a dialogue between an advocate and a
skeptic

In each of the arguments we have looked at so far, somebody is trying to
make a case for something, to convince someone else of the truth of some
assertion, to get the other person to accept something. Let us call the first
person, the one who is trying to do the convincing, the advocate. And let us
refer to the other person, the one whom the advocate is trying to persuade,
as the skeptic8. The assertion of which the advocate is trying to persuade
the skeptic is the conclusion of the argument. (In our six examples, the
conclusions are: (a) in Example 1, the statement that “tomorrow we will
get very upset”; (b) in Example 2, the statement that “the Earth is not
round”; (c) in Example 3, the statement that “the Earth is not flat”; (d) in
Example 4, the statement that “the Earth is round”; (e) in Example 5, the
statement that “it was Mr. Straker that stole the horse”; (f) in Example
6, the statement that “you and Congressman Jones are lying”.) And the
advocate is trying to persuade the skeptic that the conclusion is true if the
hypothesis are true, that is—if you prefer—in an imaginary world in which
the hypotheses are true9.

8The job of the skeptic is to take take a position contrary to that of the advocate, for
the sake of the argument (not necessarily believing that the advocate’s position is wrong).
Another name commonly used for this is “devil’s advocate”. This name comes from
the fact that “formerly, during the canonization process of the Roman Catholic Church,
the Promoter of the Faith (Latin Promotor Fidei), or Devil’s Advocate (Latin advocatus
diaboli), was a canon lawyer appointed by the Church to argue against the canonization of
the candidate. It was his job to take a skeptical view of the candidate’s character, to look
for holes in the evidence, and to argue that any miracles attributed to the candidate were
fraudulent, etc.” I stress that there is nothing bad, let alone “diabolic”, about playing
devil’s advocate. The work of the devil’s advocate “can be used to test the quality of
the original argument and identify weaknesses in its structure”, which is likely to be help
the advocate improve and strengthen the original argument. (The quotations are from
http://en.wikipedia.org/w/index.php?title=Devil%27s−advocate&oldid=68572051)

9If there are no hypotheses, then the advocate is just trying to persuade the skeptic
that the conclusion is true. That is, when there are no hypotheses, the “imaginary world in
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The way the advocate’s case is made is as follows:

• To begin with, advocate and skeptic must have a common starting
ground, that is, they must agree on some things10. So they must have
a collection of statements that both sides accept to be true. We will
call this the Stock of Accepted Facts, or SAF.

• In a particular argument, there is no need for the advocate to list all the
accepted facts. It is enough if the advocate lists those accepted facts
that will be needed in the argument11. Furthermore, it is not necessary
to list at the very beginning all the accepted facts to be used. They
may be presented as they are needed. (For example, in the argument
of Example 5, the accepted facts are Steps 1, 2, 4, and 5. Steps 4 and 5
are brought in when they are needed, in order to exclude Mr. Simpson
as a possible thief.)

• The advocate then proceeds step by step. Each step is of one of two
kinds:

1. An “accepted fact step”, or “AF-step”,

2. An “inference step”, or “I-step”,

• Each step contains an assertion, which is either

– A sentence drawn from the SAF, if the step is an AF-step,

or

which the hypotheses are true” is just the real world, because you do not need to imagine
anything.

10It is impossible to have an intelligent discussion with someone with whom you do not
agree on anything whatsoever.

11Naturally, the skeptic may refuse to accept some of these facts, and in that case the
argument cannot proceed. But, if the advocate and the skeptic have agreed to accept
certain statements, then the skeptic cannot back off and refuse to accept one of those
statements. For example, in Mathematics there will be certain statements that will be
declared to be “axioms”, or “postulates”, which means that both sides agree to accept
them. If, for example, there is an axiom that says that 1 > 0 (that is, “one is larger than
zero”) then when the advocate brings in the statement “1 > 0” the skeptic cannot refuse
to accept it, because this refusal would be playing against the rules both sides have agreed
to obey.
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– A new sentence, alleged to follow from the assertions of the previ-
ous steps and the hypotheses, so that anyone who agrees with the
assertions of all the sentences preceding a particular step is also
obliged to agree with the assertion of the new step, if the step is
an I-step.

• In addition, each step contains a justification, which explains whether
the step is an AF-step or an I-step, and tells us, if the step is an I-step,
how it follows from previous steps and the hypotheses.

(For example, (1) in Example 2, the AF-steps are Steps 1 and 2, and Step 3
is an I-step; (2) in Example 3, the AF-steps are Steps 1 and 2, and Step 3
is an I-step; (3) in Example 5, the AF-steps are Steps 1, 2, 4 and 5, and the
I-steps are Steps 3, 6 and 7; (4) in Example 6, the AF-steps are Steps 1, 2,
3, 4, 5, and 6, and the I-steps are Steps 7 and 8.)

Let us summarize what we have learned from these examples and the
discussion following them. First of all, reasoning can always be thought to
be part of a conversation, in which somebody—the “advocate”—is trying to
convince somebody else—the “skeptic”—of something, called the conclusion.

Even if you are “just thinking”, without talking to anybody else, you
should think of this process as a conversation with yourself. Actually, it
is better to see your reasoning process as involving a debate between two
distinct parts of your self, namely, one playing the role of advocate and the
other one playing the role of skeptic. This means, in particular, that

In reasoning, you should always be your own critic,
that is, you should always act as a skeptic about your
own argument, by questioning every step.

In Math 300, when you write a proof, you should
see yourself as presenting your case to an audience of
skeptics, consisting of the other students, the instructor
and the grader. And you should include yourself among
the skeptics, by imagining that there is a part of you—
your “critical self”—which is always looking for reasons
to doubt what the other self is doing, by asking “why
is this true?”, or “how do we know that this is true?”.
In other words, you should ask yourself “what could be
wrong with my argument” before anyone else does.
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Second, when we reason we first seek to elucidate a common ground be-
tween the “for” side and the “against” side, by, in the words of Sherlock
Holmes quoted above, “detaching the framework of fact, of absolutely un-
deniable fact” (that is, making sure that all sides agree on calling certain
statements “undeniable”), or, in other words, agreeing on a SAF (Stock of
Accepted Facts).

Third, once we have settled on a SAF, we move from these facts by
inferring (i.e., deducing) consequences from them. If all our deductions are
correct, then all the new facts arrived at in this way should be something
that all sides agree on. And, in particular, the skeptic should agree that the
conclusion is true.

In other words,

Reasoning is a conversation between two (real or imaginary) sides,
in which one of the sides tries to persuade the other one that something is
true, by “forming or trying to reach conclusions by connected thought.”,
using statements drawn from a supply of facts on whose truth both sides
agree (the “Stock of Accepted Facts”, or SAF), and then progressing step
by step by inferring (i.e., deducing) new statements.

Reasoning proceeds by producing arguments.
An argument, from a given SAF, is a list of steps, each of which

consists of a sentence together with a justification. The justification can
be of two kinds: either an explanation of why the sentence is part of the
SAF, or an explanation of why it is a consequence of the previous steps.

2.1.3 Arguments must be sequential

In our explanation of the meaning of “argument”, we have insisted that every
I-step should be a consequence of previous steps. This would disqualify the
following.

Example 7. Consider the “argument”:

You have to eat your soup, because I say so.

Strictly speaking, this not a argument in the sense explained above, because
it consists of two sentences, namely,
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• You have to eat your soup,

• I say so.

These sentences are connected by means of the conjunction “because”, but
this conjunction actually indicates that the first sentence is supposed to be
a consequence of the second one, whereas in a true argument, the second
sentence could be a consequence of the first one, but not the other way around.
End of Example 7.

Example 8. Even though the “argument” of Example 7 is not a true argu-
ment in the sense of our definition, it is possible to express the same ideas in
the form of a true argument, by writing

Step 1. I say that you have to eat your soup.

Step 2. Therefore you have to eat your soup.

This is clearly an argument in our sense. End of Example 8.

Often, one wants to accept “arguments” such as that of Example 7 as
true arguments. This could be done by changing a little bit the definition of
“argument”, and saying something like this: “an argument, from a given
SAF, is a list of steps, each of which consists of a sentence together with a
justification. The justification can be of two kinds: either an explanation
of why the sentence is part of the SAF, or an explanation of why it is a
consequence of the other steps”. Notice that this is exactly the same as
the definition we gave in the box of Page 21, except only that we are now
no longer requiring that each step which is not drawn from the SAF be a
consequence of previous steps, but only that it be a consequence of other
steps, as in our Example 7, where Step 1 follows from Step 2.

If we had followed this route, then the “arguments” in the strict sense
of the box of Page 21 would be called sequential arguments, to distin-
guish them from the more general “arguments” in which a step can be a
consequence of other steps that come after.

We will not, however, follow this route, because if we were to allow “non-
sequential” arguments then we would get into a lot of trouble.
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2.1.4 Circular arguments are completely invalid

The reason that allowing non-sequential arguments is bad, is that if you
allow them then you open the door to circular arguments, and circular
arguments are completely invalid.

To see why, consider the following example.

Example 9.

Step 1. The Republic of Ruritania is a democracy.

Step 2. In a democracy, the government is legitimate.

Step 3. Therefore the government of the Republic of Ruritania is legit-
imate.

Step 4. A legitimate government is one that respects the will of the
people.

Step 5. Therefore the government of the Republic of Ruritania respects
the will of the people.

Step 6. If the government of a country respects the will of the people
then the contry is a democracy.

Step 7. Therefore the Republic of Ruritania is a democracy.

In this “argument”, the steps can be justified as follows: Steps 2, 4, and 6
are AF-steps; Steps 1, 3, 5 and 7 areI-steps; Step 1 follows from Steps 5 and
6; Step 3 follows from Steps 1 and 2; Step 5 follows from Steps 3 and 4, and
Step 7 follows from Steps 5 and 6.

It is clear, however, that this should not qualify as an argument, because
in order to know that Step 1 is true you need to know, among other things,
that Step 5 is true, and in order to know that you need to know that Step
3 is true, and in order to know that you need to know that Step 1 is true.
So, ultimately, in order to know that that Step 1 is true you need to know
that it is true. That is, you are using a statement to establish that very
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same statement12. This is called circularity, and a purported argument
that exhibits circularity is a circular argument.

Circular arguments have
absolutely no value, and
should always be avoided.

You probably think that this observation is silly, because it is clear that
circular arguments are bad, and you would never be so dumb as to write one.
Having taught Math 300 many times, I can assure you that students have a
tendency to use circular arguments all the time, so I insist on warning you
against them.

The most frequently used kind of circular argument is one where the
student uses the conclusion, at the beginning or in the middle of a proof.
You may think that you will never do that, but many students will, and you
are not careful you will do it too. So allow me to say it again, with my
apologies to you if you think you do not need to be reminded of this:

Any argument that makes
use of the conclusion is
circular, and therefore
has absolutely no value,
and should be avoided.

SOMETHING FOR YOU TO THINK ABOUT. Try to come up with
a definition of “argument” that allows for “arguments” that are not sequential

12I might as well written: “Step 1, Ruritania is a democracy; Step 2, Ruritania is a
democracy”, and “justified” this by saying “Step 1 follows from Step 2, and Step 2 follows
from Step 1”, which shows more blatantly how ridiculous it is to argue this way, as if I
was saying “I am the King of Norway because I am the King of Norway”. or “I gave you
an F grade because I gave you and F grade”. You would clearly not accept that kind of
argument, would you? Here, I only wrote it in seven steps rather than two in order to
hide a little bit the fact that this “argument” is bad.



Supplementary Notes, September 5, 2006 25

(such as the one of Example 7), but does not allow circularity. Do not be
discouraged if you cannot figure this out. It is hard!

2.1.5 When is an argument convincing?

So far, we have given some examples of arguments, but have not said much
about whether they are convincing, that is, whether you should accept them
if they are presented to you. (We just said one thing, namely, that circular
arguments are noit convincing. But there are lots of other reasons that can
make an argument unconvincing, and that’s what we want to talk about
now.)

For example, are the arguments of Examples 2 and 3 convincing? That
is, do you have to accept them it because you have been convinced? And if
they are not convincing, then what is wrong with them?

You might answer that (i) the argument of Example 2 is “wrong”, because
the conclusion is false, that is, because the Earth is round, and (ii) the
argument of Example 3 is “right”, because the conclusion is true, that is,
because the Earth is not flat.

This is, however, the wrong way to go about deciding if an argument is
right or wrong, and why it is wrong when it is. In Example 2, suppose that
you are the skeptic, and you say to the advocate “your argument is wrong
because the Earth is round, but your conclusion says that it is not”. Then
the advocate might answer back: “you say that the conclusion is false, but
this does not tell me what is wrong with my argument. If every AF-step is
indeed a fact that you and I accept, and every I-step is a consequence

That is, you might think of refuting the argument by saying that “it is
wrong because the conclusion is false”. This is not a good way to refute an
argument.

Observing that the conclusion is false is
not a satisfactory way to refute an argu-
ment. Of course, if the conclusion is false
then the argument must be wrong, but just
pointing out that the conclusion is false does
not tell us what is wrong with the argument.
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This is a very delicate but very important point, so let me say more about
it.

Imagining yourself on trial, accused of some crime that you did not com-
mit. You know that you are innocent, but the prosecutor does not know, and
the jurors do not know. Now imagine that the prosecutor presents a long and
detailed argument with which he aims to “prove” that you did commit the
crime. You know that the prosecutor’s conclusion is false, so you know that
there must be a flaw in the prosecutor’s argument. But you would not try to
refute the prosecutor argument bu just saying that the conclusion is wrong,
because if you do that then the jurors will probably not believe you! What you
must do is persuade the jury that the prosecutor’s argument is wrong. (For
example, you may argue that the DNA evidence produced by the prosecutor
is not valid, because the police could have tampered with the evidence.)

Now let us go back to our situation of an argument that the skeptic
wants to refute by pointing out that the conclusion is false. How would the
skeptic argue that the conclusion is wrong? The skeptic would have to give
an argument for that. And then, if the advocate says “the skeptic is wrong
because I have given a very good argument showing that the conclusion is
true”, and the skeptic says “the advocate is wrong because I have given a
very good argument showing that the conclusion is false”, we find ourselves
in an impasse. There is a mystery here, a situation of tension that neeeds
to be resolved. One of them must be wrong, and the thing to do is for the
skeptic to study the advocate’s argument, find a flaw in it, and persuade the
advocate, or for the advocate to study the skeptic’s argument, find a flaw in
it, and persuade the skeptic.

Remark 1. In my own personal experience as a mathematician, I have found
myself many times in this situation. Typically, what happens is this: some-
body submits a paper to a journal, claiming to have proved a theorem. The
journal then sends me the paper and asks me to act as referee. I read the
paper, and become convinced that the theorem is false. I then try to prove
that the theorem is false. If I succeed, then maybe I will also take the ex-
tra time to look for the mistake in the proof, or maybe not. If I find the
mistake, then I write a report proving that the theorem is false and showing
where the proof goes wrong. If I do not find the mistake (perhaps because
I did not bother to look for it), then I will just say in my report that the
theorem is false and give a proof, leaving it up to the author to figure why
his or her proof is wrong. Usually, the author finds the mistake and agrees
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with me. But sometimes the author cannot find it, and becomes convinced
that his/her proof is right. Then the author will try to find a mistake in my
proof, and may succeed, and write a rebuttal to my report, explaining why
my proof is wrong. And in most cases, when this happens, I will acknowledge
my mistake. On some rare occasions, this report-and-rebuttal game may go
on for several more rounds. Or we may get stuck, with author and referee
each claiming to be right and insisting that the other one is wrong. In this
case, the journal’s editor may read all the reports and rebuttals and decide
that the referee—or the author—is right, or may ask a third person to do it.
Usually, when the situation is resolved, never happens that somebody is left
with a proof of a false conclusion and does not where the proof went wrong.
That’s because no mathematician would be able to tolerate such a situation.
If I think that I have proved something, but I realize that what I proved
is false, then I will be unable to sleep until I figure out where my proof is
wrong. You should do the same: if you think that you have proved
something, but then you realize that what you have proved is ac-
tually false, then you should feel a need to figure out where your
proof is wrong, and should be unable to sleep until you find out.
End of Remark 1.

If you want to refute an argument, you have to find
one step that is not convincing. This means that you have
to do one of the following two things: either

• establish that one of the steps claimed to be part of the SAF really
isn’t part of the SAF,

or

• establish that one of the steps that are claimed to follow from pre-
vious steps and the hypotheses does not really follow from them.

Notice that I did not say “point out”; I said “establish”. In other words,
it is not enough to say that a step should not really be part of the SAF,
or does not follow from the steps from which it is asserted to follow. You
have to explain why. (We will see how to do that in many examples.)



28 Sussmann – Math 300 – Fall 2006

Example 10. Here is a refutation of the argument of Example 2:

Refutation of the argument of Example 2. The argument assumes that the
statement

S: If the Earth was round, then many things would fall off it.

is part of the SAF, that is, that we all agree that it is true13 But, why should
S be true? It might be the case that, say, there exists some force (let me make
up a name for it, for example “gravitational attraction”), that causes things
to move towards the center of the Earth, and that what we call “falling” isn’t
really “falling down” but “moving towards the center of the Earth”. If this
was true, then the Earth could still be round, but things would not fall off
its surface, so S would be false14. End of the refutation of the argument of
Example 2. End of Example 1015.

So the argument of Example 2 is not convincing, because we have refuted
it. How about the argument of Example 3? Is that convincing? Again, you
may think that the answer is “yes”, because you know that the Earth is not
flat. But, once again, this is not a good answer, because it might be that the
argument is wrong anyhow.

Example 11. Here is an attempt to refute the argument of Example 3.

Attempted refutation of the argument of Example 3. Step 1 is not entirely
convincing because, for example, there might exist some strange optical effect
that causes images of ships to vanish in precisely the way described in that
step. End of attempted refutation of the argument of Example 3. End of
Example 11.

13Notice that at this point I have done something that we will be doing again and again
in this course: I have introduced a letter variable, namely, the letter S; and I have done it
in the only way that will be allowed in the course, by declaring a value. I have declared
that “S” stands for the statement “If the Earth was round, then many things would fall
off it”.

14Naturally, when I wrote this refutation I got a lot of help from knowing that the
imaginary “gravitational force” is in fact real. But this is irrelevant. What matters is
whether the argument can be refuted or not.

15Since the example has ended, the validity of our declaration of a value for the letter S
ends as well. So the letter S becomes a free variable, by which we mean that we are free
to give it another value whenever we want to.
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Remark 2. Personally, I do not find this refutation very convincing, because
the author gives no idea of what that “optical effect” might be, and no good
reason for us to believe that it maight exist.

This illustrates a general problem with arguments in everyday discourse:
usually, arguments are not clear-cut; an argument may sound convincing to
some people and not to others; and in those cases it is not easy to resolve the
disagreement, and people end up getting angry at one another and fighting.
In Mathematics, we will propose a notion of “argument” that does not have
this problem. This is what we will call “mathematical proof”. We will get
there eventually, but it is going to require some work. End of Remark 2.

Question 1. Write a refutation of Sherlock Holmes’ argument in Example
5. End of Question 1.

Question 2. Write a refutation of Inspector Columbo’s argument in Exam-
ple 6. End of Question 2.

So far, we have looked at refutations of arguments when the conclusion is
false. Is it possible to refute an argument when the conclusion is true? And
how does one do it?

The answer is very simple: to refute an argument, you do exactly what
was explained in the box of Page 27. That box does not say anything about
the conclusion being true or false. So what you have to do is exactly the same
thing whether the conclusion is true or false.

Does this mean that “in order to refute an argument it does not make
any difference whether the the conclusion is true or false”? Not quite. What
you have to do is the same in both cases. But whether you can do it depends
very much on which case you are in16:

16Notice that in the box I have done again something that I had already done once (see
Footnote 13), and this time I am doing it twice. I am introducing two letter variables,
namely, A and C; and I have done it in the only way that will be allowed in the course, by
declaring a value. I have declared that “A” stands for “an arbitrary argument”, and “C”
stands for “the conclusion of A.” (The meaning of “arbitrary” will be explained later, see
XXX.) At this point, A and C, which were “free variables”, become “constants”, that is,
have a fixed value. The declarations are valid until the box ends. After we are finished
with the box, “A” and “C” become free variables again, so we can assign other values to
them whenever we want to.
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Let A be an argument and let C be its con-

clusion. Then

• If C false, then something must be wrong

with A, so you have to be able to refute

A, by doing what is explained in the box

of Page 27.

• If C is true, then A could be right, in

which case it is not possible to refute it,

or A could be wrong, in which case you

have to be able to refute A, by doing

what is explained in the box of Page 27.

Question 3. Would it have been possible, in the box of Page 29, to declare
the value for C before rather than after declaring the value for A. If not,
explain why not. End of Question 3.

The second part of the box of Page 29 makes a very important point,
that students often find surprising, so let me say the same thing again, with
different words:

Just because the conclusion of an argument
is true, it does not follow that the argument
itself is correct. An argument can be wrong
even if it ends up with a true conclusion.

As I mentioned a few lines ago, this is a point that the students often find
hard to accept. I have to confess that I do not quite understand why. To
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me, it is evident that I can say anything I want, no matter how stupid, and
then at the end put the words “Therefore the Earth is round”. This would
give an “argument” whose “conclusion” is perfectly true, while the argument
itself is complete nonsense. I have already given you an example of this, in
Example 4. And here is another example of a wrong argument with a true
conclusion:

Example 12.

1. 2 + 2 = 4.

2. Therefore the Earth is round.

Silly, isn’t it. Of course the Earth is round! But that’s not because
2 + 2 = 4! What does “2 + 2 = 4” have to with the Earth being round? End
of Example 12.

2.1.6 The “Same Kind of Argument” principle.

Example 13. Here is a slightly more subtle example of a wrong argument
used to establish a true conclusion.

Step 1. In a U.S. presidential election, the candidate who gets the largest
number of votes wins.

Step 2. In the 1976 presidential election, Jimmy Carter got 40,830,763
votes and Gerald R. Ford got 39,147,973 votes.

Step 3. So Jimmy Carter got the largest number of votes.

Step 4. Therefore Jimmy Carter won.

It is indeed true that Jimmy Carter won the 1976 presidential election. But
we want to know whether this particular argument is convincing. And the
answer is that it is not. Here is a refutation.

Refutation. The sentence of Step 1 is presumably, part of the Stock of Agreed
Upon Facts. But this sentence is not true. It is not true that “In a U.S.
presidential election, the candidate who gets the largest number of votes
wins”. The true rule determining the winner is as follows: the candidate
who gets a majority of votes in the Electoral College wins. This candidate
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need not be the one who got the largest number of votes. It is possible
for a candidate to get a majority of the popular vote and yet fail to get a
majority of the Electoral College votes and to win the election. For example,
in 2000, Al Gore got a majority of the popular vote, but George W. Bush
got a majority of the Electoral College votes, so Bush won.

Here is another way to formulate our refutation: if our “1976 election”
argument was convincing, then the following argument would also be con-
vincing:

Step 1. In a U.S. presidential election, the candidate who gets the largest
number of votes wins.

Step 2. In the 2000 presidential election, Albert A. Gore got 50,999,897
votes and George W. Bush got 50,456,002 votes.

Step 3. So Gore got the largest number of votes.

Step 4. Therefore Gore won.

Yet, Al Gore did not win. So the “2000 election” is not convincing, and then
the “1976 election” argument is not convincing either, because it is “exactly
the same kind of argument”. End of Example 13.

Here is an important lesson to be learned from Example 13.

THE “SAME KIND OF ARGUMENT”
PRINCIPLE

One way to refute an argument is to show that, us-
ing “exactly the same kind of argument”, one can
establish a conclusion that is definitely false.

Remark 3. The question of what is meant, precisely, by “exactly the same
kind of argument”, is very delicate. But for mathematical proofs we will make
this perfectly clear later.

Let us illustrate the use of the “same kind of argument” principle with
some examples.
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Example 14. Here is an argument, purporting to establish the conclusion
that “Every year must have a Friday the 13th”.

Step 1. The year has 12 months.

Step 2. So there are 12 days that are Day 13 of a month.

Step 3. There are 7 possible days of the week.

Step 4. Each of the twelve “Day 13” must fall on one of the seven days of
the week.

Step 5. Therefore, when we look at the twelve Day 13 and which day of
the week they fall on, all seven days of the week must occur, and
in particular one of them must be a Friday.

Is this convincing?
In order to answer this question, it might help if we know whether the

conclusion is true, but you probably do not know that. If you could show that
the conclusion is false, then you would know that something must be wrong
with this argument, but you still would not know exactly what is wrong. If,
on the other hand, you could show in some other way that the conclusion is
true, then you would know that this particular argument could be right, but
you would not know that it is right.

Let me try to persuade you that this particular argument is wrong. I will
do it by using the “same kind of argument” principle: I will show you that
with this same kind of argument you could also prove something else which
is clearly false.

Imagine another civilization for which the year has 364 days, divided into
13 months, each month having 28 days. (Or, if you prefer, you can imagine
that the year has 336 days, and is divided into 12 months, each one having
28 days.) Also, imagine that the 13th of the first month is a Tuesday. Then
the 13th of every month will also be a Tuesday, and there will not be a Friday
the 13th. On the other hand, the argument used above would equally well
apply to this case, so we would be able to prove that every year has a Friday
the 13th even in a situation where this is manifestly false.

Now we are still left with the original question: is is true that every year
has a Friday the 13th? I am asking you to answer this question in one of
the optional homework problems. To do this problem, you must either find a
correct argument showing that the conclusion is true, or a correct argument
showing that it is false. And, in order to do this, it will be useful to you to
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learn some lessons from our wrong argument. What, exactly, can we learn?
Clearly, in our argument we have not used all the facts about the months
that matter. We only used the fact that there are 12 months, but we did not
use the fact that the lengths of the months are 30, 31 or 28 days (or 29 days
for a leap year), and that this happens in a special way. (For example, there
are four 30-day months, seven 31-day months, and one 28- or 29-day month.)
Our refutation shows that these facts should matter. So our argument should
use this extra information about the months. Will this be enough? Does it
suffice to know that there are four 30-day months, seven 31-day months, and
one 28- or 29-day month? Or maybe the order in which these months occur
matters? (That is, maybe it matters that the order is 31-28-31-30-31-30-31-
31-30-31-30-31, rather than, say 30-31-30-30-31-31-31-30-31-28-31-31.) This
equestion is the subject of another optional homework problem, on the planet
of the Klingons. End of Example 14

Example 15. Here is an argument, purporting to establish the conclusion
that “There do not exist integers m, n such that 30 = m2 − n2”.

Step 1. The number 30 is divisible by 6.

Step 2. A number which is divisible by 6 cannot be expressed as the dif-
ference of the squares of two integers.

Step 3. Therefore 30 cannot be expressed as the difference of the squares
of two integers.

Is this convincing? Obviously not! If this argument was valid, we could also
use it to prove that “There do not exist integers m, n such that 60 = m2−n2”,
since 60 is also divisible by 6. But

60 = 256− 196 = 162 − 142 ,

so there do exist integers m, n such that 60 = m2 − n2, as we can see by
taking m = 16 and n = 14. End of Example 15

2.2 Some examples of mathematical proofs

A proof is an argument which is so convincing that every reasonable person
has to accept it. I acknowledge that this is not a very easy criterior to apply,
but in mathematics I am going to make it perfectly clear what constitutes a
proof.

First, let us look at some examples. In all these examples,



Supplementary Notes, September 5, 2006 35

• There will be Steps consisting of an assertion and a justification.

• The justification will be written at the end of the step, after the asser-
tion, preceded by the string “[J:” and followed by “]”.

• We will be using the following rules as justifications for our steps:

R1 (The rule for introducing assumptions.) We are always allowed to
“assume” (or “suppose”) anything we want, because “assuming”
something means “imagining that it is true”, and we are always
free to imagine anything we want. On the other hand, when we
assume something, we are starting a “proof within a proof”, in
which we are no longer in the real world, but in an imaginary world
in which the assumption is true. Then everything we prove from
then on will be in this imaginary world, not in the real world. As
you will see later, there are rules for going back from an imaginary
world to the real world, that is, for ending a “proof within a proof”
and returning to the main proof.

R2 (The rule for introducing existing things.) We are always allowed
to introduce an object, give it a name (usually, but not always,
a letter), and stipulate that that object has certain properties,
provided that (a) the name is a letter or string that has not been
used before, and (b) it has been established in a previous step that
an object with those properties exists. For example, if we have
proved that “there are cows”, that is, that “there exists x such
that x is a cow”, then we can say “pick a cow and call her Suzy”.

R3 (The rule for bringing in a known fact.) We are always allowed to
have a new step in which a known fact is asserted. Known facts
include: (a) the hypotheses, if any, (b) definitions, (c) anything
that has been agreed to be allowed as a known fact. (Typically,
you will either be allowed to use as a known fact anything that has
been proved before, or you will be told that only some facts can
be used, in which case it will be made clear to you which known
facts are allowed.)
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R4 (The special case rule.) If you have established in a previous step
that some assertion A is true “for arbitrary17 x of a certain kind”,
and you have a particular object p of that kind, then you can
conclude that A is true of p. For example, if you have established
that “every Rutgers professor is a great teacher”, then you can
conclude that “H.J. Sussmann is a great teacher”.

R5 (The and-get rule.) If you have established two statements P and
Q in previous steps, then you can go to “P and Q.”

R5 (The proof-by-contradiction rule.) If you have assumed a state-
ment P and proved a contradiction under that assumption (that
is, if you have shown that in an imaginary world in which P hap-
pens something impossible must also happen) then you can go
back to the real world and conclude there that ∼ P . (NOTE: If
S is a statement, then “∼ S” stands for the statement “not S”,
that is, “it is not true that S”, or “it is not the case that S”. In
particular, “∼ c2 + 1 = 0” should be read as “c-squared plus one
is not equal to zero”.) What, exactly, is a “contradiction”? We
will say a lot about contradictions later, but at this point all you
need to know is that any statement of the form “P and ∼ P”
is a contradiction. (There are many other statements that are
contradictions, but you don’t need to know that right now.)

2.2.1 Proof that the equation x2 + 1 = 0 does not have a real
solution

THEOREM. There does not exist a real number x such that x2 + 1 = 0.

PROOF. We are going to prove our result by contradiction.
Step 1. Suppose a real number x such that x2 + 1 = 0 exists. [J: Introducing assumption]

Step 2. Pick a real number x such that x2 + 1 = 0 and call it c, so c is a real number
and c2 + 1 = 0. [J: From S. 1, introducing existing things]

Step 3. On the other hand, we know that if x is an arbitrary real number then x2 ≥ 0.
[J: Known fact]

Step 4. So c2 ≥ 0. [J: From S. 3, by Special Case Rule]

17The meaning of the word “arbitrary” will be discussed at great length later. At this
point, all you need to know is that “for arbitary x of a certain kind” means “for all possible
choices of an object of that kind”. For example, “for an arbitrary Rutgers professor x, it
is true that x is a great teacher” means exactly the same as “every Rutgers professor is a
great teacher”.



Supplementary Notes, September 5, 2006 37

Step 5. Furthermore, 1 > 0. [J: Known fact]

Step 6. Also, if x and y are arbitrary real numbers such that x ≥ 0 and y > 0 then
x+ y > 0. [J: Known fact]

Step 7. So c2 + 1 > 0. [J: From S. 4, 5 and 6, by Special Case Rule, plugging in c
2

for x and 1 for y]

Step 8. But, if x is an arbitrary real number such that x > 0, then ∼ x = 0. [J: Known

fact]

Step 9. So ∼ c2 + 1 = 0. [J: From S. 7 and 8, by Special Case Rule, plugging in c
2
+1 for x]

Step 10. Therefore c2 + 1 = 0 and ∼ c2 + 1 = 0. [J: From S. 2 and 9, using the “and-get” rule:

from P and Q you can go to “P and Q”]

Step 11. But “c2 + 1 = 0 and ∼ c2 + 1 = 0” is a contradiction. [J: It’s of the form

“P and ∼P ”]

Step 12. So a real number x such that x2 = −1 does not exist. [J: Proof-by-contradiction Rule,

from S. 1 and S. 11]

QUESTION. You probably know that there are numbers (called “complex
numbers”) such that in the universe of those numbers the equation x2 +1 = 0
does have a solution. (Actually, it has two solutions, namely, i and −i.) It
follows that the proof we just gave cannot work in thw world of complex
numbers. Which step or steps of the proof go wrong if we deal with complex
numbers rather than real numbers?

This section is incomplete. I am going to add several
more examples. You will get the completed version on
Tuesday September 12.
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3 A first look at the mathematical zoo: num-

ber systems

SUMMARY OF THIS CHAPTER

There are many different types of mathematical objects. Among them,
there are numbers of various kinds, and also lots of other things that
are not numbers.

Numbers belong to number systems. The most important number
systems are:

• IN, the set of natural numbers,

• Z, the set of integers,

• Q, the set of rational numbers,

• IR, the set of real numbers,

• C, the set of complex numbers,

• Z2, Z3, Z4, Z5, Z6, and, more generally Zn (the set of integers
modulo n) for every natural number n such that n ≥ 2.

In addition to numbers, there are all kinds of other mathematical ob-
jects, such as sets, lists, operations, functions, relations, arrays of various
kinds and, in particular, matrices, linear spaces (such as IR2, IR3, IR4,
etc.), geometrical figures such as curves of different kinds (for example,
lines, parabolas, ellipses, hyperbolas, cycloids, exponential curves), sur-
faces (such as planes, spheres, cylinders, cones, ellipsoids, paraboloids,
hyperboloids), and other figures (e.g., triangles, squares, rectangles, discs,
balls), and many, many more things.

We will talk about those other things later. For the moment, we just
concentrate on number systems.

Our first task is to take a look at the rich and varied collection of things that
populate the mathematical world. Some of them should be familiar to you,
others manybe less so or not at all. Do not worry if you find in our list things
that you have never heard of before: we will be coming back to the list later,
and discussing all the items in much greater detail.
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3.1 Numbers: IN, Z, Z+, Q and IR.

The best known mathematical objects are numbers and number systems.
There are several different kinds of numbers, and they can be organized
into number systems. A number can belong to different number systems,
in the same way as, say, a person can belong to different associations. (For
example, somebody could be a member, say, of the American Association of
University Professors, the Rutgers Alumni Association, and the Sierra Club.
Similarly, the number 3 belongs to lots of different number systems, such as,
for example, Z, IN, Q, IR, Z4, Z5, Z6, . . . , Z397, . . . .)

It is convenient to give the number systems names, and to introduce
mathematical symbols to represent them. Here are some examples:

1. The set IN of natural numbers, also known as positive integers, or
whole numbers. The members of this set are the integers 1, 2, 3 . . ..
So for example 1 is a member of IN, 2 is a member of IN, 385 is a
member of IN, 10, 891, 032 is a member of IN, but 0 is not a member of
IN, −1 is not a member of IN, 3.5 is not a member of IN, and so on.

2. The set Z of all integers. The members of Z are the natural numbers
as well as 0 and the negatives of natural numbers, i.e., the numbers
−1, −2, −3, etc.

3. The set Z+ of nonnegative integers The members of this set are
exactly the same as the members of IN, except only for the fact that 0
is not a member of IN but is a member of Z+.

4. The set IR of all real numbers. Every natural number is a member of
IR. Every integer is a member of IR. In addition, there are many other
real numbers besides the integers.

For example the following statements are true:

1 ∈ IR , 2 ∈ IR , 385 ∈ IR , 10, 891, 032 ∈ IR ,
0 ∈ IR , −1 ∈ IR , 3.5 ∈ IR , π ∈ IR ,
8
5
∈ IR , 10

5
∈ IR , 382,403,313

9
∈ IR , π + 7 ∈ IR ,

3 + 7 ∈ IR , 8− 1 ∈ IR , 1− 8 ∈ IR , π − (2− π) ∈ IR .
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THE SYMBOL “∈” (“BELONGS TO”)

We use the symbol ∈ (read “belongs to”, or “belonging to”) to indicate
membership in a set, and the symbol /∈ (read “does not belong to”, or
“not belonging to”) to indicate non-membership.
For example the following statements are true:

1 ∈ IN , 2 ∈ IN , 385 ∈ IN , 10, 891, 032 ∈ IN ,
0 /∈ IN , −1 /∈ IN , 3.5 /∈ IN , π /∈ IN ,
8
5
/∈ IN , 10

5
∈ IN , 382,403,313

9
∈ IN , π + 7 /∈ IN ,

3 + 7 ∈ IN , 8− 1 ∈ IN , 1− 8 /∈ IN , π − (2− π) /∈ IN ,
1 ∈ Z , 2 ∈ Z , 385 ∈ Z , 10, 891, 032 ∈ Z ,
0 ∈ Z , −1 ∈ Z , 3.5 /∈ Z , π /∈ Z ,
8
5
/∈ Z , 10

5
∈ Z , 382,403,313

9
∈ Z , π + 7 /∈ Z ,

3 + 7 ∈ Z , 8− 1 ∈ Z , 1− 8 ∈ Z , π − (2− π) ∈ Z ,
0 ∈ Z+ , 1 ∈ Z+ , 4 ∈ Z+ , −3 /∈ Z+ .

5. The set Q of all rational numbers (often called “fractions”) By defi-
nition, a rational number is a real number that can be expressed as the
quotient (or “ratio18) of two integers. So, for example, 8

3
∈ Q, 6 ∈ Q,

9
3
∈ Q, −6 ∈ Q, −9

3
∈ Q.

18“Ratio” is an old word for “quotient.”
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THE SYMBOL “⊆” (“IS A SUBSET OF”)

We use the symbol ⊆ (read “is a subset of,” or “is contained in”)
to indicate set inclusion, and the symbol 6⊆ (read “is not a subset
of”) to indicate that the inclusion does not hold.
If A and B are sets, the expression “A ⊆ B (read “A is a subset of
B”) means that every member of A belongs to B. For example: if
A is the set of all U.S. Senators, and B is the set of all citizens of
the U.S., then “A ⊆ B” and “B 6⊆ A” are true statements.
The following statements about Z>0, IN, Z, Q, IR, are true:

Z+ ⊆ Z+ , IN ⊆ Z+ , Z+ 6⊆ IN , IN ⊆ IN ,
IN ⊆ Z , Z 6⊆ IN , Z ⊆ Z , Z+ ⊆ Z ,
Z ⊆ Q , Q 6⊆ Z , Z ⊆ IR , IN ⊆ Q ,
Q 6⊆ IN , Q 6⊆ Z , IR 6⊆ Q , Q ⊆ Q .

NOT ALL REAL NUMBERS ARE RATIONAL

In the previous box we asserted that IR 6⊆ Q. How do we know
that?
For “IR ⊆ Q” to be true, it would have to be the case that every
real number is rational. Yet, this is not the case, because there are
real numbers that are not rational. A famous example is

√
2. We

will prove later that

The number
√

2 is not rational.

Actually, many other real numbers are not rational, although in
lots of interesting cases this is very hard to prove. For example, the
numbers π and e are not rational.

Remark 4. Do not confuse the symbols IN, Z, IR with the letters N , Z, R.
They are different! (This is very convenient. If we agreed to use N as the
name for the set of natural numbers, then the meaning of the letter N would
be fixed for ever, and we would not be able to use N for other things.) ♦
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3.2 Reading formulas with ∈ and ⊆
It is important that you acquire from the very beginning the habit of read-
ing mathematical formulas aloud precisely and correctly. For example, the
correct way to read the formula “3 ∈ IN” aloud is

3 belongs to IN

or

3 is a member of IN

or

3 is in IN.

But you cannot read “3 ∈ IN” as, for example, “3 is contained in IN.” “Is
contained” means something else!

Here is another example: the formula

IN = {1, 2, 3. . . .} , (3.2.1)

is read as

IN is the set consisting of 1, 2, 3, 4, etc.

It would be wrong (very wrong!) to read it as “IN is 1, 2, 3, 4, etc.” Do
you see why this is bad? The best way to understand it is to think of more
familiar examples.

For example, you cannot say that “the U.S. Supreme Court is Chief Jus-
tice Roberts and Justice Scalia and Justice Thomas and Justice Alito and
Justice Kennedy and Justice Souter and Justice Ginsburg and Justice Breyer
and Justice Stevens.” Why not? Because the U.S. Supreme Court is one
single thing, not nine things! What you can say is:

The U.S. Supreme Court is a tribunal whose members
are Chief Justice Roberts and Justices Scalia, Thomas,
Alito, Kennedy, Souter, Ginsburg, Breyer, and Stevens.

Similarly, the set IN of natural numbers is one single object, not many
objects, so you can say “IN is the set consisting of 1, 2, 3, 4, etc.” but you
cannot say “IN is 1, 2, 3, 4, etc.”
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Also, you cannot say “IN is the natural numbers,” or “IN is natural num-
bers.” (Actually, “IN is the natural numbers” is bad, but “IN is natural
numbers” is even worse. Why?) What you should say is “IN is the set of
natural numbers,” or “IN is the set of all natural numbers.”19

3.3 The complex numbers

For a long time, people used the word “number” to mean “real number.” But
then the “complex numbers” were invented, and mathematicians decided,
after long discussions on whether this was a good thing to do, that these
“complex numbers” were objects worth admitting as bona fide numbers as
well. So we can add a sixth example to our list of number systems:

6. The set C of all complex numbers. Here are some examples of these
“numbers”:

3 , i , 3 + i , 4− i , 35− 67i ,
8

5
,

8

5
− πi .

Complex numbers can be added and multiplied. To add two complex
numbers, you just add separately the “i-parts” and the “non-i-parts.”
So, for example,

3+i+(4−2i) = 7−i , 3+(8+5i) = 11+5i ,
8

5
+i+

(12

5
+83i

)
= 4+84i .

To multiply two complex numbers, you just multiply as you would real
numbers, except that every time you run into i.i you put −1 instead.
For example:

(23 + 7i).(4 + 2i) = 23.4 + 7.4.i+ 23.2.i+ 7.2.i.i

= 92 + 28i+ 46i+ 14.i.i

= 92− 14 + 28i+ 46i

= 78 + 72i .

19Recommended reading: the short story “Pigs is pigs,” by Ellis Parker Butler. You
can find it in the Web site www.bookvalley.com/cgibin/bv?b=162. It’s funny, and one of
the things that make it funny is precisely the misuse of the verb “is” in “Pigs is pigs.”
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Remark 5. The invention, or discovery, of the complex numbers was
a long process, driven by the effort to prove the “fundamental theorem
of algebra.” This theorem ought to say that an n-th order equation
has n solutions, so for example the equation x2 + 1 = 0 should have
two solutions, the equation x7 + 3x5 + 4x2 + 5 = 0 should have seven
solutions, and so on. But the only way for x2 + 1 = 0 to have two
solutions is to stipulate that there is a number x such that x2 = −1,
that is, that a “square root of −1” exists. This, however, leads to all
kinds of difficulties, if you think that this square root—let us call it i—
is an ordinary real number. For example, every real number is either
positive or negative or zero. Now, i of course cannot be zero, so i is
either positive or negative. Since the product of two positive numbers
is positive, if i was positive then i2 would have to be positive. Since
the product of two negative numbers is positive, if i was negative then
i2 would have to be positive. So in either case, whether i is positive
or negative, the number i2 would have to be positive. But i2 = −1,
so −1 would have to be positive, and this is not possible. The way
out of this was to think of i as not being an ordinary number, really,
but only a symbol to be manipulated according to certain rules. So,
for example, following what Descartes wrote in 1637, one can “imag-
ine” that the equation x2 + 1 = 0 has two roots—i and −i—but these
imagined roots are not “real” numbers. Earlier, in 1572, Bombelli
had given precise rules for the manipulation of these imaginary num-
bers. Argand in 1814 had the idea of representing complex numbers
as points in a two-dimensional plane. The term “complex number” was
actually introduced by Gauss in 1831. The term “conjugate” had been
introduced by Cauchy in 1821. ♦

3.4 The integers modulo n

Here are some more examples of important “number systems” of a
rather different kind. These systems will be very important to us later.

7.a. The set Z12 of all integers modulo 12. The members of Z12 are
the following 12 integers:

0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 .
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Addition and multiplication are carried out in the usual way, ex-
cept that any time you get 12 or something larger, you must “re-
duce modulo 12,” that is, subtract 12 and keep subtracting 12
until you get a member of Z12. For example, the following equal-
ities are true in Z12:

3 + 5 = 8 , 6 + 9 = 3 , 8 + 9 = 5 , 7 + 1 = 8 , 11 + 11 = 10 ,
4.2 = 8 , 6.9 = 6 , 8.7 = 8 , 7.11 = 5 , 7.7 = 1 .

Remark 6. The numbers modulo 12 are very natural objects, and you
are very much used to working with them. For example, suppose you
start at 10 o’clock and work 8 hours. What time is it when you finish?
The answer is “10+8 modulo 12,” that is, 6 o’clock. If a movie theatre
starts its show at 8 o’clock and shows a 2-hour movie 8 times, without
intermission, what time is it at the end of the show? The answer is
“10 + 2.8 modulo 12,” that is, 2 o’clock.

Naturally, if you wanted to keep track of “am” vs. “pm” then you
would want to use so-called “military time,” that is, work in Z24, the
numbers modulo 24. (In Z24, 16 + 13 = 5, and 8.5 = 16, and so on.)♦

8.b. The set Z7 of all integers modulo 7. The members of Z7 are the
following 7 numbers:

0 , 1 , 2 , 3 , 4 , 5 , 6 .

Addition and multiplication are carried out in the usual way, ex-
cept that any time you get 7 or something larger, you must “reduce
modulo 7,” that is, subtract 7 and keep subtracting 7 until you
get a member of Z7. For example, the following equalities are true
in Z7:

3 + 2 = 5 , 6 + 5 = 11 , 4 + 3 = 0 , 2 + 6 = 1 , 4 + 2 = 6 ,
4.2 = 1 , 6.5 = 2 , 3.4 = 5 , 3.3 = 2 , 3.5 = 1 .

Remark 7. Like the members of Z12, the numbers modulo 7 are also
very natural objects that you are very much used to working with. For
example, let us think of the days of the week as numbered, starting
with Sunday as Day No. 0. In other words, think of
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Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

as day No.
as day No.
as day No.
as day No.
as day No.
as day No.
as day No.

0
1
2
3
4
5
6

Suppose today is Thursday. What day of the week is it going to be 5
days from today? The answer is Tuesday, of course. Why? Because
Thursday is Day 4, so 5 days from today is Day 4 + 5, that is, Day 2,
modulo 7.

Suppose today, January 5, is a Wednesday. Whay day of the week
is February 11 going to be? ANSWER: today is Day 3; to go from
January 5 to February 11 you must add 36 days (that is, 31 days to go
to February 5, and 6 more to go to February 11), so you’ll end up in
Day 3+36=39, which is equal to 4 modulo 7. So February 11 is going
to be a Day 4, that is, a Thursday.

Suppose today, January 5, is a Wednesday. Whay day of the week is
July 5 going to be, assuming that we are NOT in a leap year? AN-
SWER: today is Day 3; to go from January 5 to July 5 we must add 31
days (to get to February 5), then 28 days (to get to March 5, using the
fact that we are not in a leap year), then 31 days (to get to April 5), then
30 days (to get to May 5), then 31 days (to get to June 5), and, finally,
30 days (to get to July 5). So we end up in Day 3+31+28+30+31+30
which, modulo 7, is the same as 3 + 3 + 0 + 2 + 3 + 2, that is, 13, that
is, 6 (modulo 7). So July 5 is going to be a Saturday. ♦

8.c. Naturally, one could consider integers modulo any other number,
not just 12 or 24. For example, Z3 is the set of integers modulo
3. So Z3 has exactly three members, namely,

0 , 1 , and 2 .

Arithmetic modulo 3 is very simple. The addition table is as
follows:

0 + 0 = 0 ,
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0 + 1 = 1 + 0 = 1 ,

0 + 2 = 2 + 0 = 2 ,

1 + 1 = 2 ,

1 + 2 = 2 + 1 = 0 ,

2 + 2 = 1 ,

and the multiplication table is

0.0 = 0.1 = 1.0 = 0.2 = 2.0 = 0 ,

1.1 = 2.2 = 1 ,

1.2 = 2.1 = 2 .

Remark 8. To say that an equality holds in Zn, we can say just that,
or we can say that the equality holds (or is true) “modulo n.”

For example, we can say that

5 + 8 = 2 in Z11 ,

or that
5 + 8 = 2 modulo 11 .

Also, it is clear from the context that we are working in Zn, then there
is no need to say “in Zn” or “modulo n.” (Example: after we said in
Page 45 that “the following equalities are true in Z12,” we then just
went ahead and wrote things like 8.7 = 8, without explaining again
that this was meant to be “in Z12,” or “modulo 12.” There was no
need, because we had already stated clearly that we were working in
Z12. ♦

Remark 9. If you look at the way we defined the integers modulo n,
you may think that the integers that are larger than n do not belong
to Zn. (For example, the integer 8 does not belong to Z7, because Z7

consists of the integers 0, 1, 2, 3, 4, 5, and 6, and nothing else.) We
can, however, assign a value to a symbolic expression such as 8 in Z7,
by letting

8 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 ,
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where the sum is understood to be in Z7. Then, in Z7, the expression
“8” denotes the number 1, and we can write

8 = 1 in Z7 .

Notice that
8 6= 1 in Z .

So the symbol 8, when we are working in Z7, is the name of a thing
which is not the integer 8. (If it was the same, then “8 6= 1” would also
be true in Z7.)

One can also talk about negatives of integers modulo n. What do we
mean by “the negative” of an integer modulo n? We just mean “the
integer modulo n that added in Zn to our given integer modulo n yields
0.”

For example, what is the negative of 3 in Z7? Well, in Z7 the sum of 3
and 4 is 0. Therefore the negative of 3 in Z7 is 4. We can also write
this using the symbol “−”:

−3 = 4 in Z7 ,

or
−3 = 4 modulo 7 .

♦

An important application of arithmetic modulo 3 is that it enables us
to find a simple criterion to check if a given integer is divisible by 3.
The key fact here is that 10 = 1 modulo 3. This means that if we
working modulo 3 then a big number such as 4, 687 is just the same (in
Z3) as 4 + 6 + 8 + 7, i.e. as 25, which is equal to 1 in zz3. So 4, 687 is
not divisible by 3.
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BOX NO. 1 : When is a natural number divisible
by 3?

Take some natural number like 16, 547. Is it divisible by 3?
Naturally, you can do the division and see what happens.
But can you tell quickly and directly?
When we say that a number is “divisible by 3” what we
mean is that if you start subtracting 3s from it until you
cannot do that any more (that is, until you get to 0, 1 or
2), then you end up with 0. In other words, our number
is equal to 0 modulo 3.
So in our example we need to find out whether 16, 547 is
equal to 0, 1 or 2 modulo 3. Now:

16, 547 = 1× 10, 000 + 6× 1, 000 + 5× 100 + 4× 10 + 7× 1 .

Also, 10 is just equal to 1 modulo 3. So 100 = 10 × 10 =
1×1 = 1 modulo 3. And 1, 000 = 10×10×10 = 1×1×1 =
1 modulo 3. And so on. Therefore, the following is true
modulo 3:

16, 547 = 1 + 6 + 5 + 4 + 7 = 23 = 2 .

So 16, 547 is not divisible by 3.
The point of the above argument is that

10, 000 = 1 modulo 3 ,
6, 000 = 6 modulo 3 ,

500 = 5 modulo 3 ,
40 = 4 modulo 3 ,
7 = 7 modulo 3 ,

so

16, 547 = 1 + 6 + 5 + 4 + 7 = 23 = 2 modulo 3.

The general criterion is this: to find out if an integer

is divisble by 3, just add the digits in its decimal
expression. If the sum of the digits is divisible by 3,
then the given number is divisible by 3. Otherwise
it is not.
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BOX NO. 2 : When is a natural number divisible
by 11?

The situation here is very similar to what we found when
we looked at divisibility by 3, but with an important twist.
Now 10 is not equal to 1 modulo 11, but to −1. So if we
look at a natural number like 16, 547, the 7 should count as
a 7 modulo 11, the 4 as a −4, the 5 as 5, the 6 as a −6, and
the 1 as a 1.
(Reason: 16, 547 = 1×10, 000−6×1, 000+5×100−4×10+7.
Modulo 11, we have 10 = −1, 100 = 102 = 1, 1, 000 = −1,
10, 000 = 1. So, 16, 547 = 1 − 6 + 5 − 4 + 7 modulo 11.)
Therefore 16, 547 = 3 modulo 11, and then 16, 547 is not
divisible by 3.

The general criterion is this: to find out if an integer is
divisble by 11, just add the digits in its decimal ex-
pression with alternating signs (plus, minus, plus,
minus, and so on). If the alternating sum of the
digits is divisible by 11, then the given number is
divisible by 11. Otherwise it is not.

QUESTION 1. Which of the following three natural numbers are
divisible by 3?

999, 111, 999, 111
543, 043, 664, 987

6, 915, 571, 375, 016, 461, 671, 444, 102, 534

QUESTION 2. Which of the three natural numbers of the previous
question are divisible by 11?

QUESTION 3. Formulate and justify a criterion for testing if a
number is divisible by 9.

QUESTION 4. Is the following true or false? If you take a natu-
ral number, reverse the order of its decimal figures, and subtract the
smaller of the numbers you got from the larger, then what you get is
divisible by 3. (Here are two examples: (1) start with 925, then get
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529 by reversing the order of the figures, then subtract, and you get
925− 529, which is equal to 396 ; (2) start with 386, then get 683 by
reversing the order of the figures, then subtract, and you get 683−386,
which is equal to 297 . In both cases, we got numbers that are divisble
by 3. The question for you is: is this going to to happen no matter
which natural number we take?)

QUESTION 5. Is the following true or false? If you take a natu-
ral number, reverse the order of its decimal figures, and subtract the
smaller of the numbers you got from the larger, then what you get is
divisible by 11. (Here are two examples: (1) start with 925, then get
529 by reversing the order of the figures, then subtract, and you get
925− 529, which is equal to 396 ; (2) start with 386, then get 683 by
reversing the order of the figures, then subtract, and you get 683−386,
which is equal to 297 . In both cases, we got numbers that are divisble
by 11. The question for you is: is this going to to happen no matter
which natural number we take?)

QUESTION 6. Is the following true or false? If you take a natu-
ral number, reverse the order of its decimal figures, and add the two
numbers, then what you get is divisible by 3. (Here are two examples:
(1) start with 321, then get 123 by reversing the order of the figures,
then add, and you get 321 + 123, which is equal to 444 ; (2) start
with 801, then get 108 by reversing the order of the figures, then add,
and you get 801 + 108, which is equal to 909 . In both cases, we got
numbers that are divisble by 3. The question for you is: is this going
to to happen no matter which natural number we take?)

8.d. Even simpler is Z2, the set of integers modulo 2. Clearly, Z2 has
exactly two members, namely,

0 and 1 .

Arithmetic modulo 2 is so ridiculously simple that we can fit the com-
plete addition and multiplication tables together in one line:

0+0 = 0 , 0+1 = 1+0 = 1 , 1+1 = 0 , 0.0 = 0.1 = 1.0 = 0 , 1.1 = 1 .

QUESTION 7. Does the equation x2 + 1 = 0 have a solution in Z7?
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ANSWER. Let us write down explicitly the squares of all members of Z7:

02 = 0 , 11 = 1 , 22 = 4 , 32 = 2 , 42 = 2 , 52 = 4 , 62 = 1 .

The only way for x2 + 1 to be equal to zero would be for x2 to be equal to
6. But in the above list we see clearly that there is no member of Z7 whose
square is 6. So the answer is NO.

QUESTION 8. Does the equation x2 + 1 = 0 have a solution in Z17?

ANSWER. In Z17, 4.4 = 16, so 4.4 + 1 = 16 + 1 = 0. So the answer is
YES.

QUESTION 9. In Z24, are there two nonzero numbers whose product is
equal to zero?

ANSWER. In Z24, 8.3 = 0. So the answer is YES.

QUESTION 10. In Z4, does the equation a2 + b2 = 3 have a solution?

ANSWER. Here are the values of a2 +b2 for all possible choices of a, b ∈ Z4,

02 + 02 = 0 ,

02 + 12 = 12 + 02 = 1 ,

02 + 22 = 22 + 02 = 1 ,

12 + 12 = 2 ,

12 + 22 = 22 + 12 = 2 ,

22 + 22 = = 0 .

We see that the right-hand side is never equal to 3. So the answer is NO.

QUESTION 11. In Z17, are there two nonzero numbers whose product is
equal to zero?

ANSWER. If you multiply two numbers in Z17, the only way the product
can be equal to zero in Z17 is if, when you reduce modulo 17, you get zero.
That is, the product of these two numbers must be divisible by 17. But 17 is
a prime number, so there is no way to multiply two nonzero numbers smaller
than 17 and get a product which is divisible by 17. So the answer is NO.

Remark 10. Clearly, the class of number systems presented in this subsec-
tion consists of infinitely many “number systems,” namely, the systems

Z2, Z3, Z4, Z5, . . . , Z397 , . . . , and so on . ♦


